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Preface

Digital Signal Processing (DSP) is concerned with the theoretical and practical aspects of representing
information bearing signals in digital form and with using computers or special purpose digital
hardware either to extract that information or to transform the signals in useful ways. Areas where
digital signal processing has made a significant impact include telecommunications, man-machine
communications, computer engineering, multimedia applications, medical technology, radar and
sonar, seismic data analysis, and remote sensing, to name just a few.

During the first fifteen years of its existence, the field of DSP saw advancements in the basic theory of
discrete-time signals and processing tools. This work included such topics as fast algorithms, A/D and
D/A conversion, and digital filter design. The past fifteen years has seen an ever quickening growth
of DSP in application areas such as speech and acoustics, video, radar, and telecommunications.
Much of this interest in using DSP has been spurred on by developments in computer hardware and
microprocessors. Digital Signal Processing Handbook CRCnetBASE is an attempt to capture the entire
range of DSP: from theory to applications — from algorithms to hardware.

Given the widespread use of DSP, a need developed for an authoritative reference, written by some
of the top experts in the world. This need was to provide information on both theoretical and practical
issues suitable for a broad audience — ranging from professionals in electrical engineering, computer
science, and related engineering fields, to managers involved in design and marketing, and to graduate
students and scholars in the field. Given the large number of excellent introductory texts in DSP,
it was also important to focus on topics useful to the engineer or scholar without overemphasizing
those aspects that are already widely accessible. In short, we wished to create a resource that was
relevant to the needs of the engineering community and that will keep them up-to-date in the DSP
field.

A task of this magnitude was only possible through the cooperation of many of the foremost DSP
researchers and practitioners. This collaboration, over the past three years, has resulted in a CD-ROM
containing a comprehensive range of DSP topics presented with a clarity of vision and a depth of
coverage that is expected to inform, educate, and fascinate the reader. Indeed, many of the articles,
written by leaders in their fields, embody unique visions and perceptions that enable a quick, yet
thorough, exposure to knowledge garnered over years of development.

As with other CRC Press handbooks, we have attempted to provide a balance between essential
information, background material, technical details, and introduction to relevant standards and
software. The Handbook pays equal attention to theory, practice, and application areas. Digital
Signal Processing Handbook CRCnetBASE can be used in a number of ways. Most users will look up
a topic of interest by using the powerful search engine and then viewing the applicable chapters. As
such, each chapter has been written to stand alone and give an overview of its subject matter while
providing key references for those interested in learning more. Digital Signal Processing Handbook
CRCnetBASE can also be used as a reference book for graduate classes, or as supporting material
for continuing education courses in the DSP area. Industrial organizations may wish to provide
the CD-ROM with their products to enhance their value by providing a standard and up-to-date
reference source.

We have been very impressed with the quality of this work, which is due entirely to the contributions
of all the authors, and we would like to thank them all. The Advisory Board was instrumental in
helping to choose subjects and leaders for all the sections. Being experts in their fields, the section
leaders provided the vision and fleshed out the contents for their sections.
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Finally, the authors produced the necessary content for this work. To them fell the challenging
task of writing for such a broad audience, and they excelled at their jobs.

In addition to these technical contributors, we wish to thank a number of outstanding individuals
whose administrative skills made this project possible. Without the outstanding organizational skills
of Elaine M. Gibson, this handbook may never have been finished. Not only did Elaine manage the
paperwork, but she had the unenviable task of reminding authors about deadlines and pushing them
to finish. We also thank a number of individuals associated with the CRC Press Handbook Series
over a period of time, especially Joel Claypool, Dick Dorf, Kristen Maus, Jerry Papke, Ron Powers,
Suzanne Lassandro, and Carol Whitehead.

We welcome you to this handbook, and hope you find it worth your interest.

Vijay K. Madisetti and Douglas B. Williams
Center for Signal and Image Processing
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia
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Methods • Summary

2 Ordinary Linear Differential and Difference Equations B.P. Lathi
Differential Equations • Difference Equations

3 Finite Wordlength Effects Bruce W. Bomar
Introduction • Number Representation • Fixed-Point Quantization Errors • Floating-Point Quan-
tization Errors • Roundoff Noise • Limit Cycles • Overflow Oscillations • Coefficient Quantization
Error • Realization Considerations

T
HE STUDY OF “SIGNALS AND SYSTEMS” has formed a cornerstone for the development of
digital signal processing and is crucial for all of the topics discussed in this Handbook. While
the reader is assumed to be familiar with the basics of signals and systems, a small portion is

reviewed in this chapter with an emphasis on the transition from continuous time to discrete time.
The reader wishing more background may find in it any of the many fine textbooks in this area, for
example [1]-[6].

In the chapter “Fourier Series, Fourier Transforms, and the DFT” by W. Kenneth Jenkins, many
important Fourier transform concepts in continuous and discrete time are presented. The discrete
Fourier transform (DFT), which forms the backbone of modern digital signal processing as its most
common signal analysis tool, is also described, together with an introduction to the fast Fourier
transform algorithms.

In “Ordinary Linear Differential and Difference Equations”, the author, B.P. Lathi, presents a
detailed tutorial of differential and difference equations and their solutions. Because these equations
are the most common structures for both implementing and modelling systems, this background is
necessary for the understanding of many of the later topics in this Handbook. Of particular interest
are a number of solved examples that illustrate the solutions to these formulations.
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While most software based on workstations and PCs is executed in single or double precision
arithmetic, practical realizations for some high throughput DSP applications must be implemented
in fixed point arithmetic. These low cost implementations are still of interest to a wide community
in the consumer electronics arena. The chapter “Finite Wordlength Effects” by Bruce W. Bomar
describes basic number representations, fixed and floating point errors, roundoff noise, and practical
considerations for realizations of digital signal processing applications, with a special emphasis on
filtering.
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Fourier Series, Fourier Transforms,

and the DFT

W. Kenneth Jenkins
University of Illinois,
Urbana-Champaign
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1.3 The Classical Fourier Transform for Continuous Time
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Properties of the Continuous Time Fourier Transform •
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Fourier Transform of Periodic Continuous Time Signals • The
Generalized Complex Fourier Transform

1.4 The Discrete Time Fourier Transform
Properties of the Discrete Time Fourier Transform • Relation-
ship between the Continuous and Discrete Time Spectra

1.5 The Discrete Fourier Transform
Properties of the Discrete Fourier Series • Fourier Block Pro-
cessing in Real-Time Filtering Applications • Fast Fourier
Transform Algorithms

1.6 Family Tree of Fourier Transforms
1.7 Selected Applications of Fourier Methods

Fast Fourier Transform in Spectral Analysis • Finite Impulse
Response Digital Filter Design • Fourier Analysis of Ideal and
Practical Digital-to-Analog Conversion

1.8 Summary
References

1.1 Introduction

Fourier methods are commonly used for signal analysis and system design in modern telecommu-
nications, radar, and image processing systems. Classical Fourier methods such as the Fourier series
and the Fourier integral are used for continuous time (CT) signals and systems, i.e., systems in which
a characteristic signal, s(t), is defined at all values of t on the continuum −∞ < t < ∞ . A more
recently developed set of Fourier methods, including the discrete time Fourier transform (DTFT) and
the discrete Fourier transform (DFT), are extensions of basic Fourier concepts that apply to discrete
time (DT) signals. A characteristic DT signal, s[n], is defined only for values of n where n is an
integer in the range −∞ < n < ∞. The following discussion presents basic concepts and outlines
important properties for both the CT and DT classes of Fourier methods, with a particular emphasis
on the relationships between these two classes. The class of DT Fourier methods is particularly useful
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as a basis for digital signal processing (DSP) because it extends the theory of classical Fourier analysis
to DT signals and leads to many effective algorithms that can be directly implemented on general
computers or special purpose DSP devices.

The relationshipbetween theCTand theDTdomains is characterizedby theoperationsof sampling
and reconstruction. If sa(t) denotes a signal s(t) that has been uniformly sampled every T seconds,
then the mathematical representation of sa(t) is given by

sa(t) =
∞∑

n=−∞
s(t)δ(t − nT ) (1.1)

where δ(t) is a CT impulse function defined to be zero for all t 6= 0, undefined at t = 0, and has
unit area when integrated from t = −∞ to t = +∞. Because the only places at which the product
s(t)δ(t−nT ) is not identically equal to zero are at the sampling instances, s(t) in (1.1) can be replaced
with s(nT ) without changing the overall meaning of the expression. Hence, an alternate expression
for sa(t) that is often useful in Fourier analysis is given by

sa(t) =
∞∑

n=−∞
s(nT )δ(t − nT ) (1.2)

The CT sampling model sa(t) consists of a sequence of CT impulse functions uniformly spaced at
intervals ofT seconds and weighted by the values of the signal s(t) at the sampling instants, as depicted
in Fig. 1.1. Note that sa(t) is not defined at the sampling instants because the CT impulse function
itself is not defined at t = 0. However, the values of s(t) at the sampling instants are imbedded as
“area under the curve” of sa(t), and as such represent a useful mathematical model of the sampling
process. In the DT domain the sampling model is simply the sequence defined by taking the values
of s(t) at the sampling instants, i.e.,

s[n] = s(t)|t=nT (1.3)

In contrast to sa(t), which is not defined at the sampling instants, s[n] is well defined at the sampling
instants, as illustrated in Fig. 1.2. Thus, it is now clear that sa(t) and s[n] are different but equivalent
models of the sampling process in the CT and DT domains, respectively. They are both useful for
signal analysis in their corresponding domains. Their equivalence is established by the fact that they
have equal spectra in the Fourier domain, and that the underlying CT signal from which sa(t) and
s[n] are derived can be recovered from either sampling representation, provided a sufficiently large
sampling rate is used in the sampling operation (see below).

1.2 Fourier Series Representation of Continuous Time Periodic
Signals

It is convenient to begin this discussion with the classical Fourier series representation of a periodic
time domain signal, and then derive the Fourier integral from this representation by finding the limit
of the Fourier coefficient representation as the period goes to infinity. The conditions under which a
periodic signal s(t) can be expanded in a Fourier series are known as the Dirichet conditions. They
require that in each period s(t) has a finite number of discontinuities, a finite number of maxima
and minima, and that s(t) satisfies the following absolute convergence criterion [1]:∫ T/2

−T/2
|s(t)| dt < ∞ (1.4)

It is assumed in the following discussion that these basic conditions are satisfied by all functions that
will be represented by a Fourier series.
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FIGURE 1.1: CT model of a sampled CT signal.

FIGURE 1.2: DT model of a sampled CT signal.

1.2.1 Exponential Fourier Series

If a CT signal s(t) is periodic with a period T , then the classical complex Fourier series representation
of s(t) is given by

s(t) =
∞∑

n=−∞
ane

jnω0t (1.5a)

where ω0 = 2π/T , and where the an are the complex Fourier coefficients given by

an = (1/T )

∫ T/2

−T/2
s(t)e−jnω0t dt (1.5b)

It is well known that for every value of t where s(t) is continuous, the right-hand side of (1.5a)
converges to s(t). At values of t where s(t) has a finite jump discontinuity, the right-hand side
of (1.5a) converges to the average of s(t −) and s(t+), where s(t−) ≡ limε→0 s(t − ε) and s(t+) ≡
limε→0 s(t + ε).

For example, the Fourier series expansion of the sawtooth waveform illustrated in Fig. 1.3 is char-
acterized by T = 2π , ω0 = 1, a0 = 0, and an = a−n = A cos(nπ)/(jnπ) for n = 1, 2, . . .,. The
coefficients of the exponential Fourier series represented by (1.5b) can be interpreted as the spec-
tral representation of s(t), because the an-th coefficient represents the contribution of the (nω0)-th
frequency to the total signal s(t). Because the an are complex valued, the Fourier domain represen-
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tation has both a magnitude and a phase spectrum. For example, the magnitude of the an is plotted
in Fig. 1.4 for the sawtooth waveform of Fig. 1.3. The fact that the an constitute a discrete set is
consistent with the fact that a periodic signal has a “line spectrum,” i.e., the spectrum contains only
integer multiples of the fundamental frequency ω0. Therefore, the equation pair given by (1.5a)
and (1.5b) can be interpreted as a transform pair that is similar to the CT Fourier transform for
periodic signals. This leads to the observation that the classical Fourier series can be interpreted
as a special transform that provides a one-to-one invertible mapping between the discrete-spectral
domain and the CT domain. The next section shows how the periodicity constraint can be removed
to produce the more general classical CT Fourier transform, which applies equally well to periodic
and aperiodic time domain waveforms.

FIGURE 1.3: Periodic CT signal used in Fourier series example.

FIGURE 1.4: Magnitude of the Fourier coefficients for example of Figure 1.3.

1.2.2 The Trigonometric Fourier Series

Although Fourier series expansions exist for complex periodic signals, and Fourier theory can be
generalized to the case of complex signals, the theory and results are more easily expressed for real-
valued signals. The following discussion assumes that the signal s(t) is real-valued for the sake of
simplifying the discussion. However, all results are valid for complex signals, although the details of
the theory will become somewhat more complicated.

For real-valued signals s(t), it is possible tomanipulate the complex exponential formof theFourier
series into a trigonometric form that contains sin(ω0t) and cos(ω0t) terms with corresponding real-
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valued coefficients [1]. The trigonometric form of the Fourier series for a real-valued signal s(t) is
given by

s(t) =
∞∑

n=0

bn cos(nω0t) +
∞∑

n=1

cn sin(nω0t) (1.6a)

where ω0 = 2π/T . The bn and cn are real-valued Fourier coefficients determined by

FIGURE 1.5: Periodic CT signal used in Fourier series example 2.

FIGURE 1.6: Fourier coefficients for example of Figure 1.5.

b0 = (1/T )

∫ T/2

−T/2
s(t) dt

bn = (2/T )

∫ T/2

−T/2
s(t) cos(nω0t) dt, n = 1, 2, . . . , (1.6b)

cn = (2/T )

∫ T/2

−T/2
s(t) sin(nω0t) dt, n = 1, 2, . . . ,

An arbitrary real-valued signal s(t) can be expressed as a sum of even and odd components, s(t) =
seven(t) + sodd(t), where seven(t) = seven(−t) and sodd(t) = −sodd(−t), and where seven(t) =
[s(t) + s(−t)]/2 and sodd(t) = [s(t) − s(−t)]/2. For the trigonometric Fourier series, it can be
shown that seven(t) is representedby the (even) cosine terms in the infinite series, sodd(t) is represented
by the (odd) sine terms, and b0 is the DC level of the signal. Therefore, if it can be determined by
inspection that a signal has DC level, or if it is even or odd, then the correct form of the trigonometric
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series can be chosen to simplify the analysis. For example, it is easily seen that the signal shown in
Fig. 1.5 is an even signal with a zero DC level. Therefore it can be accurately represented by the cosine
series with bn = 2A sin(πn/2)/(πn/2), n = 1, 2, . . . , as illustrated in Fig. 1.6. In contrast, note that
the sawtooth waveform used in the previous example is an odd signal with zero DC level; thus, it can
be completely specified by the sine terms of the trigonometric series. This result can be demonstrated
by pairing each positive frequency component from the exponential series with its conjugate partner,
i.e., cn = sin(nω0t) = ane

jnω0t + a−ne
−jnω0t , whereby it is found that cn = 2A cos(nπ)/(nπ) for

this example. In general it is found that an = (bn −jcn)/2 for n = 1, 2, . . . , a0 = b0, and a−n = a∗
n .

The trigonometric Fourier series is common in the signal processing literature because it replaces
complex coefficients with real ones and often results in a simpler and more intuitive interpretation
of the results.

1.2.3 Convergence of the Fourier Series

The Fourier series representation of a periodic signal is an approximation that exhibits mean squared
convergence to the true signal. If s(t) is a periodic signal of period T , and s′(t) denotes the Fourier
series approximation of s(t), then s(t) and s′(t) are equal in the mean square sense if

MSE =
∫ T/2

−T/2
|s(t) − s(t)′|2 dt = 0 (1.7)

Even with (1.7) satisfied, mean square error (MSE) convergence does not mean that s(t) = s′(t)
at every value of t . In particular, it is known that at values of t , where s(t) is discontinuous, the
Fourier series converges to the average of the limiting values to the left and right of the discontinuity.
For example, if t0 is a point of discontinuity, then s′(t0) = [s(t−0 ) + s(t+0 )]/2, where s(t−0 ) and
s(t+0 ) were defined previously. (Note that at points of continuity, this condition is also satisfied by
the definition of continuity.) Because the Dirichet conditions require that s(t) have at most a finite
number of points of discontinuity in one period, the set St , defined as all values of t within one
period where s(t) 6= s′(t), contains a finite number of points, and St is a set of measure zero in the
formal mathematical sense. Therefore, s(t) and its Fourier series expansion s′(t) are equal almost
everywhere, and s(t) can be considered identical to s′(t) for the analysis of most practical engineering
problems.

Convergence almost everywhere is satisfied only in the limit as an infinite number of terms are
included in the Fourier series expansion. If the infinite series expansion of the Fourier series is
truncated to a finite number of terms, as it must be in practical applications, then the approximation
will exhibit an oscillatory behavior around the discontinuity, known as the Gibbs phenomenon [1].
Let s′

N(t) denote a truncated Fourier series approximation of s(t), where only the terms in (1.5a)
from n = −N to n = N are included if the complex Fourier series representation is used, or where
only the terms in (1.6a) from n = 0 to n = N are included if the trigonometric form of the Fourier
series is used. It is well known that in the vicinity of a discontinuity at t0 the Gibbs phenomenon
causes s′

N(t) to be a poor approximation to s(t). The peak magnitude of the Gibbs oscillation is 13%
of the size of the jump discontinuity s(t−0 ) − s(t+0 ) regardless of the number of terms used in the
approximation. As N increases, the region that contains the oscillation becomes more concentrated
in the neighborhood of the discontinuity, until, in the limit as N approaches infinity, the Gibbs
oscillation is squeezed into a single point of mismatch at t0.

If s′(t) is replaced by s′
N(t) in (1.7), it is important to understand the behavior of the error MSEN

as a function of N , where

MSEN =
∫ T/2

−T/2
|s(t) − s′

N(t)|2 dt (1.8)
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An importantpropertyof theFourier series is that the exponential basis functionsejnω0t (orsin(nω0t)

and cos(nω0t) for the trigonometric form) for n = 0, ±1, ±2, . . . (or n = 0, 1, 2, . . . for the
trigonometric form) constitute an orthonormal set, i.e., tnk = 1 for n = k, and tnk = 0 for n 6= k,
where

tnk = (1/T )

∫ T/2

−T/2
(e−jnω0t )(ejkω0t ) dt  (1.9)

As terms are added to the Fourier series expansion, the orthogonality of the basis functions guarantees
that the error decreases in the mean square sense, i.e., that MSEN monotonically decreases as N is
increased. Therefore, apractitioner canproceedwith the confidence thatwhenapplyingFourier series
analysis more terms are always better than fewer in terms of the accuracy of the signal representations.

1.3 The Classical Fourier Transform for Continuous
Time Signals

The periodicity constraint imposed on the Fourier series representation can be removed by taking the
limits of (1.5a) and (1.5b) as the periodT is increased to infinity. Some mathematical preliminaries
are required so that the results will be well defined after the limit is taken. It is convenient to remove
the (1/T ) factor in front of the integral by multiplying (1.5b) through by T , and then replacing
T an by a′

n in both (1.5a) and (1.5b). Because ω 0 = 2π/T , as T increases to infinity, ω0 becomes
infinitesimally small, a condition that is denoted by replacingω0 with1ω. The factor (1/T ) in (1.5a)
becomes (1ω/2π). With these algebraic manipulations and changes in notation (1.5a) and (1.5b)
take on the following form prior to taking the limit:

s(t) = (1/2π)

∞∑
n=−∞

a′
ne

jn1ωt1ω (1.10a)

a′
n =

∫ T/2

−T/2
s(t)e−jn1ωt dt (1.10b)

Thefinal step inobtaining theCTFourier transformis to take the limitofboth(1.10a)and(1.10b)
as T → ∞. In the limit the infinite summation in (1.10a) becomes an integral, 1ω becomes dω,
n1ω becomes ω, and a′

n becomes the CT Fourier transform of s(t), denoted by S(jω). The result
is summarized by the following transform pair, which is known throughout most of the engineering
literature as the classical CT Fourier transform (CTFT):

s(t) = (1/2π)

∫ ∞

−∞
S(jω)ejωt dω (1.11a)

S(jω) =
∫ ∞

−∞
s(t)e−jωt dt (1.11b)

Often (1.11a\) is called the Fourier integral and (1.11b) is simply called the Fourier transform. The
relationship S(jω) = F{s(t)} denotes the Fourier transformation of s(t), where F{·} is a symbolic
notation for the Fourier transform operator, and where ω becomes the continuous frequency variable
after the periodicity constraint is removed. A transform pair s(t) ↔ S(jω) represents a one-to-
one invertible mapping as long as s(t) satisfies conditions which guarantee that the Fourier integral
converges.

From (1.11a) it is easily seen that F{δ(t − t 0)} = e−jωt0, and from (1.11b) that F −1{2πδ(ω −
ω0)} = ejω0t , so that δ(t − t0) ↔ e−jωt0 and ejω0t ↔ 2πδ(ω − ω0) are valid Fourier transform
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pairs. Using these relationships it is easy to establish the Fourier transforms of cos(ω0t) and sin(ω0t),
as well as many other useful waveforms that are encountered in common signal analysis problems.
A number of such transforms are shown in Table 1.1.

The CTFT is useful in the analysis and design of CT systems, i.e., systems that process CT signals.
Fourier analysis is particularly applicable to the design of CT filters which are characterized by Fourier
magnitude and phase spectra, i.e., by |H(jω)| and arg H(jω), where H(jω) is commonly called
the frequency response of the filter. For example, an ideal transmission channel is one which passes
a signal without distorting it. The signal may be scaled by a real constant A and delayed by a fixed
time increment t0, implying that the impulse response of an ideal channel is Aδ(t − t0), and its
corresponding frequency response is Ae−jωt0. Hence, the frequency response of an ideal channel is
specified by constant amplitude for all frequencies, and a phase characteristic which is linear function
given by ωt0.

1.3.1 Properties of the Continuous Time Fourier Transform

The CTFT has many properties that make it useful for the analysis and design of linear CT systems.
Some of the more useful properties are stated below. A more complete list of the CTFT properties is
given in Table 1.2. Proofs of these properties can be found in [2] and [3]. In the following discus-
sion F{·} denotes the Fourier transform operation, F−1{·} denotes the inverse Fourier transform
operation, and ∗ denotes the convolution operation defined as

f1(t) ∗ f2(t) =
∫ ∞

−∞
f1(t − τ)f2(τ ) dτ

1. Linearity (superposition): F{af1(t) + bf2(t)} = aF{f1(t)} + bF{f2(t)}
(a and b, complex constants)

2. Time shifting: F{f (t − t0)} = e−jωt0F{f (t)}
3. Frequency shifting: ejω0t f (t) = F−1{F(j (ω − ω0))}
4. Time domain convolution: F{f1(t) ∗ f2(t)} = F{f1(t)}F{f2(t)}
5. Frequency domain convolution: F{f1(t)f2(t)} = (1/2π)F{f1(t)} ∗ F{f2(t)}
6. Time differentiation: −jωF(jω) = F{d(f (t))/dt}
7. Time integration: F{∫ t

−∞ f (τ) dτ } = (1/jω)F (jω) + πF(0)δ(ω)

The above properties are particularly useful in CT system analysis and design, especially when the
system characteristics are easily specified in the frequency domain, as in linear filtering. Note that
properties 1, 6, and 7 are useful for solving differential or integral equations. Property 4 provides the
basis for many signal processing algorithms because many systems can be specified directly by their
impulse or frequency response. Property 3 is particularly useful in analyzing communication systems
in which different modulation formats are commonly used to shift spectral energy to frequency bands
that are appropriate for the application.

1.3.2 Fourier Spectrum of the Continuous Time Sampling Model

Because the CT sampling model sa(t), given in (1.1), is in its own right a CT signal, it is appropriate
to apply the CTFT to obtain an expression for the spectrum of the sampled signal:

F{sa(t)} = F
{ ∞∑

n=−∞
s(t)δ(t − nT )

}
=

∞∑
n=−∞

s(nT )e−jωT n (1.12)

Because the expression on the right-hand side of (1.12) is a function of ejωT it is customary to denote
the transform as F(ejωT ) = F{sa(t)}. Later in the chapter this result is compared to the result of

c©1999 by CRC Press LLC



TABLE 1.1 Some Basic CTFT Pairs
Fourier Series Coefficients

Signal Fourier Transform (if periodic)

+∞∑
k=−∞

akejkω0t 2π

+∞∑
k=−∞

akδ(ωkω0) ak

ejω0t 2πδ(ω + ω0)

a1 = 1

ak = 0, otherwise

cosω0t π[δ(ω − ω0) + δ(ω + ω0)]
a1 = a−1 = 1

2

ak = 0, otherwise

sinω0t π
j

[δ(ω − ω0) − δ(ω + ω0)]
a1 = −a−1 = 1

2j

ak = 0, otherwise

x(t) = 1 2πδ(ω)

a0 = 1, ak = 0, k 6= 0(
has this Fourier series representation for any
choice of T0 > 0

)

Periodic square wave

x(t) =



1, |t | < T1

0, T1 < |t | ≤ T0
2

+∞∑
k=−∞

2sinkω0T1
k

δ(ωkω0)
ω0T1

π
sinc

(
kω0T1

π

)
= sinkω0T1

kπ

and

x(t + T0) = x(t)

+∞∑
n=−∞

δ(t − nT )
2π

T

+∞∑
k = −∞δ

(
ω − 2πk

T

)
ak = 1

T
for all k

x(t) =
{

1, |t | < T1
0, |t | > T1

2T1 sinc

(
ωT1
π

)
= 2sinωT1

ω —

W

π
sinc

(
Wt

π

)
= sinWt

πt
X(ω) =

{
1, |ω| < W

0, |ω| > W
—

δ(t) 1 —

u(t)
1

jω
+ πδ(ω) —

δ(t − t0) ejωt0
—

e−at u(t), Re{a} > 0
1

a + jω
—

te−at u(t), Re{a} > 0
1

(a + jω)2
—

tn−1

(n − 1)! e
−at u(t),

Re{a} > 0

1

(a + jω)n
—
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TABLE 1.2 Properties of the CTFT

Name If Ff (t) = F(jω), then

Definition f (jω) =
∫ ∞
−∞

f (t)ejωt dt

f (t) = 1

2π

∫ ∞
−∞

F(jω)ejωt dω

Superposition F [af1(t) + bf2(t)] = aF1(jω) + bF2(jω)

Simplification if:

(a) f (t) is even F(jω) = 2
∫ ∞

0
f (t) cosωt dt

(b) f (t) is odd F(jω) = 2j

∫ ∞
0

f (t) sinωt dt

Negative t Ff (−t) = F ∗(jω)

Scaling:

(a) Time Ff (at) = 1

|a| F
(

jω

a

)

(b) Magnitude Faf (t) = aF(jω)

Differentiation F
[

dn

dtn
f (t)

]
= (jω)nF (jω)

Integration F
[∫ t

−∞
f (x) dx

]
= 1

jω
F (jω) + πF(0)δ(ω)

Time shifting Ff (t − a) = F(jω)ejωa

Modulation Ff (t)ejω0t = F [j (ω − ω0)]
{Ff (t) cosω0t = 1

2F [j (ω − ω0)] + F [j (ω + ω0)]}

{Ff (t) sinω0t = 1
2 j [F [j (ω − ω0)] − F [j (ω + ω0)]}

Time convolution F−1[F1(jω)F2(jω)] =
∫ ∞
−∞

f1(τ )f2(τ )f2(tτ ) dτ

Frequency convolution F [f1(t)f2(t)] = 1

2π

∫ ∞
−∞

F1(jλ)F2[j (ωλ)] dλ

operating on the DT sampling model, namely s[n], with the DT Fourier transform to illustrate that
the two sampling models have the same spectrum.

1.3.3 Fourier Transform of Periodic Continuous Time Signals

We saw earlier that a periodic CT signal can be expressed in terms of its Fourier series. The CTFT
can then be applied to the Fourier series representation of s(t) to produce a mathematical expression
for the “line spectrum” characteristic of periodic signals.

F{s(t)} = F
{ ∞∑

n=−∞
ane

jnω0t

}
= 2π

∞∑
n=−∞

anδ(ω − nω0) (1.13)

The spectrum is shown pictorially in Fig. 1.7. Note the similarity between the spectral representation
of Fig. 1.7 and the plot of the Fourier coefficients in Fig. 1.4, which was heuristically interpreted
as a “line spectrum”. Figures 1.4 and 1.7 are different but equivalent representations of the Fourier
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spectrum. Note that Fig. 1.4 is a DT representation of the spectrum, while Fig. 1.7 is a CT model of
the same spectrum.

FIGURE 1.7: Spectrum of the Fourier series representation of s(t).

1.3.4 The Generalized Complex Fourier Transform

The CTFT characterized by (1.11a) and (1.11b) can be generalized by considering the variable jω

to be the special case of u = σ + jω with σ = 0, writing (1.11a) in terms of u, and interpreting u

as a complex frequency variable. The resulting complex Fourier transform pair is given by (1.14a)
and (1.14b)

s(t) = (1/2πj)

∫ σ+j∞

σ−j∞
S(u)ejut du (1.14a)

S(u) =
∫ ∞

−∞
s(t)e−jut dt (1.14b)

The set of all values ofu for which the integral of (1.14b) converges is called the region of convergence
(ROC). Because the transform S(u) is defined only for values of u within the ROC, the path of
integration in (1.14a) must be defined by σ so that the entire path lies within the ROC. In some
literature this transform pair is called the bilateral Laplace transform because it is the same result
obtained by including both the negative and positive portions of the time axis in the classical Laplace
transform integral. [Note that in (1.14a) the complex frequency variable was denoted by u rather
than by the more common s, in order to avoid confusion with earlier uses of s(·) as signal notation.]
The complex Fourier transform (bilateral Laplace transform) is not often used in solving practical
problems, but its significance lies in the fact that it is the most general form that represents the point
at which Fourier and Laplace transform concepts become the same. Identifying this connection
reinforces the notion that Fourier and Laplace transform concepts are similar because they are derived
by placing different constraints on the same general form.

1.4 The Discrete Time Fourier Transform

The discrete time Fourier transform (DTFT) can be obtained by using the DT sampling model and
considering the relationship obtained in (1.12) to be the definition of the DTFT. Letting T = 1 so
that the sampling period is removed from the equations and the frequency variable is replaced with
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a normalized frequency ω′ = ωT , the DTFT pair is defined in (1.15a). Note that in order to simplify
notation it is not customary to distinguish between ω and ω′, but rather to rely on the context of the
discussion to determine whether ω refers to the normalized (T = 1) or the unnormalized (T 6= 1)

frequency variable.

S(ejω′
) =

∞∑
n=−∞

s[n]e−jω′n (1.15a)

s[n] = (1/2π)

∫ π

−π

S(ejω′
)ejnω′

dω′ (1.15b)

The spectrum S(ejω′
) is periodic in ω′ with period 2π . The fundamental period in the range

−π < ω′ ≤ π , sometimes referred to as the baseband, is the useful frequency range of the DT system
because frequency components in this range can be represented unambiguously in sampled form
(without aliasing error). In much of the signal processing literature the explicit primed notation is
omitted from the frequency variable. However, the explicit primed notation will be used throughout
this section because the potential exists for confusion when so many related Fourier concepts are
discussed within the same framework.

By comparing (1.12) and (1.15a), and noting that ω ′ = ωT , it is established that

F{sa(t)} = DTFT{s[n]} (1.16)

where s[n] = s(t)t=nT . This demonstrates that the spectrum of sa(t), as calculated by the CT Fourier
transform is identical to the spectrum of s[n] as calculated by the DTFT. Therefore, although sa(t)

and s[n] are quite different sampling models, they are equivalent in the sense that they have the same
Fourier domain representation.

A list of common DTFT pairs is presented in Table 1.3. Just as the CT Fourier transform is useful
in CT signal system analysis and design, the DTFT is equally useful in the same capacity for DT
systems. It is indeed fortuitous that Fourier transform theory can be extended in this way to apply
to DT systems.

In the same way that the CT Fourier transform was found to be a special case of the complex Fourier
transform (or bilateral Laplace transform), the DTFT is a special case of the bilateral z-transform
with z = ejω′t . The more general bilateral z-transform is given by

S(z) =
∞∑

n=−∞
s[n]z−n (1.17a)

s[n] = (1/2πj)

∫
C

S(z)zn−1 dz (1.17b)

where C is a counterclockwise contour of integration which is a closed path completely contained
within the region of convergence of S(z). Recall that the DTFT was obtained by taking the CT Fourier
transform of the CT sampling model represented by sa(t). Similarly, the bilateral z-transform results
by taking the bilateral Laplace transform of sa(t). If the lower limit on the summation of (1.17a) is
taken to be n = 0, then (1.17a) and (1.17b) become the one-sided z-transform, which is the DT
equivalent of the one-sided LT for CT signals. The hierarchical relationship among these various
concepts for DT systems is discussed later in this chapter, where it will be shown that the family
structure of the DT family tree is identical to that of the CT family. For every CT transform in the
CT world there is an analogous DT transform in the DT world, and vice versa.
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TABLE 1.3 Some Basic DTFT Pairs

Sequence Fourier Transform

1. δ[n] 1

2. δ[n − n0] e−jωn0

3. 1 (−∞ < n < ∞)

∞∑
k=−∞

2πδ(ω + 2πk)

4. anu[n] (|a| < 1)
1

1 − ae−jω

5. u[n] 1

1 − e−jω
+

∞∑
k=−∞

πδ(ω + 2πk)

6. (n + 1)anu[n] (|a| < 1)
1

(1 − ae−jω)2

7.
r2 sinωp(n + 1)

sinωp
u[n] (|r| < 1)

1

1 − 2r cosωpe−jω + r2ej2ω

8.
sinωcn

πn
Xejω =

{ 1, |ω| < ωc

0, ωc < |ω| ≤ π

9. x[n] −
{ 1, 0 ≤ n ≤ M

0, otherwise

sin [ω(M + 1)/2]
sin (ω/2)

e−jωM/2

10. ejω0n
∞∑

k=−∞
2πδ(ω − ω0 + 2πk)

11. cos(ω0n + φ) π

∞∑
k=−∞

[ejφδ(ω − ω0 + 2πk) + e−jφδ(ω + ω0 + 2πk)]

1.4.1 Properties of the Discrete Time Fourier Transform

Because the DTFT is a close relative of the classical CT Fourier transform it should come as no surprise
that many properties of the DTFT are similar to those presented for the CT Fourier transform in the
previous section. In fact, for many of the properties presented earlier an analogous property exists
for the DTFT. The following list parallels the list that was presented in the previous section for the CT
Fourier transform, to the extent that the same property exists. A more complete list of DTFT pairs is
given in Table 1.4. (Note that the primed notation on ω′ is dropped in the following to simplify the
notation, and to be consistent with standard usage.)

1. Linearity (superposition): DTFT{af1[n] + bf2[n]} = aDTFT{f1[n]} + bDTFT{f2[n]}
(a and b, complex constants)

2. Index shifting: DTFT{f [n − n0]} = e−jωn0DTFT{f [n]}
3. Frequency shifting: ejω0nf [n] = DTFT−1{F(ej (ω−ω0))}
4. Time domain convolution: DTFT{f1[n] ∗ f2[n]} = DTFT{f1[n]}DTFT{f2[n]}
5. Frequencydomainconvolution: DTFT{f1[n]f2[n]} = (1/2π)DTFT{f1[n]}∗DTFT{f2[n]}
6. Frequency differentiation: nf [n] = DTFT−1{dF(ejω)/dω}

Note that the time-differentiation and time-integration properties of the CTFT do not have analogous
counterparts in the DTFT because time domain differentiation and integration are not defined for DT

c©1999 by CRC Press LLC



TABLE 1.4 Properties of the DTFT
Sequence Fourier Transform
x[n] X(ejω)

y[n] Y (ejω)

1. ax[n] + by[n] aX(ejω) + bY (ejω)

2. x[n − nd ] (nd an integer) e−jωnd X(ejω)

3. ejω0nx[n] X(ej (ω−ω0))

4. x[−n] X(e−jω) if x[n] is real
X∗(ejω)

5. nx[n] j
dX(ejω)

dω

6. x[n] ∗ y[n] X(ejω)Y (ejω)

7. x[n]y[n] 1

2π

∫ x

−x
X(ejθ )Y (ej (ω−θ)) dθ

Parseval’s Theorem

8.
∞∑

n=−∞
|x[n]|2 = 1

2π

∫ π

−π
|X(ejω)|2 dω

9.
∞∑

n=−∞
x[n]y∗[n] = 1

2π

π
inf−π

X(ejω)Y ∗(ejω) dω

signals. When working with DT systems practitioners must often manipulate difference equations
in the frequency domain. For this purpose property 1 and property 2 are very important. As with
the CTFT, property 4 is very important for DT systems because it allows engineers to work with
the frequency response of the system, in order to achieve proper shaping of the input spectrum or
to achieve frequency selective filtering for noise reduction or signal detection. Also, property 3 is
useful for the analysis of modulation and filtering operations common in both analog and digital
communication systems.

The DTFT is defined so that the time domain is discrete and the frequency domain is continuous.
This is in contrast to the CTFT that is defined to have continuous time and continuous frequency
domains. The mathematical dual of the DTFT also exists, which is a transform pair that has a
continuous time domain and a discrete frequency domain. In fact, the dual concept is really the
same as the Fourier series for periodic CT signals presented earlier in the chapter, as represented
by (1.5a) and (1.5b). However, the classical Fourier series arises from the assumption that the CT
signal is inherently periodic, as opposed to the time domain becoming periodic by virtue of sampling
the spectrum of a continuous frequency (aperiodic time) function [8]. The dual of the DTFT, the
discrete frequency Fourier transform (DFFT), has been formulated and its properties tabulated as
an interesting and useful transform in its own right [5]. Although the DFFT is similar in concept
to the classical CT Fourier series, the formal properties of the DFFT [5] serve to clarify the effects
of frequency domain sampling and time domain aliasing. These effects are obscured in the classical
treatment of the CT Fourier series because the emphasis is on the inherent “line spectrum” that
results from time domain periodicity. The DFFT is useful for the analysis and design of digital filters
that are produced by frequency sampling techniques.

1.4.2 Relationship between the Continuous and Discrete Time Spectra

Because DT signals often originate by sampling CT signals, it is important to develop the relationship
between the original spectrum of the CT signal and the spectrum of the DT signal that results. First,
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the CTFT is applied to the CT sampling model, and the properties listed above are used to produce
the following result:

F{sa(t)} = F
{

s(t)

∞∑
n=−∞

δ(t − nT )

}

= (1/2π)S(jω) ∗ F
{ ∞∑

n=−∞
δ(t − nT )

}
(1.18)

In this section it is important to distinguish between ω and ω′, so the explicit primed notation
is used in the following discussion where needed for clarification. Because the sampling function
(summation of shifted impulses) on the right-hand side of the above equation is periodic with period
T it can be replaced with a CT Fourier series expansion as follows:

S(ejωT ) = F{sa(t)} = (1/2π)S(jω) ∗ F
{ ∞∑

n=−∞
(1/T )ej (2π/T )nt

}

Applying the frequency domain convolution property of the CTFT yields

S(ejωT ) = (1/2π)

∞∑
n=−∞

S(jω) ∗ (2π/T )δ(ω − (2π/T )n)

The result is

S(ejωT ) = (1/T )

∞∑
n=−∞

S(j [ω − (2π/T )n]) = (1/T )

∞∑
n=−∞

S(j [ω − nωs]) (1.19a)

where ωs = (2π/T ) is the sampling frequency expressed in radians per second. An alternate form
for the expression of (1.19a) is

S(ejω′
) = (1/T )

∞∑
n=−∞

S(j [(ω′ − n2π)/T ]) (1.19b)

where ω′ = ωT is the normalized DT frequency axis expressed in radians. Note that S(ejωT ) =
S(ejω′

) consists of an infinite number of replicas of the CT spectrum S(jω), positioned at intervals
of (2π/T ) on the ω axis (or at intervals of 2π on the ω′ axis), as illustrated in Fig. 1.8. Note that if
S(jω) is band limited with a bandwidth ωc, and if T is chosen sufficiently small so that ωs > 2ωc,
then the DT spectrum is a copy of S(jω) (scaled by 1/T ) in the baseband. The limiting case of
ωs = 2ωc is called the Nyquist sampling frequency. Whenever a CT signal is sampled at or above
the Nyquist rate, no aliasing distortion occurs (i.e., the baseband spectrum does not overlap with the
higher-order replicas) and the CT signal can be exactly recovered from its samples by extracting the
baseband spectrum of S(ejω′

) with an ideal low-pass filter that recovers the original CT spectrum by
removing all spectral replicas outside the baseband and scaling the baseband by a factor of T .

1.5 The Discrete Fourier Transform

To obtain the discrete Fourier transform (DFT) the continuous frequency domain of the DTFT
is sampled at N points uniformly spaced around the unit circle in the z-plane, i.e., at the points
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FIGURE 1.8: Illustration of the relationship between the CT and DT spectra.

ωk = (2πk/N), k = 0, 1, . . . , N − 1. The result is the DFT pair defined by (1.20a) and (1.20b).
The signal s[n] is either a finite length sequence of length N , or it is a periodic sequence with period
N .

S[k] =
N−1∑
n=0

s[n]e−j2πkn/N k = 0, 1, . . . , N − 1 (1.20a)

s[n] = (1/N)

N−1∑
k=0

S[k]ej2πkn/N n = 0, 1, . . . , N − 1 (1.20b)

Regardless of whether s[n] is a finite length or periodic sequence, the DFT treats the N samples of
s[n] as though they are one period of a periodic sequence. This is an important feature of the DFT,
and one that must be handled properly in signal processing to prevent the introduction of artifacts.
Important properties of the DFT are summarized in Table 1.5. The notation ((k))N denotes k modulo
N , and RN [n] is a rectangular window such that RN [n] = 1 for n = 0, . . . , N − 1, and RN [n] = 0
for n < 0 and n ≥ N . The transform relationship given by (1.20a) and (1.20b) is also valid when
s[n] and S[k] are periodic sequences, each of period N . In this case n and k are permitted to range
over the complete set of real integers, and S[k] is referred to as the discrete Fourier series (DFS). The
DFS is developed by some authors as a distinct transform pair in its own right [6]. Whether the
DFT and the DFS are considered identical or distinct is not very important in this discussion. The
important point to be emphasized here is that the DFT treats s[n] as though it were a single period
of a periodic sequence, and all signal processing done with the DFT will inherit the consequences of
this assumed periodicity.

1.5.1 Properties of the Discrete Fourier Series

Most of the properties listed in Table 1.5 for the DFT are similar to those of the z-transform and the
DTFT, although some important differences exist. For example, property 5 (time-shifting property),
holds for circular shifts of the finite length sequence s[n], which is consistent with the notion that the
DFT treats s[n] as one period of a periodic sequence. Also, the multiplication of two DFTs results in
the circular convolution of the corresponding DT sequences, as specified by property 7. This latter
property is quite different from the linear convolution property of the DTFT. Circular convolution
is the result of the assumed periodicity discussed in the previous paragraph. Circular convolution
is simply a linear convolution of the periodic extensions of the finite sequences being convolved, in
which each of the finite sequences of length N defines the structure of one period of the periodic
extensions.

For example, suppose one wishes to implement a digital filter with finite impulse response (FIR)
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TABLE 1.5 Properties of the DFT

Finite-Length Sequence (Length N) N-Point DFT (Length N)

1. x[n] X[k]
2. x1[n], x2[n] X1[k], X2[k]
3. ax1[n] + bx2[n] aX1[k] + bX2[k]
4. X[n] Nx[((−k))N ]
5. x[((nm))N ] Wkm

N
X[k]

6. W−ln
N

x[n] X[((k − l))N ]

7.
N−1∑
m=0

x1(m)x2[((nm))N ] X1[k]X2[k]

8. x1[n]x2[n] 1

N

N−1∑
l=0

X1(l)X2[((k − l)N ]
9. x∗[n] X∗[((−k))N ]

10. x∗[((−n))N ] X∗[k]
11. Re{x[n]} Xep[k] = 1

2 {X[((k))N ] + K∗[((−k))N ]}
12. j Im{x[n]} Xop[k] = 1

2 {X[((k))N ] − X∗[((−k))N ]}
13. xep[n] = 1

2 {x[n] + x∗[((−n))N ]} Re{X[k]}
14. xop[n] = 1

2 {x[n] − x∗[((−n))N ]} j Im{X[k]}
Properties 15–17 apply only when x[n] is real

15. Symmetry properties




X[k] = X∗[((−k))N ]
Re{X[k]} = Re{X[((−k))N ]}
Im{X[k]} = −Im{X[((−k))N ]}

|X[k]| = |X[((−k))N ]|
<){X[k]} = − <){X[((−k))N ]}

16. xep[n] = 1
2 {x[n] + x[((−n))N ]} Re{X[k]}

17. xop[n] = 1
2 {x[n] − x[((−n))N ]} j Im{X[k]}

h[n]. The output y(n) in response to input s[n] is given by

y[n] =
N−1∑
k=0

h[k]s[n − k] (1.21)

where y(n) is obtained by transforming h[n] and s[n] into H [k] and S[k] using the DFT, multiplying
the transforms point-wise to obtain Y [k] = H [k]S[k], and then using the inverse DFT to obtain
y[n] = DFT−1{Y [k]}. If s[n] is a finite sequence of length M , then the results of the circular
convolution implemented by the DFT will correspond to the desired linear convolution if the block
length of the DFT, NDFT, is chosen sufficiently large so that NDFT ≥ N + M − 1 and both h[n]
and s[n] are padded with zeroes to form blocks of length NDFT.

1.5.2 Fourier Block Processing in Real-Time Filtering Applications

In some practical applications either the value of M is too large for the memory available, or s[n] may
not actually be finite in length, but rather a continual stream of data samples that must be processed
by a filter at real-time rates. Two well-known algorithms are available that partition s[n] into smaller
blocks and process the individual blocks with a smaller-length DFT: (1) overlap-save partitioning
and (2) overlap-add partitioning. Each of these algorithms is summarized below.

Overlap-Save Processing

In this algorithm NDFT is chosen to be some convenient value with NDFT > N . The signal
s[n] is partitioned into blocks which are of length NDFT and which overlap by N − 1 data points.
Hence, the kth block is sk[n] = s[n+ k(NDFT −N +1)], n = 0, . . . , NDFT −1. The filter impulse

c©1999 by CRC Press LLC



response is augmented with NDFT − N zeroes to produce

hpad[n] =
[

h[n], n = 0, . . . , N − 1
0, n = N, . . . , NDFT − 1

]
(1.22)

TheDFTis thenused toobtainYpad[n] = DFT{hpad[n]}·DFT{sk[n]}, andypad[n] = IDFT{Ypad[n]}.
From the ypad[n] array the values that correctly correspond to the linear convolution are saved; val-

ues that are erroneous due to wrap-around error caused by the circular convolution of the DFT are
discarded. The kth block of the filtered output is obtained by

yk[n] =
[

ypad[n], n = N − 1, . . . , NDFT − 1

0, n = 0, . . . , N − 2

]
(1.23)

For the overlap-save algorithm, each time a block is processed there are NDFT − N + 1 points saved
and N − 1 points discarded. Each block moves forward by NDFT − N + 1 data points and overlaps
the previous block by N − 1 points.

Overlap-Add Processing

This algorithm is similar to the previous one except that the kth input block is defined as

sk[n] =
[

s[n + kL], n = 0, . . . , L − 1
0, n = L, . . . , NDFT − 1

]
(1.24)

where L = NDFT − N + 1. The filter function hpad[n] is augmented with zeroes, as before, to

create hpad[n], and the DFT processing is executed as before. In each block ypad[n] that is obtained

at the output the first N −1points are erroneous, the last N −1points are erroneous, and the middle
NDFT − 2(N − 1) points correctly correspond to the linear convolution. However, if the last N − 1
points from block k are overlapped with the first N − 1 points from block k + 1 and added pairwise,
correct results corresponding to linear convolution are also obtained from these positions. Hence,
after this addition the number of correct points produced per block is NDFT − N + 1, which is the
same as that for the overlap-save algorithm. The overlap-add algorithm requires approximately the
same amount of computation as the overlap-save algorithm, although the addition of the overlapping
portions of blocks is extra. This feature, together with the added delay of waiting for the next block to
be finished before the previous one is complete, has resulted in more popularity for the overlap-save
algorithm in practical applications.

Block filtering algorithms make it possible to efficiently filter continual data streams in real time
because the fast Fourier transform (FFT) algorithm can be used to implement the DFT, thereby
minimizing the total computation time and permitting reasonably high overall data rates. However,
block filtering generates data in bursts, i.e., a delay occurs during which no filtered data appear, and
then an entire block is suddenly generated. In real-time systems buffering must be used. The block
algorithms are particularly effective for filtering very long sequences of data that are prerecorded on
magnetic tape or disk.

1.5.3 Fast Fourier Transform Algorithms

The DFT is typically implemented in practice with one of the common forms of the FFT algorithm.
The FFT is not a Fourier transform in its own right, but simply a computationally efficient algo-
rithm that reduces the complexity of computing the DFT from order {N2} to order {N log2 N}.
When N is large, the computational savings provided by the FFT algorithm is so great that the FFT
makes real-time DFT analysis practical in many situations that would be entirely impractical without
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it. Fast Fourier transform algorithms abound, including decimation-in-time (D-I-T) algorithms,
decimation-in-frequency (D-I-F) algorithms, bit-reversed algorithms, normally ordered algorithms,
mixed-radix algorithms (for block lengths that are not powers of 2), prime factor algorithms, and
Winograd algorithms [7]. The D-I-T and the D-I-F radix-2 FFT algorithms are the most widely used
in practice. Detailed discussions of various FFT algorithms can be found in [3, 6, 7], and [10].

The FFT is easily understood by examining the simple example of N = 8. The FFT algorithm can
be developed in numerous ways, all of which deal with a nested decomposition of the summation
operator of (1.20a). The development presented here is called an algebraic development of the
FFT because it follows straightforward algebraic manipulation. First, the summation indices (k, n)

in (1.20a) are expressed as explicit binary integers, k = k 24 + k12 + k0 and n = n24 + n12 + n0,
where ki and ni are bits that take on the values of either 0 or 1. If these expressions are substituted
into (1.20a), all terms in the exponent that contain the factor N = 8 can be deleted because
e−j2πl = 1 for any integer l. Upon deleting such terms and regrouping the remaining terms, the
product nk can be expressed in either of two ways:

nk = (4k0)n2 + (4k1 + 2k0)n1 + (4k2 + 2k1 + k0)n0 (1.25a)

nk = (4n0)k2 + (4n1 + 2n0)k1 + (4n2 + 2n1 + n0)k0 (1.25b)

Substituting (1.25a) into (1.20a) leads to the D-I-T FFT, whereas substituting (1.25b) leads to the
D-I-F FFT. Only the D-I-T FFT is discussed further here. The D-I-F and various related forms are
treated in detail in [6].

The D-I-T FFT decomposes into log2 N stages of computation, plus a stage of bit reversal,

x1[k0, n1, n0] =
1∑

n2=0

s[n2, n1, n0]W4k0n2
8 (stage 1) (1.26a)

x2[k0, k1, n0] =
1∑

n1=0

x[k0, n1, n0]W(4k1+2k0)n2
8 (stage 2) (1.26b)

x3[k0, k1, k2] =
1∑

n0=0

x[k0, k1, n0]W(4k2+2k1+k0)n0
8 (stage 3) (1.26c)

S[k2, k1, k0] = x3[k0, k1, k2] (bit reversal) (1.26d)

In each summation above one of the ni is summed out of the expression, while at the same time a new
ki is introduced. The notation is chosen to reflect this. For example, in stage 3, n0 is summed out,
k2 is introduced as a new variable, and n0 is replaced by k2 in the result. The last operation, called
bit reversal, is necessary to correctly locate the frequency samples X[k] in the memory. It is easy to
show that if the samples are paired correctly, an in-place computation can be done by a sequence of
butterfly operations. The term “in-place” means that each time a butterfly is to be computed, a pair
of data samples is read from memory, and the new data pair produced by the butterfly calculation
is written back into the memory locations where the original pair was stored, thereby overwriting
the original data. An in-place algorithm is designed so that each data pair is needed for only one
butterfly, and thus the new results can be immediately stored on top of the old in order to minimize
memory requirements.

For example, in stage 3 the k = 6 and k = 7 samples should be paired, yielding a “butterfly”
computation that requires one complex multiply, one complex add, and one subtract:
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x3(1, 1, 0) = x2(1, 1, 0) + W3
8x2(1, 1, 1) (1.27a)

x3(1, 1, 1) = x2(1, 1, 0) − W3
8x2(1, 1, 1) (1.27b)

Samples x2(6) and x2(7) are read from the memory, the butterfly is executed on the pair, and x3(6)

and x3(7) are written back to the memory, overwriting the original values of x2(6) and x2(7). In
general, N/2 butterflies are found in each stage and there are log2 N stages, so the total number of
butterflies is (N/2) log2 N . Because one complex multiplication per butterfly is the maximum, the
total number of multiplications is bounded by (N/2) log2 N (some of the multiplies involve factors
of unity and should not be counted).

Figure 1.9 shows the signal flow graph of the D-I-T FFT for N = 8. This algorithm is referred to

FIGURE 1.9: D-I-T FFT algorithm with normally ordered inputs and bit-reversed outputs.

as an in-place FFT with normally ordered input samples and bit-reversed outputs. Minor variations
that include both bit-reversed inputs and normally ordered outputs and non-in-place algorithms
with normally ordered inputs and outputs are possible. Also, when N is not a power of 2, a mixed-
radix algorithm can be used to reduce computation. The mixed-radix FFT is most efficient when
N is highly composite, i.e., N = p

r1
1 p

r2
2 · · ·prL

L , where the pi are small prime numbers and the ri

are positive integers. It can be shown that the order of complexity of the mixed radix FFT is order
{N(r1(p1−1)+r2(p2−1)+· · ·+rL(pL−1)}. Because of the lack of uniformity of structure among
stages, this algorithm has not received much attention for hardware implementation. However, the
mixed-radix FFT is often used in software applications, especially for processing data recorded in
laboratory experiments in which it is not convenient to restrict the block lengths to be powers of 2.
Many advanced FFT algorithms, such as higher-radix forms, the mixed-radix form, the prime-factor
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algorithm, and the Winograd algorithm are described in [9]. Algorithms specialized for real-valued
data reduce the computational cost by a factor of two. A radix-2 D-I-T FFT program, written in C
language, is listed in Table 1.6.

1.6 Family Tree of Fourier Transforms

It is now possible to illustrate the functional relationships among the various forms of Fourier
transforms that have been discussed in the previous sections. The family tree of CT Fourier transform
is shown in Fig. 1.10, where the most general, and consequently the most powerful, Fourier transform
is the classical complex Fourier transform (or equivalently, the bilateral Laplace transform). Note
that the complex Fourier transform is identical to the bilateral Laplace transform, and it is at this
level that the classical Laplace transform and Fourier transform techniques become identical. Each
special member of the CT Fourier family is obtained by impressing certain constraints on the general
form, thereby producing special transforms that are simpler and more useful in practical problems
where the constraints are met.

The analogous family of DT Fourier techniques is presented in Fig. 1.11, in which the bilateral
z-transform is analogous to the complex Fourier transform, the unilateral z-transform is analogous
to the classical (one-sided) Laplace transform, the DTFT is analogous to the classical Fourier (CT)
transform, and the DFT is analogous to the classical (CT) Fourier series.

1.7 Selected Applications of Fourier Methods

1.7.1 Fast Fourier Transform in Spectral Analysis

An FFT program is often used to perform spectral analysis on signals that are sampled and recorded
as part of laboratory experiments, or in certain types of data acquisition systems. Several issues must
be addressed when spectral analysis is performed on (sampled) analog waveforms that are observed
over a finite interval of time.

Windowing

The FFT treats the block of data as though it were one period of a periodic sequence. If the
underlying waveform is not periodic, then harmonic distortion may occur because the periodic
waveform created by the FFT may have sharp discontinuities at the boundaries of the blocks. This
effect is minimized by removing the mean of the data (it can always be reinserted) and by windowing
the data so the ends of the block are smoothly tapered to zero. A good rule of thumb is to taper
10% of the data on each end of the block using either a cosine taper or one of the other common
windows shown in Table 1.7. An alternate interpretation of this phenomenon is that the finite length
observation has already windowed the true waveform with a rectangular window that has large
spectral sidelobes (see Table 1.7). Hence, applying an additional window results in a more desirable
window that minimizes frequency domain distortion.

Zero Padding

An improved spectral analysis is achieved if the block length of the FFT is increased. This
can be done by taking more samples within the observation interval, increasing the length of the
observation interval, or augmenting the original data set with zeroes. First, it must be understood
that the finite observation interval results in a fundamental limit on the spectral resolution, even
before the signals are sampled. The CT rectangular window has a (sinx)/x spectrum, which is
convolved with the true spectrum of the analog signal. Therefore, the frequency resolution is limited
by the width of the mainlobe in the (sinx)/x spectrum, which is inversely proportional to the length
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TABLE 1.6 An In-Place D-I-T FFT Program in C Language

/*****************************************************
* fft: in-place radix-2 DFT of a complex input
*
* input:
* n: length of FFT: must be a power of two
* m: n = 2**m
* input/output:
* x: float array of length n with real part of data
* y: float array of length n with image part of data
******************************************************/
fft(n,m,x,y)
tnt n,m;
float x[ ], y[ ]:
{

int i,j,k,nl,n2:
float c,s,e,a,t1,t2;

j = 0; /*BIT-REVERSE */
n2 = n/2;
for (i=1; 1 < n-1; i++) /*bit-reverse counter */
{
nl = n1/2;
while ( j >= n1)
{
j = j - n1;
nl = n1/2;

}
j = j + nl;
if (i < j) /*swap data */
{
t1 = x[i]; x[i] = x[j]; x[j] = t1;
t1 = y[i]; y[i] = y[j]; y[j] = t1;

}
}

n1 = 0; n2 = 1; /* FFT */
for (i = 0; i < m; i++) /*state loop */
{
n1 = n2; n2 = n2 + n2;
e = -6.283185307179586/n2;
a = 0.0;

for (j=0; j < n1; j++) /*flight loop */
{
c = cos(a); s=sin (a);
a = a + e;

for (k=j; k < n; k=k+n2) /*butterfly loop */
{
t1 = c*x[k+n1] - s*y[k+n1];
t2 = s*x[k+n1] + c*y[k+n1];
x[k+n1] = x[k] - t1;
y[k+n1] = y[k] - t2;
x[k] = x[k] + t1;
y[k] = y[k] + t2;

}
}

}
return;

}
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FIGURE 1.10: Relationships among CT Fourier concepts.

of the observation interval. Sampling causes a certain degree of aliasing, although this effect can
be minimized by sampling at a high enough rate. Therefore, lengthening the observation interval
increases the fundamental resolution limit, while taking more samples within the observation interval
minimizes aliasing distortion and provides a better definition (more sample points) on the underlying
spectrum.

Padding the data with zeroes and computing a longer FFT does give more frequency domain points
(improved spectral resolution), but it does not improve the fundamental limit, nor does it alter the
effects of aliasing error. The resolution limits are established by the observation interval and the
sampling rate. No amount of zero padding can improve these basic limits. However, zero padding
is a useful tool for providing more spectral definition, i.e., it allows a better view of the (distorted)
spectrum that results once the observation and sampling effects have occurred.

Leakage and the Picket Fence Effect

An FFT with block length N can accurately resolve only frequencies ωk = (2π/N)k, k =
0, . . . , N − 1 that are integer multiples of the fundamental ω1 = (2π/N). An analog waveform that
is sampled and subjected to spectral analysis may have frequency components between the harmonics.
For example, a component at frequencyωk+1/2 = (2π/N)(k+1/2) will appear scattered throughout
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TABLE 1.7 Common Window Functions
Peak Minimum

Side-Lobe Stopband
Amplitude Mainlobe Attenuation

Name Function (dB) Width (dB)

Rectangular ω(n) = 1. 0 ≤ n ≤ N − 1 −13 4π/N −21

Bartlett ω(n) =
{ 2/N, 0 ≤ n ≤ (N − 1)/2

22n/N, (N − 1)/2 ≤ n ≤ N − 1
−25 8π/N −25

Hanning ω(n) = (1/2)[1 − cos(2πn/N)] −31 8π/N −44
0 ≤ n ≤ N − 1 −43 8π/N −53

Hamming ω(n) = 0.54− 0.46 cos(2πn/N), −43 8π/N −53
0 ≤ n ≤ N − 1

Backman ω(n) = 0.42− 0.5 cos(2πn/N) −57 12π/N −74
+ 0.08 cos(4πn/N), 0 ≤ n ≤ N − 1

the spectrum. The effect is illustrated in Fig. 1.12 for a sinusoid that is observed through a rectangular
window and then sampled at N points. The picket fence effect means that not all frequencies can be
seen by the FFT. Harmonic components are seen accurately, but other components “slip through the
picket fence” while their energy is “leaked” into the harmonics. These effects produce artifacts in the
spectral domain that must be carefully monitored to assure that an accurate spectrum is obtained
from FFT processing.

1.7.2 Finite Impulse Response Digital Filter Design

Acommonmethod fordesigningFIRdigitalfilters isbyuseofwindowingandFFTanalysis. Ingeneral,
window designs can be carried out with the aid of a hand calculator and a table of well-known window
functions. Let h[n] be the impulse response that corresponds to some desired frequency response,
H(ejω). If H(ejω) has sharp discontinuities, such as the low-pass example shown in Fig. 1.13, then
h[n] will represent an infinite impulse response (IIR) function. The objective is to time limit h[n] in
such a way as to not distort H(ejω) any more than necessary. If h[n] is simply truncated, a ripple
(Gibbs phenomenon) occurs around the discontinuities in the spectrum, resulting in a distorted
filter (Fig. 1.13).

Suppose thatw[n] is a window function that time limits h[n] to create an FIR approximation, h′[n];
i.e., h′[n] = w[n]h[n]. Then if W(ejω) is the DTFT of w[n], h′[n] will have a Fourier transform
given by H ′(ejω) = W(ejω) ∗ H(ejω), where ∗ denotes convolution. Thus, the ripples in H ′(ejω)

result from the sidelobes of W(ejω). Ideally, W(ejω) should be similar to an impulse so that H ′(ejω)

is approximately equal to H(ejω).

Special Case. Let h[n] = cosnω0, for all n. Then h[n] = w[n] cosnω0, and

H ′(ejω) = (1/2)W(ej (ω+ω0)) + (1/2)W(ej (ω−ω0)) (1.28)

as illustrated in Fig. 1.14. For this simple class, the center frequency of the bandpass is controlled
by ω0, and both the shape of the bandpass and the sidelobe structure are strictly determined by the
choice of the window. While this simple class of FIRs does not allow for very flexible designs, it is a
simple technique for determining quite useful low-pass, bandpass, and high-pass FIRs.

General Case. Specify an ideal frequency response, H(ejω), and choose samples at selected
values of ω. Use a long inverse FFT of length N ′ to find h′[n], an approximation to h[n], where if
N is the desired length of the final filter, then N ′ � N . Then use a carefully selected window to
truncate h′[n] to obtain h[n] by letting h[n] = ω[n]h′[n]. Finally, use an FFT of length N ′ to find
H ′(ejω). If H ′(ejω) is a satisfactory approximation to H(ejω), the design is finished. If not, choose
a new H(ejω) or a new w[n] and repeat. Throughout the design procedure it is important to choose
N ′ = kN , with k an integer that is typically in the range of 4 to 10. Because this design technique is a
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FIGURE 1.11: Relationships among DT concepts.

trial and error procedure, the quality of the result depends to some degree on the skill and experience
of the designer. Table 1.7 lists several well-known window functions that are often useful for this type
of FIR filter design procedure.

1.7.3 Fourier Analysis of Ideal and Practical Digital-to-Analog Conversion

From the relationship characterized by (1.19b) and illustrated in Fig. 1.8, CT signal s(t) can be
recovered from its samples by passing sa(t) through an ideal lowpass filter that extracts only the
baseband spectrum. The ideal lowpass filter, shown in Fig. 1.15, is a zero-phase CT filter whose
magnitude response is a constant of value T in the range −π < ω′ ≤ π , and zero elsewhere. The
impulse response of this “reconstruction filter” is given by h(t) = T sinc((π/T )t), where sincx =
(sinx)/x. The reconstruction can be expressed as s(t) = h(t)∗sa(t), which, after some mathematical
manipulation, yields the following classical reconstruction formula

s(t) =
∞∑

n=−∞
s(nT )sinc((π/T )(t − nT )) (1.29)

Note that the signal s(t) is exactly recovered from its samples only if an infinite number of terms is
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FIGURE 1.12: Illustration of leakage and the picket-fence effects.

FIGURE 1.13: Gibbs effect in a low-pass filter caused by truncating the impulse response.

included in the summation of (1.29). However, good approximation of s(t) can be obtained with
only a finite number of terms if the lowpass reconstruction filter h(t) is modified to have a finite
interval of support, i.e., if h(t) is nonzero only over a finite time interval. The reconstruction formula
of (1.29) is an important result in that it represents the inverse of the sampling operation. By this
means Fourier transform theory establishes that as long as CT signals are sampled at a sufficiently
high rate, the information content contained in s(t) can be represented and processed in either a CT
or DT format. Fourier sampling and reconstruction theory provides the theoretical mechanism for
translation between one format or the other without loss of information.

A CT signal s(t) can be perfectly recovered from its samples using (1.29) as long as the original
sampling rate was high enough to satisfy the Nyquist sampling criterion, i.e., ωs > 2ωB . If the
sampling rate does not satisfy the Nyquist criterion the adjacent periods of the analog spectrum
will overlap, causing a distorted spectrum. This effect, called aliasing distortion, is rather serious
because it cannot be corrected easily once it has occurred. In general, an analog signal should always
be prefiltered with an CT low-pass filter prior to sampling so that aliasing distortion does not occur.

Figure 1.16 shows the frequency response of a fifth-order elliptic analog low-pass filter that meets
industry standards for prefiltering speech signals. These signals are subsequently sampled at an 8-kHz
sampling rate and transmitted digitally across telephone channels. The band-pass ripple is less than
±0.01dB from DC up to the frequency 3.4 kHz (too small to be seen in Fig. 1.16), and the stopband
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FIGURE 1.14: Design of a simple bandpass FIR filter by windowing.

FIGURE 1.15: Illustration of ideal reconstruction.

rejection reaches at least −32.0 dB at 4.6 kHz and remains below this level throughout the stopband.
Most practical systems use digital-to-analog converters for reconstruction, which results in a stair-

case approximation to the true analog signal, i.e.,

ŝ(t) =
∞∑

n=−∞
s(nT ){u(t − nT ) − u[t − (n + 1)]}, (1.30)

where ŝ(t) denotes the reconstructed approximation to s(t), and u(t) denotes a CT unit step function.
The approximation ŝ(t) is equivalent to a result obtained by using an approximate reconstruction
filter of the form

Ha(jω) = 2T e−jωT/2 sinc(ωT/2) (1.31)

The approximation ŝ(t) is said to contain “sinx/x distortion,” which occurs because Ha(jω) is not
an ideal low-pass filter. Ha(jω) distorts the signal by causing a droop near the passband edge, as
well as by passing high-frequency distortion terms which “leak” through the sidelobes of Ha(jω).
Therefore, a practical digital to analog converter is normally followed by an analog postfilter

Hp(jω) =
[

H−1
a (jω), 0 ≤ |ω| < π/T

0, ω otherwise

]
(1.32)

which compensates for the distortion and produces the correct ŝ(t), i.e., the correctly constructed
CT output. Unfortunately, the postfilter Hp(jω) cannot be implemented perfectly, and, therefore,
the actual reconstructed signal always contains some distortion in practice that arises from errors in
approximating the ideal postfilter. Figure 1.17 shows a digital processor, complete with analog-to-
digital and digital-to-analog converters, and the accompanying analog pre- and postfilters necessary
for proper operation.

1.8 Summary

This chapter presented many different Fourier transform concepts for both continuous time (CT)
and discrete time (DT) signals and systems. Emphasis was placed on illustrating how these various
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FIGURE1.16: Afifth-order elliptic analoganti-aliasingfilterused in the telecommunications industry
with an 8-kHz sampling rate.

FIGURE 1.17: Analog pre- and postfilters required at the analog to digital and digital to analog
interfaces.

forms of the Fourier transform relate to one another, and how they are all derived from more general
complex transforms, the complex Fourier (or bilateral Laplace) transform for CT, and the bilateral
z-transform for DT. It was shown that many of these transforms have similar properties which are
inherited from their parent forms, and that a parallel hierarchy exists among Fourier transform
concepts in the CT and the DT worlds. Both CT and DT sampling models were introduced as
a means of representing sampled signals in these two different “worlds,” and it was shown that
the models are equivalent by virtue of having the same Fourier spectra when transformed into the
Fourier domain with the appropriate Fourier transform. It was shown how Fourier analysis properly
characterizes the relationship between the spectra of a CT signal and its DT counterpart obtained by
sampling. The classical reconstruction formula was obtained as an outgrowth of this analysis. Finally,
the discrete Fourier transform (DFT), the backbone for much of modern digital signal processing,
was obtained from more classical forms of the Fourier transform by simultaneously discretizing
the time and frequency domains. The DFT, together with the remarkable computational efficiency
provided by the fast Fourier transform (FFT) algorithm, has contributed to the resounding success
that engineers and scientists have experienced in applying digital signal processing to many practical
scientific problems.
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2.1 Differential Equations

A function containing variables and their derivatives is called a differential expression, and an equation
involving differential expressions is called a differential equation. A differential equation is an ordinary
differential equation if it contains only one independent variable; it is a partial differential equation
if it contains more than one independent variable. We shall deal here only with ordinary differential
equations.

In the mathematical texts, the independent variable is generally x, which can be anything such
as time, distance, velocity, pressure, and so on. In most of the applications in control systems, the
independent variable is time. For this reason we shall use here independent variable t for time,
although it can stand for any other variable as well.

The following equation (
d2y

dt2

)4

+ 3
dy

dt
+ 5y2(t) = sint

is an ordinary differential equation of second order because the highest derivative is of the second
order. An nth-order differential equation is linear if it is of the form

an(t)
dny
dtn

+ an−1(t)
dn−1y

dtn−1 + · · · + a1(t)
dy
dt

+ a0(t)y(t) = r(t) (2.1)

where the coefficients ai(t) are not functions of y(t). If these coefficients (ai) are constants, the
equation is linear with constant coefficients. Many engineering (as well as nonengineering) systems
can be modeled by these equations. Systems modeled by these equations are known as linear time-
invariant (LTI) systems. In this chapter we shall deal exclusively with linear differential equations
with constant coefficients. Certain other forms of differential equations are dealt with elsewhere in
this volume.
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Role of Auxiliary Conditions in Solution of Differential Equations

We now show that a differential equation does not, in general, have a unique solution unless
some additional constraints (or conditions) on the solution are known. This fact should not come
as a surprise. A function y(t) has a unique derivative dy/dt , but for a given derivative dy/dt

there are infinite possible functions y(t). If we are given dy/dt , it is impossible to determine y(t)

uniquely unless an additional piece of information about y(t) is given. For example, the solution of
a differential equation

dy
dt

= 2 (2.2)

obtained by integrating both sides of the equation is

y(t) = 2t + c (2.3)

for any value of c. Equation 2.2 specifies a function whose slope is 2 for all t . Any straight line with
a slope of 2 satisfies this equation. Clearly the solution is not unique, but if we place an additional
constraint on the solution y(t), then we specify a unique solution.

For example, suppose we require that y(0) = 5; then out of all the possible solutions available,
only one function has a slope of 2 and an intercept with the vertical axis at 5. By setting t = 0 in
Equation 2.3 and substituting y(0) = 5 in the same equation, we obtain y(0) = 5 = c and

y(t) = 2t + 5

which is the unique solution satisfying both Equation 2.2 and the constraint y(0) = 5.
In conclusion, differentiation is an irreversible operation during which certain information is lost.

To reverse this operation, one piece of information about y(t) must be provided to restore the original
y(t). Usinga similar argument, wecan showthat, givend2y/dt2, we candeterminey(t)uniquelyonly
if two additional pieces of information (constraints) about y(t) are given. In general, to determine
y(t) uniquely from its nth derivative, we need n additional pieces of information (constraints) about
y(t). These constraints are also called auxiliary conditions. When these conditions are given at t = 0,
they are called initial conditions.

We discuss here two systematic procedures for solving linear differential equations of the form
in Eq. 2.1. The first method is the classical method, which is relatively simple, but restricted to a
certain class of inputs. The second method (the convolution method) is general and is applicable
to all types of inputs. A third method (Laplace transform) is discussed elsewhere in this volume.
Both the methods discussed here are classified as time-domain methods because with these methods
we are able to solve the above equation directly, using t as the independent variable. The method
of Laplace transform (also known as the frequency-domain method), on the other hand, requires
transformation of variable t into a frequency variable s.

In engineering applications, the form of linear differential equation that occurs most commonly
is given by

dny
dtn

+ an−1
dn−1y

dtn−1 + · · · + a1
dy
dt

+ a0y(t)

= bm
dmf
dtm

+ bm−1
dm−1f

dtm−1 + · · · + b1
df
dt

+ b0f (t) (2.4a)

where all the coefficients ai and bi are constants. Using operational notation D to represent d/dt ,
this equation can be expressed as

(Dn + an−1D
n−1 + · · · + a1D + a0)y(t)

= (bmDm + bm−1D
m−1 + · · · + b1D + b0)f (t) (2.4b)
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or

Q(D)y(t) = P(D)f (t) (2.4c)

where the polynomials Q(D) and P(D), respectively, are

Q(D) = Dn + an−1D
n−1 + · · · + a1D + a0

P(D) = bmDm + bm−1D
m−1 + · · · + b1D + b0

Observe that this equation is of the form of Eq. 2.1, where r(t) is in the form of a linear combination
of f (t) and its derivatives. In this equation, y(t) represents an output variable, and f (t) represents
an input variable of an LTI system. Theoretically, the powers m and n in the above equations can
take on any value. Practical noise considerations, however, require [1] m ≤ n.

2.1.1 Classical Solution

When f (t) ≡ 0, Eq. 2.4a is known as the homogeneous (or complementary) equation. We shall first
solve the homogeneous equation. Let the solution of the homogeneous equation be yc(t), that is,

Q(D)yc(t) = 0

or
(Dn + an−1D

n−1 + · · · + a1D + a0)yc(t) = 0

We first show that if yp(t) is the solution of Eq. 2.4a, then yc(t) + yp(t) is also its solution. This
follows from the fact that

Q(D)yc(t) = 0

If yp(t) is the solution of Eq. 2.4a, then

Q(D)yp(t) = P(D)f (t)

Addition of these two equations yields

Q(D)
[
yc(t) + yp(t)

] = P(D)f (t)

Thus, yc(t) + yp(t) satisfies Eq. 2.4a and therefore is the general solution of Eq. 2.4a. We call yc(t)

the complementary solution and yp(t) the particular solution. In system analysis parlance, these
components are called the natural response and the forced response, respectively.

Complementary Solution (The Natural Response)

The complementary solution yc(t) is the solution of

Q(D)yc(t) = 0 (2.5a)

or

(
Dn + an−1D

n−1 + · · · + a1D + a0
)
yc(t) = 0 (2.5b)

A solution to this equation can be found in a systematic and formal way. However, we will take a
short cut by using heuristic reasoning. Equation 2.5ab shows that a linear combination of yc(t) and
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its n successive derivatives is zero, not at some values of t , but for all t . This is possible if and only if
yc(t) and all its n successive derivatives are of the same form. Otherwise their sum can never add to
zero for all values of t . We know that only an exponential function eλt has this property. So let us
assume that

yc(t) = ceλt

is a solution to Eq. 2.5ab. Now

Dyc(t) = dyc

dt
= cλeλt

D2yc(t) = d2yc

dt2
= cλ2eλt

· · · · · · · · · · · · · · ·
Dnyc(t) = dnyc

dtn
= cλneλt

Substituting these results in Eq. 2.5ab, we obtain

c
(
λn + an−1λ

n−1 + · · · + a1λ + a0

)
eλt = 0

For a nontrivial solution of this equation,

λn + an−1λ
n−1 + · · · + a1λ + a0 = 0 (2.6a)

This result means that ceλt is indeed a solution of Eq. 2.5a provided that λ satisfies Eq. 2.6aa. Note
that the polynomial in Eq. 2.6aa is identical to the polynomial Q(D) in Eq. 2.5ab, with λ replacing
D. Therefore, Eq. 2.6aa can be expressed as

Q(λ) = 0 (2.6b)

When Q(λ) is expressed in factorized form, Eq. 2.6ab can be represented as

Q(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn) = 0 (2.6c)

Clearly λ has n solutions: λ1, λ2, . . ., λn. Consequently, Eq. 2.5a has n possible solutions: c1e
λ1t ,

c2e
λ2t , . . . , cne

λnt , with c1, c2, . . . , cn as arbitrary constants. We can readily show that a general
solution is given by the sum of these n solutions,1 so that

yc(t) = c1e
λ1t + c2e

λ2t + · · · + cne
λnt (2.7)

1To prove this fact, assume that y1(t), y2(t), . . ., yn(t) are all solutions of Eq. 2.5a. Then

Q(D)y1(t) = 0

Q(D)y2(t) = 0

· · · · · · · · · · · · · · ·
Q(D)yn(t) = 0

Multiplying these equations by c1, c2, . . . , cn, respectively, and adding them together yields

Q(D)
[
c1y1(t) + c2y2(t) + · · · + cnyn(t)

] = 0

This result shows that c1y1(t) + c2y2(t) + · · · + cnyn(t) is also a solution of the homogeneous Eq. 2.5a.
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where c1, c2, . . . , cn are arbitrary constants determined by n constraints (the auxiliary conditions)
on the solution.

The polynomial Q(λ) is known as the characteristic polynomial. The equation

Q(λ) = 0 (2.8)

is called the characteristic or auxiliary equation. From Eq. 2.6ac, it is clear that λ1, λ2, . . ., λn are the
roots of the characteristic equation; consequently, they are called the characteristic roots. The terms
characteristic values, eigenvalues, and natural frequencies are also used for characteristic roots.2 The
exponentials eλi t (i = 1, 2, . . . , n) in the complementary solution are the characteristic modes (also
known as modes or natural modes). There is a characteristic mode for each characteristic root, and
the complementary solution is a linear combination of the characteristic modes.

Repeated Roots

The solution of Eq. 2.5a as given in Eq. 2.7 assumes that the n characteristic roots λ1, λ2, . . .

, λn are distinct. If there are repeated roots (same root occurring more than once), the form of the
solution is modified slightly. By direct substitution we can show that the solution of the equation

(D − λ)2yc(t) = 0

is given by
yc(t) = (c1 + c2t)e

λt

In this case the root λ repeats twice. Observe that the characteristic modes in this case are eλt and
teλt . Continuing this pattern, we can show that for the differential equation

(D − λ)ryc(t) = 0 (2.9)

the characteristic modes are eλt , teλt , t2eλt , . . . , t r−1eλt , and the solution is

yc(t) = (
c1 + c2t + · · · + cr t

r−1
)
eλt (2.10)

Consequently, for a characteristic polynomial

Q(λ) = (λ − λ1)
r (λ − λr+1) · · · (λ − λn)

the characteristic modes are eλ1t , teλ1t , . . . , t r−1eλt , eλr+1t , . . . , eλnt . and the complementary
solution is

yc(t) = (c1 + c2t + · · · + cr t
r−1)eλ1t + cr+1e

λr+1t + · · · + cne
λnt

Particular Solution (The Forced Response): Method of Undetermined Coefficients

The particular solution yp(t) is the solution of

Q(D)yp(t) = P(D)f (t) (2.11)

It is a relatively simple task to determine yp(t) when the input f (t) is such that it yields only a finite
number of independent derivatives. Inputs having the form eζ t or t r fall into this category. For
example, eζ t has only one independent derivative; the repeated differentiation of eζ t yields the same
form, that is, eζ t . Similarly, the repeated differentiation of t r yields only r independent derivatives.

2The term eigenvalue is German for characteristic value.
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The particular solution to such an input can be expressed as a linear combination of the input and
its independent derivatives. Consider, for example, the input f (t) = at2 + bt + c. The successive
derivatives of this input are 2at + b and 2a. In this case, the input has only two independent
derivatives. Therefore the particular solution can be assumed to be a linear combination of f (t) and
its two derivatives. The suitable form for yp(t) in this case is therefore

yp(t) = β2t
2 + β1t + β0

The undetermined coefficients β0, β1, and β2 are determined by substituting this expression for yp(t)

in Eq. 2.11 and then equating coefficients of similar terms on both sides of the resulting expression.
Although this method can be used only for inputs with a finite number of derivatives, this class

of inputs includes a wide variety of the most commonly encountered signals in practice. Table 2.1
shows a variety of such inputs and the form of the particular solution corresponding to each input.
We shall demonstrate this procedure with an example.

TABLE 2.1
Inputf (t) Forced Response

1. eζ t ζ 6= λi (i = 1, 2, βeζ t

· · · , n)

2. eζ t ζ = λi βteζ t

3. k (a constant) β (a constant)
4. cos(ωt + θ) β cos(ωt + φ)

5.
(
tr + αr−1tr−1 + · · · (βr t

r + βr−1tr−1 + · · ·
+ α1t + α0

)
eζ t + β1t + β0)eζ t

Note: By definition, yp(t) cannot have any characteristic mode terms. If any term p(t) shown
in the right-hand column for the particular solution is also a characteristic mode, the correct form
of the forced response must be modified to t ip(t), where i is the smallest possible integer that can
be used and still can prevent t ip(t) from having characteristic mode term. For example, when the
input is eζ t , the forced response (right-hand column) has the form βeζ t . But if eζ t happens to be
a characteristic mode, the correct form of the particular solution is βteζ t (see Pair 2). If teζ t also
happens to be characteristic mode, the correct form of the particular solution is βt2eζ t , and so on.

EXAMPLE 2.1:

Solve the differential equation

(
D2 + 3D + 2

)
y(t) = Df (t) (2.12)

if the input
f (t) = t2 + 5t + 3

and the initial conditions are y(0+) = 2 and ẏ(0+) = 3.
The characteristic polynomial is

λ2 + 3λ + 2 = (λ + 1)(λ + 2)

Therefore the characteristic modes are e−t and e−2t . The complementary solution is a linear com-
bination of these modes, so that

yc(t) = c1e
−t + c2e

−2t t ≥ 0
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Here the arbitrary constants c1 and c2 must be determined from the given initial conditions.
The particular solution to the input t2 + 5t + 3 is found from Table 2.1 (Pair 5 with ζ = 0) to be

yp(t) = β2t
2 + β1t + β0

Moreover, yp(t) satisfies Eq. 2.11, that is,(
D2 + 3D + 2

)
yp(t) = Df (t) (2.13)

Now

Dyp(t) = d

dt

(
β2t

2 + β1t + β0

)
= 2β2t + β1

D2yp(t) = d2

dt2

(
β2t

2 + β1t + β0

)
= 2β2

and

Df (t) = d

dt

[
t2 + 5t + 3

]
= 2t + 5

Substituting these results in Eq. 2.13 yields

2β2 + 3(2β2t + β1) + 2(β2t
2 + β1t + β0) = 2t + 5

or
2β2t

2 + (2β1 + 6β2)t + (2β0 + 3β1 + 2β2) = 2t + 5

Equating coefficients of similar powers on both sides of this expression yields

2β2 = 0

2β1 + 6β2 = 2

2β0 + 3β1 + 2β2 = 5

Solving these three equations for their unknowns, we obtain β0 = 1, β1 = 1, and β2 = 0. Therefore,

yp(t) = t + 1 t > 0

The total solution y(t) is the sum of the complementary and particular solutions. Therefore,

y(t) = yc(t) + yp(t)

= c1e
−t + c2e

−2t + t + 1 t > 0

so that

ẏ(t) = −c1e
−t − 2c2e

−2t + 1

Setting t = 0 and substituting the given initial conditions y(0) = 2 and ẏ(0) = 3 in these equations,
we have

2 = c1 + c2 + 1

3 = −c1 − 2c2 + 1

The solution to these two simultaneous equations is c1 = 4 and c2 = −3. Therefore,

y(t) = 4e−t − 3e−2t + t + 1 t ≥ 0
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The Exponential Input eζ t

Theexponential signal is themost important signal in the studyofLTI systems. Interestingly, the
particular solution for an exponential input signal turns out to be very simple. From Table 2.1 we see
that the particular solution for the input eζ t has the form βeζ t . We now show that β = Q(ζ)/P (ζ ).3

To determine the constant β, we substitute yp(t) = βeζ t in Eq. 2.11, which gives us

Q(D)
[
βeζ t

] = P(D)eζ t (2.14a)

Now observe that

Deζt = d

dt

(
eζ t

) = ζeζ t

D2eζ t = d2

dt2

(
eζ t

) = ζ 2eζ t

· · · · · · · · · · · · · · ·
Dreζ t = ζ reζ t

Consequently,
Q(D)eζ t = Q(ζ)eζ t and P(D)eζ t = P(ζ )eζ t

Therefore, Eq. 2.14aa becomes

βQ(ζ )eζ t = P(ζ )eζ t (2.15a)

and

β = P(ζ )

Q(ζ )

Thus, for the input f (t) = eζ t , the particular solution is given by

yp(t) = H(ζ)eζ t t > 0 (2.16a)

where

H(ζ) = P(ζ )
Q(ζ )

(2.16b)

This is an interesting and significant result. It states that for an exponential input eζ t the particular
solution yp(t) is the same exponential multiplied by H(ζ) = P(ζ )/Q(ζ ). The total solution y(t)

to an exponential input eζ t is then given by

y(t) =
n∑

j=1

cj e
λj t + H(ζ)eζ t

where the arbitrary constants c1, c2, . . ., cn are determined from auxiliary conditions.

3This is true only if ζ is not a characteristic root.
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Recall that the exponential signal includes a large variety of signals, such as a constant (ζ = 0),
a sinusoid (ζ = ±jω), and an exponentially growing or decaying sinusoid (ζ = σ ± jω). Let us
consider the forced response for some of these cases.

The Constant Input f(t) = C

Because C = Ce0t , the constant input is a special case of the exponential input Ceζ t with
ζ = 0. The particular solution to this input is then given by

yp(t) = CH(ζ )eζ t with ζ = 0

= CH(0) (2.17)

The Complex Exponential Input ejωt

Here ζ = jω, and

yp(t) = H(jω)ejωt (2.18)

The Sinusoidal Input f(t) = cos ω0t

We know that the particular solution for the input e±jωt is H(±jω)e±jωt . Since cosωt =
(ejωt + e−jωt )/2, the particular solution to cosωt is

yp(t) = 1

2

[
H(jω)ejωt + H(−jω)e−jωt

]

Because the two terms on the right-hand side are conjugates,

yp(t) = Re
[
H(jω)ejωt

]
But

H(jω) = |H(jω)|ej 6 H(jω)

so that

yp(t) = Re
{
|H(jω)|ej [ωt+6 H(jω)]}

= |H(jω)| cos
[
ωt + 6 H(jω)

]
(2.19)

This result can be generalized for the input f (t) = cos(ωt + θ). The particular solution in this case
is

yp(t) = |H(jω)| cos
[
ωt + θ + 6 H(jω)

]
(2.20)

EXAMPLE 2.2:

Solve Eq. 2.12 for the following inputs:
(a) 10e−3t (b) 5 (c) e−2t (d) 10 cos(3t + 30◦).
The initial conditions are y(0+) = 2, ẏ(0+) = 3.
The complementary solution for this case is already found in Example 2.1 as

yc(t) = c1e
−t + c2e

−2t t ≥ 0

c©1999 by CRC Press LLC



For the exponential input f (t) = eζ t , the particular solution, as found in Eq. 2.16a is H(ζ)eζ t ,
where

H(ζ) = P(ζ )

Q(ζ )
= ζ

ζ 2 + 3ζ + 2

(a) For input f (t) = 10e−3t , ζ = −3, and

yp(t) = 10H(−3)e−3t

= 10

[ −3

(−3)2 + 3(−3) + 2

]
e−3t

= −15e−3t t > 0

The total solution (the sum of the complementary and particular solutions) is

y(t) = c1e
−t + c2e

−2t − 15e−3t t ≥ 0

and
ẏ(t) = −c1e

−t − 2c2e
−2t + 45e−3t t ≥ 0

The initial conditions are y(0+) = 2 and ẏ(0+) = 3. Setting t = 0 in the above equations and
substituting the initial conditions yields

c1 + c2 − 15 = 2 and − c1 − 2c2 + 45 = 3

Solution of these equations yields c1 = −8 and c2 = 25. Therefore,

y(t) = −8e−t + 25e−2t − 15e−3t t ≥ 0

(b) For input f (t) = 5 = 5e0t , ζ = 0, and

yp(t) = 5H(0) = 0 t > 0

The complete solution is y(t) = yc(t) + yp(t) = c1e
−t + c2e

−2t . We then substitute the initial
conditions to determine c1 and c2 as explained in Part a.

(c) Here ζ = −2, which is also a characteristic root. Hence (see Pair 2, Table 2.1, or the comment
at the bottom of the table),

yp(t) = βte−2t

To find β, we substitute yp(t) in Eq. 2.11, giving us

(
D2 + 3D + 2

)
yp(t) = Df (t)

or (
D2 + 3D + 2

) [
βte−2t

]
= De−2t

But

D
[
βte−2t

]
= β(1 − 2t)e−2t

D2
[
βte−2t

]
= 4β(t − 1)e−2t

De−2t = −2e−2t

Consequently,
β(4t − 4 + 3 − 6t + 2t)e−2t = −2e−2t
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or
−βe−2t = −2e−2t

This means that β = 2, so that
yp(t) = 2te−2t

The complete solution is y(t) = yc(t) + yp(t) = c1e
−t + c2e

−2t + 2te−2t . We then substitute the
initial conditions to determine c1 and c2 as explained in Part a.

(d) For the input f (t) = 10 cos(3t + 30◦), the particular solution (see Eq. 2.20) is

yp(t) = 10|H(j3)| cos
[
3t + 30◦ + 6 H(j3)

]
where

H(j3) = P(j3)

Q(j3)
= j3

(j3)2 + 3(j3) + 2

= j3

−7 + j9
= 27− j21

130
= 0.263e−j37.9◦

Therefore,
|H(j3)| = 0.263, 6 H(j3) = −37.9◦

and

yp(t) = 10(0.263) cos(3t + 30◦ − 37.9◦)
= 2.63 cos(3t − 7.9◦)

The complete solution is y(t) = yc(t) + yp(t) = c1e
−t + c2e

−2t + 2.63 cos(3t − 7.9◦). We then
substitute the initial conditions to determine c1 and c2 as explained in Part a.

2.1.2 Method of Convolution

In this method, the input f (t) is expressed as a sum of impulses. The solution is then obtained as a
sum of the solutions to all the impulse components. The method exploits the superposition property
of the linear differential equations. From the sampling (or sifting) property of the impulse function,
we have

f (t) = ∫ t

0 f (x)δ(t − x) dx t ≥ 0 (2.21)

The right-hand side expresses f (t) as a sum (integral) of impulse components. Let the solution of
Eq. 2.4a be y(t) = h(t) when f (t) = δ(t) and all the initial conditions are zero. Then use of the
linearity property yields the solution of Eq. 2.4a to input f (t) as

y(t) = ∫ t

0 f (x)h(t − x) dx (2.22)

For this solution to be general, we must add a complementary solution. Thus, the general solution
is given by

y(t) =
n∑

j=1

cj e
λj t +

∫ t

0
f (x)h(t − x) dx (2.23)

The first term on the right-hand side consists of a linear combination of natural modes and should
be appropriately modified for repeated roots. For the integral on the right-hand side, the lower limit
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0 is understood to be 0− in order to ensure that impulses, if any, in the input f (t) at the origin are
accounted for. The integral on the right-hand side of (2.23) is well known in the literature as the
convolution integral. The function h(t) appearing in the integral is the solution of Eq. 2.4a for the
impulsive input [f (t) = δ(t)]. It can be shown that [3]

h(t) = P(D)[yo(t)u(t)] (2.24)

where yo(t) is a linear combination of the characteristic modes subject to initial conditions

y(n−1)
o (0) = 1

yo(0) = y(1)
o (0) = · · · = y(n−2)

o (0) = 0 (2.25)

The function u(t) appearing on the right-hand side of Eq. 2.24 represents the unit step function,
which is unity for t ≥ 0 and is 0 for t < 0.

The right-hand side of Eq. 2.24 is a linear combination of the derivatives of yo(t)u(t). Evaluating
these derivatives is clumsy and inconvenient because of the presence of u(t). The derivatives will
generate an impulse and its derivatives at the origin [recall that d

dt
u(t) = δ(t)]. Fortunately when

m ≤ n in Eq. 2.4a, the solution simplifies to

h(t) = bnδ(t) + [P(D)yo(t)]u(t) (2.26)

EXAMPLE 2.3:

Solve Example 2.2, Part a using the method of convolution.
We first determine h(t). The characteristic modes for this case, as found in Example 2.1, are e−t

and e−2t . Since yo(t) is a linear combination of the characteristic modes

yo(t) = K1e
−t + K2e

−2t t ≥ 0

Therefore,
ẏo(t) = −K1e

−t − 2K2e
−2t t ≥ 0

The initial conditions according to Eq. 2.25 are ẏo(0) = 1 and yo(0) = 0. Setting t = 0 in the above
equations and using the initial conditions, we obtain

K1 + K2 = 0 and − K1 − 2K2 = 1

Solution of these equations yields K1 = 1 and K2 = −1. Therefore,

yo(t) = e−t − e−2t

Also in this case the polynomial P(D) = D is of the first-order, and b2 = 0. Therefore, from Eq. 2.26

h(t) = [P(D)yo(t)]u(t) = [Dyo(t)]u(t)

=
[

d

dt
(e−t − e−2t )

]
u(t)

= (−e−t + 2e−2t )u(t)

and ∫ t

0
f (x)h(t − x) dx =

∫ t

0
10e−3x[−e−(t−x)

+ 2e−2(t−x)] dx

= −5e−t + 20e−2t − 15e−3t
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The total solution is obtained by adding the complementary solution yc(t) = c1e
−t + c2e

−2t to this
component. Therefore,

y(t) = c1e
−t + c2e

−2t − 5e−t + 20e−2t − 15e−3t

Setting the conditions y(0+) = 2 and y(0+) = 3 in this equation (and its derivative), we obtain
c1 = −3, c2 = 5 so that

y(t) = −8e−t + 25e−2t − 15e−3t t ≥ 0

which is identical to the solution found by the classical method.

Assessment of the Convolution Method

The convolution method is more laborious compared to the classical method. However, in
system analysis, its advantages outweigh the extra work. The classical method has a serious drawback
because it yields the total response, which cannot be separated into components arising from the
internal conditions and the external input. In the study of systems it is important to be able to express
the system response to an input f (t) as an explicit function of f (t). This is not possible in the classical
method. Moreover, the classical method is restricted to a certain class of inputs; it cannot be applied
to any input.4

If we must solve a particular linear differential equation or find a response of a particular LTI
system, the classical method may be the best. In the theoretical study of linear systems, however, it is
practically useless. General discussion of differential equations can be found in numerous texts on
the subject [1].

2.2 Difference Equations

The development of difference equations is parallel to that of differential equations. We consider here
only linear difference equations with constant coefficients. An nth-order difference equation can be
expressed in two different forms; the first form uses delay terms such as y[k − 1], y[k − 2], f [k −
1], f [k − 2], . . ., etc., and the alternative form uses advance terms such as y[k + 1], y[k + 2], . . . ,
etc. Both forms are useful. We start here with a general nth-order difference equation, using advance
operator form

y[k + n] + an−1y[k + n − 1] + · · · + a1y[k + 1] + a0y[k]
= bmf [k + m] + bm−1f [k + m − 1] + · · ·

+ b1f [k + 1] + b0f [k] (2.27)

Causality Condition

The left-hand side of Eq. 2.27 consists of values of y[k] at instants k +n, k +n− 1, k +n− 2,
and so on. The right-hand side of Eq. 2.27 consists of the input at instants k+m, k+m−1, k+m−2,
and so on. For a causal equation, the solution cannot depend on future input values. This shows

4Another minor problem is that because the classical method yields total response, the auxiliary conditions must be on
the total response, which exists only for t ≥ 0+. In practice we are most likely to know the conditions at t = 0− (before
the input is applied). Therefore, we need to derive a new set of auxiliary conditions at t = 0+ from the known conditions
at t = 0−. The convolution method can handle both kinds of initial conditions. If the conditions are given at t = 0−, we
apply these conditions only to yc(t) because by its definition the convolution integral is 0 at t = 0−.
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that when the equation is in the advance operator form of Eq. 2.27, causality requires m ≤ n. For a
general causal case, m = n, and Eq. 2.27 becomes

y[k + n] + an−1y[k + n − 1] + · · · + a1y[k + 1] + a0y[k]
= bnf [k + n] + bn−1f [k + n − 1] + · · ·

+ b1f [k + 1] + b0f [k] (2.28a)

where some of the coefficients on both sides can be zero. However, the coefficient of y[k + n] is
normalized to unity. Eq. 2.28aa is valid for all values of k. Therefore, the equation is still valid if
we replace k by k − n throughout the equation. This yields the alternative form (the delay operator
form) of Eq. 2.28aa

y[k] + an−1y[k − 1] + · · · + a1y[k − n + 1] + a0y[k − n]
= bnf [k] + bn−1f [k − 1] + · · ·
+ b1f [k − n + 1] + b0f [k − n] (2.28b)

We designate the form of Eq. 2.28aa the advance operator form, and the form of Eq. 2.28ab the
delay operator form.

2.2.1 Initial Conditions and Iterative Solution

Equation 2.28ab can be expressed as

y[k] = −an−1y[k − 1] − an−2y[k − 2] − · · ·
− a0y[k − n] + bnf [k] + bn−1f [k − 1] + · · ·

+ b0f [k − n] (2.28c)

This equation shows that y[k], the solution at the kth instant, is computed from 2n + 1 pieces of
information. These are the past n values of y[k]: y[k − 1], y[k − 2], . . . , y[k − n] and the present
and past n values of the input: f [k], f [k − 1], f [k − 2], . . . , f [k − n]. If the input f [k] is known
for k = 0, 1, 2, . . ., then the values of y[k] for k = 0, 1, 2, . . . can be computed from the 2n initial
conditions y[−1], y[−2], . . . , y[−n] and f [−1], f [−2], . . . , f [−n]. If the input is causal, that
is, if f [k] = 0 for k < 0, then f [−1] = f [−2] = . . . = f [−n] = 0, and we need only n initial
conditions y[−1], y[−2], . . . , y[−n]. This allows us to compute iteratively or recursively the values
y[0], y[1], y[2], y[3], . . . , and so on.5 For instance, to find y[0] we set k = 0 in Eq. 2.28ac. The left-
hand side is y[0], and the right-hand side contains terms y[−1], y[−2], . . . , y[−n], and the inputs
f [0], f [−1], f [−2], . . . , f [−n]. Therefore, to begin with, we must know the n initial conditions
y[−1], y[−2], . . . , y[−n]. Knowing these conditions and the input f [k], we can iteratively find
the response y[0], y[1], y[2], . . ., and so on. The following example demonstrates this procedure.

5For this reason Eq. 2.28a is called a recursive difference equation. However, in Eq. 2.28a if a0 = a1 = a2 = · · · =
an−1 = 0, then it follows from Eq. 2.28ac that determination of the present value of y[k] does not require the past values
y[k − 1], y[k − 2], . . ., etc. For this reason when ai = 0, (i = 0, 1, . . . , n − 1), the difference Eq. 2.28a is nonrecursive.
This classification is important in designing and realizing digital filters. In this discussion, however, this classification is
not important. The analysis techniques developed here apply to general recursive and nonrecursive equations. Observe
that a nonrecursive equation is a special case of recursive equation with a0 = a1 = . . . = an−1 = 0.
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This method basically reflects the manner in which a computer would solve a difference equation,
given the input and initial conditions.

EXAMPLE 2.4:

Solve iteratively

y[k] − 0.5y[k − 1] = f [k] (2.29a)

with initial condition y[−1] = 16 and the input f [k] = k2 (starting at k = 0). This equation can
be expressed as

y[k] = 0.5y[k − 1] + f [k] (2.29b)

If we set k = 0 in this equation, we obtain

y[0] = 0.5y[−1] + f [0]
= 0.5(16) + 0 = 8

Now, setting k = 1 in Eq. 2.29ab and using the value y[0] = 8 (computed in the first step) and
f [1] = (1)2 = 1, we obtain

y[1] = 0.5(8) + (1)2 = 5

Next, setting k = 2 in Eq. 2.29ab and using the value y[1] = 5 (computed in the previous step) and
f [2] = (2)2, we obtain

y[2] = 0.5(5) + (2)2 = 6.5

Continuing in this way iteratively, we obtain

y[3] = 0.5(6.5) + (3)2 = 12.25

y[4] = 0.5(12.25) + (4)2 = 22.125

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
This iterative solution procedure is available only for difference equations; it cannot be applied to
differential equations. Despite the many uses of this method, a closed-form solution of a difference
equation is far more useful in the study of system behavior and its dependence on the input and
the various system parameters. For this reason we shall develop a systematic procedure to obtain a
closed-form solution of Eq. 2.28a.

Operational Notation

In difference equations it is convenient to use operational notation similar to that used in
differential equations for the sake of compactness and convenience. For differential equations, we
use the operator D to denote the operation of differentiation. For difference equations, we use the
operator E to denote the operation for advancing the sequence by one time interval. Thus,

Ef [k] ≡ f [k + 1]
E2f [k] ≡ f [k + 2]
· · · · · · · · · · · · · · ·

Enf [k] ≡ f [k + n] (2.30)
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A general nth-order difference Eq. 2.28aa can be expressed as

(En + an−1E
n−1 + · · · + a1E + a0)y[k]

= (bnE
n + bn−1E

n−1 + · · · + b1E + b0)f [k] (2.31a)

or

Q[E]y[k] = P [E]f [k] (2.31b)

where Q[E] and P [E] are nth-order polynomial operators, respectively,

Q[E] = En + an−1E
n−1 + · · · + a1E + a0 (2.32a)

P [E] = bnE
n + bn−1E

n−1 + · · · + b1E + b0 (2.32b)

2.2.2 Classical Solution

Following the discussion of differential equations, we can show that if yp[k] is a solution of Eq. 2.28a
or Eq. 2.31a, that is,

Q[E]yp[k] = P [E]f [k] (2.33)

then yp[k] + yc[k] is also a solution of Eq. 2.31a, where yc[k] is a solution of the homogeneous
equation

Q[E]yc[k] = 0 (2.34)

As before, we call yp[k] the particular solution and yc[k] the complementary solution.

Complementary Solution (The Natural Response)

By definition

Q[E]yc[k] = 0 (2.34a)

or

(En + an−1E
n−1 + · · · + a1E + a0)yc[k] = 0 (2.34b)

or

yc[k + n] + an−1yc[k + n − 1] + · · · + a1yc[k + 1]
+ a0yc[k] = 0 (2.34c)

We can solve this equation systematically, but even a cursory examination of this equation points
to its solution. This equation states that a linear combination of yc[k] and delayed yc[k] is zero not
for some values of k, but for all k. This is possible if and only if yc[k] and delayed yc[k] have the same
form. Only an exponential function γ k has this property as seen from the equation

γ k−m = γ −mγ k
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This shows that the delayed γ k is a constant times γ k . Therefore, the solution of Eq. 2.34 must be of
the form

yc[k] = cγ k (2.35)

To determine c and γ , we substitute this solution in Eq. 2.34. From Eq. 2.35, we have

Eyc[k] = yc[k + 1] = cγ k+1 = (cγ )γ k

E2yc[k] = yc[k + 2] = cγ k+2 = (cγ 2)γ k

· · · · · · · · · · · · · · · · · · · · · · · ·
Enyc[k] = yc[k + n] = cγ k+n = (cγ n)γ k (2.36)

Substitution of this in Eq. 2.34 yields

c(γ n + an−1γ
n−1 + · · · + a1γ + a0)γ

k = 0 (2.37)

For a nontrivial solution of this equation

(γ n + an−1γ
n−1 + · · · + a1γ + a0) = 0 (2.38a)

or

Q[γ ] = 0 (2.38b)

Our solution cγ k [Eq. 2.35] is correct, provided that γ satisfies Eq. 2.38a. Now, Q[γ ] is an
nth-order polynomial and can be expressed in the factorized form (assuming all distinct roots):

(γ − γ1)(γ − γ2) · · · (γ − γn) = 0 (2.38c)

Clearlyγ hasn solutionsγ1, γ2, · · · , γn and, therefore, Eq. 2.34alsohasn solutionsc1γ
k
1 , c2γ

k
2 , · · · , cnγ

k
n .

In such a case we have shown that the general solution is a linear combination of the n solutions.
Thus,

yc[k] = c1γ
k
1 + c2γ

k
2 + · · · + cnγ

k
n (2.39)

where γ1, γ2, · · · , γn are the roots of Eq. 2.38a and c1, c2, . . . , cn are arbitrary constants determined
from n auxiliary conditions. The polynomial Q[γ ] is called the characteristic polynomial, and

Q[γ ] = 0 (2.40)

is the characteristic equation. Moreover, γ1, γ2, · · · , γn, the roots of the characteristic equation,
are called characteristic roots or characteristic values (also eigenvalues). The exponentials γ k

i (i =
1, 2, . . . , n) are the characteristic modes or natural modes. A characteristic mode corresponds to
each characteristic root, and the complementary solution is a linear combination of the characteristic
modes of the system.

Repeated Roots

For repeated roots, the form of characteristic modes is modified. It can be shown by di-
rect substitution that if a root γ repeats r times (root of multiplicity r), the characteristic modes
corresponding to this root are γ k, kγ k, k2γ k, . . . , kr−1γ k . Thus, if the characteristic equation is

Q[γ ] = (γ − γ1)
r (γ − γr+1)(γ − γr+2) · · ·
(γ − γn) (2.41)
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the complementary solution is

yc[k] = (c1 + c2k + c3k
2 + · · · + crk

r−1)γ k
1

+ cr+1γ
k
r+1 + cr+2γ

k
r+2 + · · ·

+ cnγ
k
n (2.42)

Particular Solution

The particular solution yp[k] is the solution of

Q[E]yp[k] = P [E]f [k] (2.43)

We shall find the particular solution using the method of undetermined coefficients, the same method
used for differential equations. Table 2.2 lists the inputs and the corresponding forms of solution with
undetermined coefficients. These coefficients can be determined by substituting yp[k] in Eq. 2.43
and equating the coefficients of similar terms.

TABLE 2.2
Input f [k] Forced Response yp [k]

1. rk r 6= γi (i = 1, 2, · · · , n) βrk

2. rk r = γi βkrk

3. cos(�k + θ) β cos(�k + φ)

4.


 m∑

i=0

αik
i


 rk


 m∑

i=0

βik
i


 rk

Note: By definition, yp[k] cannot have any characteristic mode terms. If any term p[k] shown in
the right-hand column for the particular solution should also be a characteristic mode, the correct
form of the particular solution must be modified to kip[k], where i is the smallest integer that will
prevent kip[k] from having a characteristic mode term. For example, when the input is rk , the
particular solution in the right-hand column is of the form crk . But if rk happens to be a natural
mode, the correct form of the particular solution is βkrk(see Pair 2).

EXAMPLE 2.5:

Solve

(E2 − 5E + 6)y[k] = (E − 5)f [k] (2.44)

if the input f [k] = (3k + 5)u[k] and the auxiliary conditions are y[0] = 4, y[1] = 13.
The characteristic equation is

γ 2 − 5γ + 6 = (γ − 2)(γ − 3) = 0

Therefore, the complementary solution is

yc[k] = c1(2)k + c2(3)k

To find the form of yp[k] we use Table 2.2, Pair 4 with r = 1, m = 1. This yields

yp[k] = β1k + β0
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Therefore,

yp[k + 1] = β1(k + 1) + β0 = β1k + β1 + β0

yp[k + 2] = β1(k + 2) + β0 = β1k + 2β1 + β0

Also,
f [k] = 3k + 5

and
f [k + 1] = 3(k + 1) + 5 = 3k + 8

Substitution of the above results in Eq. 2.44 yields

β1k + 2β1 + β0 − 5(β1k + β1 + β0) + 6(β1k + β0)

= 3k + 8 − 5(3k + 5)

or
2β1k − 3β1 + 2β0 = −12k − 17

Comparison of similar terms on two sides yields

2β1 = −12
−3β1 + 2β0 = −17

}
H⇒ β1 = −6

β2 = −35
2

This means

yp[k] = −6k − 35

2

The total response is

y[k] = yc[k] + yp[k]
= c1(2)k + c2(3)k − 6k − 35

2
k ≥ 0 (2.45)

To determine arbitrary constants c1 and c2 we set k = 0 and 1 and substitute the auxiliary conditions
y[0] = 4, y[1] = 13 to obtain

4 = c1 + c2 − 35
2

13 = 2c1 + 3c2 − 47
2

}
H⇒ c1 = 28

c2 = −13
2

Therefore,

yc[k] = 28(2)k − 13
2 (3)k (2.46)

and

y[k] = 28(2)k − 13

2
(3)k︸ ︷︷ ︸

yc[k]

− 6k − 35

2︸ ︷︷ ︸
yp[k]

(2.47)

A Comment on Auxiliary Conditions

This method requires auxiliary conditions y[0], y[1], . . . , y[n − 1] because the total solution
is valid only for k ≥ 0. But if we are given the initial conditions y[−1], y[−2], . . . , y[−n], we can
derive the conditions y[0], y[1], . . . , y[n − 1] using the iterative procedure discussed earlier.
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Exponential Input

As in the case of differential equations, we can show that for the equation

Q[E]y[k] = P [E]f [k] (2.48)

the particular solution for the exponential input f [k] = rk is given by

yp[k] = H [r]rk r 6= γi (2.49)

where

H [r] = P [r]
Q[r] (2.50)

The proof follows from the fact that if the input f [k] = rk , then from Table 2.2 (Pair 4), yp[k] = βrk .
Therefore,

Eif [k] = f [k + i] = rk+i = rirk and P [E]f [k] = P [r]rk

Ejyp[k] = βrk+j = βrj rk and Q[E]y[k] = βQ[r]rk

so that Eq. 2.48 reduces to
βQ[r]rk = P [r]rk

which yields β = P [r]/Q[r] = H [r].
This result is valid only if r is not a characteristic root. If r is a characteristic root, the particular

solution is βkrk where β is determined by substituting yp[k] in Eq. 2.48 and equating coefficients
of similar terms on the two sides. Observe that the exponential rk includes a wide variety of signals
such as a constant C, a sinusoid cos(�k + θ), and an exponentially growing or decaying sinusoid
|γ |k cos(�k + θ).

A Constant Input f (k) = C

This is a special case of exponential Crk with r = 1. Therefore, from Eq. 2.49 we have

yp[k] = C P [1]
Q[1] (1)k = CH [1] (2.51)

A Sinusoidal Input

The input ej�k is an exponential rk with r = ej�. Hence,

yp[k] = H [ej�]ej�k = P [ej�]
Q[ej�]e

j�k

Similarly for the input e−j�k

yp[k] = H [e−j�]e−j�k

Consequently, if the input

f [k] = cos�k = 1

2
(ej�k + e−j�k)

yp[k] = 1

2

{
H [ej�]ej�k + H [e−j�]e−j�k

}

Since the two terms on the right-hand side are conjugates

yp[k] = Re
{
H [ej�]ej�k

}
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If
H [ej�] = |H [ej�]|ej 6 H [ej�]

then

yp[k] = Re
{∣∣∣H [ej�]

∣∣∣ ej (�k+6 H [ej�])}
= |H [ej�]| cos

(
�k + 6 H [ej�]

)
(2.52)

Using a similar argument, we can show that for the input

f [k] = cos(�k + θ)

yp[k] = |H [ej�]| cos
(
�k + θ + 6 H [ej�]

)
(2.53)

EXAMPLE 2.6:

Solve
(E2 − 3E + 2)y[k] = (E + 2)f [k]

for f [k] = (3)ku[k] and the auxiliary conditions y[0] = 2, y[1] = 1.
In this case

H [r] = P [r]
Q[r] = r + 2

r2 − 3r + 2

and the particular solution to input (3)ku[k] is H [3](3)k ; that is,

yp[k] = 3 + 2

(3)2 − 3(3) + 2
(3)k = 5

2
(3)k

The characteristic polynomial is (γ 2 − 3γ + 2) = (γ − 1)(γ − 2). The characteristic roots are 1
and 2. Hence, the complementary solution is yc[k] = c1 + c2(2)k and the total solution is

y[k] = c1(1)k + c2(2)k + 5

2
(3)k

Setting k = 0 and 1 in this equation and substituting auxiliary conditions yields

2 = c1 + c2 + 5

2
and 1 = c1 + 2c2 + 15

2

Solution of these two simultaneous equations yields c1 = 5.5, c2 = −5. Therefore,

y[k] = 5.5 − 6(2)k + 5

2
(3)k k ≥ 0

2.2.3 Method of Convolution

In this method, the input f [k] is expressed as a sum of impulses. The solution is then obtained as a
sum of the solutions to all the impulse components. The method exploits the superposition property
of the linear difference equations. A discrete-time unit impulse function δ[k] is defined as

δ[k] =
{

1 k = 0
0 k 6= 0

(2.54)
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Hence, an arbitrary signal f [k] can be expressed in terms of impulse and delayed impulse functions
as

f [k] = f [0]δ[k] + f [1]δ[k − 1] + f [2]δ[k − 2] + · · ·
+ f [k]δ[0] + · · · k ≥ 0 (2.55)

The right-hand side expressesf [k] as a sum of impulse components. Ifh[k] is the solution of Eq. 2.31a
to the impulse input f [k] = δ[k], then the solution to input δ[k −m] is h[k −m]. This follows from
the fact that because of constant coefficients, Eq. 2.31a has time invariance property. Also, because
Eq. 2.31a is linear, its solution is the sum of the solutions to each of the impulse components of f [k]
on the right-hand side of Eq. 2.55. Therefore,

y[k] = f [0]h[k] + f [1]h[k − 1] + f [2]h[k − 2] + · · ·
+ f [k]h[0] + f [k + 1]h[−1] + · · ·

All practical systems with time as the independent variable are causal, that is h[k] = 0 for k < 0.
Hence, all the terms on the right-hand side beyond f [k]h[0] are zero. Thus,

y[k] = f [0]h[k] + f [1]h[k − 1] + f [2]h[k − 2] + · · ·
+ f [k]h[0]

=
k∑

m=0

f [m]h[k − m] (2.56)

The first term on the right-hand side consists of a linear combination of natural modes and should
be appropriately modified for repeated roots. The general solution is obtained by adding a comple-
mentary solution to the above solution. Therefore, the general solution is given by

y[k] =
n∑

j=1

cj γ
k
j +

k∑
m=0

f [m]h[k − m] (2.57)

The last sum on the right-hand side is known as the convolution sum of f [k] and h[k].
The function h[k] appearing in Eq. 2.57 is the solution of Eq. 2.31a for the impulsive input

(f [k] = δ[k]) when all initial conditions are zero, that is, h[−1] = h[−2] = · · · = h[−n] = 0. It
can be shown that [3] h[k] contains an impulse and a linear combination of characteristic modes as

h[k] = b0
a0

δ[k] + A1γ
k
1 + A2γ

k
2 + · · · + Anγ

k
n (2.58)

where the unknown constants Ai are determined from n values of h[k] obtained by solving the
equation Q[E]h[k] = P [E]δ[k] iteratively.

EXAMPLE 2.7:

Solve Example 2.5 using convolution method. In other words solve

(E2 − 3E + 2)y[k] = (E + 2)f [k]
for f [k] = (3)ku[k] and the auxiliary conditions y[0] = 2, y[1] = 1.

The unit impulse solution h[k] is given by Eq. 2.58. In this case a0 = 2 and b0 = 2. Therefore,

h[k] = δ[k] + A1(1)k + A2(2)k (2.59)
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To determine the two unknown constants A1 and A2 in Eq. 2.59, we need two values of h[k], for
instance h[0] and h[1]. These can be determined iteratively by observing that h[k] is the solution of
(E2 − 3E + 2)h[k] = (E + 2)δ[k], that is,

h[k + 2] − 3h[k + 1] + 2h[k] = δ[k + 1] + 2δ[k] (2.60)

subject to initial conditions h[−1] = h[−2] = 0. We now determine h[0] and h[1] iteratively from
Eq. 2.60. Setting k = −2 in this equation yields

h[0] − 3(0) + 2(0) = 0 + 0 H⇒ h[0] = 0

Next, setting k = −1 in Eq. 2.60 and using h[0] = 0, we obtain

h[1] − 3(0) + 2(0) = 1 + 0 H⇒ h[1] = 1

Setting k = 0 and 1 in Eq. 2.59 and substituting h[0] = 0, h[1] = 1 yields

0 = 1 + A1 + A2 and 1 = A1 + 2A2

Solution of these two equations yields A1 = −3 and A2 = 2. Therefore,

h[k] = δ[k] − 3 + 2(2)k

and from Eq. 2.57

y[k] = c1 + c2(2)k +
k∑

m=0

(3)m[δ[k − m] − 3 + 2(2)k−m]

= c1 + c2(2)k + 1.5 − 4(2)k + 2.5(3)k

The sums in the above expression are found by using the geometric progression sum formula

k∑
m=0

rm = rk+1 − 1

r − 1
r 6= 1

Setting k = 0 and 1 and substituting the given auxiliary conditions y[0] = 2, y[1] = 1, we obtain

2 = c1 + c2 + 1.5 − 4 + 2.5 and 1 = c1 + 2c2 + 1.5 − 8 + 7.5

Solution of these equations yields c1 = 4 and c2 = −2. Therefore,

y[k] = 5.5 − 6(2)k + 2.5(3)k

which confirms the result obtained by the classical method.

Assessment of the Classical Method

The earlier remarks concerning the classical method for solving differential equations also
apply to difference equations. General discussion of difference equations can be found in texts on
the subject [2].
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3.1 Introduction

Practical digital filters must be implemented with finite precision numbers and arithmetic. As a
result, both the filter coefficients and the filter input and output signals are in discrete form. This
leads to four types of finite wordlength effects.

Discretization (quantization) of the filter coefficients has the effect of perturbing the location of
the filter poles and zeroes. As a result, the actual filter response differs slightly from the ideal response.
This deterministic frequency response error is referred to as coefficient quantization error.

The use of finite precision arithmetic makes it necessary to quantize filter calculations by rounding
or truncation. Roundoffnoise is that error in thefilteroutput that results fromroundingor truncating
calculations within the filter. As the name implies, this error looks like low-level noise at the filter
output.

Quantization of the filter calculations also renders the filter slightly nonlinear. For large signals
this nonlinearity is negligible and roundoff noise is the major concern. However, for recursive filters
with a zero or constant input, this nonlinearity can cause spurious oscillations called limit cycles.

With fixed-point arithmetic it is possible for filter calculations to overflow. The term overflow
oscillation, sometimes also called adder overflow limit cycle, refers to a high-level oscillation that
can exist in an otherwise stable filter due to the nonlinearity associated with the overflow of internal
filter calculations.

In this chapter, we examine each of these finite wordlength effects. Both fixed-point and floating-
point number representations are considered.
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3.2 Number Representation

In digital signal processing, (B + 1)-bit fixed-point numbers are usually represented as two’s-
complement signed fractions in the format

b0 · b−1b−2 · · · b−B

The number represented is then

X = −b0 + b−12−1 + b−22−2 + · · · + b−B2−B (3.1)

where b0 is the sign bit and the number range is −1 ≤ X < 1. The advantage of this representation
is that the product of two numbers in the range from −1 to 1 is another number in the same range.

Floating-point numbers are represented as

X = (−1)sm2c (3.2)

where s is the sign bit, m is the mantissa, and c is the characteristic or exponent. To make the
representation of a number unique, the mantissa is normalized so that 0.5 ≤ m < 1.

Although floating-point numbers are always represented in the form of (3.2), the way in which
this representation is actually stored in a machine may differ. Since m ≥ 0.5, it is not necessary to
store the 2−1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored
as

X = (−1)s(0.5 + f )2c (3.3)

where f is an unsigned fraction, 0 ≤ f < 0.5.
Most floating-point processors now use the IEEE Standard 754 32-bit floating-point format for

storing numbers. According to this standard the exponent is stored as an unsigned integer p where

p = c + 126 (3.4)

Therefore, a number is stored as

X = (−1)s(0.5 + f )2p−126 (3.5)

where s is the sign bit, f is a 23-b unsigned fraction in the range 0 ≤ f < 0.5, and p is an 8-b
unsigned integer in the range 0 ≤ p ≤ 255. The total number of bits is 1 + 23 + 8 = 32. For
example, in IEEE format 3/4 is written (−1)0(0.5 + 0.25)20 so s = 0, p = 126, and f = 0.25.
The value X = 0 is a unique case and is represented by all bits zero (i.e., s = 0, f = 0, and p = 0).
Although the 2−1-weight mantissa bit is not actually stored, it does exist so the mantissa has 24 b
plus a sign bit.

3.3 Fixed-Point Quantization Errors

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, the
product of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00.000 110 11. The extra bit
to the left of the decimal point can be discarded without introducing any error. However, the least
significant four of the remaining bits must ultimately be discarded by some form of quantization so
that the result can be stored to 5 b for use in other calculations. In the example above this results in
0.0010 (quantization by rounding) or 0.0001 (quantization by truncating). When a sum of products
calculation is performed, the quantization can be performed either after each multiply or after all
products have been summed with double-length precision.
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We will examine three types of fixed-point quantization—rounding, truncation, and magnitude
truncation. If X is an exact value, then the rounded value will be denoted Qr(X), the truncated value
Qt(X), and the magnitude truncated value Qmt(X). If the quantized value has B bits to the right of
the decimal point, the quantization step size is

1 = 2−B (3.6)

Since rounding selects the quantized value nearest the unquantized value, it gives a value which is
never more than ±1/2 away from the exact value. If we denote the rounding error by

εr = Qr(X) − X (3.7)

then

− 1

2
≤ εr ≤ 1

2
(3.8)

Truncation simply discards the low-order bits, giving a quantized value that is always less than or
equal to the exact value so

− 1 < εt ≤ 0 (3.9)

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal
to the exact value so

− 1 < εmt < 1 (3.10)

The error resulting from quantization can be modeled as a random variable uniformly distributed
over the appropriate error range. Therefore, calculations with roundoff error can be considered
error-free calculations that have been corrupted by additive white noise. The mean of this noise for
rounding is

mεr = E{εr} = 1

1

∫ 1/2

−1/2
εr dεr = 0 (3.11)

where E{} represents the operation of taking the expected value of a random variable. Similarly, the
variance of the noise for rounding is

σ 2
εr

= E{(εr − mεr )
2} = 1

1

∫ 1/2

−1/2
(εr − mεr )

2 dεr = 12

12
(3.12)

Likewise, for truncation,

mεt = E{εt } = −1

2

σ 2
εt

= E{(εt − mεt )
2} = 12

12
(3.13)

and, for magnitude truncation

mεmt = E{εmt } = 0

σ 2
εmt

= E{(εmt − mεmt )
2} = 12

3
(3.14)
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3.4 Floating-Point Quantization Errors

With floating-point arithmetic it is necessary to quantize after both multiplications and additions.
The addition quantization arises because, prior to addition, the mantissa of the smaller number in
the sum is shifted right until the exponent of both numbers is the same. In general, this gives a sum
mantissa that is too long and so must be quantized.

We will assume that quantization in floating-point arithmetic is performed by rounding. Because
of the exponent in floating-point arithmetic, it is the relative error that is important. The relative
error is defined as

εr = Qr(X) − X

X
= εr

X
(3.15)

Since X = (−1)sm2c, Qr(X) = (−1)sQr(m)2c and

εr = Qr(m) − m

m
= ε

m
(3.16)

If the quantized mantissa has B bits to the right of the decimal point, |ε| < 1/2 where, as before,
1 = 2−B . Therefore, since 0.5 ≤ m < 1,

|εr | < 1 (3.17)

If we assume that ε is uniformly distributed over the range from −1/2 to 1/2 and m is uniformly
distributed over 0.5 to 1,

mεr = E
{ ε

m

}
= 0

σ 2
εr

= E

{( ε

m

)2
}

= 2

1

∫ 1

1/2

∫ 1/2

−1/2

ε2

m2
dε dm

= 12

6
= (0.167)2−2B (3.18)

In practice, the distribution of m is not exactly uniform. Actual measurements of roundoff noise
in [1] suggested that

σ 2
εr

≈ 0.2312 (3.19)

while a detailed theoretical and experimental analysis in [2] determined

σ 2
εr

≈ 0.1812 (3.20)

From (3.15) we can represent a quantized floating-point value in terms of the unquantized value
and the random variable εr using

Qr(X) = X(1 + εr) (3.21)

Therefore, the finite-precision product X1X2 and the sum X1 + X2 can be written

f l(X1X2) = X1X2(1 + εr) (3.22)

and

f l(X1 + X2) = (X1 + X2)(1 + εr) (3.23)

where εr is zero-mean with the variance of (3.20).
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3.5 Roundoff Noise

To determine the roundoff noise at the output of a digital filter we will assume that the noise due
to a quantization is stationary, white, and uncorrelated with the filter input, output, and internal
variables. This assumption is good if the filter input changes from sample to sample in a sufficiently
complex manner. It is not valid for zero or constant inputs for which the effects of rounding are
analyzed from a limit cycle perspective.

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often
calculated for the caseof a zero-meanwhitenoisefilter input signalx(n)of varianceσ 2

x . This simplifies
calculation of the output roundoff noise because expected values of the form E{x(n)x(n − k)} are
zero for k 6= 0 and give σ 2

x when k = 0. This approach to analysis has been found to give estimates
of the output roundoff noise that are close to the noise actually observed for other input signals.

Another assumption that will be made in calculating roundoff noise is that the product of two
quantization errors is zero. To justify this assumption, consider the case of a 16-b fixed-point
processor. In this case a quantization error is of the order 2−15, while the product of two quantization
errors is of the order 2−30, which is negligible by comparison.

If a linear system with impulse response g(n) is excited by white noise with mean mx and variance
σ 2

x , the output is noise of mean [3, pp.788–790]

my = mx

∞∑
n=−∞

g(n) (3.24)

and variance

σ 2
y = σ 2

x

∞∑
n=−∞

g2(n) (3.25)

Therefore, if g(n) is the impulse response from the point where a roundoff takes place to the filter
output, the contribution of that roundoff to the variance (mean-square value) of the output roundoff
noise is given by (3.25) with σ 2

x replaced with the variance of the roundoff. If there is more than one
source of roundoff error in the filter, it is assumed that the errors are uncorrelated so the output noise
variance is simply the sum of the contributions from each source.

3.5.1 Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the convolution
summation

y(n) =
N−1∑
k=0

h(k)x(n − k) (3.26)

When fixed-point arithmetic is used and quantization is performed after each multiply, the result of
the N multiplies is N-times the quantization noise of a single multiply. For example, rounding after
each multiply gives, from (3.6) and (3.12), an output noise variance of

σ 2
o = N

2−2B

12
(3.27)

Virtually all digital signal processor integrated circuits contain one or more double-length accumu-
lator registers which permit the sum-of-products in (3.26) to be accumulated without quantization.
In this case only a single quantization is necessary following the summation and

σ 2
o = 2−2B

12
(3.28)
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For the floating-point roundoff noise case we will consider (3.26) for N = 4 and then generalize
the result to other values of N . The finite-precision output can be written as the exact output plus
an error term e(n). Thus,

y(n) + e(n) = ({[h(0)x(n)[1 + ε1(n)]
+ h(1)x(n − 1)[1 + ε2(n)]][1 + ε3(n)]
+ h(2)x(n − 2)[1 + ε4(n)]}{1 + ε5(n)}
+ h(3)x(n − 3)[1 + ε6(n)])[1 + ε7(n)] (3.29)

In (3.29), ε1(n) represents the error in the first product, ε2(n) the error in the second product, ε3(n)

the error in the first addition, etc. Notice that it has been assumed that the products are summed in
the order implied by the summation of (3.26).

Expanding (3.29), ignoring products of error terms, and recognizing y(n) gives

e(n) = h(0)x(n)[ε1(n) + ε3(n) + ε5(n) + ε7(n)]
+ h(1)x(n − 1)[ε2(n) + ε3(n) + ε5(n) + ε7(n)]
+ h(2)x(n − 2)[ε4(n) + ε5(n) + ε7(n)]
+ h(3)x(n − 3)[ε6(n) + ε7(n)] (3.30)

Assuming that the input is white noise of variance σ 2
x so that E{x(n)x(n − k)} is zero for k 6= 0, and

assuming that the errors are uncorrelated,

E{e2(n)} = [4h2(0) + 4h2(1) + 3h2(2) + 2h2(3)]σ 2
x σ 2

εr
(3.31)

In general, for any N ,

σ 2
o = E{e2(n)} =

[
Nh2(0) +

N−1∑
k=1

(N + 1 − k)h2(k)

]
σ 2

x σ 2
εr

(3.32)

Notice that if the order of summation of the product terms in the convolution summation is changed,
then the order in which the h(k)’s appear in (3.32) changes. If the order is changed so that the h(k)

with smallest magnitude is first, followed by the next smallest, etc., then the roundoff noise variance
is minimized. However, performing the convolution summation in nonsequential order greatly
complicates data indexing and so may not be worth the reduction obtained in roundoff noise.

3.5.2 Roundoff Noise in Fixed-Point IIR Filters

To determine the roundoff noise of a fixed-point infinite impulse response (IIR) filter realization,
consider a causal first-order filter with impulse response

h(n) = anu(n) (3.33)

realized by the difference equation

y(n) = ay(n − 1) + x(n) (3.34)

Due to roundoff error, the output actually obtained is

ŷ(n) = Q{ay(n − 1) + x(n)} = ay(n − 1) + x(n) + e(n) (3.35)
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where e(n) is a random roundoff noise sequence. Since e(n) is injected at the same point as the input,
it propagates through a system with impulse response h(n). Therefore, for fixed-point arithmetic
with rounding, the output roundoff noise variance from (3.6), (3.12), (3.25), and (3.33) is

σ 2
o = 12

12

∞∑
n=−∞

h2(n) = 12

12

∞∑
n=0

a2n = 2−2B

12

1

1 − a2
(3.36)

With fixed-point arithmetic there is the possibility of overflow following addition. To avoid over-
flow it is necessary to restrict the input signal amplitude. This can be accomplished by either placing
a scaling multiplier at the filter input or by simply limiting the maximum input signal amplitude.
Consider the case of the first-order filter of (3.34). The transfer function of this filter is

H(ejω) = Y (ejω)

X(ejω)
= 1

ejω − a
(3.37)

so

|H(ejω)|2 = 1

1 + a2 − 2a cos(ω)
(3.38)

and

|H(ejω)|max = 1

1 − |a| (3.39)

The peak gain of the filter is 1/(1 − |a|) so limiting input signal amplitudes to |x(n)| ≤ 1 − |a| will
make overflows unlikely.

An expression for the output roundoff noise-to-signal ratio can easily be obtained for the case
where the filter input is white noise, uniformly distributed over the interval from −(1 − |a|) to
(1 − |a|) [4, 5]. In this case

σ 2
x = 1

2(1 − |a|)
∫ 1−|a|

−(1−|a|)
x2 dx = 1

3
(1 − |a|)2 (3.40)

so, from (3.25),

σ 2
y = 1

3

(1 − |a|)2

1 − a2
(3.41)

Combining (3.36) and (3.41) then gives

σ 2
o

σ 2
y

=
(

2−2B

12

1

1 − a2

) (
3

1 − a2

(1 − |a|)2

)
= 2−2B

12

3

(1 − |a|)2
(3.42)

Notice that the noise-to-signal ratio increases without bound as |a| → 1.
Similar results can be obtained for the case of the causal second-order filter realized by the difference

equation
y(n) = 2r cos(θ)y(n − 1) − r2y(n − 2) + x(n) (3.43)

This filter has complex-conjugate poles at re±jθ and impulse response

h(n) = 1

sin(θ)
rn sin[(n + 1)θ ]u(n) (3.44)

Due to roundoff error, the output actually obtained is

ŷ(n) = 2r cos(θ)y(n − 1) − r2y(n − 2) + x(n) + e(n) (3.45)
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There are two noise sources contributing to e(n) if quantization is performed after each multiply,
and there is one noise source if quantization is performed after summation. Since

∞∑
n=−∞

h2(n) = 1 + r2

1 − r2

1

(1 + r2)2 − 4r2 cos2(θ)
(3.46)

the output roundoff noise is

σ 2
o = ν

2−2B

12

1 + r2

1 − r2

1

(1 + r2)2 − 4r2 cos2(θ)
(3.47)

where ν = 1 for quantization after summation, and ν = 2 for quantization after each multiply.
To obtain an output noise-to-signal ratio we note that

H(ejω) = 1

1 − 2r cos(θ)e−jω + r2e−j2ω
(3.48)

and, using the approach of [6],

|H(ejω)|2max = 1

4r2

{[
sat

(
1+r2

2r
cos(θ)

)
− 1+r2

2r
cos(θ)

]2 +
[

1−r2

2r
sin(θ)

]2
} (3.49)

where

sat(µ) =



1 µ > 1
µ −1 ≤ µ ≤ 1
−1 µ < −1

(3.50)

Following the same approach as for the first-order case then gives

σ 2
o

σ 2
y

= ν
2−2B

12

1 + r2

1 − r2

3

(1 + r2)2 − 4r2 cos2(θ)

× 1

4r2

{[
sat

(
1+r2

2r
cos(θ)

)
− 1+r2

2r
cos(θ)

]2 +
[

1−r2

2r
sin(θ)

]2
} (3.51)

Figure 3.1 is a contour plot showing the noise-to-signal ratio of (3.51) for ν = 1 in units of the noise
variance of a single quantization, 2−2B/12. The plot is symmetrical about θ = 90◦, so only the range
from 0◦ to 90◦ is shown. Notice that as r → 1, the roundoff noise increases without bound. Also
notice that the noise increases as θ → 0◦.

It is possible to design state-space filter realizations that minimize fixed-point roundoff noise [7] –
[10]. Depending on the transfer function being realized, these structures may provide a roundoff
noise level that is orders-of-magnitude lower than for a nonoptimal realization. The price paid for this
reduction in roundoff noise is an increase in the number of computations required to implement the
filter. For an N th-order filter the increase is from roughly 2N multiplies for a direct form realization
to roughly (N + 1)2 for an optimal realization. However, if the filter is realized by the parallel or
cascade connection of first- and second-order optimal subfilters, the increase is only to about 4N

multiplies. Furthermore, near-optimal realizations exist that increase the number of multiplies to
only about 3N [10].
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FIGURE 3.1: Normalized fixed-point roundoff noise variance.

3.5.3 Roundoff Noise in Floating-Point IIR Filters

For floating-point arithmetic it is first necessary to determine the injected noise variance of each
quantization. For the first-order filter this is done by writing the computed output as

y(n) + e(n) = [ay(n − 1)(1 + ε1(n)) + x(n)](1 + ε2(n)) (3.52)

where ε1(n) represents the error due to the multiplication and ε2(n) represents the error due to the
addition. Neglecting the product of errors, (3.52) becomes

y(n) + e(n) ≈ ay(n − 1) + x(n) + ay(n − 1)ε1(n)

+ ay(n − 1)ε2(n) + x(n)ε2(n) (3.53)

Comparing (3.34) and (3.53), it is clear that

e(n) = ay(n − 1)ε1(n) + ay(n − 1)ε2(n) + x(n)ε2(n) (3.54)

Taking the expected value of e2(n) to obtain the injected noise variance then gives

E{e2(n)} = a2E{y2(n − 1)}E{ε2
1(n)} + a2E{y2(n − 1)}E{ε2

2(n)}
+ E{x2(n)}E{ε2

2(n)} + E{x(n)y(n − 1)}E{ε2
2(n)} (3.55)

To carry this further it is necessary to know something about the input. If we assume the input
is zero-mean white noise with variance σ 2

x , then E{x2(n)} = σ 2
x and the input is uncorrelated with

past values of the output so E{x(n)y(n − 1)} = 0 giving

E{e2(n)} = 2a2σ 2
y σ 2

εr
+ σ 2

x σ 2
εr

(3.56)
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and

σ 2
o =

(
2a2σ 2

y σ 2
εr

+ σ 2
x σ 2

εr

) ∞∑
n=−∞

h2(n)

= 2a2σ 2
y + σ 2

x

1 − a2
σ 2

εr
(3.57)

However,

σ 2
y = σ 2

x

∞∑
n=−∞

h2(n) = σ 2
x

1 − a2
(3.58)

so

σ 2
o = 1 + a2

(1 − a2)2
σ 2

εr
σ 2

x = 1 + a2

1 − a2
σ 2

εr
σ 2

y (3.59)

and the output roundoff noise-to-signal ratio is

σ 2
o

σ 2
y

= 1 + a2

1 − a2
σ 2

εr
(3.60)

Similar results can be obtained for the second-order filter of (3.43) by writing

y(n) + e(n) = ([2r cos(θ)y(n − 1)(1 + ε1(n)) − r2y(n − 2)(1 + ε2(n))]
× [1 + ε3(n)] + x(n))(1 + ε4(n)) (3.61)

Expanding with the same assumptions as before gives

e(n) ≈ 2r cos(θ)y(n − 1)[ε1(n) + ε3(n) + ε4(n)]
− r2y(n − 2)[ε2(n) + ε3(n) + ε4(n)] + x(n)ε4(n) (3.62)

and

E{e2(n)} = 4r2 cos2(θ)σ 2
y 3σ 2

εr
+ r2σ 2

y 3σ 2
εr

+ σ 2
x σ 2

εr
− 8r3 cos(θ)σ 2

εr
E{y(n − 1)y(n − 2)} (3.63)

However,

E{y(n − 1)y(n − 2)}
= E{[2r cos(θ)y(n − 2) − r2y(n − 3) + x(n − 1)]y(n − 2)}
= 2r cos(θ)E{y2(n − 2)} − r2E{y(n − 2)y(n − 3)}
= 2r cos(θ)E{y2(n − 2)} − r2E{y(n − 1)y(n − 2)}
= 2r cos(θ)

1 + r2
σ 2

y (3.64)

so

E{e2(n)} = σ 2
εr

σ 2
x +

[
3r4 + 12r2 cos2(θ) − 16r4 cos2(θ)

1 + r2

]
σ 2

εr
σ 2

y (3.65)

and

σ 2
o = E{e2(n)}

∞∑
n=−∞

h2(n)

= ξ

[
σ 2

εr
σ 2

x +
[
3r4 + 12r2 cos2(θ) − 16r4 cos2(θ)

1 + r2

]
σ 2

εr
σ 2

y

]
(3.66)
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where from (3.46),

ξ =
∞∑

n=−∞
h2(n) = 1 + r2

1 − r2

1

(1 + r2)2 − 4r2 cos2(θ)
(3.67)

Since σ 2
y = ξσ 2

x , the output roundoff noise-to-signal ratio is then

σ 2
o

σ 2
y

= ξ

[
1 + ξ

[
3r4 + 12r2 cos2(θ) − 16r4 cos2(θ)

1 + r2

]]
σ 2

εr
(3.68)

Figure 3.2 is a contour plot showing the noise-to-signal ratio of (3.68) in units of the noise variance
of a single quantization σ 2

εr
. The plot is symmetrical about θ = 90◦, so only the range from 0◦ to

90◦ is shown. Notice the similarity of this plot to that of Fig. 3.1 for the fixed-point case. It has been
observed that filter structures generally have very similar fixed-point and floating-point roundoff
characteristics [2]. Therefore, the techniques of [7] – [10], which were developed for the fixed-point
case, can also be used to design low-noise floating-point filter realizations. Furthermore, since it
is not necessary to scale the floating-point realization, the low-noise realizations need not require
significantly more computation than the direct form realization.

FIGURE 3.2: Normalized floating-point roundoff noise variance.

3.6 Limit Cycles

A limit cycle, sometimes referred to as a multiplier roundoff limit cycle, is a low-level oscillation
that can exist in an otherwise stable filter as a result of the nonlinearity associated with rounding (or
truncating) internal filter calculations [11]. Limit cycles require recursion to exist and do not occur
in nonrecursive FIR filters.
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As an example of a limit cycle, consider the second-order filter realized by

y(n) = Qr

{
7

8
y(n − 1) − 5

8
y(n − 2) + x(n)

}
(3.69)

where Qr{ } represents quantization by rounding. This is stable filter with poles at 0.4375±j0.6585.
Consider the implementation of this filter with 4-b (3-b and a sign bit) two’s complement fixed-point
arithmetic, zero initial conditions (y(−1) = y(−2) = 0), and an input sequence x(n) = 3

8δ(n),
where δ(n) is the unit impulse or unit sample. The following sequence is obtained;

y(0) = Qr

{
3

8

}
= 3

8

y(1) = Qr

{
21

64

}
= 3

8

y(2) = Qr

{
3

32

}
= 1

8

y(3) = Qr

{
−1

8

}
= −1

8

y(4) = Qr

{
− 3

16

}
= −1

8

y(5) = Qr

{
− 1

32

}
= 0

y(6) = Qr

{
5

64

}
= 1

8
(3.70)

y(7) = Qr

{
7

64

}
= 1

8

y(8) = Qr

{
1

32

}
= 0

y(9) = Qr

{
− 5

64

}
= −1

8

y(10) = Qr

{
− 7

64

}
= −1

8

y(11) = Qr

{
− 1

32

}
= 0

y(12) = Qr

{
5

64

}
= 1

8
...

Notice that while the input is zero except for the first sample, the output oscillates with amplitude
1/8 and period 6.

Limit cycles are primarily of concern in fixed-point recursive filters. As long as floating-point
filters are realized as the parallel or cascade connection of first- and second-order subfilters, limit
cycles will generally not be a problem since limit cycles are practically not observable in first- and
second-order systems implemented with 32-b floating-point arithmetic [12]. It has been shown that
such systems must have an extremely small margin of stability for limit cycles to exist at anything
other than underflow levels, which are at an amplitude of less than 10−38 [12].
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There are at least three ways of dealing with limit cycles when fixed-point arithmetic is used. One
is to determine a bound on the maximum limit cycle amplitude, expressed as an integral number
of quantization steps [13]. It is then possible to choose a word length that makes the limit cycle
amplitude acceptably low. Alternately, limit cycles can be prevented by randomly rounding calcula-
tions up or down [14]. However, this approach is complicated to implement. The third approach
is to properly choose the filter realization structure and then quantize the filter calculations using
magnitude truncation [15, 16]. This approach has the disadvantage of producing more roundoff
noise than truncation or rounding [see (3.12)–(3.14)].

3.7 Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when two
numbers of the same sign add to give a value having magnitude greater than one. Since numbers
with magnitude greater than one are not representable, the result overflows. For example, the two’s
complement numbers 0.101 (5/8) and 0.100 (4/8) add to give 1.001 which is the two’s complement
representation of −7/8.

The overflow characteristic of two’s complement arithmetic can be represented as R{ }
where

R{X} =



X − 2 X ≥ 1
X −1 ≤ X < 1
X + 2 X < −1

(3.71)

For the example just considered, R{9/8} = −7/8.
An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high-

level oscillation that can exist in an otherwise stable fixed-point filter due to the gross nonlinearity
associated with the overflow of internal filter calculations [17]. Like limit cycles, overflow oscillations
require recursion to exist and do not occur in nonrecursive FIR filters. Overflow oscillations also do
not occur with floating-point arithmetic due to the virtual impossibility of overflow.

As an exampleof anoverflowoscillation, once again consider thefilter of (3.69)with4-bfixed-point
two’s complement arithmetic and with the two’s complement overflow characteristic of (3.71):

y(n) = Qr

{
R

[
7

8
y(n − 1) − 5

8
y(n − 2) + x(n)

]}
(3.72)

In this case we apply the input

x(n) = −3

4
δ(n) − 5

8
δ(n − 1)

=
{
−3

4
, −5

8
, 0, 0, · · ·

}
, (3.73)

giving the output sequence

y(0) = Qr

{
R

[
−3

4

]}
= Qr

{
−3

4

}
= −3

4

y(1) = Qr

{
R

[
−41

32

]}
= Qr

{
23

32

}
= 3

4

y(2) = Qr

{
R

[
9

8

]}
= Qr

{
−7

8

}
= −7

8

y(3) = Qr

{
R

[
−79

64

]}
= Qr

{
49

64

}
= 3

4
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y(4) = Qr

{
R

[
77

64

]}
= Qr

{
−51

64

}
= −3

4
(3.74)

y(5) = Qr

{
R

[
−9

8

]}
= Qr

{
7

8

}
= 7

8

y(6) = Qr

{
R

[
79

64

]}
= Qr

{
−49

64

}
= −3

4

y(7) = Qr

{
R

[
−77

64

]}
= Qr

{
51

64

}
= 3

4

y(8) = Qr

{
R

[
9

8

]}
= Qr

{
−7

8

}
= −7

8
...

This is a large-scale oscillation with nearly full-scale amplitude.
There are several ways to prevent overflow oscillations in fixed-point filter realizations. The most

obvious is to scale the filter calculations so as to render overflow impossible. However, this may
unacceptably restrict the filter dynamic range. Another method is to force completed sums-of-
products to saturate at ±1, rather than overflowing [18, 19]. It is important to saturate only the
completed sum, since intermediate overflows in two’s complement arithmetic do not affect the
accuracyof thefinal result. Mostfixed-pointdigital signal processorsprovide for automatic saturation
of completed sums if their saturation arithmetic feature is enabled. Yet another way to avoid overflow
oscillations is to use a filter structure for which any internal filter transient is guaranteed to decay to
zero [20]. Such structures are desirable anyway, since they tend to have low roundoff noise and be
insensitive to coefficient quantization [21].

3.8 Coefficient Quantization Error

Each filter structure has its own finite, generally nonuniform grids of realizable pole and zero locations
when the filter coefficients are quantized to a finite word length. In general the pole and zero locations
desired in filter do not correspond exactly to the realizable locations. The error in filter performance
(usually measured in terms of a frequency response error) resulting from the placement of the poles
and zeroes at the nonideal but realizable locations is referred to as coefficient quantization error.

Consider the second-order filter with complex-conjugate poles

λ = re±jθ

= λr ± jλi

= r cos(θ) ± jr sin(θ) (3.75)

and transfer function

H(z) = 1

1 − 2r cos(θ)z−1 + r2z−2
(3.76)

realized by the difference equation

y(n) = 2r cos(θ)y(n − 1) − r2y(n − 2) + x(n) (3.77)

Figure 3.3 from [5] shows that quantizing the difference equation coefficients results in a nonuniform
grid of realizable pole locations in the z plane. The grid is defined by the intersection of vertical lines
corresponding to quantization of 2λr and concentric circles corresponding to quantization of −r2.
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FIGURE 3.3: Realizable pole locations for the difference equation of (3.76).

The sparseness of realizable pole locations near z = ±1 will result in a large coefficient quantization
error for poles in this region.

Figure 3.4 gives an alternative structure to (3.77) for realizing the transfer function of (3.76). Notice
that quantizing the coefficients of this structure corresponds to quantizing λr and λi . As shown in
Fig. 3.5 from [5], this results in a uniform grid of realizable pole locations. Therefore, large coefficient
quantization errors are avoided for all pole locations.

It is well established that filter structures with low roundoff noise tend to be robust to coefficient
quantization, and visa versa [22]– [24]. For this reason, the uniform grid structure of Fig. 3.4 is
also popular because of its low roundoff noise. Likewise, the low-noise realizations of [7]– [10] can
be expected to be relatively insensitive to coefficient quantization, and digital wave filters and lattice
filters that are derived from low-sensitivity analog structures tend to have not only low coefficient
sensitivity, but also low roundoff noise [25, 26].

It is well known that in a high-order polynomial with clustered roots, the root location is a very
sensitive function of the polynomial coefficients. Therefore, filter poles and zeros can be much
more accurately controlled if higher order filters are realized by breaking them up into the parallel
or cascade connection of first- and second-order subfilters. One exception to this rule is the case
of linear-phase FIR filters in which the symmetry of the polynomial coefficients and the spacing
of the filter zeros around the unit circle usually permits an acceptable direct realization using the
convolution summation.

Given a filter structure it is necessary to assign the ideal pole and zero locations to the realizable
locations. This is generallydoneby simply roundingor truncating thefilter coefficients to theavailable
number of bits, or by assigning the ideal pole and zero locations to the nearest realizable locations. A
more complicated alternative is to consider the original filter design problem as a problem in discrete
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FIGURE 3.4: Alternate realization structure.

FIGURE 3.5: Realizable pole locations for the alternate realization structure.
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optimization, and choose the realizable pole and zero locations that give the best approximation to
the desired filter response [27]– [30].

3.9 Realization Considerations

Linear-phase FIR digital filters can generally be implemented with acceptable coefficient quantization
sensitivity using the direct convolution sum method. When implemented in this way on a digital
signal processor, fixed-point arithmetic is not only acceptable but may actually be preferable to
floating-point arithmetic. Virtually all fixed-point digital signal processors accumulate a sum of
products in a double-length accumulator. This means that only a single quantization is necessary to
compute an output. Floating-point arithmetic, on the other hand, requires a quantization after every
multiply and after every add in the convolution summation. With 32-b floating-point arithmetic
these quantizations introduce a small enough error to be insignificant for many applications.

When realizing IIR filters, either a parallel or cascade connection of first- and second-order sub-
filters is almost always preferable to a high-order direct-form realization. With the availability of
very low-cost floating-point digital signal processors, like the Texas Instruments TMS320C32, it is
highly recommended that floating-point arithmetic be used for IIR filters. Floating-point arithmetic
simultaneously eliminates most concerns regarding scaling, limit cycles, and overflow oscillations.
Regardless of the arithmetic employed, a low roundoff noise structure should be used for the second-
order sections. Good choices are given in [2] and [10]. Recall that realizations with low fixed-point
roundoff noise also have low floating-point roundoff noise. The use of a low roundoff noise struc-
ture for the second-order sections also tends to give a realization with low coefficient quantization
sensitivity. First-order sections are not as critical in determining the roundoff noise and coefficient
sensitivity of a realization, and so can generally be implemented with a simple direct form structure.
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4 On Multidimensional Sampling Ton Kalker
Introduction • Lattices • Sampling of Continuous Functions • From Infinite Sequences to Finite
Sequences • Lattice Chains • Change of Variables • An Extended Example: HDTV-to-SDTV Con-
version • Conclusions

5 Analog-to-Digital Conversion Architectures Stephen Kosonocky and Peter Xiao
Introduction • Fundamentals of A/D and D/A Conversion • Digital-to-Analog Converter Archi-
tecture • Analog-to-Digital Converter Architectures • Delta-Sigma Oversampling Converter

6 Quantization of Discrete Time Signals Ravi P. Ramachandran
Introduction • Basic Definitions and Concepts • Design Algorithms • Practical Issues • Specific
Manifestations • Applications • Summary

S AMPLING THEOREMS CAN BE TRACED to the original paper by Whittaker in 1915 on
interpolation. He proved the exactness of a method for interpolating between the samples
from a function. Nyquist then presented the sampling theory for sampled telephone signals

in 1928 establishing for the first time the term Nyquist frequency. Shannon in 1948 and Kotel’nikov
in 1933 wrote additional treatises on this topic [1]-[4].

Extensions from one-dimensional to multidimensional sampling can be traced to papers by
Bracewell in 1956, and to Miyakawa in 1959. Multidimensional Fourier analysis, however, can
be traced back to papers by Germain and Navier in the early 18th and 19th centuries [5]-[7].
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In this section, the first chapter, “On Multidimensional Sampling” by Kalker presents a thorough
discussion of the techniques that are currently used and their underlying theory.

Of related interest is structure of the conversion process from the analog domain to the digital do-
main, and the chapter by Kosonocky and Xiao presents a thorough survey of the various architectures
for analog-to-digital conversion.

Finally, theprocessofquantizationofdiscrete samples isdiscussed in thechapterbyRamachandran.
This discussion considers the accuracy issues arising due to quantization, in addition to other related
topics.
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This chapter gives an overview of the most relevant facts of sampling theory, paying
particular attention to the multidimensional aspect of the problem. It is shown that
sampling theory formulated in a multidimensional setting provides insight to the sup-
posedly simpler situation of one-dimensional sampling.

4.1 Introduction

The signals we encounter in the physical reality around us almost invariably have a continuous
domain of definition. We like to model a speech signal as continuous function of amplitudes, where
the domain of definition is a (finite) length interval of real numbers. A video signal is most naturally
viewed as continuous function of luminance (chrominance) values, where the domain of definition
is some volume in space-time.

In modern electronic systems we deal with many (in essence) continuous signals in a digital fashion.
This means that we do not deal with these signals directly, but only with sampled versions of it: we
only retain the values of these signals at a discrete set of points. Moreover, due to the inherently finite
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precision arithmetic capabilities of digital systems, we only record an approximated (quantized) value
at every point of the sampling set. If we define sampling as the process of restricting a signal to a
discrete set, explicitly without quantization of the sampled values, we can describe the contribution
of this chapter as a study of the relation between continuous signals and their sampled versions.

Many textbooks start this topic by only considering sampling in the one-dimensional case. Di-
gressions into the multidimensional case are usually made in later and more advanced sections. In
this chapter we will start from the outset with the multidimensional case. It will be argued that this
is the most natural setting, and that this approach will even lead to greater understanding of the
one-dimensional case.

I will assume that not every reader is familiar with the concept of a lattice. As lattices are the
most basic kind of sets onto which to sample signals, this chapter will start with a crash course on
lattices in Section 4.2. After this the real work starts in Section 4.3 with an overview of the sampling
theory for continuous functions. The central theme of this section is the intimate relationship
between sampling and the discrete space-time Fourier transform (DSFT). In Section 4.4 we consider
simultaneous sampling in both spatial and frequency domain. The central theme in this section is the
relationship with the discrete fourier transform (DFT). We continue with a digression on cascaded
sampling (Section 4.5), and with some useful results on changing variables (Section 4.6). We end
with an application of sampling theory to HDTV-to-SDTV conversion. The proofs (or hints to it)
of the stated result can be found in the Appendix.

We end this introduction with some conventions. We will refer to a signal as a function, defined on
some appropriate domain. As all of our functions are in principle multidimensional, we will lighten
the burden of notation by suppressing the multidimensional character of variables involved wherever
possible. In particular we will use f (x) to denote a function f (x1, · · · , xn) on some continuous
domain (say R

n). Similarly we will use f (k) to denote a function f (k1, · · · , kn) on some discrete
domain (say Z

n). By abuse of terminology we will refer to a function defined on a continuous domain
as a continuous function and to a function on discrete domain as discrete function.

4.2 Lattices

Although sampling of a function can in principle be done with respect to any set of points (nonuniform
sampling), the most common form of sampling is done with respect to sets of points which have a
certain algebraic structure and are known as lattices. They are the object of study in this section.

4.2.1 Definition

Formally, the definition of a lattice is given as

DEFINITION 4.1
A (sub)lattice L of C

n (Rn, Z
n) is a set of points satisfying that

1. There is a shortest nonzero element,

2. If λ1, λ2 ∈ L, then aλ1+ bλ2 ∈ L for all integers a and b, and

3. L contains n linearly independent elements.

This definition may seem to make lattices rather abstract objects, but they can be made more
tangible by representing them by generating matrices. Namely, one can show that every lattice L
contains a set of linearly independent points {λ1, · · · , λn} such that every other point λ ∈ L is an
integer linear combination

∑n
i=1 aiλi . Arranging such a set in a matrix L = [λ1, · · · , λn] yields a

generating matrix L of L. It has the property that every λ ∈ L can be written as λ = Lk, where
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k ∈ Z
n is an integer vector. At this point it is important to note that there is no such thing as

the generating matrix L of a lattice L. Defining a unimodular matrix U as an integer matrix with
|det(U)| = 1, every other generating matrix is of the form LU , and every such matrix is a generating
matrix. However, this also shows that the determinant of a generating matrix is determined up to a
sign.

DEFINITION 4.2
Let L be a lattice and let L be a generating matrix of L. Then the determinant of L is defined by

det(L) = |det(L)| .

In case the dimension is 1 (n = 1), every lattice is given as all the integer multiples of a single
scalar. This scalar is unique up to a sign, and by convention one usually defines the positive scalar as
the sampling period T (for time).

LT = {nT : n ∈ Z} ⊂ C, R, Z (4.1)

In case the dimension is 2 (n = 2) it is no longer possible to single out a natural candidate as the
generating matrix for a lattice. As an example consider the lattice L generated by the matrix (see also
Fig. 4.1)

L1 =
[ √

3
√

3
−1 1

]
.

FIGURE 4.1: A hexagonal lattice in the continuous plane.
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There is no reason to consider the matrix L1 as the generating matrix of the lattice L, and in fact
the matrix

L2 =
[ √

3 2
√

3
1 0

]

is just as valid a generating matrix as L1.

4.2.2 Fundamental Domains and Cosets

Each lattice L can be used to partition its embedding space into so-called fundamental domains. The
importance of the concept of fundamental domains lies in their ability to defineL-periodic functions,
i.e., functions f (x) for which f (x) = f (x + λ) for every λ ∈ L. Knowing a L-periodic function
f (x) on a fundamental domain is sufficient to know the complete function. Periodic functions will
emerge naturally when we come to speak about sampling of continuous functions.

Let L ⊂ D be a lattice, where D is either a lattice M ⊂ R
n or the space R

n itself. Let L be a
generating matrix of L, and let P be an arbitrary subset of D. With every p ∈ P we can associate
a translated version or coset p + L of L. The set of cosets is referred to as the coset group of L with
respect to D and is denoted by the expression D/L. A fundamental domain is defined as a subset
P ⊂ D which intersects every coset in exactly one point.

DEFINITION 4.3

The set P is called a fundamental domain of the lattice L in D if and only if

1. p 6= q implies p + L 6= q + L, and

2.
⋃

p∈P p + L = D.

A fundamental domain is not a uniquely defined object. For example, the shaded areas in Fig. 4.1
show three possibilities for the choice of a fundamental domain. Although the shapes may differ,
their volume is defined by the lattice L.

THEOREM 4.1 Let P be a fundamental domain of the lattice L in D, and assume that P is measurable,
i.e., that its volume is defined.

1. If D = R
n, then the volume of P is given by

vol(P ) = det(L) .

2. If D =M, and if Q is a fundamental domain of L in R
n, then Q ∩M is a fundamental

domain of L in M.

3. If D =M, then the number of points in P is given by

#(P ) = det(L)/ det(M).

This number is referred to as the index of L in M, and is denoted by the symbol ι(L, M).

As a consequence of assertion 1 of this theorem, all the shaded areas in Fig. 4.1, being fundamental
domains of the same hexagonal lattice, have a volume equal to 2

√
3.
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4.2.3 Reciprocal Lattices

For any lattice L there exists a reciprocal lattice L∗ as defined below. Reciprocal lattices appear in the
theory of Fourier transforms of sampled continuous functions (see Section 4.3).

DEFINITION 4.4 Let L be a lattice. Its reciprocal lattice L∗ is defined by

L∗ = {λ∗ : 〈λ∗, λ〉 ∈ Z ∀λ ∈ L} ,
where 〈λ∗, λ〉 denotes the usual inner product

∑
i λ∗i λi .

This notion of reciprocal lattice is made more tangible by the observation that the reciprocal lattice
of [L] is the lattice [L−t ], where [M] denotes the lattice generated by a matrix M . In particular
det(M∗) = det(M)−1. For example, the reciprocal lattice of the lattice of Fig. 4.1 is generated by
the matrix

1

2
√

3

[
1 1
−√3

√
3

]
This lattice is very similar to the original lattice: it differs by a rotation by π/2, and a scaling factor

of 1/2
√

3. In particular, the volume of a fundamental domain of L∗ is equal to 1/2
√

3.
An important property of reciprocal lattices is that subset inclusions are reversed. To be precise,

the inclusion M ⊂ L holds if and only if L∗ ⊂M∗. Using some elementary math it follows that
the coset groups L/M and M∗/L∗ have the same number of elements.

4.3 Sampling of Continuous Functions

In this section we will give the main results on the theory of sampled continuous functions. It will
be shown that there is a strong relationship between sampling in the spatial domain and periodizing
in the frequency domain. In order to state this result this section starts with a short overview of
multidimensional Fourier transforms. This allows us to formulate the main result (Theorem 4.3),
which states very informally that sampling in the spatial domain is equivalent to periodizing in the
frequency domain.

4.3.1 The Continuous Space-Time Fourier Transform

Let f (x) be a nice1 function defined on the continuous domain R
n. Let its continuous space-time

Fourier transform2 (CSFT) F(ν) be defined by

F(ν) = F(f )(ν) =
∫

R
n
e−2πi〈x,ν〉f (x) dx (4.2)

with inverse transform given by

f (x) = F−1(F )(x) =
∫

R
n
e2πi〈x,ν〉F(ν) dν . (4.3)

Forgetting many technicalities, the CSFT has the following basic properties:

1Nice means in this context that all sums, integrals, Fourier transforms, etc. involving the function exist and are finite.
2Contrary to the conventional wisdom, we choose to exclude the factor 2π from the frequency term ω = 2πν. This has
the advantage that the Fourier transform is orthogonal, without any need for normalizing factors.
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• The CSFT is an isometry, i.e., it preserves inner products.

〈f, g〉 = 〈F(f ), F(g)〉 .
• The CSFT of the point-wise multiplication of two functions is the convolution of the two

separate CSFTs.
F(f · g) = F(f ) ∗ F(g) .

FIGURE 4.2: Lattice comb for the quincunx lattice.

A special class of functions3 is the class of lattice combs (Fig. 4.2 illustrates the lattice comb of the

quincunx lattice generated by the matrix
[

1 −1
1 1

]
). If L is a lattice, the lattice combqL is a set of

δ functions with support on L and is formally defined by

qL (x) =
∑
λ∈L

δλ(x) . (4.4)

The following theorem states the most important facts about lattice combs.

THEOREM 4.2 With notations as above we have the following properties:

qL (x) = 1

det(L)

∑
λ∗∈L∗

e−2πi〈x,λ∗〉 (4.5)

F(qL)(ν) =
∑
λ∈L

e−2πi〈λ,ν〉

= det(L∗)qL∗ (ν) . (4.6)

The last equation says that the CSFT of a lattice comb is the lattice comb of the reciprocal lattice,
up to a constant.

3Actually distributions.
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4.3.2 The Discrete Space-Time Fourier Transform

The CSFT is a functional on continuous functions. We also need a similar functional on (multidi-
mensional) sequences. This functional will be the discrete space-time Fourier transform (DSFT).
In this section we will only state the definition. The properties of this functional and its relation to
the CSFT will be highlighted in the next section. So let L be a lattice and let P ∗ be a fundamental
domain of the reciprocal lattice L∗. Let f̃ (x) = 6L(f )(x) be the sampled version of f , and let
F̃ (ν) = 5L∗(F )(ν) be the periodized version of F(ν). Then we define the forward and backward
discrete space-time Fourier transform (DSFT) by

F̃(f̃ )(ν) =
∑
x∈L

e−2πi〈x,ν〉f̃ (x) , (4.7)

and

F̃−1(F̃ )(ν) = det(L)

∫
P ∗

e2πi〈x,ν〉F̃ (ν)dν , (4.8)

respectively.
Note that the function F̃(f̃ )(ν) is a L∗-periodic function. This implies that the formula for the

inverse DSFT is independent of the choice of the fundamental domain P ∗.

4.3.3 Sampling and Periodizing

One of the most important issues in the sampling of functions concerns the relationship between the
CSFT of the original function and the DSFT of a sampled version. In this section we will state the
main theorem (Theorem 4.3) of sampling theory.

Before continuing we need two definitions. If f (x) is a function and L ⊂ R
n is a lattice, sampling

f (x) on L is defined by

6L(f )(x) =
{

f (x) if x ∈ L
0 if x /∈ L .

(4.9)

The above definition has to be read carefully: sampling a function f (x) on a lattice means that we
modify f (x) by putting all its values outside of the lattice to 0. It does not mean that we forget how
the lattice is embedded in the continuous domain. For example, when we sample a one-dimensional
continuous function f (x) on the set of even numbers, the down sampled function fs(k) is not
defined by fs(k) = f (2k), but by fs(k) = f (k) when k is even, and 0 otherwise.

Closely related to the sampling operator is the periodizing operator 5L, which modifies a function
f (x) such that it becomes L-periodic. This operator is defined by

5L(f )(x) = det(L)
∑
λ∈L

f (x − λ) (4.10)

Clearly 5L(f )(x) is L-periodic, i.e., 5L(f )(x) = 5L(f )(x − λ) for all λ ∈ L. With these tools
at our disposal we are now in a position to formulate the main theorem of sampling theory.

THEOREM 4.3 With definitions and notations as above, consider the following diagram:

f
F−→ F

↓ 6L ↓ 5L∗
f̃

F̃−→ F̃

The following assertions hold:
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1. The above diagram commutes,4 i.e., whichever way we take to go from top left to bottom
right, the result is the same. Informally this can be formulated as saying that first sampling
and taking the DSFT is the same as first taking the CSFT and then periodizing.

2.
√

det(L) F̃ (and, therefore,
√

det(L∗) F̃−1) is an isometry with respect to the inner products

〈f̃ , g̃〉L =
∑
λ∈L

f̃ †(λ)g̃(λ)

and

〈F̃ , G̃〉P ∗ =
∫

P ∗
F̃ †(ν)G̃(ν)dν ,

respectively.

PROOF 4.1 The proof relies heavily on the property of lattice combs and can be found in the
Appendix.

This theorem has many important consequences, the best known of which is the Shannon sampling
theorem. This theorem says that a function can be retrieved from a sampled version if the support
of its CSFT is contained within a fundamental domain of the reciprocal lattice. Given the above
theorem this result is immediate: we only need to verify that a function F(ν) can be retrieved from
5L∗(F ) by restriction to a fundamental domain when F(ν) has sufficiently restricted support.

THEOREM 4.4 (Shannon) Let L be a lattice, and let f (x) be a continuous function with CSFT F(ν).
Let f̃ = 6L(f ). The function f (x) can be retrieved from f̃ (λ) if and only if the support of F(ν) is
contained in some fundamental domain P ∗ of the reciprocal lattice L∗. In that case we can retrieve f (x)

from f̃ (λ) with the formula

f (x) =
∑
λ∈L

f (λ)Int(x − λ) ,

where

Int(x) = det(L)

∫
P ∗

e2πi〈x,ν〉 dν .

PROOF 4.2 We only need to prove the interpolation formula.

f (x) =
∫

P ∗
e2πi〈x,ν〉F(ν) dν

= det(L)
∑
λ∈L

f (λ)

∫
P ∗

e2πi〈x−λ,ν〉 dν

=
∑
λ∈L

f (λ)Int(x − λ) . (4.11)

We end this section with an example showing all the aspects of Theorem 4.3.

4Commuting diagrams are a common mathematical tool to describe that certain sequences of function applications are
equivalent.
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EXAMPLE 4.1:

Let L ⊂ Z
2 be the quincunx sampling lattice generated by the matrix L = 1

2

[
1 −1
1 1

]
. Let

f (x1, x2) = sinc(x1− x2)sinc(x1+ x2) .

A simple computation shows that CSFT F(ν1, ν2) of f (x1, x2) is given by

F(ν1, ν2) = 1

2
X3(ν1, ν2) ,

where 3 is the set 3 = {(ν1, ν2) : |ν1| + |ν2| ≤ 1}. Observing that L∗ is generated by
[

1 −1
1 1

]
, we

find that the periodized function 5L∗(F ) is constant with value 1.
Sampling f (x) on the quincunx lattice yields the function f̃ (λ)

f̃ (λ1, λ2) =
{

1 if (λ1, λ2) = (0, 0)

0 if (λ1, λ2) 6= (0, 0) .

It is now trivial to check that F̃(f̃ ) = F̃ , as predicted by Theorem 4.3. Moreover, as∥∥∥f̃ ∥∥∥2

2
=
∑
λ∈L

δ0(λ)2 = 1

and ∥∥∥F̃∥∥∥2

2
=
∫

3

dν = 1/2 ,

it follows that
∥∥∥F̃∥∥∥ and

∥∥∥f̃ ∥∥∥ differ by a factor of
√

2= √det(L∗), again as predicted by Theorem 4.3.

4.4 From Infinite Sequences to Finite Sequences

In the previous section we considered sampling in the spatial domain and saw that this was equivalent
to periodizing in the frequency domain. One obvious question now arises: what happens if we sample
the DSFT of a (spatially) sampled function? In this section we will answer this question and show
that sampling in both spatial and frequency domains simultaneously is closely related to properties
of the discrete Fourier transform (DFT).

4.4.1 The Discrete Fourier Transform

The discrete Fourier transform (DFT) is a frequency transform on finite sequences. In a multidi-
mensional context the DFT is best defined by assuming two lattices L and M, M ⊂ L ⊂ R

n. Let
P be a fundamental domain of L in M, and let P ∗ be a fundamental domain of M∗ in L∗ (recall
that lattice inclusions invert when going over to the reciprocal domain [Section 4.2]). Note that both
P and P ∗ have the same number points, viz. #(P ) = #(P ∗) = ι(L∗, M∗) = ι(M, L). Let f̂ (p),
p ∈ P be a finite sequence over P . The DFT F̂ is now defined as functional which maps sequences
f̂ to sequences F̂ over P ∗. The formal definitions of F̂ and F̂−1 are as follows.

DEFINITION 4.5

F̂(f̂ )(p∗) = 1

det(M)

∑
p∈P

e−2πi〈p,p∗〉f̂ (p) (4.12)

F̂−1(F̂ )(p) = 1

det(L∗)
∑

p∗∈P ∗
e2πi〈p,p∗〉F̂ (p∗) . (4.13)
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It is obvious that the conventional one-dimensional DFT is a special case of the more general
multidimensional DFT defined above. The next example makes this more explicit.

EXAMPLE 4.2:

Let M ⊂ L ⊂ R be defined by M = Z for some positive integer p, and let L = 1
p

Z. One easily
checks that the set P and P ∗ can be chosen as {0/p, · · · , (p−1)/p} and {0, · · · , p−1}, respectively.
If xn and Xm are the values of f̂ on n/p ∈ P and of F̂ on m ∈ P ∗, respectively, then the functionals
F̂ and F̂−1 are defined in the (xn, Xm) domain as

Xm =
p−1∑
n=0

e
− 2πinm

p xn, (4.14)

xn = 1

p

p−1∑
m=0

e
2πinm

p Xm . (4.15)

This is, of course, nothing else but theusual definitionof theone-dimensionalDFTonfinite sequences
of length p.

The following example shows the general DFT at work in a two-dimensional setting.

EXAMPLE 4.3:

(Example 4.1 continued)ContinuingExample 4.1, we choose the latticeM = Z
2 as theperiodizing

lattice. We can then choose

P = {p0, p1} =
{
(0, 0),

(
1

2
,

1

2

)}

and
P ∗ = {p∗0, p∗1

} = {(0, 0), (1, 0)} .

The functional F̂ is then given by

X0 = x0e
−2πi〈p0,p

∗
0〉 + x1e

−2πi〈p1,p
∗
0〉

= x0 + x1

X1 = x0e
−2πi〈p0,p

∗
1〉 + x1e

−2πi〈p1,p
∗
1〉

= x0 − x1 ,

and the functional F̂−1 by

x0 = 1

2

(
X0e
−2πi〈p0,p

∗
0〉 +X1e

−2πi〈p0,p
∗
1〉
)

= 1

2
(X0 +X1)

x1 = 1

2

(
X0e
−2πi〈p1,p

∗
0〉 +X1e

−2πi〈p1,p
∗
1〉
)

= 1

2
(X0 −X1) .
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4.4.2 Combined Spatial and Frequency Sampling

We start with setting up the context of the problem. So let f (x) be a nice continuous function on
R

n and let M and L be two lattices such that M ⊂ L ⊂ R
n. Sampling f (x) on L and periodizing

on M we construct a function f̂ (x) that has support on L and is M-periodic. In formula:

f̂ (x) =
{

det(M)
∑

µ∈M f (x − µ) if x ∈ L
0 if x /∈ L .

A similar definition can be given for the function F̂ (ν), which is obtained from the CSFT F(ν) of
f (x) by periodizing on L∗ and sampling on M∗ .

One easily verifies that f̂ (x) is completely specified by its values on a (finite) fundamental domain
P of M in L. Similarly F̂ (ν) is completely specified by its values on a fundamental domain P ∗ of
L∗ in M∗. Now we are in a position to extend the commutative diagram of Theorem 4.3.

THEOREM 4.5 With notations and definitions as above, consider the following extensions of the
diagram of Theorem 4.3:

f
F−→ F

↓ 6L ↓ 5L∗
f̃

F̃−→ F̃

↓ 5M ↓ 6M∗
f̂

F̂−→ F̂

The following assertions hold:

1. The above diagram commutes;

2. The functionals
√

det(L)
√

det(M)F̂ and
√

det(L∗)√det(M∗)F̂−1 are isometries with
respect to the inner products

〈f̂ , ĝ〉P =
∑
p∈P

f̂ †(p)ĝ(p)

and

〈F̂ , Ĝ〉P ∗ =
∑

p∗∈P ∗
F̂ †(p∗)Ĝ(p∗) .

PROOF 4.3 See Appendix.

The theorem above says that sampling the Fourier transform of a sampled function amounts to
periodizing that sampled version. In this process only a finite number of data points in both the
spatial and the frequency domain are sufficient to specify the resulting functions. Moreover, the
CSFT can be pushed down to a DFT to provide for a one-to-one orthogonal correspondence between
the two domains.

We close this section with two examples.
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EXAMPLE 4.4:

(Example 4.2 continued) The formulas for the DFT obtained in Example 4.2 are not orthonormal.
According to Theorem 4.5 above we have to multiply the forward transform with

√
det(L) det(M) =

1√
p

and the backward transform with the inverse of this number to obtain orthonormal versions of

the DFT. This result in the following well-known formulas for the orthonormal one-dimensional
DFT.

Xm = 1√
p

p−1∑
n=0

e
− 2πinm

p xn , (4.16)

xn = 1√
p

p−1∑
m=0

e
2πinm

p Xm . (4.17)

EXAMPLE 4.5:

(Example 4.3 continued) WithL, M, f (x), P andP ∗ as in Example 4.3, we find that the periodized
sampled function f̂ is represented by the pair (1, 0), and that the periodized sampled CSFT F̂ of F

is represented by the pair (1, 1). Using the formulas for the DFT of Example 4.3 is now easy to verify
that F̂({1, 0}) = {1, 1} and F̂−1({1, 1}) = {1, 0}, as predicted by Theorem 4.5.

4.5 Lattice Chains

In the previous section we considered the sampling of continuous functions. In this section we will
consider the sampling of discrete functions. The necessity of studying this topic comes from the fact
that very often the sampling of a continuous function f (x) is done in steps: f (x) is first sampled to
a fine grid L1, and subsequently sampled to a coarser grid L2, L2 ⊂ L1. Letting f̃ (i) = 6Li

(f ) and

letting F̃ (i) be the corresponding DFST, a natural question is whether we can obtain F̃ (2) directly
from F̃ (1), without having to go back to CSFT of f (x). This question is addressed in the following
theorem and answered affirmatively.

THEOREM 4.6 With notation as above, and letting P ∗ be a fundamental domain of L∗1 in L∗2, we
have the following result.

F̃ (2)(ν) = 1

#(P ∗)
∑

p∗∈P ∗
F̃ (1)(ν − p∗) .

PROOF 4.4 See Appendix.

The above result has a natural interpretation. The function F̃ (1) is by construction L∗1-periodic.

The function F̃ (2) has more symmetries as it is L∗2-periodic. The above theorem can be phrased as

saying that F̃ (2) is obtained from F̃ (1) by periodizing (and thereby enlarging the set of symmetries)
and averaging (dividing by #(P ∗)). The following example shows an application of Theorem 4.6 in
the one-dimensional case.
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EXAMPLE 4.6:

Let f (x) = sinc(x/2). Let L1 = Z be the lattice of integers and let L2 = 2Z be the lattice of even
integers. Let as before F̃ (i)(x) denote the sampled versions of f (x). Then one easily computes that

F̃ (1)(ν) = 2
∑
λ∗∈Z

X[−1/4;1/4](ν − λ∗) ,

F̃ (2)(ν) = 1 ,

where XA denotes the characteristic function of a set A.
Using Theorem 4.6 above we can also compute F̃ (2)(ν) directly from F̃ (1)(ν). We proceed as

follows. Computing the reciprocal lattices we find L∗1 = Z and L∗2 = 1
2Z. We find two shifted

versions of L∗1 within L∗2, viz. L∗1 and 1
2 + L∗1. Picking an arbitrary point in each coset, say 0 and 1

2
respectively, we find

F̃ (2)(ν) = 1

2

(
F̃ (1)(ν)+ F̃ (1)

(
ν − 1

2

))
= 1

4.6 Change of Variables

Consider the case of a one-dimensional continuous function f (x). It is not always the case that
f (x) has a nice form, suitable for direct mathematical treatment. In such a situation a change of
variables can sometimes help out. If A is an invertible linear transformation on R

n, it might be more
convenient to work with the variable y = Ax. Substituting x = A−1y we formally define the change
of variable functional f (x)→ f A(x) by

f A(x) = f
(
A−1x

)
.

A similar approach can be used for discrete functions. Instead of using a linear transform A on
some continuous domain, we need in this case an isomorphism A : L1 → L2 between two lattices
L1 and L2. If f̃ (k) is a discrete function on L1, a change of variables by A yields a discrete function
on L2 defined by

f̃ A(k) = f̃
(
A−1k

)
.

A typical example for a change of variables on discrete functions is the following. Let the lattice
L1 = 2Z, let L2 = Z and define A : L1 → L2 by 2k → k. Given a function f (x) on R,
downsampling it to L1 and changing variables with A, yield a discrete function f̃ (k) on Z defined
by f̃ (k) = f (2k). In many textbooks this function f̃ (k) is referred to as the downsampled version
of f (x), but our analysis shows that it is better to view the discrete function f̃ (k) as the result of two
consecutive operations: downsampling and change of variables.

The following two theorems address the question of how the CSFT and DSFT behave under a
change of variables for the continuous and discrete case, respectively.

THEOREM 4.7
Let A be an invertible linear transform on R

n, and let f (x) be a function on R
n. Then the CSFT of

f A(x) is given by
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F
(
f A
)
= |det(A)|F (f )A

−t

.

PROOF 4.5 See Appendix.

THEOREM 4.8 Let A : L1 → L2 be an isomorphism of lattices, and let f̃ (k) be a function on L1.
Then the DSFT of f̃ A(k) is given by

F̃
(
f̃ A
)
= F̃

(
f̃
)A−t

.

PROOF 4.6 See Appendix.

Note that in the assertion of Theorem 4.7 a factor |det(A)| is present, which is lacking in the
assertion of Theorem 4.8. The last theorem of this section addresses the situation in which a function
is extended by zero-padding to a larger domain.

THEOREM 4.9
Let L, L ⊂ D be a lattice, where D is either a lattice M or the ambient space R

n. Let f̃ (λ) be a
function on L. Define the D-extension f̃D of f̃ by

f̃D(x) =
{

f̃ (x) if x ∈ L
0 otherwise.

Define 8(ν) by

8(ν) =



F
(
f̃D
)

(ν) if D = R
n

F̃
(
f̃D
)

(ν) if D =M ,

i.e., 8(ν) is the appropriate Fourier transform of f̃D . Then the equality 8(ν) = F̃(f̃ )(ν) holds.

Informally, the above theorem says that the Fourier transform of an extended function is equal to
the Fourier transform of the function itself, i.e., extending a function does not change the Fourier
transform. We will now apply the three theorems above in two examples.

EXAMPLE 4.7:

Let A : Zn→ R
n be a nonsingular linear mapping, and let L = [A] be the lattice generated by A.

Let f (x) be a continuous function on R
n, and let g = f A−1

. Define a discrete function g̃(m) on Z
n

by the rule5

g̃(m) = f (Am) .

5This is a common situation when we have to sample a continuous function (on points of the form An) and store it in
some rectangular storage space (with addresses n).
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The question is how the Fourier transforms of f (x) and g̃(k) are related. To answer this question
we define f̃ (λ) to be the sampled version 6L(f )(λ) of f (x). The following commutative diagram
results.

(Rn, g)
A−1←− (Rn, f )

↓ 6Z
n ↓ 6L

(Zn, g̃)
A−1←− (L, f̃ )

Tracing the diagram from top right to bottom right to bottom left we find

F̃(g̃)(ν) = (F̃(f̃ ))A
t

(ν)

= det
(L∗) ∑

λ∗∈L∗

(
F(f )A

t

(ν − λ∗)
)

= 1

det(A)

∑
λ∗∈L∗

F(f )
(
A−t ν − λ∗

)
,

where we have used Theorem 4.8 and Theorem 4.3 in the first and second steps, respectively. Of
course we should find the same result tracing the diagram from top right to top left to bottom left.

F̃(g̃)(ν) =
∑
k∈Zn

F(g)(ν − k)

=
∑
k∈Z

n

F
(
f A−1

)
(ν − k)

= 1

det(A)

∑
k∈Z

n

F(f )A
t

(ν − k)

= 1

det(A)

∑
k∈Z

n

F(f )
(
A−t ν − A−t k

)

= 1

det(A)

∑
λ∗∈L∗

F(f )
(
A−t ν − λ∗

)
,

where we have first applied Theorem 4.3, followed by an application of Theorem 4.8. As one sees,
both calculations end up with the same result.

EXAMPLE 4.8:

Let L1 and L2 be two lattices. Let A : L1→ L2 be a nonsingular linear mapping, and let f̃ be a
function on L1. Let L3 be the lattice generated by A, L3 = [A] ⊂ L2. Define g̃ on L2 by

g̃(λ2) =
{

f̃ (λ1) if λ2 = Aλ1
0 otherwise.

The question is to find an expression for the DSFT of g̃. To this end we define h̃ on L3 by h̃ = f̃ A.
The following diagram results.(

L1, f̃
)

A−→
(
L3, h̃

)
extension−→ (L2, g̃)
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For the DSFT of g̃ we find

F̃ (g̃) (ν) = F̃
(
h̃
)

(ν)

= F̃
(
f̃ A
)

(ν)

= F̃
(
f̃
)A−t

(ν)

= F̃(f̃ )(Atν) ,

where we have used Theorem 4.9 and Theorem 4.8 in the first and second step, respectively.

4.7 An Extended Example: HDTV-to-SDTV Conversion

This section will introduce an application of sampling theory as it occurs in the problem of interlaced
high definition television (HDTV) to interlaced standard definition television (SDTV) conversion.
This problemexists because anHDTVbroadcast canat present onlybe viewedbyaminority of people.
Most people can only view SDTV broadcast. As broadcasters like their programs to be viewed by
as many customers as possible, they are interested in (preferably inexpensive) schemes which can
convert HDTV in SDTV. In this section we present an approach to this conversion problem as has
been suggested in [1].

In order to keep the notational burden low, our television signal will be one-dimensional. This
leaves us with a spatial axis, referred to as the y-axis (y for vertical), and a time axis, referred to as the
t-axis.

An interlaced television signal is constructed by sampling a continuous luminance signal with at
times kT , but only even lines for even k and only the odd lines for odd k. Choosing T to be 1 in some
unit of time, and recalling that we assume one-dimensional images, we may model an interlaced
HDTV signal as a luminance signal sampled at the quincunx lattice L2 generated by the matrix[

1 −1
1 1

]
.

In order to prevent alias distortion, i.e., in order to prevent that frequencies overlap after sampling,
the continuous luminance signal has to be sufficiently band limited. An often-used pass band region
is given by the diamond in Fig. 4.3(c).

An SDTV interlaced signal has half the vertical resolution of the HDTV signal, but the same
temporal resolution, and we may model this as the sampling of the continuous luminance signal on
the skew quincunx lattice L1 generated by the matrix[

1 −1
2 2

]
.

Note that the lattice L1 is not a sublattice of the L2. This has the consequence that the extraction
of an SDTV signal from an HDTV signal is not simply a question of subsampling the HDTV signal;
interpolation is needed to compute the values of the luminance signal at the missing points. In
the frequency domain this is equivalent to restricting the pass band region of the HDTV signal to a
smaller pass band region, such that no alias occurs when the interpolated signal is sampled to the
SDTV lattice.

Figure 4.3(a) gives a possible solution. The SDTV pass band region is chosen as the skew diamond
region within the HDTV pass band (the outer diamond). This solution has several disadvantages.
One disadvantage is the fact that the realization of this diamond pass band region can only be realized
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FIGURE 4.3: HDTV-to-SDTV conversion in the frequency domain.
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by nonseparable filters, and, therefore, that it is expensive. A second disadvantage is the temporal
attenuation at maximum temporal frequency, which may introduce visible artifacts for moving video.

As argued in [1], the best compromise between vertical resolution and temporal attenuation at
maximum temporal frequency is given by a pass band of the form as given in Fig. 4.3(b). This pass
band can even be realized cheaply.

Following [1] we note that the temporal information at maximum frequency (region I on the ft -
axis in Fig. 4.3(c)) is repeated at maximal vertical frequency (region I on the fy-axis in Fig. 4.3(c)).
This is simply a consequence of the fact that the DSFT of the HDTV signal is L∗2-periodic. We
can retain this information by using an appropriately chosen vertical high pass filter. In a practical
implementation this implies that (after temporal low-pass filtering) we extract from the HDTV signal
a base-band signal using a vertical low-pass filter (the rectangle III in Fig. 4.3(c)) and a temporal band
using a vertical high-pass filter. The temporal band is now modulated to position II in Fig. 4.3(c) by
multiplying the sample at position (2k, t) with (−1)k .

The base band and the temporal band are now merged and sampled to the SDTV lattice. Due to
this last sampling operation, region II is repeated at its original position I in frequency space: this
follows immediately from computing the reciprocal SDTV quincunx lattice.

This proves (as first shown in [1]) that a high quality HDTV-to-SDTV conversion can be achieved
using only separable filters.

4.8 Conclusions

We have presented the basic facts of multidimensional sampling theory. Particular attention has been
paid to the interaction of the different kinds of Fourier transforms, the sampling operator, and the
periodizing operator. Every basic result is accompanied by one or more examples. An application of
the theory to a format conversion problem has been presented.
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Appendix

A.1 Proof of Theorem 4.3

PROOF 4.7 We first observe that

6L(f ) = f · qL,

5L(F ) = F ∗ qL∗ .

It follows immediately that F(6L(f )) = 5L∗(F(f )). To prove the first assertion of this theorem,
it suffices to verify that F̃(f̃ ) = F̃ .

F̃ (ν) = F(f · qL)(ν)

=
∫

R
n

∑
λ∈L

e−2πi〈x,ν〉f (x)δλ(x)dx

=
∑
λ∈L

e−2πi〈λ,ν〉f (λ)

= F̃(f̃ ).

The second assertion of the theorem, viz. the isometry property of the DSFT, follows from

〈F̃ , G̃〉P ∗ = 1

det(L)2

∫
P ∗
〈qL∗ ∗ F,qL∗ ∗G〉P ∗

= 1

det(L)2

∫
P ∗


 ∑

λ∗1∈L∗
F(ν − λ∗1)




 ∑

λ∗1∈L∗
G(ν − λ∗2)


 dν

= 1

det(L)2

∫
R

n
F (ν)

( ∑
λ∗∈L∗

G(ν − λ∗)
)

dν

= 1

det(L)
〈F, G̃〉

= 1

det(L)
〈f, g̃〉

= 1

det(L)
〈f̃ , g̃〉L.

A.2 Proof of Theorem 4.5

PROOF 4.8 Similar to the proof of Theorem 4.3, to prove the first assertion it suffices to show that
F̂(f̂ ) = F̂ .

F̃(f̂ )(ν) =
∑
λ∈L

e−2πi〈λ,ν〉f̂ (λ)
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=

∑

µ∈M
e−2πi〈µ,ν〉




∑

p∈P
e−2πi〈p,ν〉f̂ (p)




= 1

det(M)
qM∗ ·


∑

p∈P
e−2πi〈p,ν〉f̂ (p)




= qM∗ · F̂(f̂ )(ν).

The isometry property of the DFT follows from

〈f̂ , ĝ〉P =
∑
p∈P

f̂ †(p)ĝ(p)

= det(M)2
∑
p∈P


 ∑

µ1∈M
f̃ †(p − µ1)




 ∑

µ2∈M
g̃(p − µ2)




= det(M)2
∑
λ∈L

f̃ †(λ)


∑

µ∈M
g̃(λ− µ)




= det(M)〈f̃ , ĝ〉L
= det(M)2〈f,qL · (qM ∗ g〉
= det(M)

det(L)
〈F,qL∗ ∗ (qM∗ ·G〉

= det(M)

det(L)
〈F,qM∗ · (qL∗ ∗G〉

= det(M) det(L)〈F̂ , Ĝ〉P ∗ .
The last step in this derivation follows from reversing the other steps, replacing the spatial functions
f and g by their frequency domain counterparts F and G.

A.3 Proof of Theorem 4.6

PROOF 4.9

F̃ (2)(ν) = 1

det(L2)

∑
λ∗2∈L∗2

F(ν − λ∗2)

= 1

det(L2)

∑
p∗∈P ∗

∑
λ∗1∈L∗1

F(ν − p∗ − λ∗1)

= det(L1)

det(L2)

∑
p∗∈P ∗

F̃ (1)(ν − p∗)

= 1

ι(L2, L1)

∑
p∗∈P ∗

F̃ (1)(ν − p∗)

= 1

#(P ∗)
∑

p∗∈P ∗
F̃ (1)(ν − p∗).
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A.4 Proof of Theorem 4.7

PROOF 4.10

F(f A)(ν) =
∫

R
n
e−2πi〈x,ν〉f A(x)dx

=
∫

R
n
e−2πi〈x,ν〉f (A−1x)dx

= |det(A)|
∫

R
n
e−2πi〈Ay,ν〉f (y)dy

= |det(A)|
∫

R
n
e−2πi〈y,At ν〉f (y)dy

= |det(A)|F(Atν)

= |det(A)|FA−t

(ν).

A.5 Proof of Theorem 4.8

PROOF 4.11

F̃(f̃ A)(ν) =
∑

λ2∈L2

e−2πi〈λ2,ν〉f̃ A(λ2)

=
∑

λ2∈L2

e−2πi〈λ2,ν〉f̃ (A−1λ2)

=
∑

λ1∈L1

e−2πi〈Aλ1,ν〉f̃ (λ1)

=
∑

λ1∈L1

e−2πi〈λ1,A
t ν〉f̃ (λ1)

= F̃(f̃ )A
−t

(ν).

Glossary of Symbols and Expressions

Z
n n-dimensional integer space

R
n n-dimensional real space

C
n n-dimensional complex space

CSFT Continuous space-time Fourier transform
DSFT Discrete space-time Fourier transform
DFT Discrete Fourier transform

L, M Sampling lattice
λ, µ Elements of lattice L, M
λ∗, µ∗ Elements of reciprocal lattice L∗, M∗
[L] Lattice generated by matrix L

#(A) Number of points of set A

vol(A) Volume (measure) of set A
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det(L) Determinant of lattice L
ι(M, L) Index of lattice M w.r.t. lattice L
L/M Coset group of lattice M w.r.t. lattice L
L∗ Reciprocal lattice of L
qL Lattice comb
P Fundamental domain

‖α‖2 L2-norm of α

αt Hermitian transpose of α

〈α, β〉N Inner products of α and β with respects to N -norm
α† Complex conjugate of α

α · β Point-wise multiplication
α ∗ β Convolution
f A(x) Change of variables f (A−1x)

XA Characteristic function of set A

F Continuous space-time Fourier transform
F̃ Discrete space-time Fourier transform

F̂ Discrete Fourier transform
6L Sampling operator
5L Periodizing operator

sinc(x)

{
sin(πx)/πx if x 6= 0
1 if x = 0
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5.1 Introduction

Digital signal processing methods fundamentally require that signals are quantized at discrete time
instances and represented as a sequence of words consisting of 1’s and 0’s. In nature, signals are usually
nonquantized and continuously varied with time. Natural signals such as air pressure waves as a result
of speech are converted by a transducer to a proportional analog electrical signal. Consequently, it
is necessary to perform a conversion of the analog electrical signal to a digital representation or vice
versa if an analog output is desired. The number of quantization levels used to represent the analog
signal and the rate at which it is sampled is a function of the desired accuracy, bandwidth that is
required, and the cost of the system. Figure 5.1 shows the basic elements of a digital signal processing
system. The analog signal is first converted to a discrete time signal by a sample and hold circuit. The

FIGURE 5.1: Digital signal processing system.

output of the sample and hold is then applied to an analog-to-digital converter (A/D) circuit where
the sampled analog signal is converted to a digitally coded signal. The digital signal is then applied to
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the digital signal processing (DSP) system where the desired DSP algorithm is performed. Depending
on the application, the output of the DSP system can be used directly in digital form or converted
back to an analog signal by a digital-to-analog converter (D/A). A digital filtering application may
produce an analog signal as its output, whereas a speech recognition system may pass the digital
output of the DSP system to a computer system for further processing. This section will describe
basic converter terminology and a sample of common architectures for both conventional Nyquist
rate converters and oversampled delta-sigma converters.

5.2 Fundamentals of A/D and D/A Conversion

The analog signal can be given as either a voltage signal or current signal, depending on the signal
source. Figure 5.2 shows the ideal transfer characteristics for a 3-bit A/D conversion. The output of

FIGURE 5.2: Ideal transfer characteristics for an A/D converter.

the converter is an n-bit digital code given as,

D = Asig

FS
= bn

2n
+ bn−1

2n−1
+ . . . + b1

21
(5.1)

where Asig is the analog signal, FS is the analog full scale level, and bn is a digital value of either
0 or 1. As shown in the figure, each digital code represents a quantized analog level. The width
of the quantized region is one least-significant bit (LSB) and the ideal response line passes through
the center of each quantized region. The converse D/A operation can be represented as viewing the
digital code in Fig. 5.2 as the input and the analog signal as the output. An n-bit D/A converter
transfer equation is given as

Asig = FS

(
bn

2n
+ bn−1

2n−1
+ . . . + b1

21

)
(5.2)

where Asig is the analog output signal, FS is the analog full scale level and bn is a binary coefficient.
The resolution of a converter is defined as the smallest distinct change that can be resolved (pro-
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duced) at an analog input (output) for an A/D (D/A) converter. This can be expressed as

1Asig = FS

2N
(5.3)

where 1Asig is the smallest reproducible analog signal for an N-bit converter with full scale analog
signal of FS.

The accuracy of a converter, often referred to also as relative accuracy, is the worst-case error between
the actual and the ideal converter output after gain and offset errors are removed [1]. This can be
quantified as the number of equivalent bits of resolution or as a fraction of an LSB.

The conversion rate specifies the rate at which a digital code (analog signal) can be accurately
converted into an analog signal (digital code). Accuracy is often expressed as a function of conversion
rate and the two are closely linked. The conversion rate is often an underlying factor in choosing the
converter architecture. The speed and accuracy of analog components are a limiting factor. Sensitive
analog operations can either be done in parallel, at the expense of accuracy, or cyclicly reused to allow
high accuracy with lower conversion speeds.

5.2.1 Nonideal A/D and D/A Converters

Actual A/D and D/A converters exhibit deviations from the ideal characteristics shown in Fig. 5.2.
Integration of a complete converter on a single monolithic circuit or as a macro within a very large
scale integration (VLSI) DSP system presents formidable design challenges. Converter architectures
and design trade-offs are most often dictated by the fabrication process and available device types.
Device parameters such as voltage threshold, physical dimensions, etc. vary across a semiconductor
die. These variations can manifest themselves into errors. The following terms are used to describe
converter nonideal behavior:

1. Offset error, described in Fig. 5.3, is a d.c. error between the actual response with the ideal
response. This can usually be removed by trimming techniques.

FIGURE 5.3: Offset error.

2. Gain error is defined as an error in the slope of the transfer characteristic shown in Fig. 5.4,
which can also usually be removed by trimming techniques.
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FIGURE 5.4: Gain error.

3. Integral nonlinearity is the measure of worst-case deviation from an ideal line drawn
between the full scale analog signal and zero. This is shown in Fig. 5.5 as a monotonic
nonlinearity.

FIGURE 5.5: Monotonic nonlinearity.

4. Differential nonlinearity is the measure of nonuniform step sizes between adjacent steps
in a converter. This is usually specified as a fraction of an LSB.

5. Monotonicity in a converter specifies that the output will increase with an increasing input.
Certain converter architectures can guarantee monotonicity for a specified number of bits
of resolution. A nonmonotonic transfer characteristic is detailed in Fig. 5.6.

6. Settling time for D/A converters refers to the time taken from a change of the digital code
to the point at which the analog output settles within some tolerance around the final
value.
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FIGURE 5.6: Nonmonotonic nonlinearity.

7. Glitches can occur during changes in the output at major transitions, i.e., at 1 MSB, 1/2
MSB, 1/4 MSB. During large changes, switching time delays between internal signal paths
can cause a spike in the output.

The choice of converter architecture can greatly affect the relative weight of each of these errors.
Data converters are often designed for low cost implementation in standard digital processes, i.e.,
digital CMOS, which often do not have well-controlled resistors or capacitors. Absolute values of
these devices can vary by as much as ± 20% under typical process tolerances. Post-fabrication
trimming techniques can be used to compensate for process variations, but at the expense of added
cost and complexity to the manufacturing process. As will be shown, various architectural techniques
can be used to allow high speed or highly accurate data conversion with such variations of process
parameters.

5.3 Digital-to-Analog Converter Architecture

The digital-to-analog (D/A) converter, also known as a DAC, decodes a digital word into a discrete
analog level. Depending on the application, this can be either a voltage or current. Figure 5.7 shows
a high level block diagram of a D/A converter. A binary word is latched and decoded and drives a set
of switches that control a scaling network. A basic analog scaling network can be based on voltage
scaling, current scaling, or charge scaling [1, 2]. The scaling network scales the appropriate analog
level from the analog reference circuit and applies it to the output driver. A simple serial string of
identical resistors between a reference voltage and ground can be used as a voltage scaling network.
Switches can be used to tap voltages off the resistors and apply them to the output driver. Current
scaling approaches are based on switched scaled current sources. Charge scaling is achieved by
applying a reference voltage to a capacitor divider using scaled capacitors where the total capacitance
value is determined by the digital code [1]. Choice of the architecture depends on the available
components in the target technology, conversion rate, and resolution. Detailed description of these
trade-offs and designs can be found in the references [1]–[5].
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5.4 Analog-to-Digital Converter Architectures

The analog-to-digital (A/D) converter, also known as an ADC, encodes an analog signal into a digital
word. Conventional converters work by sampling the time varying analog signal at a sufficient rate to
fully resolve the highest frequency components. According to the sampling theorem, the minimum
sampling rate is twice the frequency of the highest frequency contained in the signal source. The
sampling rate requirement thusbecomes themajordeterministic factor inchoosingaproper converter
architecture. Certain architectures exploit parallelism to achieve high speed operation on the order
of 100’s of MHz, and others which can be used for high accuracy 16-bit resolution for signals with
maximum frequencies on the order of 10’s of KHz.

5.4.1 Flash A/D

The flash A/D, also known as a parallel A/D, is the highest speed architecture for A/D conversion since
maximum parallelism is used. Figure 5.8 shows a block diagram of a 3-bit flash A/D converter. A flash
converter requires 2n − 1 analog comparators, 2n − 1 reference voltages, and a digital encoder. The
reference voltages are required to be evenly spaced between 0.5 LSB above the most negative signal
and 1.5 LSB below the most positive signal and spaced 1 LSB apart. Each reference voltage is applied
to the negative input of a comparator and the analog signal voltage is applied simultaneously to all
the comparators. A thermometer code results at the output of the comparators which is converted
to a digital word by encoding logic. The speed of the converter is limited by the time delay through a
comparator and the encoding logic. This speed is gained at the expense of accuracy, which is limited
by the ability to generate evenly spaced reference voltages and the precision of the comparators. Each
analog comparator must be precisely matched in order to achieve acceptable performance at a given
resolution. For these reasons, flash A/D converters are typically used only for very high speed low
resolution applications.

5.4.2 Successive Approximation A/D Converter

A successive approximation A/D converter is formed creating a feedback loop around a D/A converter.
Figure 5.9 shows a block diagram for an 8-bit successive approximation A/D. The operation of the
converter works by initializing the successive approximation register (SAR) to a value where all bits
are set to 0 except the MSB which is set to 1. This represents the mid-level value. The analog signal is
applied to a sample-and-hold (S/H) circuit, and on the first clock cycle the DAC converts the digital
code stored in the SAR into an analog signal. The comparator is used to determine whether the
analog signal is greater or less than the mid level, and control logic determines whether to leave the
MSB set to 1 or to change it back to 0. The process is repeated on the next clock cycle, but instead
the next MSB is tested. For an n-bit converter n clock cycles are required to fully quantize each
sample-and-hold signal. The speed of the successive approximation converter is largely limited by
the speed of the DAC and the time delay through the comparator. This type of converter is widely
used for medium speed and medium accuracy applications. The resolution is limited by the DAC
converter and the comparator.

5.4.3 Pipelined A/D Converter

A pipelined A/D converter achieves high-speed conversion and high accuracy at the expense of
latency in the conversion process. A pipelined A/D converter block diagram is shown in Fig. 5.10.
The conversion process is broken into multiple stages where, at each stage, a partial conversion is
done and the converted bits are shifted down the pipeline in digital registers. Figure 5.11 shows
the detail of a single pipeline stage. The analog signal is applied to a sample-and-hold circuit and
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FIGURE 5.7: Basic D/A converter block diagram.

FIGURE 5.8: 3-bit flash A/D converter.
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FIGURE 5.9: 8-bit successive approximation A/D converter.

FIGURE 5.10: Pipelined A/D converter.

the output is applied to an n-bit flash ADC where n is less then the total desired resolution. The
outputs of the ADC are connected directly to a DAC, and the output of the DAC is subtracted from
the original analog signal stored in the S/H to produce a residual signal. The residual signal is then
amplified by 2n so that it will vary within the entire full scale range of the next stage and is transferred
on the next clock cycle. At this point the first stage begins conversion on the next analog sample.
The maximum conversion rate is determined by the time delay through a single stage. Pipelining
allows high resolution conversion without the need for many comparators. An 8-bit converter can
be ideally constructed with k = 4 stages with n = 2 bits of resolution per stage, requiring only 12
total comparators. This can be contrasted with an 8-bit flash converter requiring 255 comparators.
Each pipeline stage adds an additional cycle of latency before the final code is converted. Pipelined
converters also accommodate digital correction schemes for errors generated in the analog circuitry.
Digital correction can be achieved by using higher resolution ADC and DAC circuits in each stage
than required so that errors in the preceding stage can be detected and corrected digitally [5]. Auto
calibration can also be achieved by adding additional stages after the required stages to convert errors
in the DAC values and storing these digitally to be added to the final result [6].

5.4.4 Cyclic A/D Converter

Cyclic A/D converters, also known as algorithmic converters, trade off conversion speed for high
accuracy without the need for calibration or device trimming. Figure 5.12 shows a block diagram of
a cyclic A/D converter [5]. Here the same analog components are cyclicly reused for conversion of
each bit for each analog sample. The conversion process works by initially sampling the input signal
by setting switch S1 appropriately. The sampled signal is then amplified by a factor of two and applied
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FIGURE 5.11: Diagram of single pipelined A/D converter stage.

to a comparator where it is compared to a reference level, Vref. If the voltage exceeds the reference
level, a bit value of 1 is produced and the reference voltage is subtracted from the amplified signal by
control of switch S2 to produce the residual voltage Ve. If the amplified signal is less than the reference
voltage, Vref, the comparator outputs a 0, and Ve represents the unchanged amplified signal. On the
remaining cycles for the sample, switch S1 changes so that the residual voltage Ve is applied to the S/H
circuit. The cycle is repeated for each remaining bit. Operation on the conversion process produces
a serial stream of digital bit values from output of the comparator. An n-bit converter requires n

conversion cycles for each sampled signal.

FIGURE 5.12: Block diagram of a cyclic A/D converter.

5.5 Delta-Sigma Oversampling Converter

The oversampling delta-sigma A/D converter was first proposed 30 years ago [7], while it only
became popular after the maturity of the VLSI digital technology. With the advancement of semi-
conductor technology, an increasing portion of signal processing tasks have been shifted from the
usual analog domain to digital domain. For digital systems to interact with analog signal sources, such
as voice, data, and video, the role of analog-to-digital interface is essential. In voice data processing
and communication, an accurate digital form is often desired to represent the voice. Due to the
large demand of these systems, the cost must be kept at a minimum. All these requirements call
upon a need to implement monolithic high resolution analog-to-digital interfaces in economical
semiconductor technology. However, with the increasing complexity of integration and a trend
of reducing supply voltage, the accuracy of device components and analog signal dynamic range
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deteriorate. It becomes more difficult to realize high resolution conversions by conventional Nyquist
rate converter architecture.

Compared to Nyquist rate converters, the oversampling converters use coarse analog components
at the front end and employ more digital signal processing in the later stages. High resolution
conversions are achieved by trading off speed and digital signal processing complexity, both of which
can be easily realized in modern VLSI technology.

The oversampling A/D converter and Nyquist rate converter are compared in Fig. 5.13. A nonover-
sampled A/D converter has an anti-aliasing lowpass filter in the front. The anti-aliasing filter atten-
uates high-frequency components buried in the analog input and prevents them from being aliased
into the signal frequency band. Because the converter is sampled at the Nyquist rate, which is twice
the input signal bandwidth, the anti-aliasing filter’s transition band must be very narrow and its
stop-band must have enough suppression of the out-of-band noise. This requirement makes the
filter very complex and adds to the complexity that a nonoversampled A/D already has.

FIGURE 5.13: (a) Nonoversampled A/D converter. (b) oversampled A/D converter.

In comparison, an oversampled delta-sigma A/D converter, as shown in Fig. 5.13(b), is sampled at a
higher rate than the input Nyquist rate. A simple first-order lowpass filter is sufficient to attenuate the
noise components at the sampling frequency region to avoid the noise aliasing. This is because only
the noise components close to the sampling frequency can be aliased back into the signal band. This
arrangement simplifies the design and implementation of the filter. The complexity of the A/D itself is
much simpler than the nonoversampled A/D converters as we will see later. The only extra complexity
in the oversampled A/D converters is that more digital signal processing is required after the A/D
conversion. But this becomes less and less an issue with the advancement of the VLSI technology.
In the following sections, we will explain the conversion principle and various architectures of the
oversampling delta-sigma converter.

5.5.1 Delta-Sigma A/D Converter Architecture

Delta-Sigma Oversampling A/D Converter Principle

The structure of a first-order delta-sigma converter is shown in Fig. 5.14. The input signal is
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FIGURE 5.14: The modulator of a first-order delta-sigma converter. T is the sampling period and n
is the index.

sampled at a frequency fs(T = 1/fs). A feedback signal from a 1-bit D/A converter is subtracted
from the input and the residue signal is accumulated by an integrator. The output of the integrator
is quantized to generate a 1-bit digital stream. This digital output sets the sign of the feedback. If
the digital output is 1, it feeds back a large negative signal to subtract from the input signal. The
net effect of the feedback loop is to keep the output of the integrator small so that the output digits
always track the amplitudes of the input signal.

The resolution of an A/D converter is determined by the quantization noise generated in the
process. Even though a delta-sigma converter only has an 1-bit quantizer, much higher resolution is
achieved by employing the noise shaping mechanism to move the noise out of the signal band and
later blocking it using a lowpass digital filter.

Quantization is a nonlinear process and the feedback mechanism makes the noise highly depen-
dent on the input signal spectrum. Rigorous treatment of this noise component in a delta-sigma
converter can be found in the literature [8]. Useful information can still be obtained by linearizing
the quantization process. The noise component is approximated by white additive noise uniformly
distributed up to half of the sampling frequency. This approximation is valid because over a long
period of time, the input to the quantizer will spread over a large number of values and appear to
be quasi-random, so the noise introduced is quasi-random as well. Similar to a nonoversampled

A/D converter, the rms value of the noise is e2
rms = 12

12 , where 1 is the quantization step. When the
quantizer is sampled at fs , the noise power is sampled into a frequency band: 0 ≤ f < fs/2 and its
spectral density is

Q(f ) = √
2 · erms (5.4)

where f is normalized to f−s .
The delta-sigma converter can be generalized as shown in Fig. 5.15. The forward path is modeled

FIGURE 5.15: General feedback system.

by transfer function B(z) plus the noise, and the feedback path can be modeled by C(z). The system
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output and input transfer function is governed by

Y (z) = B(z) · X(z) + Q

1 + B(z) · C(z)
(5.5)

To achieve high-resolution A/D conversion, the system needs to convert the input signal within a
specified frequency bandwidth and minimize the noise component in that band. One method is to
pass the signal component and block the noise component. This can be expressed as

Y (z) = X(z) + Hns(z) · Q , (5.6)

where the input X(z) passes through the system, but the quantization noise is modified by a noise-
shaping function Hns(z) .

Comparing Eq. 5.5 to Eq. 5.6, to achieve the noise-shaping effect, the system in Fig. 5.15 needs to
have the following property:

C(z) = 1 − 1

B(z)
(5.7)

B(z) = 1

Hns(z)

Now, we can see the delta-sigma A/D converter shown in Fig. 5.14 as a noise-shaping data converter.
The transfer function of the integrator in the forward pass is 1

1−z−1 ; the D/A converter in the feedback

path is equivalent to a delay element and its transfer function is z−1. They satisfy the relation required
by a noise-shaping converter in Eq. 5.7. Therefore, its noise-shaping function Hns(z) is

Hns(z) = 1

B(z)
= 1 − z−1 (5.8)

which is a highpass filtering function. The amplitude of its response is

|Hns(z)| = |1 − z−1| = 2 sin(πf ) (5.9)

where f is the normalized frequency with respect to fs . This function is plotted in Fig. 5.16. As
shown in the figure, the noise is evenly distributed across the frequency, before applying the noise
shaping function. The noise power in the signal band is the area of a region highlighted by the grey
color underneath the flat line. After applying the noise-shaping function, the noise in the signal band
is suppressed to a much lower level and the total noise power left (dark grey region) is much smaller
than the original noise power. The high-frequency noise portion will be filtered by the digital filter.
Therefore, the signal-to-noise ratio of the converter is greatly enhanced.

Quantitatively, the noise power left in the signal band is the integration of its spectrum up to signal
bandwidth fb as

N2 =
∫ fb/fs

0

(
|Hns(z)|2Q2

)
df = 212

3fs

∫ fb/fs

0
[sin(πf )]2 df (5.10)

where Q2 is substituted for the noise spectral density in Eq. 5.4. In a delta-sigma converter the signal
bandwidth is significantly lower than the sampling frequency. The resulting integration is

N2
q = 2π212

9

(
fb

fs

)3

. (5.11)
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FIGURE 5.16: Plot of noise-shaping effect of the delta-sigma modulator comparing the noise power
left within the baseband fh. The noise (cross-hatched region) of a first-order modulator is much less
than the noise before shaping (shaded region). Noise from the second-order shaping is even less.

For a sine wave input, the maximum signal amplitude is 1
2 and its average power is 12

8 . This gives a
peak signal-to-noise ratio (SNR) as

S2

N2
= 9

16π2

(
fs

fb

)3

. (5.12)

We can see that the peak SNR is only a function of the frequency ratio fs

fb
. The faster the converter is

sampled, the higher the resolution can be achieved. The expression in Eq. 5.12 can be transformed
into

SNR = 10 log10
S2

N2
= 20 log10

(
3√
2π

)
+ 9 log2 M(dB) , (5.13)

where M is an important parameter called the oversampling ratio, defined as the ratio of the sampling
frequency over the Nyquist sampling frequency 2fb. From this expression, we can see that we can
get 9 dB of increase in SNR for every doubling of the sampling frequency. This corresponds to 1.5
bits. For example, if M = 128, we have 11.5 bits more resolution than sampling at the Nyquist rate.
This method allows a high resolution A/D conversion by using only a one-bit quantizer.

We can see that higher resolution is achieved by trading off the input signal bandwidth. In order
to get 1.5 more bits, the bandwidth has to be cut by a half in this structure. To have a more favorable
resolution and bandwidth trade-off, we can go to higher order delta-sigma converters.

Higher-Order Single-Stage Converters

In the first-order delta-sigma converter, the noise-shaping function is Hns(z) = 1 − z−1.
Higher order converters can allow the noise-shaping function go up to Lth power, given as

Hns(z) =
(
1 − z−1

)L

, (5.14)
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where L is an integer greater than one. Thus, the magnitude of this noise-shaping function is

|Hns(z)| =
∣∣∣∣
(
1 − z−1

)L
∣∣∣∣ = [2 sin(πf )]L . (5.15)

This function is also plotted in Fig. 5.16 for L = 2. As seen in the figure, more noise from the signal
band is blocked than with the first-order function. Integrating Eq. 5.14 over the signal band allows
calculation of the SNR of an Lth order delta-sigma converter as

S2

N2
= 3(2L + 1)

22L+2 · π2L
·
(

fs

fb

)2L+1

, (5.16)

which is equivalent to

SNR = 20 log10 =
(√

3(2L + 1)/2

πL

)
+ 3(2L + 1) log2 M(dB) , (5.17)

where M is the oversampling ratio. For every doubling of the sampling frequency, the SNR is
increased by 3(2L + 1)dB, i.e., L + 0.5 bits more resolution. For example, L = 2 adds 2.5 bits and

FIGURE 5.17: A plot of the resolution vs. oversampling ratio for different types of delta-sigma
converters and Nyquist sampling converter.

L = 3 adds 3.5 bits of resolution. Therefore, compared to the first-order system, by employing a
higher order delta-sigma converter architecture, the same resolution can be achieved with a lower
sampling frequency, or a higher input bandwidth can be allowed at the same resolution with the same
sampling frequency. Figure 5.17 shows a plot of Eq. 5.17 comparing resolution vs. oversampling
ratio for different order delta-sigma converters.

A second-order delta-sigma converter can be realized as shown in Fig. 5.18 with two integrators.
Higher order converters can be similarly constructed. However, when the order of the converter
is greater than two, special care must be taken to insure the converter stability [9]. More zeroes
are introduced in the transfer function of the forward path to suppress the signal swing after the
integrators.
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FIGURE 5.18: Block diagram of a second order D-S modulator.

Other methods can be used to improve the resolution of the delta-sigma converter. A first-order
and a second-order converter can be cascaded to achieve the same performance as a third-order
converter, but with better stability over the frequency range [10]. A multi-bit quantizer can also
be used to replace the 1-bit quantizer in the architecture presented here [11]. This improves the
resolution at the same sampling speed. Interested readers are referred to reference articles.

In an oversampling converter, the digital decimation filter is also an integral part. Only after the
decimation filter is the resolution of the converter realized. The design of decimation filters are
discussed in other sections of this book and can also be found in the reference article by Candy [12].

References

[1] Grebene, A.B., Bipolar and MOS Analog Integrated Circuit Design, John Wiley & Sons, New
York, 1984.

[2] Sheingold, D.H., Ed., Analog-Digital Conversion Handbook, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[3] Toumazou, C., Lidgey F.J., and Haigh, D.G., eds., Analogue IC Design: The Current-Mode
Approach, Peter Peregrinus Ltd., London, 1990.

[4] Gray, P.R., Hodges, D.A., Broderson, R.W., eds., Analog MOS Integrated Circuits, IEEE Press,
New York, 1980.

[5] Gray, P.R., Wooley, B.A., Broderson, R.W., eds., Analog MOS Integrated Circuits, II, IEEE
Press, New York, 1989.

[6] Lee, S.H, Song B.S, Digital-domain calibration of multistep analog-to-digital converters, IEEE
J. Solid-State Circuits, 27: (12) 1679–1688, Dec., 1992.

[7] Inose, H. and Yasuda, Y., A unity bit coding method by negative feedback, Proc. IEEE, 51:
1524–1535, Nov., 1963.

[8] Gray, R.M., Oversampled sigma-delta modulation, IEEE Trans. Commun., 35: 481–489, May,
1987.

[9] Chao, K.C-H., Nadeem, S., Lee, W.L., Sodini, C.G., A higher order topology for interpolative
modulators for oversampled A/D converters, IEEE Trans. Circuits and Syst., CAS-37: 309–318,
March, 1990.

[10] Matsuya, Y., Uchimura, K., Iwata, A., Kobayashi, T., Ishikawa, M., and Yoshitoma, T., A 16-bit
oversampling A-to-D conversion technology using triple-integration noise shaping, IEEE J.
Solid-State Circuits, SC-22: 921–929, Dec., 1987.

[11] Larson, L.E., Cataltepe, T., and Temes, G.C., Multibit oversampled 6 − 1 A/D converter with
digital error correction, Electron. Lett., 24: 1051–1052, Aug., 1988.

[12] Candy, J.C., Decimation for sigma delta modulation, IEEE Trans. Commun., COM-24: 72–76,
Jan., 1986.

c©1999 by CRC Press LLC



6
Quantization of Discrete Time

Signals

Ravi P. Ramachandran
Rowan University

6.1 Introduction
6.2 Basic Definitions and Concepts

Quantizer and Encoder Definitions • Distortion Measure •
Optimality Criteria

6.3 Design Algorithms
Lloyd-Max Quantizers • Linde-Buzo-Gray Algorithm

6.4 Practical Issues
6.5 Specific Manifestations

Multistage VQ • Split VQ

6.6 Applications
Predictive Speech Coding • Speaker Identification

6.7 Summary
References

6.1 Introduction

Signals are usually classified into four categories. A continuous time signal x(t) has the field of real
numbers R as its domain in that t can assume any real value. If the range of x(t) (values that x(t) can
assume) is also R, then x(t) is said to be a continuous time, continuous amplitude signal. If the range
of x(t) is the set of integers Z, then x(t) is said to be a continuous time, discrete amplitude signal. In
contrast, a discrete time signal x(n) has Z as its domain. A discrete time, continuous amplitude signal
has R as its range. A discrete time, discrete amplitude signal has Z as its range. Here, the focus is
on discrete time signals. Quantization is the process of approximating any discrete time, continuous
amplitude signal into one of a finite set of discrete time, continuous amplitude signals based on a
particular distortion or distance measure. This approximation is merely signal compression in that
an infinite set of possible signals is converted into a finite set. The next step of encoding maps the
finite set of discrete time, continuous amplitude signals into a finite set of discrete time, discrete
amplitude signals.

A signal x(n) is quantized one block at a time in that p (almost always consecutive) samples are
taken as a vector x and approximated by a vector y. The signal or data vectors x of dimension p

(derived from x(n)) are in the vector space Rp over the field of real numbers R. Vector quantization
is achieved by mapping the infinite number of vectors in Rp to a finite set of vectors in Rp . There is
an inherent compression of the data vectors. This finite set of vectors in Rp is encoded into another
finite set of vectors in a vector space of dimension q over a finite field (a field consisting of a finite set of
numbers). For communication applications, the finite field is the binary field (0, 1). Therefore, the
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original vector x is converted or compressed into a bit stream either for transmission over a channel
or for storage purposes. This compression is necessary due to channel bandwidth or storage capacity
constraints in a system.

The purpose of this chapter is to describe the basic definition and properties of vector quantization,
introduce the practical aspects of design and implementation, and relate important issues. Note that
two excellent review articles [1, 2] give much insight into the subject. The outline of the article is
as follows. The basic concepts are elaborated on in Section 6.2. Design algorithms for scalar and
vector quantizers are described in Section 6.3. A design example is also provided. The practical
issues are discussed in Section 6.4. The multistage and split manifestations of vector quantizers are
described in Section 6.5. In Section 6.6, two applications of vector quantization in speech processing
are discussed.

6.2 Basic Definitions and Concepts

In this section, we will elaborate on the definitions of a vector and scalar quantizer, discuss some
commonly used distance measures, and examine the optimality criteria for quantizer design.

6.2.1 Quantizer and Encoder Definitions

A quantizer, Q, is mathematically defined as a mapping [3] Q : Rp → C. This means that the
p-dimensional vectors in the vector space Rp are mapped into a finite collection C of vectors that are
also in Rp . This collection C is called the codebook and the number of vectors in the codebook, N ,
is known as the codebook size. The entries of the codebook are known as codewords or codevectors.
If p = 1, we have a scalar quantizer (SQ). If p > 1, we have a vector quantizer (VQ).

A quantizer is completely specified by p, C and a set of disjoint regions in Rp which dictate the
actual mapping. Suppose C has N entries y1, y2, · · · , yN . For each codevector, yi , there exists
a region, Ri , such that any input vector x ∈ Ri gets mapped or quantized to yi . The region Ri is
called a Voronoi region [3, 4] and is defined to be the set of all x ∈ Rp that are quantized to yi . The
properties of Voronoi regions are as follows:

1. Voronoi regions are convex subsets of Rp .

2.
⋃N

i=1 Ri = Rp .

3. Ri ∩ Rj is the null set for i 6= j .

It is seen that the quantizer mapping is nonlinear and many to one and hence noninvertible.

Encoding the codevectors yi is important for communications. The encoder, E, is mathematically
defined as a mapping E : C → CB . Every vector yi ∈ C is mapped into a vector ti ∈ CB where
ti belongs to a vector space of dimension q = dlog2 Ne over the binary field (0, 1). The encoder
mapping is one to one and invertible. The size of CB is also N . As a simple example, suppose C

contains four vectors of dimension p, namely, (y1, y2, y3, y4). The corresponding mapped vectors
in CB are t1 = [0 0], t2 = [0 1], t3 = [1 0] and t4 = [1 1]. The decoder D described by D : CB → C

performs the inverse operation of the encoder.

A block diagram of quantization and encoding for communications applications is shown in
Fig. 6.1. Given that the final aim is to transmit and reproduce x, the two sources of error are due to
quantization and channel. The quantization error is x − yi and is heavily dealt with in this article.
The channel introduces errors that transform ti into tj thereby reproducing yj instead of yi after
decoding. Channel errors are ignored for the purposes of this article.
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FIGURE 6.1: Block diagram of quantization and encoding for communication systems.

6.2.2 Distortion Measure

A distortion or distance measure between two vectors x = [x1 x2 x3 · · · xp]T ∈ Rp and y =
[y1 y2 y3 · · · yp]T ∈ Rp where the superscript T denotes transposition is symbolically given by
d(x, y). Most distortion measures satisfy three properties given by:

1. Positivity: d(x, y) is a real number greater than or equal to zero with equality if and only
if x = y

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

To qualify as a valid measure for quantizer design, only the property of positivity needs to be sat-
isfied. The choice of a distance measure is dictated by the specific application and computational
considerations. We continue by giving some examples of distortion measures.

EXAMPLE 6.1: The Lr Distance

The Lr distance is given by

d(x, y) =
p∑

i=1

|xi − yi |r (6.1)

This is a computationally simple measure to evaluate. The three properties of positivity, symmetry,
and the triangle inequality are satisfied. When r = 2, the squared Euclidean distance emerges and is
very often used in quantizer design. When r = 1, we get the absolute distance. If r = ∞, it can be
shown that [2]

lim
r→∞ d(x, y)1/r = max

i
|xi − yi | (6.2)

This is the maximum absolute distance taken over all vector components.

EXAMPLE 6.2: The Weighted L2 Distance

The weighted L2 distance is given by:

d(x, y) = (x − y)T W(x − y) (6.3)

where W is the matrix of weights. For positivity, W must be positive-definite. If W is a constant
matrix, the three properties of positivity, symmetry, and the triangle inequality are satisfied. In
some applications, W is a function of x. In such cases, only the positivity of d(x, y) is guaranteed to
hold. As a particular case, if W is the inverse of the covariance matrix of x, we get the Mahalanobis
distance [2]. Other examples of weighting matrices will be given when we discuss the applications
of quantization.
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6.2.3 Optimality Criteria

There are two necessary conditions for a quantizer to be optimal [2, 3]. As before, the codebook C

has N entries y1, y2, · · · , yN and each codevector yi is associated with a Voronoi region Ri . The
first condition known as the nearest neighbor rule states that a quantizer maps any input vector x
to the codevector closest to it. Mathematically speaking, x is mapped to yi if and only if d(x, yi ) ≤
d(x, yj ) ∀j 6= i. This enables us to more precisely define a Voronoi region as:

Ri = {
x ∈ Rp : d

(
x, yi

) ≤ d
(
x, yj

) ∀j 6= i
}

(6.4)

The second condition specifies the calculation of the codevector yi given a Voronoi region Ri . The
codevector yi is computed to minimize the average distortion in Ri which is denoted by Di where:

Di = E
[
d

(
x, yi

) |x ∈ Ri

]
(6.5)

6.3 Design Algorithms

Quantizer design algorithms are formulated to find the codewords and the Voronoi regions so as to
minimize the overall average distortion D given by:

D = E[d(x, y)] (6.6)

If the probability density p(x) of the data x is known, the average distortion is [2, 3]

D =
∫

d(x, y)p(x)dx (6.7)

=
N∑

i=1

∫
Ri

d
(
x, yi

)
p(x)dx (6.8)

Note that the nearest neighbor rule has been used to get the final expression for D. If the probability
density is not known, an empirical estimate is obtained by computing many sampled data vectors.
This is called training data, or a training set, and is denoted by T = {x1, x2, x3, · · · xM} where M

is the number of vectors in the training set. In this case, the average distortion is

D = 1

M

M∑
k=1

d
(
xk, y

)
(6.9)

= 1

M

N∑
i=1

∑
xk∈Ri

d
(
xk, yi

)
(6.10)

Again, the nearest neighbor rule has been used to get the final expression for D.

6.3.1 Lloyd-Max Quantizers

The Lloyd-Max method is used to design scalar quantizers and assumes that the probability density
of the scalar data p(x) is known [5, 6]. Let the codewords be denoted by y1, y2, · · · , yN . For each
codeword yi , the Voronoi region is a continuous interval Ri = (vi, vi+1]. Note that v1 = −∞ and
vN+1 = ∞. The average distortion is

D =
N∑

i=1

∫ vi+1

vi

d (x, yi) p(x)dx (6.11)
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Setting the partial derivatives of D with respect to vi and yi to zero gives the optimal Voronoi regions
and codewords.

In the particular case when d(x, yi) = (x − yi)
2, it can be shown that [5] the optimal solution is

vi = yi + yi+1

2
(6.12)

for 2 ≤ i ≤ N and

yi =

∫ vi+1

vi

xp(x)dx∫ vi+1

vi

p(x)dx

(6.13)

for 1 ≤ i ≤ N . The overall iterative algorithm is

1. Start with an initial codebook and compute the resulting average distortion.

2. Solve for vi .

3. Solve for yi .

4. Compute the resulting average distortion.

5. If the average distortion decreases by a small amount that is less than a given threshold,
the design terminates. Otherwise, go back to Step 2.

The extension of the Lloyd-Max algorithm for designing vector quantizers has been considered [7].
One practical difficulty is whether the multidimensional probability density function p(x) is known
or must be estimated. Even if this is circumvented, finding the multidimensional shape of the convex
Voronoi regions is extremely difficult and practically impossible for dimensions greater than 5 [7].
Therefore, the Lloyd-Max approach cannot be extended to multidimensions and methods have been
configured to design a VQ from training data. We will now elaborate on one such algorithm.

6.3.2 Linde-Buzo-Gray Algorithm

The input to the Linde-Buzo-Gray (LBG) algorithm [7] is a training set T = {x1, x2, x3, · · · xM} ∈
Rp having M vectors, a distance measure d(x, y), and the desired size of the codebook N . From
these inputs, the codewords yi are iteratively calculated. The probability density p(x) is not explicitly
considered and the training set serves as an empirical estimate of p(x). The Voronoi regions are now
expressed as:

Ri = {
xk ∈ T : d

(
xk, yi

) ≤ d
(
xk, yj

) ∀j 6= i
}

(6.14)

Once the vectors in Ri are known, the corresponding codevector yi is found to minimize the average
distortion in Ri as given by

Di = 1

Mi

∑
xk∈Ri

d
(
xk, yi

)
(6.15)

where Mi is the number of vectors in Ri . In terms of Di , the overall average distortion D is

D =
N∑

i=1

Mi

M
Di (6.16)

Explicit expressions for yi depend on d(x, yi ) and two examples are given. For the L1 distance,

yi = median [xk ∈ Ri ] (6.17)
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For the weighted L2 distance in which the matrix of weights W is constant,

yi = 1

Mi

∑
xk∈Ri

xk (6.18)

which is merely the average of the training vectors in Ri . The overall methodology to get a codebook
of size N is

1. Start with an initial codebook and compute the resulting average distortion.

2. Find Ri .

3. Solve for yi .

4. Compute the resulting average distortion.

5. If the average distortion decreases by a small amount that is less than a given threshold,
the design terminates. Otherwise, go back to Step 2.

If N is a power of 2 (necessary for coding), a growing algorithm starting with a codebook of size
1 is formulated as follows:

1. Find codebook of size 1.

2. Find initial codebook of double the size by doing a binary split of each codevector. For a
binary split, one codevector is split into two by small perturbations.

3. Invoke the methodology presented earlier of iteratively finding the Voronoi regions and
codevectors to get the optimal codebook.

4. If the codebook of the desired size is obtained, the design stops. Otherwise, go back to
Step 2 in which the codebook size is doubled.

Note that with the growing algorithm, a locally optimal codebook is obtained. Also, scalar quantizer
design can also be performed.

Here, we present a numerical example in which p = 2, M = 4, N = 2, T = {x1 = [0 0], x2 =
[01], x3 = [10], x4 = [11]}, andd(x, y) = (x − y)T (x−y). Thecodebookof size1 isy1 = [0.50.5].
We will invoke the LBG algorithm twice, each time using a different binary split. For the first run:

1. Binary split: y1 = [0.51 0.5] and y2 = [0.49 0.5].
2. Iteration 1

(a) R1 = {x3, x4} and R2 = {x1, x2}.
(b) y1 = [1 0.5] and y2 = [0 0.5].
(c) Average distortion: D = 0.25[(0.5)2 + (0.5)2 + (0.5)2 + (0.5)2] = 0.25.

3. Iteration 2

(a) R1 = {x3, x4} and R2 = {x1, x2}.
(b) y1 = [1 0.5] and y2 = [0 0.5].
(c) Average distortion: D = 0.25[(0.5)2 + (0.5)2 + (0.5)2 + (0.5)2] = 0.25.

4. No change in average distortion, the design terminates.

For the second run:

1. Binary split: y1 = [0.5 0.51] and y2 = [0.5 0.49].
2. Iteration 1

(a) R1 = {x2, x4} and R2 = {x1, x3}.
(b) y1 = [0.5 1] and y2 = [0.5 0].
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(c) Average distortion: D = 0.25[(0.5)2 + (0.5)2 + (0.5)2 + (0.5)2] = 0.25.

3. Iteration 2

(a) R1 = {x2, x4} and R2 = {x1, x3}.
(b) y1 = [0.5 1] and y2 = [0.5 0].
(c) Average distortion: D = 0.25[(0.5)2 + (0.5)2 + (0.5)2 + (0.5)2] = 0.25.

4. No change in average distortion, the design terminates.

The two codebooks are equally good locally optimal solutions that yield the same average distortion.
The initial condition as determined by the binary split influences the final solution.

6.4 Practical Issues

When using quantizers in a real environment, there are many practical issues that must be considered
to make the operation feasible. First we enumerate the practical issues and then discuss them in more
detail. Note that the issues listed below are interrelated.

1. Parameter set

2. Distortion measure

3. Dimension

4. Codebook storage

5. Search complexity

6. Quantizer type

7. Robustness to different inputs

8. Gathering of training data

A parameter set and distortion measure are jointly configured to represent and compress informa-
tion in a meaningful manner that is highly relevant to the particular application. This concept is best
illustrated with an example. Consider linear predictive (LP) analysis [8] of speech that is performed
by the autocorrelation method. The resulting minimum phase nonrecursive filter

A(z) = 1 −
p∑

k=1

akz
−k (6.19)

removes thenear-sample redundancies in the speech. Thefilter1/A(z)describes the spectral envelope
of the speech. The information regarding the spectral envelopeas contained in theLPfilter coefficients
ak must be compressed (quantized) and coded for transmission. This is done in predictive speech
coders [9]. There are other parameter sets that have a one-to-one correspondence to the set ak . An
equivalent parameter set that can be interpreted in terms of the spectral envelope is desired. The line
spectral frequencies (LSFs) [10, 11] have been found to be the most useful.

The distortion measure is significant for meaningful quantization of the information and must
be mathematically tractable. Continuing the above example, the LSFs must be quantized such that
the spectral distortion between the spectral envelopes they represent is minimized. Mathematical
tractability implies that the computation involved for (1) finding the codevectors given the Voronoi
regions (as part of the design procedure) and (2) quantizing an input vector with the least distortion
given a codebook is small. The L1, L2, and weighted L2 distortions are mathematically feasible.
For quantizing LSFs, the L2 and weighted L2 distortions are often used [12, 13, 14]. More details
on LSF quantization will be provided in a forthcoming section on applications. At this point, a
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general description is provided just to illustrate the issues of selecting a parameter set and a distortion
measure.

The issues of dimension, codebook storage, and search complexity are all related to computational
considerations. A higher dimension leads to an increase in the memory requirement for storing
the codebook and in the number of arithmetic operations for quantizing a vector given a codebook
(searchcomplexity). Thedimension is alsovery important in capturing the essenceof the information
to be quantized. For example, if speech is sampled at 8 kHz, the spectral envelope consists of 3 to 4
formants (vocal tract resonances) which must be adequately captured. By using LSFs, a dimension
of 10 to 12 suffices for capturing the formant information. Although a higher dimension leads to
a better description of the fine details of the spectral envelope, this detail is not crucial for speech
coders. Moreover, this higher dimension imposes more of a computational burden. The codebook
storage requirement depends on the codebook size N . Obviously, a smaller value of N imposes
less of a memory requirement. Also for coding, the number of bits to be transmitted should be
minimized, thereby diminishing the memory requirement. The search complexity is directly related
to the codebook size and dimension. However, it is also influenced by the type of distortion measure.

The type of quantizer (scalar or vector) is dictated by computational considerations and the robust-
ness issue (discussed later). Consider the case when a total of 12 bits are used for quantization, the
dimension is 6, and the L2 distance measure is utilized. For a VQ, there is one codebook consisting of
212 = 4096codevectors each having 6 components. A total of 4096× 6 = 24576numbers need to
be stored. Computing the L2 distance between an input vector and one codevector requires 6 mul-
tiplications and 11 additions. Therefore, searching the entire codebook requires 6 × 4096= 24576
multiplications and 11 × 4096 = 45056additions. For an SQ, there are six codebooks, one for
each dimension. Each codebook requires 2 bits or 22 = 4 codewords. The overall codebook size is
4 × 6 = 24. Hence, a total of 24 numbers needs to be stored. Consider the first component of an
input vector. Four multiplications and four additions are required to find the best codeword. Hence,
for all 6 components, 24 multiplications and 24 additions are needed to complete the search. The
storage and search complexity are always much less for an SQ.

The quantizer type is also closely related to the robustness issue. A quantizer is said to be robust to
different test input vectors if it can maintain the same performance for a large variety of inputs. The
performance of a quantizer is measured as the average distortion resulting from the quantization of
a set of test inputs. A VQ takes advantage of the multidimensional probability density of the data as
empirically estimated by the training set. An SQ does not consider the correlations among the vector
components as a separate design is performed for each component based on the probability density
of that component. For test data having a similar density to the training data, a VQ will outperform
an SQ given the same overall codebook size. However, for test data having a density that is different
from that of the training data, an SQ will outperform a VQ given the same overall codebook size.
This is because an SQ can accomplish a better coverage of a multidimensional space. Consider the
example in Fig. 6.2. The vector space is of two dimensions (p = 2). The component x1 lies in the
range 0 to x1(max) and x2 lies between 0 and x2(max). The multidimensional probability density
function (pdf) p(x1, x2) is shown as the region ABCD in Fig. 6.2. The training data will represent
this pdf and can be used to design a vector and scalar quantizer of the same overall codebook size.
The VQ will perform better for test data vectors in the region ABCD. Due to the individual ranges
of the values of x1 and x2, the SQ will cover the larger space OKLM. Therefore, the SQ will perform
better for test data vectors in OKLM but outside ABCD. An SQ is more robust in that it performs
better for data with a density different from that of the training set. However, a VQ is preferable if
the test data is known to have a density that resembles that of the training set.

In practice, the true multidimensional pdf of the data is not known as the data may emanate
from many different conditions. For example, LSFs are obtained from speech material derived
from many environmental conditions (like different telephones and noise backgrounds). Although
getting a training set that is representative of all possible conditions gives the best estimate of the
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FIGURE 6.2: Example of a multidimensional probability density for explanation of the robustness
issue.

multidimensional pdf, it is impossible to configure such a set in practice. A versatile training set
contributes to the robustness of the VQ but increases the time needed to accomplish the design.

6.5 Specific Manifestations

Thus far, we have considered the implementation of a VQ as being a one-step quantization ofx. This is
known as full VQ and is definitely the optimal way to do quantization. However, in applications such
as LSF coding, quantizers between 25 and 30 bits are used. This leads to a prohibitive codebook size
and search complexity. Two suboptimal approaches are now described that use multiple codebooks
to alleviate the memory and search complexity requirements.

6.5.1 Multistage VQ

In multistage VQ consisting of R stages [3], there are R quantizers, Q1, Q2, · · · , QR . The
corresponding codebooks are denoted as C1, C2, · · · , CR . The sizes of these codebooks are
N1, N2, · · · , NR . The overall codebook size is N = N1 + N2 + · · · + NR . The entries of the ith
codebook Ci are y(i)

1 , y(i)
2 , · · · , y(i)

Ni
. Figure 6.3 shows a block diagram of the entire system.

FIGURE 6.3: Multistage vector quantization.
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The procedure for multistage VQ is as follows. The input x is first quantized by Q1 to y(1)
k . The

quantization error is e1 = x − y(1)
k , which is in turn quantized by Q2 to y(2)

k . The quantization

error at the second stage is e2 = e1 − y(2)
k . This error is quantized at the third stage. The process

repeats and at the Rth stage, eR−1 is quantized by QR to y(R)
k such that the quantization error is eR .

The original vector x is quantized to y = y(1)
k + y(2)

k + · · · + y(R)
k . The overall quantization error is

x − y = eR .

The reduction in the memory requirement and search complexity is best illustrated by a simple
example. A full VQ of 30 bits will have one codebook of 230 codevectors (cannot be used in practice).
An equivalent multistage VQ of R = 3 stages will have three 10-bit codebooks C1, C2, and C3. The
total number of codevectors to be stored is 3 × 210, which is practically feasible. It follows that the
search complexity is also drastically reduced over that of a full VQ.

The simplest way to train a multistage VQ is to perform sequential training of the codebooks. We
start with a training set T = {x1, x2, x3, · · · xM} ∈ Rp to get C1. The entire set T is quantized by
Q1 to get a training set for the next stage. The codebook C2 is designed from this new training set.
This procedure is repeated so that all the R codebooks are designed. A joint design procedure for
multistage VQ has been recently developed in [15] but is outside the scope of this article.

6.5.2 Split VQ

In split VQ [3], x = [x1 x2 x3 · · · xp]T ∈ Rp is split or partitioned into R subvectors of smaller

dimension as x = [x(1) x(2)x(3) · · · x(R)]T . The ith subvector x(i) has dimension di . Therefore,
p = d1 + d2 + · · · + dR . Specifically,

x(1) = [x1 x2 · · · xd1]T (6.20)

x(2) = [xd1+1 xd1+2 · · · xd1+d2]T (6.21)

x(3) = [xd1+d2+1 xd1+d2+2 · · · xd1+d2+d3]T (6.22)

and so forth.

There are R quantizers, one for each subvector. The subvectors x(i) are individually quantized to

y(i)
k so that the full vector x is quantized to y = [y(1)

k y(2)
k y(3)

k · · · y(R)
k ]T ∈ Rp . The quantizers are

designed using the appropriate subvectors in the training set T . The extreme case of a split VQ is
when R = p. Then, d1 = d2 = · · · = dp = 1 and we get a scalar quantizer.

The reduction in the memory requirement and search complexity is again illustrated by a similar
example as for multistage VQ. Suppose the dimension p = 10. A full VQ of 30 bits will have one
codebook of 230 codevectors. An equivalent split VQ of R = 3 splits uses subvectors of dimensions
d1 = 3, d2 = 3, and d3 = 4. For each subvector, there will be a 10-bit codebook having 210

codevectors.

Finally, note that split VQ is feasible if the distortion measure is separable in that

d(x, y) =
R∑

i=1

d
(
x(i), y(i)

k

)
(6.23)

This property is true for the Lr distance and for the weighted L2 distance if the matrix of weights W
is diagonal.
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6.6 Applications

In this article, two applications of quantization are discussed. One is in the area of speech coding and
the other is in speaker identification. Both are based on LP analysis of speech [8] as performed by the
autocorrelation method. As mentioned earlier, the predictor coefficients, ak , describe a minimum
phase nonrecursive LP filter A(z) as given by Eq. (6.19). We recall that the filter 1/A(z) describes the
spectral envelope of the speech, which in turn gives information about the formants.

6.6.1 Predictive Speech Coding

In predictive speech coders, the predictor coefficients (or a transformation thereof) must be quan-
tized. The main aim is to preserve the spectral envelope as described by 1/A(z) and, in particular,
preserve the formants. The coefficients ak are transformed into an LSF vector f. The LSFs are more
clearly related to the spectral envelope in that (1) the spectral sensitivity is local to a change in a
particular frequency and (2) the closeness of two adjacent LSFs indicates a formant.

Ideally, LSFs should be quantized to minimize the spectral distortion (SD) given by

SD =
√

1

B

∫
R

[
10 log

(
|Aq

(
ej2πf

) |2/|A (
ej2πf

) |2
)]2

df (6.24)

where A(.) refers to the original LP filter, Aq(.) refers to the quantized LP filter, B is the bandwidth of
interest, and R is the frequency range of interest. The SD is not a mathematically tractable measure
and is also not separable if split VQ is to be used. A weighted L2 measure is used in which W is
diagonal and the ith diagonal element is w(i) is given by [14]:

w(i) = 1

fi − fi−1
+ 1

fi+1 − fi

(6.25)

where f = [f1 f2 f3 · · · fp]T ∈ Rp , f0 is taken to be zero, and fp+1 is taken to be the highest digital
frequency (π or 0.5 if normalized). Regarding this distance measure, note the following:

1. The LSFs are ordered (fi+1 > fi) if and only if the LP filter A(z) is minimum phase.
This guarantees that w(i) > 0.

2. The weight w(i) is high if two adjacent LSFs are close to each other. Therefore, more
weight is given to regions in the spectrum having formants.

3. The weights are dependent on the input vector f. This makes the computation of the
codevectors using the LBG algorithm different from the case when the weights are con-
stant. However, for finding the codevector given a Voronoi region, the average of the
training vectors in the region is taken so that the ordering property is preserved.

4. Mathematical tractability and separability of the distance measure are obvious.

A quantizer can be designed from a training set of LSFs using the weighted L2 distance. Consider
LSFs obtained from speech that is lowpass filtered to 3400 Hz and sampled at 8 kHz. If there are
additional highpass or bandpass filtering effects, some of the LSFs tend to migrate [16]. Therefore, a
VQ trained solely on one filtering condition will not be robust to test data derived from other filtering
conditions [16]. The solution in [16] to robustize a VQ is to configure a training set consisting
of two main components. First, LSFs from different filtering conditions are gathered to provide a
reasonable empirical estimate of the multidimensional pdf. Second, a uniformly distributed set of
vectors provides for coverage of the multidimensional space (similar to what is accomplished by an
SQ). Finally, multistage or split LSF quantizers are used for practical feasibility [13, 15, 16].
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6.6.2 Speaker Identification

Speaker recognition is the task of identifying a speaker by his or her voice. Systems performing
speaker recognition operate in different modes. A closed set mode is the situation of identifying a
particular speaker as one in a finite set of reference speakers [17]. In an open set system, a speaker
is either identified as belonging to a finite set or is deemed not to be a member of the set [17]. For
speaker verification, the claim of a speaker to be one in a finite set is either accepted or rejected [18].
Speaker recognition can either be done as a text-dependent or text-independent task. The difference
is that in the former case, the speaker is constrained as to what must be said, while in the latter case
no constraints are imposed. In this article, we focus on the closed set, text-independent mode. The
overall system will have three components, namely, (1) LP analysis for parameterizing the spectral
envelope, (2) feature extraction for ensuring speaker discrimination, and (3) classifier for making a
decision. The input to the system will be a speech signal. The output will be a decision regarding the
identity of the speaker.

After LP analysis of speech is carried out, the LP predictor coefficients, ak , are converted into the
LP cepstrum. The cepstrum is a popular feature as it provides for good speaker discrimination. Also,
the cepstrum lends itself to the L2 or weighted L2 distance that is simple and yet reflective of the log
spectral distortion between two LP filters [19]. To achieve good speaker discrimination, the formants
must be captured. Hence, a dimension of 12 is usually used.

The cepstrum is used to develop a VQ classifier [20] as shown in Fig. 6.4. For each speaker enrolled
in the system, a training set is established from utterances spoken by that speaker. From the training

FIGURE 6.4: A VQ based classifier for speaker identification.

set, a VQ codebook is designed that serves as a speaker model. The VQ codebook represents a portion
of the multidimensional space that is characteristic of the feature or cepstral vectors for a particular
speaker. Good discrimination is achieved if the codebooks show little or no overlap as illustrated
in Fig. 6.5 for the case of three speakers. Usually, a small codebook size of 64 or 128 codevectors
is sufficient [21]. Even if there are 50 speakers enrolled, the memory requirement is feasible for
real-time applications. An SQ is of no use because the correlations among the vector components
are crucial for speaker discrimination. For the same reason, multistage or split VQ is also of no use.
Moreover, full VQ can easily be used given the relatively smaller codebook size as compared to coding.
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FIGURE 6.5: VQ codebooks for three speakers.

Given a random speech utterance, the testing procedure for identifying a speaker is as follows (see
Fig. 6.4). First, the S test feature (cepstrum) vectors are computed. Consider the first vector. It is
quantized by the codebook for speaker 1 and the resulting minimum L2 or weighted L2 distance
is recorded. This quantization is done for all S vectors and the resulting minimum distances are
accumulated (added up) to get an overall score for speaker 1. In this manner, an overall score is
computed for all the speakers. The identified speaker is the one with the least overall score. Note
that with the small codebook sizes, the search complexity is practically feasible. In fact, the overall
score for the different speakers can be obtained in parallel. The performance measure for a speaker
identification system is the identification success rate, which is the number of test utterances for
which the speaker is identified correctly divided by the total number of test utterances.

The robustness issue is of great significance and emerges when the cepstral vectors derived from
certain test speech material have not been considered in the training phase. This phenomenon
of a full VQ not being robust to a variety of test inputs has been mentioned earlier and has been
encountered in our discussion on LSF coding. The use of different training and testing conditions
degrades performance since the components of the cepstrum vectors (such as LSFs) tend to migrate.
UnlikeLSFcoding, appending the training setwithauniformlydistributed setof vectors toaccomplish
coverage of a large space will not work as there will be much overlap among the codebooks of different
speakers. The focus of the research is to develop more robust features that show little variation as the
speech material changes [22, 23].
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6.7 Summary

This article has presented a tutorial description of quantization. Starting from the basic definition
and properties of vector and scalar quantization, design algorithms are described. Many practical
aspects of design and implementation (such as distortion measure, memory, search complexity, and
robustness) are discussed. These practical aspects are interrelated. Two important applications
of vector quantization in speech processing are discussed in which these practical aspects play an
important role.
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• Short and Medium Length Convolution • Multirate Methods for Running Convolution • Convo-
lution in Subbands • Distributed Arithmetic • Fast Convolution by Number Theoretic Transforms
• Polynomial-Based Methods • Special Low-Multiply Filter Structures
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tidimensional DCTs • Nonstandard Models and Problems
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T
HEFIELDOFDIGITALSIGNALPROCESSINGgrewrapidly andachieved its currentpromi-
nence primarily through the discovery of efficient algorithms for computing various trans-
forms (mainly the Fourier transforms) in the 1970s. In addition to fast Fourier transforms

(FFTs), discrete cosine transforms (DCTs) have also gained importance owing to their performance
being very close to the statistically optimum Karhunen Loeve transform.

Transforms, convolutions, and matrix-vector operations form the basic tools utilized by the signal
processing community, and this section reviews andpresents the state of art in these areas of increasing
importance.

The chapter by Duhamel and Vetterli, “Fast Fourier Transforms: A Tutorial Review and a State of
the Art”, presents a thorough discussion of this important transform. Selesnick and Burrus present
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an excellent survey of filtering and convolution techniques in the chapter “Fast Convolution and
Filtering”.

One approach to understanding the time and space complexities of signal processing algorithms
is through the use of quantitative complexity theory, and Feig’s “Complexity Theory of Transforms
in Signal Processing” applies quantitative measures to the computation of transforms. Finally, Yagle
presents a comprehensive discussion of matrix computations in signal processing in “Fast Matrix
Computations”.
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7.4 FFTs with Twiddle Factors

TheCooley-TukeyMapping •Radix-2andRadix-4Algorithms
• Split-Radix Algorithm • Remarks on FFTs with Twiddle Fac-
tors

7.5 FFTs Based on Costless Mono- to Multidimensional Mapping
Basic Tools • Prime Factor Algorithms [95] • Winograd’s
Fourier Transform Algorithm (WFTA) [56] • Other Members
of This Class [38] • Remarks on FFTs Without Twiddle Factors
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Multiplicative Complexity • Additive Complexity

7.7 Structural Considerations
Inverse FFT • In-Place Computation • Regularity, Parallelism
• Quantization Noise

7.8 Particular Cases and Related Transforms
DFT Algorithms for Real Data • DFT Pruning • Related Trans-
forms

7.9 Multidimensional Transforms
Row-Column Algorithms • Vector-Radix Algorithms • Nested
Algorithms • Polynomial Transform • Discussion

7.10 Implementation Issues
General Purpose Computers • Digital Signal Processors • Vec-
tor and Multi-Processors • VLSI

7.11 Conclusion
Acknowledgments
References

The publication of the Cooley-Tukey fast Fourier transform (FFT) algorithm in 1965
has opened a new area in digital signal processing by reducing the order of complexity of

1Reprinted from Signal Processing 19:259-299, 1990 with kind permission from Elsevier Science-NL, Sara Burgerhartstraat
25, 1055 KV Amsterdam, The Netherlands.
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some crucial computational tasks such as Fourier transform and convolution from N2

to N log2 N , where N is the problem size. The development of the major algorithms
(Cooley-Tukey and split-radix FFT, prime factor algorithm and Winograd fast Fourier
transform) is reviewed. Then, an attempt is made to indicate the state of the art on the
subject, showing the standing of research, open problems, and implementations.

7.1 Introduction

Linear filtering and Fourier transforms are among the most fundamental operations in digital signal
processing. However, their wide use makes their computational requirements a heavy burden in most
applications. Direct computation of both convolution and discrete Fourier transform (DFT) requires
on the order of N2 operations where N is the filter length or the transform size. The breakthrough of
the Cooley-Tukey FFT comes from the fact that it brings the complexity down to an order ofN log2 N

operations. Because of the convolution property of the DFT, this result applies to the convolution as
well. Therefore, fast Fourier transform algorithms have played a key role in the widespread use of
digital signal processing in a variety of applications such as telecommunications, medical electronics,
seismic processing, radar or radio astronomy to name but a few.

Among the numerous further developments that followed Cooley and Tukey’s original contribu-
tion, the fast Fourier transform introduced in 1976 by Winograd [54] stands out for achieving a new
theoretical reduction in the order of the multiplicative complexity. Interestingly, the Winograd algo-
rithm uses convolutions to compute DFTs, an approach which is just the converse of the conventional
method of computing convolutions by means of DFTs. What might look like a paradox at first sight
actually shows the deep interrelationship that exists between convolutions and Fourier transforms.

Recently, theCooley-Tukey typealgorithmshaveemergedagain, notonlybecause implementations
of the Winograd algorithm have been disappointing, but also due to some recent developments
leading to the so-called split-radix algorithm [27]. Attractive features of this algorithm are both its
low arithmetic complexity and its relatively simple structure.

Both the introduction of digital signal processors and the availability of large scale integration has
influenced algorithm design. While in the sixties and early seventies, multiplication counts alone
were taken into account, it is now understood that the number of addition and memory accesses in
software and the communication costs in hardware are at least as important.

The purpose of this chapter is first to look back at 20 years of developments since the Cooley-
Tukey paper. Among the abundance of literature (a bibliography of more than 2500 titles has been
published [33]), we will try to highlight only the key ideas. Then, we will attempt to describe the
state of the art on the subject. It seems to be an appropriate time to do so, since on the one hand,
the algorithms have now reached a certain maturity, and on the other hand, theoretical results on
complexity allow us to evaluate how far we are from optimum solutions. Furthermore, on some
issues, open questions will be indicated.

Let us point out that in this chapter we shall concentrate strictly on the computation of the
discrete Fourier transform, and not discuss applications. However, the tools that will be developed
may be useful in other cases. For example, the polynomial products explained in Section 7.5.1 can
immediately be applied to the derivation of fast running FIR algorithms [73, 81].

The chapter is organized as follows.
Section 7.2 presents the history of the ideas on fast Fourier transforms, from Gauss to the splitradix

algorithm.
Section 7.3 shows the basic technique that underlies all algorithms, namely the divide and conquer

approach, showing that it always improves the performance of a Fourier transform algorithm.
Section 7.4 considers Fourier transforms with twiddle factors, that is, the classic Cooley-Tukey type

schemes and the split-radix algorithm. These twiddle factors are unavoidable when the transform
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length is composite with non-coprime factors. When the factors are coprime, the divide and conquer
scheme can be made such that twiddle factors do not appear.

This is the basis of Section 7.5, which then presents Rader’s algorithm for Fourier transforms of
prime lengths, and Winograd’s method for computing convolutions. With these results established,
Section 7.5 proceeds to describe both the prime factor algorithm (PFA) and the Winograd Fourier
transform (WFTA).

Section 7.6 presents a comprehensive and critical survey of the body of algorithms introduced thus
far, then shows the theoretical limits of the complexity of Fourier transforms, thus indicating the
gaps that are left between theory and practical algorithms.

Structural issues of various FFT algorithms are discussed in Section 7.7.
Section 7.8 treats some other cases of interest, like transforms on special sequences (real or sym-

metric) and related transforms, while Section 7.9 is specifically devoted to the treatment of multidi-
mensional transforms.

Finally, Section 7.10 outlines some of the important issues of implementations. Considerations on
software for general purpose computers, digital signal processors, and vector processors are made.
Then, hardware implementations are addressed. Some of the open questions when implementing
FFT algorithms are indicated.

The presentation we have chosen here is constructive, with the aim of motivating the “tricks”
that are used. Sometimes, a shorter but “plug-in” like presentation could have been chosen, but we
avoided it because we desired to insist on the mechanisms underlying all these algorithms. We have
also chosen to avoid the use of some mathematical tools, such as tensor products (that are very useful
when deriving some of the FFT algorithms) in order to be more widely readable.

Note that concerning arithmetic complexities, all sections will refer to synthetic tables giving the
computational complexities of the various algorithms for which software is available. In a few cases,
slightly better figures can be obtained, and this will be indicated.

For more convenience, the references are separated between books and papers, the latter being fur-
ther classified corresponding to subject matters (1-D FFT algorithms, related ones, multidimensional
transforms and implementations).

7.2 A Historical Perspective

The development of the fast Fourier transform will be surveyed below because, on the one hand,
its history abounds in interesting events, and on the other hand, the important steps correspond to
parts of algorithms that will be detailed later.

A first subsection describes the pre-Cooley-Tukey area, recalling that algorithms can get lost by
lack of use, or, more precisely, when they come too early to be of immediate practical use. The devel-
opments following the Cooley-Tukey algorithm are then described up to the most recent solutions.
Another subsection is concerned with the steps that lead to the Winograd and to the prime factor
algorithm, and finally, an attempt is made to briefly describe the current state of the art.

7.2.1 From Gauss to the Cooley-Tukey FFT

While the publication of a fast algorithm for the DFT by Cooley and Tukey [25] in 1965 is certainly
a turning point in the literature on the subject, the divide and conquer approach itself dates back to
Gauss as noted in a well-documented analysis by Heideman et al. [34]. Nevertheless, Gauss’s work
on FFTs in the early 19th century (around 1805) remained largely unnoticed because it was only
published in Latin and this after his death.

Gauss used the divide and conquer approach in the same way as Cooley and Tukey have published it
later in order to evaluate trigonometric series, but his work predates even Fourier’s work on harmonic
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analysis (1807)! Note that his algorithm is quite general, since it is explained for transforms on
sequences with lengths equal to any composite integer.

During the 19th century, efficient methods for evaluating Fourier series appeared independently
at least three times [33], but were restricted on lengths and number of resulting points. In 1903,
Runge derived an algorithm for lengths equal to powers of 2 which was generalized to powers of 3 as
well and used in the forties. Runge’s work was thus quite well known, but nevertheless disappeared
after the war.

Another important result useful in the most recent FFT algorithms is another type of divide and
conquer approach, where the initial problem of length N1 ·N2 is divided into subproblems of lengths
N1 and N2 without any additional operations, N1 and N2 being coprime.

This result dates back to the work of Good [32] who obtained this result by simple index mappings.
Nevertheless, the full implication of this result will only appear later, when efficient methods will
be derived for the evaluation of small, prime length DFTs. This mapping itself can be seen as an
application of the Chinese remainder theorem (CRT), which dates back to 100 years A.D.! [10]–[18].

Then, in 1965, appeared a brief article by Cooley and Tukey, entitled “An algorithm for the machine
calculation of complex Fourier series” [25], which reduces the order of the number of operations
from N2 to N log2(N) for a length N = 2n DFT.

This turned out to be a milestone in the literature on fast transforms, and was credited [14, 15] with
the tremendous increase of interest in DSP beginning in the seventies. The algorithm is suited for
DFTs on any composite length, and is thus of the type that Gauss had derived almost 150 years before.
Note that all algorithms published in-between were more restrictive on the transform length [34].

Looking back at this brief history, one may wonder why all previous algorithms had disappeared
or remained unnoticed, whereas the Cooley-Tukey algorithm had such a tremendous success. A
possible explanation is that the growing interest in the theoretical aspects of digital signal processing
was motivated by technical improvements in semiconductor technology. And, of course, this was
not a one-way street.

The availability of reasonable computing power produced a situation where such an algorithm
would suddenly allow numerous new applications. Considering this history, one may wonder how
many other algorithms or ideas are just sleeping in some notebook or obscure publication.

The two types of divide and conquer approaches cited above produced two main classes of algo-
rithms. For the sake of clarity, we will now skip the chronological order and consider the evolution
of each class separately.

7.2.2 Development of the Twiddle Factor FFT

When the initial DFT is divided into sublengths which are not coprime, the divide and conquer
approach as proposed by Cooley and Tukey leads to auxiliary complex multiplications, initially
named twiddle factors, which cannot be avoided in this case.

While Cooley-Tukey’s algorithm is suited for any composite length, and explained in [25] in a
general form, the authors gave an example with N = 2n, thus deriving what is now called a radix-2
decimation in time (DIT) algorithm (the input sequence is divided into decimated subsequences
having different phases). Later, it was often falsely assumed that the initial Cooley-Tukey FFT was a
DIT radix-2 algorithm only.

A number of subsequent papers presented refinements of the original algorithm, with the aim of
increasing its usefulness.

The following refinements were concerned:

– with the structure of the algorithm: it was emphasized that a dual approach leads to
“decimation in frequency” (DIF) algorithms,
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– or with the efficiency of the algorithm, measured in terms of arithmetic operations:
Bergland showed that higher radices, for example radix-8, could be more efficient, [21]

– or with the extension of the applicability of the algorithm: Bergland [60], again, showed
that the FFT could be specialized to real input data, and Singleton gave a mixed radix FFT
suitable for arbitrary composite lengths.

While these contributions all improved the initial algorithm in some sense (feweroperations and/or
easier implementations), actually no new idea was suggested.

Interestingly, in these very early papers, all the concerns guiding the recent work were already here:
arithmetic complexity, but also different structures and even real-data algorithms.

In 1968, Yavne [58] presented a little-known paper that sets a record: his algorithm requires the
least known number of multiplications, as well as additions for length-2n FFTs, and this both for real
and complex input data. Note that this record still holds, at least for practical algorithms. The same
number of operations was obtained later on by other (simpler) algorithms, but due to Yavne’s cryptic
style, few researchers were able to use his ideas at the time of publication.

Since twiddle factors lead to most computations in classical FFTs, Rader and Brenner [44], perhaps
motivated by the appearance of the Winograd Fourier transform which possesses the same charac-
teristic, proposed an algorithm that replaces all complex multiplications by either real or imaginary
ones, thus substantially reducing the number of multiplications required by the algorithm. This
reduction in the number of multiplications was obtained at the cost of an increase in the number
of additions, and a greater sensitivity to roundoff noise. Hence, further developments of these “real
factor” FFTs appeared in [24, 42], reducing these problems. Bruun [22] also proposed an original
scheme particularly suited for real data. Note that these various schemes only work for radix-2
approaches.

It took more than 15 years to see again algorithms for length-2n FFTs that take as few operations as
Yavne’s algorithm. In 1984, four papers appeared or were submitted almost simultaneously [27, 40,
46, 51] and presented so-called “split-radix” algorithms. The basic idea is simply to use a different
radix for the even part of the transform (radix-2) and for the odd part (radix-4). The resulting
algorithms have a relatively simple structure and are well adapted to real and symmetric data while
achieving the minimum known number of operations for FFTs on power of 2 lengths.

7.2.3 FFTs Without Twiddle Factors

While the divide and conquer approach used in the Cooley-Tukey algorithm can be understood as a
“false” mono- to multi-dimensional mapping (this will be detailed later), Good’s mapping, which can
be used when the factors of the transform lengths are coprime, is a true mono- to multi-dimensional
mapping, thus having the advantage of not producing any twiddle factor.

Its drawback, at first sight, is that it requires efficiently computable DFTs on lengths that are
coprime: For example, a DFT of length 240 will be decomposed as 240 = 16 · 3 · 5, and a DFT of
length 1008 will be decomposed in a number of DFTs of lengths 16, 9, and 7. This method thus
requires a set of (relatively) small-length DFTs that seemed at first difficult to compute in less than
N2

i operations. In 1968, however, Rader [43] showed how to map a DFT of length N , N prime, into
a circular convolution of length N − 1. However, the whole material to establish the new algorithms
was not ready yet, and it took Winograd’s work on complexity theory, in particular on the number
of multiplications required for computing polynomial products or convolutions [55] in order to use
Good’s and Rader’s results efficiently.

All these results were considered as curiosities when they were first published, but their combina-
tion, first done by Winograd and then by Kolba and Parks [39] raised a lot of interest in that class of
algorithms. Their overall organization is as follows:

After mapping the DFT into a true multidimensional DFT by Good’s method and using the fast
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convolution schemes in order to evaluate the prime length DFTs, a first algorithm makes use of the
intimate structure of these convolution schemes to obtain a nesting of the various multiplications.
This algorithm is known as the Winograd Fourier transform algorithm (WFTA) [54], an algorithm
requiring the least knownnumberofmultiplications amongpractical algorithms formoderate lengths
DFTs. If the nesting is not used, and the multi-dimensional DFT is performed by the row-column
method, the resulting algorithm is known as the prime factor algorithm (PFA) [39], which, while
using more multiplications, has less additions and a better structure than the WFTA.

From the above explanations, one can see that these two algorithms, introduced in 1976 and 1977,
respectively, require more mathematics to be understood [19]. This is why it took some effort to
translate the theoretical results, especially concerning the WFTA, into actual computer code.

It is even our opinion that what will remain mostly of the WFTA are the theoretical results, since
although a beautiful result in complexity theory, the WFTA did not meet its expectations once
implemented, thus leading to a more critical evaluation of what “complexity” meant in the context
of real life computers [41, 108, 109].

The result of this new look at complexity was an evaluation of the number of additions and data
transfers as well (and no longer only of multiplications). Furthermore, it turned out recently that
the theoretical knowledge brought by these approaches could give a new understanding of FFTs with
twiddle factors as well.

7.2.4 Multi-Dimensional DFTs

Due to the large amount of computations they require, the multi-dimensional DFTs as such (with
common factors in the different dimensions, which was not the case in the multi-dimensional trans-
lation of a mono-dimensional problem by PFA) were also carefully considered.

The two most interesting approaches are certainly the vector radix FFT (a direct approach to the
multi-dimensional problem in a Cooley-Tukey mood) proposed in 1975 by Rivard [91] and the
polynomial transform solution of Nussbaumer and Quandalle [87, 88] in 1978.

Both algorithms substantially reduce the complexity over traditional row-column computational
schemes.

7.2.5 State of the Art

From a theoretical point of view, the complexity issue of the discrete Fourier transform has reached a
certain maturity. Note that Gauss, in his time, did not even count the number of operations necessary
in his algorithm. In particular, Winograd’s work on DFTs whose lengths have coprime factors both
sets lower bounds (on the number of multiplications) and gives algorithms to achieve these [35, 55],
although they are not always practical ones. Similar work was done for length-2n DFTs, showing the
linear multiplicative complexity of the algorithm [28, 35, 105] but also the lack of practical algorithms
achieving this minimum (due to the tremendous increase in the number of additions [35]).

Considering implementations, the situation isof coursemore involvedsincemanymoreparameters
have to be taken into account than just the number of operations.

Nevertheless, it seems that both the radix-4 and the split-radix algorithm are quite popular for
lengths which are powers of 2, while the PFA, thanks to its better structure and easier implementation,
wins over the WFTA for lengths having coprime factors.

Recently, however, new questions have come up because in software on the one hand, new pro-
cessors may require different solutions (vector processors, signal processors), and on the other hand,
the advent of VLSI for hardware implementations sets new constraints (desire for simple structures,
high cost of multiplications vs. additions).
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7.3 Motivation (or: why dividing is also conquering)

This section is devoted to the method that underlies all fast algorithms for DFT, that is the “divide
and conquer” approach.

The discrete Fourier transform is basically a matrix-vector product. Calling (x0, x1, . . . , xN−1)
T

the vector of the input samples,
(X0, X1, . . . , XN−1)

T

the vector of transform values and WN the primitive N th root of unity (WN = e−j2π/N) the DFT
can be written as




X0
X1
X2
...

XN−1




=




1 1 1 1 · · · 1
1 WN W2

N W3
N · · · WN−1

N

1 W2
N W4

N W6
N · · · W

2(N−1)
N

...
...

...
...

...

1 WN−1
N W

2(N−1)
N · · · · · · W

(N−1)(N−1)
N




×




x0
x1
x2
x3
...

xN−1




(7.1)

The direct evaluation of the matrix-vector product in (7.1) requires of the order of N2 complex
multiplications and additions (we assume here that all signals are complex for simplicity).

The idea of the “divide and conquer” approach is to map the original problem into several sub-
problems in such a way that the following inequality is satisfied:

∑
cost(subproblems) + cost(mapping)

< cost(original problem). (7.2)

But the real power of the method is that, often, the division can be applied recursively to the
subproblems as well, thus leading to a reduction of the order of complexity.

Specifically, let us have a careful look at the DFT transform in (7.3) and its relationship with the
z-transform of the sequence {xn} as given in (7.4).

Xk =
N−1∑
i=0

xiW
ik
N , k = 0, . . . , N − 1, (7.3)

X(z) =
N−1∑
i=0

xiz
−i . (7.4)

{Xk} and {xi} form a transform pair, and it is easily seen that Xk is the evaluation of X(z) at point
z = W−k

N :
Xk = X(z)

z=W−k
N

. (7.5)

Furthermore, due to the sampled nature of {xn}, {Xk} is periodic, and vice versa: since {Xk} is
sampled, {xn} must also be periodic.

Fromaphysicalpointofview, thismeans thatbothsequences {xn}and {Xk}are repeated indefinitely
with period N . This has a number of consequences as far as fast algorithms are concerned.
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All fast algorithms are based on a divide and conquer strategy; we have seen this in Section 7.2.
But how shall we divide the problem (with the purpose of conquering it)?

The most natural way is, of course, to consider subsets of the initial sequence, take the DFT of
these subsequences, and reconstruct the DFT of the initial sequence from these intermediate results.

Let I l , l = 0, . . . , r − 1 be the partition of {0, 1, . . . , N − 1} defining the r different subsets of
the input sequence. Equation (7.4) can now be rewritten as

X(z) =
N−1∑
i=0

xiz
−i =

r−1∑
l=0

∑

i∈I l

xiz
−i , (7.6)

and, normalizing the powers of z with respect to some x0l in each subset I l :

X(z) =
r−1∑
l=0

z−i0l
∑

i∈I l

xiz
−i+i0l . (7.7)

From the considerations above, we want the replacement of z byW−k
N in the innermost sum of (7.7)

to define an element of the DFT of {xi |i ∈ I l}. Of course, this will be possible only if the subset
{xi |i ∈ I l}, possibly permuted, has been chosen in such a way that it has the same kind of periodicity
as the initial sequence. In what follows, we show that the three main classes of FFT algorithms can
all be casted into the form given by (7.7).

– In some cases, the second sum will also involve elements having the same periodicity,
hence will define DFTs as well. This corresponds to the case of Good’s mapping: all the
subsets I l , have the same number of elements m = N/r and (m, r) = 1.

– If this is not the case, (7.7) will define one step of an FFT with twiddle factors: when the
subsets I l all have the same number of elements, (7.7) defines one step of a radix-r FFT.

– If r = 3, oneof the subsets havingN/2elements, and theotheroneshavingN/4elements,
(7.7) is the basis of a split-radix algorithm.

Furthermore, it is already possible to show from (7.7) that the divide and conquer approach will
always improve the efficiency of the computation.

To make this evaluation easier, let us suppose that all subsets I l , have the same number of elements,
say N1. If N = N1 · N2, r = N2, each of the innermost sums of (7.7) can be computed with N2

1
multiplications, which gives a total of N2N

2
1 , when taking into account the requirement that the sum

over i ∈ I I defines a DFT. The outer sum will need r = N2 multiplications per output point, that is
N2 · N for the whole sum.

Hence, the total number of multiplications needed to compute (7.7) is

N2 · N + N2 · N2
1 = N1 · N2(N1 + N2) < N2

1 · N2
2

if N1, N2 > 2 , (7.8)

which shows clearly that the divide and conquer approach, as given in (7.7), has reduced the number
of multiplications needed to compute the DFT.

Of course, when taking into account that, even if the outermost sum of (7.7) is not already in the
form of a DFT, it can be rearranged into a DFT plus some so-called twiddle-factors, this mapping
is always even more favorable than is shown by (7.8), especially for small N1, N2 (for example, the
length-2 DFT is simply a sum and difference).

Obviously, if N is highly composite, the division can be applied again to the subproblems, which
results in a number of operations generally several orders of magnitude better than the direct matrix
vector product.
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The important point in (7.2) is that two costs appear explicitly in the divide and conquer scheme:
the cost of the mapping (which can be zero when looking at the number of operations only) and the
cost of the subproblems. Thus, different types of divide and conquer methods attempt to find various
balancing schemes between the mapping and the subproblem costs. In the radix-2 algorithm, for
example, the subproblems end up being quite trivial (only sum and differences), while the mapping
requires twiddle factors that lead to a large number of multiplications. On the contrary, in the prime
factor algorithm, the mapping requires no arithmetic operation (only permutations), while the small
DFTs that appear as subproblems will lead to substantial costs since their lengths are coprime.

7.4 FFTs with Twiddle Factors

The divide and conquer approach reintroduced by Cooley and Tukey [25] can be used for any
composite length N but has the specificity of always introducing twiddle factors. It turns out that
when the factors of N are not coprime (for example if N = 2n), these twiddle factors cannot be
avoided at all. This section will be devoted to the different algorithms in that class.

The difference between the various algorithms will consist in the fact that more or fewer of these
twiddle factors will turn out to be trivial multiplications, such as 1, −1, j,−j .

7.4.1 The Cooley-Tukey Mapping

Let us assume that the length of the transform is composite: N = N1 · N2.
As we have seen in Section 7.3, we want to partition {xi |i = 0, . . . , N − 1} into different subsets

{xi |i ∈ I l} in such a way that the periodicities of the involved subsequences are compatible with the
periodicity of the input sequence, on the one hand, and allow to define DFTs of reduced lengths on
the other hand.

Hence, it is natural to consider decimated versions of the initial sequence:

In1 = {n2N1 + n1},
n1 = 0, . . . , N1 − 1, n2 = 0, . . . , N2 − 1 , (7.9)

which, introduced in (7.6), gives

X(z) =
N1−1∑
n1=0

N2−1∑
n2=0

xn2N1+n1z
−(n2N1+n1) , (7.10)

and, after normalizing with respect to the first element of each subset,

X(z) =
N1−1∑
n1=0

z−n1

N2−1∑
n2=0

xn2N1+n1z
−n2N1 ,

Xk = X(z)|
z=W−k

N
(7.11)

=
N1−1∑
n1=0

W
n1k
N

N2−1∑
n2=0

xn2N1+n1W
n2N1k
N .

Using the fact that

W
iN1
N = e−j2πN1i/N = e−j2π/N2 = Wi

N2
, (7.12)

(7.11) can be rewritten as

Xk =
N1−1∑
n1=0

W
n1k
N

N2−1∑
n2=0

xn2N1+n1W
n2k
N2

. (7.13)
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Equation (7.13) is now nearly in its final form, since the right-hand sum corresponds to N1 DFTs
of length N2, which allows the reduction of arithmetic complexity to be achieved by reiterating the
process. Nevertheless, the structure of the CooleyTukey FFT is not fully given yet.

Call Yn1,k the kth output of the n1th such DFT:

Yn1,k =
N2−1∑
n2=0

xn2N1+n1W
n2k
N2

. (7.14)

Note that in Yn1,k, k can be taken modulo N2, because

Wk
N2

= W
N2+k′
N2

= W
N2
N2

· Wk′
N2

= Wk′
N2

. (7.15)

With this notation, Xk becomes

Xk =
N1−1∑
n1=0

Yn1,kW
n1k
N . (7.16)

At this point, we can notice that all the Xk for ks being congruent modulo N2 are obtained from
the same group of N1 outputs of Yn1,k . Thus, we express k as

k = k1N2 + k2

k1 = 0, . . . , N1 − 1, k2 = 0, . . . , N2 − 1 . (7.17)

Obviously, Yn1,k is equal toYn1,k2 sincek canbe takenmoduloN2 in this case [see (7.12) and (7.15)].
Thus, we rewrite (7.16) as

Xk1N2+k2 =
N1−1∑
n1=0

Yn1,k2W
n1(k1N2+k2)
N , (7.18)

which can be reduced, using (7.12), to

Xk1N2+k2 =
N1−1∑
n1=0

Yn1,k2W
n1k2
N W

n1k1
N1

(7.19)

Calling Y ′
n1,k2

the result of the first multiplication (by the twiddle factors) in (7.19) we get

Y ′
n1,k2

= Yn1,k2W
n1k2
N . (7.20)

We see that the values of Xk1N2+k2 are obtained from N2 DFTs of length N1 applied on Y ′
n1,k2

:

Xk1N2+k2 =
N1−1∑
n1=0

Y ′
n1,k2

W
n1k1
N1

. (7.21)

We recapitulate the important steps that led to (7.21). First, we evaluated N1 DFTs of length N2
in (7.14). Then, N multiplications by the twiddle factors were performed in (7.20). Finally, N2 DFTs
of length N1 led to the final result (7.21).

A way of looking at the change of variables performed in (7.9) and (7.17) is to say that the one-
dimensional vector xi has been mapped into a two-dimensional vector xn1,n2 having N1 lines and
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N2 columns. The computation of the DFT is then divided into N1 DFTs on the lines of the vector
xn1,n2, a point by point multiplication with the twiddle factors and finally N2 DFTs on the columns
of the preceding result.

Until recently, this was the usual presentation of FFT algorithms, by the so-called “index map-
pings” [4, 23]. In fact, (7.9) and (7.17), taken together, are often referred to as the “Cooley-Tukey
mapping” or “common factor mapping.” However, the problem with the two-dimensional inter-
pretation is that it does not include all algorithms (like the split-radix algorithm that will be seen
later). Thus, while this interpretation helps the understanding of some of the algorithms, it hinders
the comprehension of others. In our presentation, we tried to enhance the role of the periodicities
of the problem, which result from the initial choice of the subsets.

Nevertheless, we illustrate pictorially a length-15 DFT using the two-dimensional view with N1 =
3, N2 = 5 (see Fig. 7.1), together with the Cooley-Tukey mapping in Fig. 7.2, to allow a precise
comparison with Good’s mapping that leads to the other class of FFTs: the FFTs without twiddle
factors. Note that for the casewhereN1 andN2 are coprime, theGood’smappingwill bemore efficient
as shown in the next section, and thus this example is for illustration and comparison purpose only.
Because of the twiddle factors in (7.20), one cannot interchange the order of DFTs once the input
mapping has been chosen. Thus, in Fig. 7.2(a), one has to begin with the DFTs on the rows of the
matrix. Choosing N1 = 5, N2 = 3 would lead to the matrix of Fig. 7.2(b), which is obviously
different from just transposing the matrix of Fig. 7.2(a). This shows again that the mapping does not
lead to a true two-dimensional transform (in that case, the order of row and column would not have
any importance) .

7.4.2 Radix-2 and Radix-4 Algorithms

The algorithms suited for lengths equal to powers of 2 (or 4) are quite popular since sequences of
such lengths are frequent in signal processing (they make full use of the addressing capabilities of
computers or DSP systems).

We assume first that N = 2n. Choosing N1 = 2and N2 = 2n−1 = N/2 in (7.9) and (7.10) divides
the input sequence into the sequence of even- and odd-numbered samples, which is the reason why
this approach is called “decimation in time” ( DIT). Both sequences are decimated versions, with
different phases, of the original sequence. Following (7.17), the output consists of N/2 blocks of 2
values. Actually, in this simple case, it is easy to rewrite (7.14) and (7.21) exhaustively:

Xk2 =
N/2−1∑
n2=0

x2n2W
n2k2
N/2

+ W
k2
N

N/2−1∑
n2=0

x2n2+1W
n2k2
N/2 , (7.22a)

XN/2+k2 =
N/2−1∑
n2=0

x2n2W
n2k2
N/2

− W
k2
N

N/2−1∑
n2=0

x2n2+1W
n2k2
N/2 . (7.22b)

Thus, Xm and XN/2+m are obtained by 2-point DFTs on the outputs of the length-N/2DFTs of the
even- and odd-numbered sequences, one of which is weighted by twiddle factors. The structure made
by a sum and difference followed (or preceded) by a twiddle factor is generally called a “butterfly.”
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FIGURE 7.1: 2-D view of the length-15 Cooley-Tukey FFT.

FIGURE 7.2: Cooley-Tukey mapping. (a) N1 = 3, N2 = 5; (b) N1 = 5, N2 = 3.
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The DIT radix-2 algorithm is schematically shown in Fig. 7.3.
Its implementation can now be done in several different ways. The most natural one is to reorder

the input data such that the samples of which the DFT has to be taken lie in subsequent locations. This
results in the bit-reversed input, in-order output decimation in time algorithm. Another possibility
is to selectively compute the DFTs over the input sequence (taking only the even- and odd-numbered
samples), and perform an in-place computation. The output will now be in bit-reversed order. Other
implementation schemes can lead to constant permutations between the stages (constant geometry
algorithm [15]).

If we reverse the role of N1 and N2, we get the decimation in frequency (DIF) version of the
algorithm. Inserting N1 = N/2and N2 = 2 into (7.9), (7.10) leads to [again from (7.14) and (7.21)]

X2k1 =
N/2−1∑
n1=0

W
n1k1
N/2

(
xn1 + xN/2+n1

)
, (7.23a)

X2k1+1 =
N/2−1∑
n1=0

W
n1k1
N/2 W

n1
N

(
xn1 − xN/2+n1

)
, (7.23b)

This first step of a DIF algorithm is represented in Fig. 7.5(a), while a schematic representation
of the full DIF algorithm is given in Fig. 7.4. The duality between division in time and division in
frequency is obvious, since one can be obtained from the other by interchanging the role of {xi} and
{Xk}.

Let us now consider the computational complexity of the radix-2 algorithm (which is the same
for the DIF and DIT version because of the duality indicated above). From (7.22) or (7.23), one
sees that a DFT of length N has been replaced by two DFTs of length N/2, and this at the cost of
N/2 complex multiplications as well as N complex additions. Iterating the scheme log2 N − 1 times
in order to obtain trivial transforms (of length 2) leads to the following order of magnitude of the
number of operations:

OM

[
DFTradix-2

] ≈ N/2
(
log2 N − 1

)

complex multiplications, (7.24a)

OA

[
DFTradix-2

] ≈ N
(
log2 N − 1

)

complex additions. (7.24b)

A closer look at the twiddle factors will enable us to still reduce these numbers. For comparison
purposes, we will count the number of real operations that are required, provided that the mul-
tiplication of a complex number x by Wi

N is done using three real multiplications and three real
additions [12]. Furthermore, if i is a multiple of N/4, no arithmetic operation is required, and
only two real multiplications and additions are required if i is an odd multiple of N/8. Taking into
account these simplifications results in the following total number of operations [12]:

M
[
DFTradix-2

] = 3N/2log2 N − 5N + 8 , (7.25a)

A
[
DFTradix-2

] = 7N/2log2 N − 5N + 8 . (7.25b)

Nevertheless, it should be noticed that these numbers are obtained by the implementation of
four different butterflies (one general plus three special cases), which reduces the regularity of the
programs. An evaluation of the number of real operations for other number of special butterflies is
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FIGURE 7.3: Decimation in time radix-2 FFT.

FIGURE 7.4: Decimation in frequency radix-2 FFT.
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FIGURE 7.5: Comparison of various DIF algorithms for the length-16 DFT. (a) Radix-2; (b) radix-4;
(c) split-radix.

given in [4], together with the number of operations obtained with the usual 4-mult, 2-adds complex
multiplication algorithm.

Another case of interest appears when N is a power of 4. Taking N1 = 4 and N2 = N/4, (7.13)
reduces the length-N DFT into 4 DFTs of length N/4, about 3N/4multiplications by twiddle factors,
and N/4 DFTs of length 4. The interest of this case lies in the fact that the length-4 DFTs do not
cost any multiplication (only 16 real additions). Since there are log4 N − 1 stages and the first set of
twiddle factors (corresponding to n1 = 0 in (7.20)) is trivial, the number of complex multiplications
is about

OM

[
DFTradix-4

] ≈ 3N/4
(
log4 N − 1

)
. (7.26)

Comparing (7.26) to (7.24a) shows that the number of multiplications can be reduced with this
radix-4 approach by about a factor of 3/4. Actually, a detailed operation count using the simplifica-
tions indicated above gives the following result [12]:
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M
[
DFTradix-4

] = 9N/8log2 N − 43N/12 + 16/3 , (7.27a)

A
[
DFTradix-4

] = 25N/8log2 N − 43N/12 + 16/3 . (7.27b)

Nevertheless, these operation counts are obtained at the cost of using six different butterflies in
the programming of the FFT. Slight additional gains can be obtained when going to even higher
radices (like 8 or 16) and using the best possible algorithms for the small DFTs. Since programs with
a regular structure are generally more compact, one often uses recursively the same decomposition
at each stage, thus leading to full radix-2 or radix-4 programs, but when the length is not a power
of the radix (for example 128 for a radix-4 algorithm), one can use smaller radices towards the end
of the decomposition. A length-256 DFT could use two stages of radix-8 decomposition, and finish
with one stage of radix-4. This approach is called the “mixed-radix” approach [45] and achieves
low arithmetic complexity while allowing flexible transform length (not restricted to powers of 2, for
example), at the cost of a more involved implementation.

7.4.3 Split-Radix Algorithm

As already noted in Section 7.2, the lowest known number of both multiplications and additions for
length-2n algorithms was obtained as early as 1968 and was again achieved recently by new algorithms.
Their power was to show explicitly that the improvement over fixed- or mixed-radix algorithms can
be obtained by using a radix-2 and a radix-4 simultaneously on different parts of the transform.
This allowed the emergence of new compact and computationally efficient programs to compute the
length-2n DFT.

Below, we will try to motivate (a posteriori!) the split-radix approach and give the derivation of
the algorithm as well as its computational complexity.

When looking at the DIF radix-2 algorithm given in (7.23), one notices immediately that the
even indexed outputs X2k1 are obtained without any further multiplicative cost from the DFT of a
length-N/2 sequence, which is not so well-done in the radix-4 algorithm for example, since relative
to that length-N/2 sequence, the radix-4 behaves like a radix-2 algorithm. This lacks logical sense
because it is well-known that the radix-4 is better than the radix-2 approach.

From that observation, one can derive a first rule: the even samples of a DIF decomposition X2k

should be computed separately from the other ones, with the same algorithm (recursively) as the
DFT of the original sequence (see [53] for more details).

However, as far as the odd indexed outputs X2k+1 are concerned, no general simple rule can be
established, except that a radix-4 will be more efficient than a radix-2, since it allows computation of
the samples through two N/4 DFTs instead of a single N/2 DFT for a radix-2, and this at the same
multiplicative cost, which will allow the cost of the recursions to grow more slowly. Tests showed
that computing the odd indexed output through radices higher than 4 was inefficient.

The first recursion of the corresponding “split-radix” algorithm (the radix is split in two parts) is
obtained by modifying (7.23) accordingly:
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X2k1 =
N/2−1∑
n1=0

W
n1k1
N/2

(
xn1 + xN/2+n1

)
, (7.28a)

X4k1+1 =
N/4−1∑
n1=0

W
n1k1
N/4 W

n1
N

[(
xn1 − xN/2+n1

) + j
(
xn1+N/4 − xn1+3N/4

)]
, (7.28b)

X4k1+3 =
N/4−1∑
n1=0

W
n1k1
N/4 W3n

N

[(
xn1 + xN/2+n1

) − j
(
xn1+N/4 − xn1+3N/4

)]
. (7.28c)

The above approach is a DIF SRFFT, and is compared in Fig. 7.5 with the radix-2 and radix-4 algo-
rithms. The corresponding DIT version, being dual, considers separately the subsets {x2i}, {x4i+1}
and {x4i+3} of the initial sequence.

Taking I0 = {2i}, I1 = {4i + 1}, I2 = {4i + 3} and normalizing with respect to the first element
of the set in (7.7) leads to

Xk =
∑

I 0

x2iW
k(2i)
N + Wk

N

∑

I 1

x4i+1W
k(4i+1)−k
N + W3k

N

∑

I 2

x4i+3W
k(4i+3)−3k
N , (7.29)

which can be explicitly decomposed in order to make the redundancy between the computation of
Xk, Xk+N/4, Xk+N/2 and Xk+3N/4 more apparent:

Xk =
N/2−1∑

i=0

x2iW
ik
N/2 + Wk

N

N/4−1∑
i=0

x4i+1W
ik
N/4 + W3k

N

N/4−1∑
i=0

x4i+3W
ik
N/4 , (7.30a)

Xk+N/4 =
N/2−1∑

i=0

x2iW
ik
N/2 + jWk

N

N/4−1∑
i=0

x4i+1W
ik
N/4 − jW3k

N

N/4−1∑
i=0

x4i+3W
ik
N/4 , (7.30b)

Xk+N/2 =
N/2−1∑

i=0

x2iW
ik
N/2 − Wk

N

N/4−1∑
i=0

x4i+1W
ik
N/4 − W3k

N

N/4−1∑
i=0

x4i+3W
ik
N/4 , (7.30c)

Xk+3N/4 =
N/2−1∑

i=0

x2iW
ik
N/2 − jWk

N

N/4−1∑
i=0

x4i+1W
ik
N/4 + jW3k

N

N/4−1∑
i=0

x4i+3W
ik
N/4 .(7.30d)

The resulting algorithms have the minimum known number of operations (multiplications plus
additions) as well as the minimum number of multiplications among practical algorithms for lengths
which are powers of 2. The number of operations can be checked as being equal to

M
[
DFTsplit-radix

]
= N log2 N − 3N + 4 , (7.31a)

A
[
DFTsplit-radix

]
= 3N log2 N − 3N + 4 , (7.31b)

These numbers of operations can be obtained with only four different building blocks (with a
complexity slightly lower than the one of a radix-4 butterfly), and are compared with the other
algorithms in Tables 7.1 and 7.2.

Of course, due to the asymmetry in the decomposition, the structure of the algorithm is slightly
more involved than for fixed-radix algorithms. Nevertheless, the resulting programs remain fairly
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TABLE 7.1 Number of Non-Trivial Real Multiplications for

Various FFTs on Complex Data
N Radix 2 Radix 4 SRFFT PFA Winograd

16 24 20 20
30 100 68

32 88 68
60 200 136

64 264 208 196
120 460 276

128 712 516
240 1100 632

256 1800 1392 1284
504 2524 1572

512 4360 3076
1008 5804 3548

1024 10248 7856 7172
2048 23560 16388

2520 17660 9492

TABLE 7.2 Number of Real Additions for Various FFTs on

Complex Data
N Radix 2 Radix 4 SRFFT PFA Winograd

16 152 148 148
30 384 384

32 408 388
60 888 888

64 1032 976 964
120 2076 2076

128 2504 2308
240 4812 5016

256 5896 5488 5380
504 13388 14540

512 13566 12292
1008 29548 34668

1024 30728 28336 27652
2048 68616 61444

2520 84076 99628

simple [113] and can be highly optimized. Furthermore, this approach is well suited for applying
FFTs on real data. It allows an in-place, butterfly style implementation to be performed [65, 77].

The power of this algorithm comes from the fact that it provides the lowest known number of
operations for computing length-2n FFTs, while being implemented with compact programs. We
shall see later that there are some arguments tending to show that it is actually the best possible
compromise.

Note that the number of multiplications in (7.31a) is equal to the one obtained with the so-called
“real-factor” algorithms [24, 44]. In that approach, a linear combination of the data, using additions
only, ismade such that all twiddle factors are eitherpure real orpure imaginary. Thus, amultiplication
of a complex number by a twiddle factor requires only two real multiplications. However, the real
factor algorithms are quite costly in terms of additions, and are numerically ill-conditioned (division
by small constants).

7.4.4 Remarks on FFTs with Twiddle Factors

The Cooley-Tukey mapping in (7.9) and (7.17) is generally applicable, and actually the only possible
mapping when the factors on N are not coprime. While we have paid particular attention to the
case N = 2n, similar algorithms exist for N = pm (p an arbitrary prime). However, one of the
elegances of the length-2n algorithms comes from the fact that the small DFTs (lengths 2 and 4) are
multiplication-free, a fact that does not hold for other radices like 3 or 5, for instance. Note, however,
that it is possible, for radix-3, either to completely remove the multiplication inside the butterfly by a
change of base [26], at the cost of a few multiplications and additions, or to merge it with the twiddle
factor [49] in the case where the implementation is based on the 4-mult 2-add complex multiplication
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scheme. It was also recently shown that, as soon as a radix p2 algorithm was more efficient than a
radix-p algorithm, a split-radix p/p2 was more efficient than both of them [53]. However, unlike
the 2n case, efficient implementations for these pn split-radix algorithms have not yet been reported.
More efficient mixed radix algorithms also remain to be found (initial results are given in [40]).

7.5 FFTs Based on Costless Mono- to Multidimensional Mapping

The divide and conquer strategy, as explained in Section 7.3, has few requirements for feasibility: N

needs only to be composite, and the whole DFT is computed from DFTs on a number of points which
is a factor of N (this is required for the redundancy in the computation of (7.11) to be apparent).
This requirement allows the expression of the innermost sum of (7.11) as a DFT, provided that the
subsets I1, have been chosen in such a way that xi, i ∈ I1, is periodic. But, when N factors into
relatively prime factors, say N = N1 · N2, (N1, N2) = 1, a very simple property will allow a stronger
requirement to be fulfilled:

Starting from any point of the sequence xi , you can take as a first subset with compatible periodicity
either {xi+N1·n2|n2 = 1, . . . , N2−1}or, equivalently {xi+N2·n1|n1 = 1, . . . , N1−1}, andboth subsets
only have one common point xi (by compatible, it is meant that the periodicity of the subsets divides
the periodicity of the set). This allows a rearrangement of the input (periodic) vector into a matrix
with a periodicity in both dimensions (rows and columns), both periodicities being compatible with
the initial one (see Fig. 7.6).

FIGURE 7.6: The prime factor mappings for N = 15.

7.5.1 Basic Tools

FFTs without twiddle factors are all based on the same mapping, which is explained in the next section
(“The Mapping of Good”). This mapping turns the original transform into sets of small DFTs, the
lengths of which are coprime. It is therefore necessary to find efficient ways of computing these
short-length DFTs. The section “DFT Computation as a Convolution” explains how to turn them
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into cyclic convolutions for which efficient algorithms are described in the Section “Computation of
the Cyclic Convolution.”

The Mapping of Good [32]

Performing the selection of subsets described in the introduction of Section 7.5 for any index
i is equivalent to writing i as

i = 〈n1 · N2 + n2 · N1〉N ,

n1 = 1, . . . , N1 − 1, n2 = 1, . . . , N2 − 1 ,

N = N1N2 , (7.32)

and, since N1 and N2 are coprime, this mapping is easily seen to be one to one. (It is obvious from
the right-hand side of (7.32) that all congruences modulo N1 are obtained for a given congruence
modulo N2, and vice versa.)

This mapping is another arrangement of the “Chinese Remainder Theorem” (CRT) mapping,
which can be explained as follows on index k.

The CRT states that if we know the residue of some number k modulo two relatively prime numbers
N1 and N2, it is possible to reconstruct 〈k〉N1N2 as follows:

Let 〈k〉N1 = k1 and 〈k〉N2 = k2. Then the value of k mod N(N = N1 · N2) can be found by

k = 〈N1t1k2 + N2t2k1〉N , (7.33)

t1 being the multiplicative inverse of N1 mod N2, that is 〈t1, N1〉N2 = 1, and t2 the multiplicative
inverse of N2 mod N1 [these inverses always exist, since N1 and N2 are coprime: (N1, N2) = 1].

Taking into account these two mappings in the definition of the DFT (7.3) leads to

XN1t1k2+N2t2k1 =
N1−1∑
n1=0

N2−1∑
n2=0

xn1N2+n2N1W
(n1N2+N1n2)(N1t1k2+N2t2k1)
N , (7.34)

but
W

N2
N = WN1 (7.35)

and
W

N2t2
N1

= W
〈N2t2〉N1
N1

= WN1 , (7.36)

which implies

XN1t1k2+N2t2k1 =
N1−1∑
n1=0

N2−1∑
n2=0

xn1N2+n2N1W
n1k2
N1

W
n2k2
N2

, (7.37)

which, with
x′
n1,n2

= xn1N2+n2N1

and
X′

k1,k2
= XN1t1k2+N2t2k1 ,

leads to a formulation of the initial DFT into a true bidimensional transform:

X′
k1k2

=
N1−1∑
n1=0

N2−1∑
n2=0

x′
n1n2

W
n1k1
N1

W
n2k2
N2

(7.38)

An illustration of the prime factor mapping is given in Fig. 7.6(a) for the length N = 15 = 3 · 5,
and Fig. 7.6(b) provides the CRT mapping. Note that these mappings, which were provided for a
factorization of N into two coprime numbers, easily generalizes to more factors, and that reversing
the roles of N1, and N2 results in a transposition of the matrices of Fig. 7.6.
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DFT Computation as a Convolution

With the aid of Good’s mapping, the DFT computation is now reduced to that of a multidimen-
sional DFT, with the characteristic that the lengths along each dimension are coprime. Furthermore,
supposing that these lengths are small is quite reasonable, since Good’s mapping can provide a full
multi-dimensional factorization when N is highly composite.

The question is now to find the best way of computing this M-D DFT and these small-length DFTs.
A first step in that direction was obtained by Rader [43], who showed that a DFT of prime length
could be obtained as the result of a cyclic convolution: Let us rewrite (7.1) for a prime length N = 5:




X0
X1
X2
X3
X4




=




1 1 1 1 1
1 W1

5 W2
5 W3

5 W4
5

1 W2
5 W4

5 W1
5 W3

5
1 W3

5 W1
5 W4

5 W2
5

1 W4
5 W3

5 W2
5 W1

5







x0
x1
x2
x3
x4




. (7.39)

Obviously, removing the first column and first row of the matrix will not change the problem,
since they do not involve any multiplication. Furthermore, careful examination of the remaining
part of the matrix shows that each column and each row involves every possible power of W5, which
is the first condition to be met for this part of the DFT to become a cyclic convolution. Let us now
permute the last two rows and last two columns of the reduced matrix:




X′
1

X′
2

X′
4

X′
3


 =




W1
5 W2

5 W4
5 W3

5
W2

5 W4
5 W3

5 W1
5

W4
5 W3

5 W1
5 W2

5
W3

5 W1
5 W2

5 W4
5







x1
x2
x4
x3


 . (7.40)

Equation (7.40) is then a cyclic correlation (or a convolution with the reversed sequence).
It turns out that this a general result.
It is well-known in number theory that the set of numbers lower than a prime p admits some

primitive elements g such that the successive powers of g modulo p generate all the elements of the
set. In the example above, p = 5, g = 2, and we observe that

g0 = 1, g1 = 2, g2 = 4, g3 = 8 = 3 (mod 5) .

The above result (7.40) is only the writing of the DFT in terms of the successive powers of W
g
p :

X′
k =

p−1∑
i=1

xiW
ik
p , k = 1, . . . , p − 1 , (7.41)

〈ik〉p = 〈〈i〉p · 〈k〉p〉p = 〈〈gui 〉p〈gνk 〉p〉p ,

X′
gνi =

p−2∑
ui=0

xgui · (
W

g
p

)ui+νi
, νi = 0, . . . , p − 2 , (7.42)

and the length-p DFT turns out to be a length (p − 1) cyclic correlation:

{X′
g} = {xg} ∗ {Wg

p } . (7.43)

Computation of the Cyclic Convolution

Of course (7.42) has changed the problem, but it is not solved yet. And in fact, Rader’s result
was considered as a curiosity up to the moment when Winograd [55] obtained some new results on
the computation of cyclic convolution.

c©1999 by CRC Press LLC



And, again, this was obtained by application of the CRT. In fact, the CRT, as explained in (7.33),
(7.34) can be rewritten in the polynomial domain: if we know the residues of some polynomial K(z)

modulo two mutually prime polynomials

〈K(z)〉P1(z) = K1(z) ,

(P1(z), P2(z)) = 1 ,

〈K(z)〉P2(z) = K2(z) ,

(7.44)

we shall be able to obtain
K(z) mod P1(z) · P2(z) = P(z)

by a procedure similar to that of (7.33).
This fact will be used twice in order to obtain Winograd’s method of computing cyclic convolutions:
A first application of the CRT is the breaking of the cyclic convolution into a set of polynomial

products. For more convenience, let us first state (7.43) in polynomial notation:

X′(z) = x′(z) · w(z) mod
(
zp−1 − 1

)
. (7.45)

Now, since p − 1 is not prime (it is at least even), zp−1 − 1 can be factorized at least as

zp−1 − 1 =
(
z(p−1)/2 + 1

) (
z(p−1)/2 − 1

)
, (7.46)

and possibly further, depending on the value of p. These polynomial factors are known and named
cyclotomic polynomials ϕq(z). They provide the full factorization of any zN − 1:

zN − 1 =
∏
q|N

ϕq(z) . (7.47)

A useful property of these cyclotomic polynomials is that the roots of ϕq(z) are all the qth primitive
roots of unity, hence degree {ϕq(z)} = ϕ(q), which is by definition the number of integers lower
than q and coprime with it. Namely, if wq = e−j2π/q , the roots of ϕq(z) are {Wr

q |(r, q) = 1}.
As an example, for p = 5, zp−1 − 1 = z4 − 1,

z4 − 1 = ϕ1(z) · ϕ2(z) · ϕ4(z)

= (z − 1)(z + 1)(z2 + 1) .

The first use of the CRT to compute the cyclic convolution (7.45) is then as follows:
1. compute

x′
q(z) = x′(z) mod ϕq(z) ,

q|p − 1
w′

q(z) = w(z) mod ϕq(z) ,

2. then obtain
X′

q(z) = x′
q(z) · w′

q(z) mod ϕq(z)

3. reconstruct X′(z) mod zp−1 − 1 from the polynomials X′
q(z) using the CRT.

Let us apply this procedure to our simple example:

x′(z) = x1 + x2z + x4z
2 + x3z

3 ,

w(z) = W1
5 + W2

5 z + W4
5z2 + W3

5z3 .
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Step 1.

w4(z) = w(z) mod ϕ4(z)

=
(
W1

5 − W4
5

)
+

(
W2

5 − W3
5

)
z ,

w2(z) = w(z) mod ϕ2(z)

=
(
W1

5 + W4
5 − W2

5 − W3
5

)
,

w1(z) = w(z) mod ϕ1(z)

=
(
W1

5 + W4
5 + W2

5 + W3
5

)
[= −1] ,

x′
4(z) = (x1 − x4) + (x2 − x3)z ,

x′
2(z) = (x1 + x4 − x2 − x3) ,

x′
1(z) = (x1 + x4 + x2 + x3) .

Step 2.

X′
4(z) = x′

4(z) · w4(z) mod ϕ4(z) ,

X′
2(z) = x′

2(z) · w2(z) mod ϕ2(z) ,

X′
1(z) = x′

1(z) · w1(z) mod ϕ1(z) ,

Step 3.

X′(z) = [
X′

1(z)(1 + z)/2 + X′
2(z)(1 − z)/2

]

×
(
1 + z2

)
/2 + X′

4(z)
(
1 − z2

)
/2 .

Note that all the coefficients of Wq(z) are either real or purely imaginary. This is a general property
due to the symmetries of the successive powers of Wp .

The only missing tool needed to complete the procedure now is the algorithm to compute the
polynomial products modulo the cyclotomic factors. Of course, a straightforward polynomial prod-
uct followed by a reduction modulo ϕq(z) would be applicable, but a much more efficient algorithm
can be obtained by a second application of the CRT in the field of polynomials.

It is already well-known that knowing the values of an N th degree polynomial at N + 1 different
points can provide the value of the same polynomial anywhere else by Lagrange interpolation. The
CRT provides an analogous way of obtaining its coefficients.

Let us first recall the equation to be solved:

X′
q(z) = x′

q(z) · wq(z) mod ϕq(z) , (7.48)

with
degϕq(z) = ϕ(q) .

Since ϕq(z) is irreducible, the CRT cannot be used directly. Instead, we choose to evaluate the product
X′′

q(z) = x′
q(z) ·wq(z) modulo an auxiliary polynomial A(z) of degree greater than the degree of the

product. This auxiliary polynomial will be chosen to be fully factorizable. The CRT hence applies,
providing

X′′
q(z) = x′

q(z) · wq(z) ,

since the mod A(z) is totally artificial, and the reduction modulo ϕq(z) will be performed afterwards.
The procedure is then as follows.
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Let us evaluate both x′
q(z) and wq(z) modulo a number of different monomials of the form

(z − ai) , i = 1, . . . , 2ϕ(q) − 1.

Then compute
X′′

q(ai) = x′
q(ai)wq(ai), i = 1, . . . , 2ϕ(q) − 1 . (7.49)

The CRT then provides a way of obtaining

X′′
q(z) mod A(z) , (7.50)

with

A(z) =
2ϕ(q)−1∏

i=1

(z − ai) ,

which is equal to X′′
q(z) itself, since

degX′′
q(z) = 2ϕ(q) − 2 . (7.51)

Reduction of X′′
q(z) mod ϕz(z) will then provide the desired result.

In practical cases, the points {ai} will be chosen in such a way that the evaluation of w′
q(ai) involves

only additions (i.e.: ai = 0, ±1, . . .).
This limits the degree of the polynomials whose products can be computed by this method. Other

suboptimal methods exist [12], but are nevertheless based on the same kind of approach [the “dot
products” (7.49) become polynomial products of lower degree, but the overall structure remains
identical].

All this seems fairly complicated, but results in extremely efficient algorithms that have a low
number of operations. The full derivation of our example (p = 5) then provides the following
algorithm:

5 point DFT:

u = 2π/5

t1 = x1 + x4, t2 = x2 + x3 , (reduction modulo z2 − 1)

t3 = x1 − x4, t4 = x3 − x2 , (reduction modulo z2 + 1)

t5 = t1 + t2 (reduction modulo z − 1) ,

t6 = t1 − t2 (reduction modulo z + 1) ,

m1 = [(cosu + cos 2u)/2]t5 ,
(
X′

1(z) = x′
1(z) · w1(z) mod ϕ1(z)

)

m2 = [(cosu − cos 2u)/2]t6 ,
(
X′

2(z) = x′
2(z) · w2(z) mod ϕ2(z)

)

polynomial product modulo z2 + 1 ,
(
X′

4(z) = x′
4(z) · w4(z) mod ϕu(z) :)

m3 = −j (sinu)(t3 + t4) ,

m4 = −j (sinu + sin 2u)t4 ,

m5 = j (sinu − sin 2u)t3 ,

s1 = m3 − m4 ,

s2 = m3 + m5 ,

(reconstruction following Step 3, the 1/2 terms

have been included into the polynomial products:)

s3 = x0 + m1 ,
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s4 = s3 + m2 ,

s5 = s3 − m2 ,

X0 = x0 + t5 ,

X1 = s4 + s1 ,

X2 = s5 + s2 ,

X3 = s5 − s2 ,

X4 = s4 − s1 ,

When applied to complex data, this algorithm requires 10 real multiplications and 34 real additions
vs. 48 real multiplications and 88 real additions for a straightforward algorithm (matrix-vector
product).

In matrix form, and slightly changed, this algorithm may be written as follows:

(
X′

0, X
′
1, . . . , X

′
4

)T = C · D · B · (x0, x1, . . . , x4)
T , (7.52)

with

C =




1 0 0 0 0 0
1 1 1 1 −1 0
1 1 −1 1 0 1
1 1 −1 −1 0 −1
1 1 1 −1 1 0




,

D = diag [1, ((cosu + cos 2u)/2 − 1) , (cosu − cos 2u)/2 , −j sinu ,

− j (sinu + sin 2u) , j (sinu − sin 2u)] ,

B =




1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 −1 1 −1
0 0 −1 1 0
0 1 0 0 1




.

By construction, D is a diagonal matrix, where all multiplications are grouped, while C and B

only involve additions (they correspond to the reductions and reconstructions in the applications of
the CRT).

It is easily seen that this structure is a general property of the short-length DFTs based on CRT: all
multiplications are “nested” at the center of the algorithms. By construction, also, D has dimension
Mp , which is the number of multiplications required for computing the DFT, some of them being
trivial (at least one, needed for the computation of X0). In fact, using such a formulation, we have
Mp ≥ p. This notation looks awkward, at first glance (why include trivial multiplications in the
total number?), but Section 7.5.3 will show that it is necessary in order to evaluate the number of
multiplications in the Winograd FFT.

It can also be proven that the methods explained in this section are essentially the only ways
of obtaining FFTs with the minimum number of multiplications. In fact, this gives the optimum
structure, mathematically speaking. These methods always provide a number of multiplications
lower than twice the length of the DFT:

MN1 < 2N1 .

This shows the linear complexity of the DFT in this case.
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7.5.2 Prime Factor Algorithms [95]

Let us now come back to the initial problem of this section: the computation of the bidimensional
transform given in (7.38). Rearranging the data in matrix form, of size N1N2, and F1 (resp. F2)
denoting the Fourier matrix of size N1 (resp. N2), results in the following notation, often used in the
context of image processing:

X = F1xFT
2 . (7.53)

Performing the FFT algorithm separately along each dimension results in the so-called prime factor
algorithm (PFA).

To summarize, PFA makes use of Good’s mapping (Section “The Mapping of Good”) to convert
the length N1 · N2 1-D DFT into a size N1 × N2 2-D DFT, and then computes this 2-D DFT in a
row-column fashion, using the most efficient algorithms along each dimension.

Of course, this applies recursively to more than two factors, the constraints being that they must
be mutually coprime. Nevertheless, this constraint implies the availability of a whole set of efficient
small DFTs (Ni = 2, 3, 4, 5, 7, 8, 16 is already sufficient to provide a dense set of feasible lengths).

A graphical display of PFA for length N = 15 is given in Fig. 7.7. Since there are N2 applications
of length N1 FFT and N1, applications of length N2 FFTs, the computational costs are as follows:

MN1N2 = N1M2 + N2M1 ,

AN1N2 = N1A2 + N2A1 , (7.54)

or, equivalently, the number of operations to be performed per output point is the sum of the
individual number of operations in each short algorithm: let mN and aN be these reduced numbers

mN1N2N3N4 = mN1 + mN2 + mN3 + mN4 ,

aN1N2N3N4 = aN1 + aN2 + aN3 + aN4 . (7.55)

An evaluation of these figures is provided in Tables 7.1 and 7.2.

FIGURE 7.7: Schematic view of PFA for N = 15.

7.5.3 Winograd’s Fourier Transform Algorithm (WFTA) [56]

Winograd’s FFT makes full use of all the tools explained in Section 7.5.1.
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Good’s mapping is used to convert the length N1 · N2 1-D DFT into a length N1 × N2 2-D DFT,
and the intimate structure of the small-length algorithms is used to nest all the multiplications at the
center of the overall algorithm as follows.

Reporting (7.52) into (7.53) results in

X = C1D1B1xBT
2 D2C

T
2 . (7.56)

Since C and B do not involve any multiplication, the matrix (B1xBT
2 ) is obtained by only adding

properly chosen input elements. The resulting matrix now has to be multiplied on the left and on
the right by diagonal matrices D1 and D2, of respective dimensions M1 and M2. Let M ′

1 and M ′
2 be

the numbers of trivial multiplications involved.
Premultiplying by the diagonal matrix D1 multiplies each row by some constant, while postmul-

tiplying does it for each column. Merging both multiplications leads to a total number of

MN1N2 = MN1 · MN2 (7.57)

out of which M ′
N1

· M ′
N2

are trivial.

Pre- and postmultiplying by C1 and CT
2 will then complete the algorithm.

A graphical display of WFTA for length N = 15 is given in Fig. 7.8, which clearly shows that this
algorithm cannot be performed in place.

FIGURE 7.8: Schematic view of WFTA for N = 15.

The number of additions is more intricate to obtain.
Let us consider the pictorial representation of (7.56) as given in Fig. 7.8.
Let C1 involve A1

1 additions (output additions) and B1 involve A1
2 additions (input additions).

(Whichmeans that thereexists analgorithmformultiplyingC1 bysomevector involvingA1
1 additions.

This is different from the number of ±1s in the matrix—see the p = 5 example.)
Under these conditions, obtaining xB2 will cost A2

2 · N1 additions, B1(xBT
2 ) will cost A2

1 · M2

additions,C1(D1B1xBT
2 )will costA1

1·M2 additionsand (C1D1B1xBT
2 )C2 will costA1

2·N1 additions,
which gives a total of

AN1N2 = N1A2 + M2A1 . (7.58)

This formula is not symmetric in N1 and N2. Hence, it is possible to interchange N1 and N2, which
does not change the number of multiplications. This is used to minimize the number of additions.
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Since M2 ≥ N2, it is clear that WFTA will always require at least as many additions as PFA,
while it will always need fewer multiplications, as long as optimum short length DFTs are used. The
demonstration is as follows.

Let

M1 = N1 + ε1, M2 = N2 + ε2 ,

MPFA = N1M2 + N2M1

= 2N1N2 + N1ε2 + N2ε1 ,

MWFTA = M1 · M2

= N1N2 + ε1ε2 + N1ε2 + N2ε1 .

Since ε1 and ε2 are strictly smaller than N1 and N2 in optimum short-length DFTs, we have, as a
result

MWFTA < MPFA .

Note that this result is not true if suboptimal short-lengthFFTsareused. Thenumbersofoperations
to be performed per output point [to be compared with (7.55)] are as follows in the WFTA:

mN1N2 = mN1 · MN2 , aN1N2 = aN2 + mN2aN1 . (7.59)

These numbers are given in Tables 7.1 and 7.2.
Note that the number of additions in the WFTA was reduced later by Nussbaumer [12] with a

scheme called “split nesting,” leading to the algorithm with the least known number of operations
(multiplications + additions).

7.5.4 Other Members of This Class [38]

PFA and WFTA are seen to be both described by the following equation:

X = C1D1B1xBT
2 D2C

T
2 . (7.60)

Each of them is obtained by different ordering of the matrix products.

— The PFA multiplies (C1D1B1)x first, and then the result is postmultiplied by (BT
2 D2C

T
2 ).

— The WFTA starts with B1xBT
2 , then (D1 × D2), then C1 and finally CT

2 .

Nevertheless, these are not the only ways of obtainingX : C andB can be factorized as two matrices
each, to fully describe the way the algorithms are implemented. Taking this fact into account allows
a great number of different algorithms to be obtained. Johnson and Burrus [38] systematically
investigated this whole class of algorithms, obtaining interesting results, such as

— some WFTA-type algorithms, with reduced number of additions.

— algorithms with lower number of multiplications than both PFA and WFTA in the case
where the short-length algorithms are not optimum.

7.5.5 Remarks on FFTs Without Twiddle Factors

It is easily seen that members of this class of algorithms differ fundamentally from FFTs with twiddle
factors.

Both classes of algorithms are based on a divide and conquer strategy, but the mapping used to
eliminate the twiddle factors introduced strong constraints on the type of lengths that were possible
with Good’s mapping.
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Due to those constraints, the elaboration of efficient FFTs based on Good’s mapping required
considerable work on the structure of the short FFTs. This resulted in a better understanding of the
mathematical structure of the problem, and a better idea of what was feasible and what was not.

This new understanding has been applied to the study of FFTs with twiddle factors. In this study,
issues, such as optimality, distance (in cost) of the practical algorithms from the best possible ones
and the structural properties of the algorithms, have been prominent in the recent evolution of the
field of algorithms.

7.6 State of the Art

FFT algorithms have now reached a great maturity, at least in the 1-D case, and it is now possible to
make strong statements about what eventual improvements are feasible and what are not.

In fact, lower bounds on the number of multiplications necessary to compute a DFT of given length
can be obtained by using the techniques described in Section 7.5.1.

7.6.1 Multiplicative Complexity

Let us first consider the FFTs with lengths that are powers of two.
Winograd [57] was first able to obtain a lower bound on the number of complex multiplications

necessary to compute length 2n DFTs. This work was then refined in [28], which provided realizable
lower bounds, with the following multiplicative complexity:

µc

[
DFT 2n

] = 2n+1 − 2n2 + 4n − 8 . (7.61)

This means that there will never exist any algorithm computing a length 2n DFT with a lower
number of non-trivial complex multiplications than the one in (7.61).

Furthermore, since the demonstration is constructive [28], this optimum algorithm is known.
Unfortunately, it is of no practical use for lengths greater than 64 (it involves much too many addi-
tions).

The lower part of Fig. 7.9 shows the variation of this lower bound and of the number of complex
multiplications required by some practical algorithms (radix 2, radix 4, SRFT). It is clearly seen that
SRFFT follows this lower bound up to N = 64, and is fairly close for N = 128. Divergence is quite
fast afterwards.

It is also possible to obtain a realizable lower bound on the number of real multiplications [35, 36].

µr

[
DFT 2n

] = 2n+2 − 2n2 − 2n + 4 . (7.62)

The variation of this bound, together with that of the number of real multiplications required by
some practical algorithms is provided on the upper part of Fig. 7.9. Once again, this realizable lower
bound is of no practical use above a certain limit. But, this time, the limit is much lower: SRFFT,
together with radix 4, meets the lower bound on the number of real multiplications up to N = 16,
which is also the last point where one can use an optimal polynomial product algorithm (modulo
u2 + 1) which is still practical. (N = 32 would require an optimal product modulo u4 + 1 that
requires a large number of additions).

Itwasalso shown[31,76] that all of the three followingalgorithms: optimumalgorithmminimizing
complexmultiplications, optimumalgorithmminimizing realmultiplicationsandSRFFT,hadexactly
the same structure. They performed the decomposition into polynomial products exactly in the same
manner, and they differ only in the way the polynomial products are computed.

Another interesting remark is as follows: the same number of multiplications as in SRFFT could
also be obtained by so-called “real factor radix-2 FFTs” [24, 42, 44] (which were, on another respect,
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FIGURE 7.9: Number of non-trivial real or complex multiplications per output point.

somewhat numerically ill-conditioned and needed about 20% more additions). They were obtained
by making use of some computational trick to replace the complex twiddle factors by purely real or
purely imaginary ones. Now, the question is: is it possible to do the same kind of thing with radix 4,
or even SRFFT? Such a result would provide algorithms with still fewer operations. The knowledge
of the lower bound tells us that it is impossible because, for some points (N = 16, for example)
this would produce an algorithm with better performance than the lower bound. The challenge of
eventually improving SRFFT is now as follows:

Comparison of SRFFT with µc[DFT 2n] tells us that no algorithm using complex multiplications
will be able to improve significantly SRFFT for lengths < 512. Furthermore, the trick allowing real
factor algorithms to be obtained cannot be applied to radices greater than 2 (or at least not in the
same manner).

The above discussion thus shows that there remain very few approaches (yet unknown) that could
eventually improve the best known length 2n FFT.

And what is the situation for FFTs based on Good’s mapping?
Realizable lower bounds are not so easily obtained. For a given length N = ∏

Ni , they involve
a fairly complicated number theoretic function [8], and simple analytical expressions cannot be
obtained. Nevertheless, programs can be written to compute µr{DFTNN }, and are given in [36].
Table 7.3 provides numerical values for a number of lengths of interest.

Careful examination of Table 7.3 provides a number of interesting conclusions.
First, one can see that, for comparable lengths (since SRFFT and WFTA cannot exist for the same

lengths), a classification depending on the efficiency is as follows: WFTA always requires the lowest
number of multiplications, followed by PFA, and followed by SRFFT, all fixed or mixed radix FFTs
being next. Nevertheless, none of these algorithms attains the lower bound, except for very small
lengths.
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Another remark is that the number of multiplications required by WFTA is always smaller than
the lower bound for the corresponding length that is a power of 2. This means, on the one hand, that
transform lengths for which Good’s mapping can be applied are well suited for a reduction in the
number of multiplications, and on the other hand, that they are very efficiently computed by WFTA,
from this point of view.

And this states the problem of the relative efficiencies of these algorithms: How close are they to
their respective lower bound?

The last column of Table 7.3 shows that the relative efficiency of SRFFT decreases almost linearly
with the length (it requires about twice the minimum number of multiplications for N = 2048),
while the relative efficiency of WFTA remains almost constant for all the lengths of interest (it would
not be the same result for much greater N). Lower bounds for Winograd-type lengths are also seen
to be smaller than for the corresponding power of 2 lengths.

All these considerations result in the following conclusion: lengths for which Good’s mapping is
applicable allow a greater reduction of the number of multiplications (which is due directly to the
mathematical structure of the problem). And, furthermore, they allow a greater relative efficiency of
the actual algorithms vs. the lower bounds (and this is due indirectly to the mathematical structure).

TABLE 7.3 Practical Algorithms vs. Lower Bounds (Number of

Non-Trivial Real Multiplications for FFTs on Real Data)
Lower bound SRFT WFTA

N SRFFT WFTA (L.B.) L.B. L.B.

16 20 20 1
30 68 56 1.21

32 68 64 1.06
60 136 112 1.21

64 196 168 1.16
120 276 240 1.15

128 516 396 1.3
240 632 548 1.15

256 1284 876 1.47
504 1572 1320 1.19

512 3076 1864 1.64
1008 3548 2844 1.25

1024 7172 3872 1.85
2048 16388 7876 2.08

2520 9492 7440 1.27

7.6.2 Additive Complexity

Nevertheless, the situation is not the same as regards the number of additions.
Most of the work on optimality was concerned with the number of multiplications. Concerning

the number of additions, one can distinguish between additions due to the complex multiplications
and the ones due to the butterflies. For the case N = 2n, it was shown in [106, 110] that the latter
number, which is achieved in actual algorithms, is also the optimum. Differences between the various
algorithms is thus only due to varying numbers of complex multiplications. As a conclusion, one can
see that the only way to decrease the number of additions is to decrease the number of true complex
multiplications (which is close to the lower bound).

Figure 7.10 gives the variation of the total number of operations (multiplications plus additions)
for these algorithms, showing that SRFFT has the lowest operation count. Furthermore, its more
regular structure results in faster implementations.

Note that all the numbers given here concern the initial versions of SRFFT, PFA, and WFTA,
for which FORTRAN programs are available. It is nevertheless possible to improve the number of
additions in WFTA by using the so-called split nesting technique [12] (which is used in Fig. 7.10), and
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the number of multiplications of PFA by using small-length FFTs with scaled output [12], resulting
in an overall scaled DFT.

FIGURE 7.10: Total number of operations per output point for different algorithms.

As a conclusion, one can realize that we now have practical algorithms (mainly WFTA and SRFFT)
that follow the mathematical structure of the problem of computing the DFT with the minimum
number of multiplications, as well as a knowledge of their degree of suboptimality.

7.7 Structural Considerations

This section is devoted to some points that are important in the comparison of different FFT al-
gorithms, namely easy obtention of inverse FFT, in-place computation, regularity of the algorithm,
quantization noise and parallelization, all of which are related to the structure of the algorithms.

7.7.1 Inverse FFT

FFTs are often used regardless of their “frequency” interpretation for computing FIR filtering in
blocks, which achieves a reduction in arithmetic complexity compared to the direct algorithm. In
that case, the forward FFT has to be followed, after pointwise multiplication of the result, by an
inverse FFT. It is of course possible to rewrite a program along the same lines as the forward one,
or to reorder the outputs of a forward FFT. A simpler way of computing an inverse FFT by using a
forward FFT program is given (or reminded) in [99], where it is shown that, if CALL FFT (XR, Xl,
N) computes a forward FFT of the sequence { XR(i) + jXI(i)|i = 0, . . . , N − 1}, CALL FFT(XI,
XR, N) will compute an inverse FFT of the same sequence, whatever the algorithm is. Thus, all FFT
algorithms on complex data are equivalent in that sense.
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7.7.2 In-Place Computation

Anotherpoint in thecomparisonofalgorithms is thememoryrequirement: most algorithms(Cooley-
Tukey, SRFFT, PFA) allow in-place computation (no auxiliary storage of size depending on N is
necessary), while WFTA does not. And this may be a drawback for WFTA when applied to rather
large sequences.

Cooley-Tukey and split-radix FFTs also allow rather compact programs [4, 113], the size of which
is independent of the length of the FFT to be computed.

On the contrary, PFA and WFTA will require longer and longer programs when the upper limit on
the possible lengths is increased: an 8-module program (n = 2, 4, 8, 16, 3, 5, 7, 9) allows obtaining
a rather dense set of lengths up to N = 5040only. Longer transforms can only be obtained either
by the use of rather “exotic” modules that can be found in [37], or by some kind of mixture between
Cooley-Tukey FFT (or SRFFT) and PFA.

7.7.3 Regularity, Parallelism

Regularity has been discussed for nearly all algorithms when they were described. Let us recall
here that Cooley-Tukey FFT (CTFFT) is very regular (based on repetitive use of a few modules).
SRFFT follows (repetitive use of very few modules in a slightly more involved manner). Then, PFA
requires repetitive use (more intricate than CTFFT) of more modules, and finally WFTA requires
some combining of parts of these modules, which means that, even if it has some regularity, this
regularity is more hidden.

Let us point out also that the regularity of an algorithm cannot really be seen from its flowgraph.
The equations describing the algorithm, as given in (7.13) or (7.38) do not fully define the imple-
mentations, which is partially done in the flowgraph. The reordering of the nodes of a flowgraph
may provide a more regular one (the classical radix 2 and 4 CTFFT can be reordered into a constant
geometry algorithm. See also [30] for SRFFT).

Parallelization of CTFFT and SRFFT is fairly easy, since the small modules are applied on sets of
data that are separable and contiguous, while it is slightly more difficult with PFA, where the data
required by each module are not in contiguous locations.

Finally, let us point out that mathematical tools such as tensor products can be used to work
on the structure of the FFT algorithms [50, 101], since the structure of the algorithm reflects the
mathematical structure of the underlying problem.

7.7.4 Quantization Noise

Roundoffnoisegeneratedbyfiniteprecisionoperations inside theFFTalgorithmisalsoof importance.
Of course, fixed point implementations of CTFFT for lengths 2n were studied first, and it was shown
that the error-to-signal ratio of the FFT process increases as

√
N (which means 1/2 bit per stage) [117].

SRFFT and radix-4 algorithms were also reported to generate less roundoff than radix-2 [102].
Although the WFTA requires fewer multiplications than the CTFFT (hence has less noise sources),

it was soon recognized that proper scaling was difficult to include in the algorithm, and that the
resulting noise-to-signal ratio was higher. It is usually thought that two more bits are necessary for
representing data in the WFTA to give an error of the same order as CTFFT (at least for practical
lengths). A floating point analysis of PFA is provided in [104].

7.8 Particular Cases and Related Transforms

The previous sections have been devoted exclusively to the computation of the matrix-vector product
involving the Fourier matrix. In particular, no assumption has been made on the input or output

c©1999 by CRC Press LLC



vector. In the following subsections, restrictions will be put on these vectors, showing how the
previously described algorithms can be applied when the input is, e.g., real valued, or when only a
part of the output is desired. Then, transforms closely related to the DFT will be discussed as well.

7.8.1 DFT Algorithms for Real Data

Very often in applications, the vector to be transformed is made up of real data. The transformed
vector then has an hermitian symmetry, that is,

XN−k = X∗
k , (7.63)

as can be seen from the definition of the DFT. Thus, X0 is real, and when N is even, XN/2 is real as
well. That is, the N input values map to 2 real and N/2 − 1 complex conjugate values when N is
even, or 1 real and (N − 1)/2 complex conjugate values when N is odd (which leaves the number of
free variables unchanged).

This redundancy in both input and output vectors can be exploited in the FFT algorithms in order
to reduce the complexity and storage by a factor of 2. That the complexity should be half can be shown
by the following argument. If one takes a real DFT of the real and imaginary parts of a complex vector
separately, then 2N additions are sufficient in order to obtain the result of the complex DFT [3].
Therefore, the goal is to obtain a real DFT that uses half as many multiplications and less than half as
many additions. If one could do better, then it would improve the complex FFT as well by the above
construction.

For example, take the DIF SRFFT algorithm (7.28). First, X 2k requires a half length DFT on
real data, and thus the algorithm can be reiterated. Then, because of the hermitian symmetry
property (7.63):

X4k+1 = X∗
4(N/4−k−1)+3 , (7.64)

and therefore (7.28c) is redundant and only one DFT of size N/4on complex data needs to be evalu-
ated for (7.28b). Counting operations, this algorithm requires exactly half as many multiplications
and slightly less than half as many additions as its complex counterpart, or [30]

M
(
R-DFT(2m)

) = 2n−1(n − 3) + 2 , (7.65)

A
(
R-DFT(2m)

) = 2n−1(3n − 5) + 4 . (7.66)

Thus, the goal for the real DFT stated earlier has been achieved. Similar algorithms have been
developed for radix-2 and radix-4 FFTs as well. Note that even if DIF algorithms are more easily
explained, it turns out that DIT ones have a better structure when applied to real data [29, 65, 77].

In the PFA case, one has to evaluate a multidimensional DFT on real input. Because the PFA is a
row-column algorithm, data become hermitian after the first 1-D FFTs, hence an accounting has to
be made of the real and conjugate parts so as to divide the complexity by 2 [77]. Finally, in the WFTA
case, the input addition matrix and the diagonal matrix are real, and the output addition matrix has
complex conjugate rows, showing again the saving of 50% when the input is real. Note, however, that
these algorithms generally have a more involved structure than their complex counterparts (especially
in the PFA and WFTA case). Some algorithms have been developed which are inherently “real,” like
the real factor FFTs [22, 44] or the FFCT algorithm [51], and do not require substantial changes for
real input.

A closely related question is how to transform (or actually back transform) data that possess
hermitian symmetry. An actual algorithm is best derived by using the transposition principle: since
the Fourier transform is unitary, its inverse is equal to its hermitian transpose, and the required
algorithm can be obtained simply by transposing the flow graph of the forward transform (or by
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transposing the matrix factorization of the algorithm). Simple graph theoretic arguments show that
both the multiplicative and additive complexity are exactly conserved.

Assume next that the input is real and that only the real (or imaginary) part of the output is desired.
This corresponds to what has been called a cosine (or sine) DFT, and obviously, a cosine and a sine
DFT on a real vector can be taken altogether at the cost of a single real DFT. When only a cosine DFT
has to be computed, it turns out that algorithms can be derived so that only half the complexity of
a real DFT (that is, the quarter of a complex DFT) is required [30, 52], and the same holds for the
sine DFT as well [52]. Note that the above two cases correspond to DFTs on real and symmetric (or
antisymmetric) vectors.

7.8.2 DFT Pruning

In practice, it may happen that only a small number of the DFT outputs are necessary, or that only
a few inputs are different from zero. Typical cases appear in spectral analysis, interpolation, and
fast convolution applications. Then, computing a full FFT algorithm can be wasteful, and advantage
should be taken of the inputs and outputs that can be discarded.

We will not discuss “approximate” methods which are based on filtering and sampling rate
changes [2, pp. 317-319] but only consider “exact” methods. One such algorithm is due to Go-
ertzel [68] which is based on the complex resonator idea. It is very efficient if only a few outputs
of the FFT are required. A direct approach to the problem consists in pruning the flowgraph of
the complete FFT so as to disregard redundant paths (corresponding to zero inputs or unwanted
outputs). As an inspection of a flowgraph quickly shows, the achievable gains are not spectacular,
mainly because of the fact that data communication is not local (since all arithmetic improvements
in the FFT over the DFT are achieved through data shuffling).

More complex methods are therefore necessary in order to achieve the gains one would expect.
Such methods lead to an order of N log2 K operations, where N is the transform size and K the
number of active inputs or outputs [48]. Reference [78] also provides a method combining Goertzel’s
method with shorter FFT algorithms. Note that the problems of input and output pruning are dual,
and that algorithms for one problem can be applied to the other by transposition.

7.8.3 Related Transforms

Two transforms which are intimately related to the DFT are the discrete Hartley transform (DHT) [61,
62] and the discrete cosine transform (DCT) [1, 59]. The former has been proposed as an alternative
for the real DFT and the latter is widely used in image processing.

The DHT is defined by

Xk =
N−1∑
n=0

xn(cos(2πnk/N) + sin(2πnk/N)) (7.67)

and is self-inverse, provided that X0 is further weighted by 1/
√

2. Initial claims for the DHT were

— improved arithmetic efficiency. This was soon recognized to be false, when compared
to the real DFT. The structures of both programs are very similar and their arithmetic
complexities are equivalent (DHTs actually require slightly more additions than real-
valued FFTs).

— self-inverse property. It has been explained above that the inverse real DFT on hermitian
data has exactly the same complexity as the real DFT (by transposition). If the transposed
algorithm is not available, it can be found in [65] how to compute the inverse of a real
DFT with a real DFT with only a minor increase in additive complexity.
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Therefore, there is no computational gain in using a DHT, and only a minor structural gain if an
inverse real DFT cannot be used.

The DCT, on the other hand, has found numerous applications in image and video processing.
This has led to the proposal of several fast algorithms for its computation [51, 64, 70, 72]. The DCT
is defined by

Xk =
N−1∑
n=0

xn cos(2π(2k + 1)n/4N) . (7.68)

A scale factor of 1/
√

2 for X0 has been left out in (7.68), mainly because the above transform
appears as a subproblem in a length-4N real DFT [51]. From this, the multiplicative complexity of
the DCT can be related to that of the real DFT as [69]

µ(DCT(N)) = (µ(real-DFT(4N)) − µ(real-DFT(2N)))/2 . (7.69)

Practical algorithms for the DCT depend, as expected, on the transform length.

— N odd: the DCT can be mapped through permutations and sign changes only into a
same length real DFT [69].

— N even: the DCT can be mapped into a same length real DFT plus N/2 rotations [51].
This is not the optimal algorithm [69, 100] but, however, a very practical one.

Other sinusoidal transforms [71], like the discrete sine transform (DST), can be mapped into
DCTs as well, with permutations and sign changes only. The main point of this paragraph is that
DHTs, DCTs, and other related sinusoidal transforms can be mapped into DFTs, and therefore one
can resort to the vast and mature body of knowledge that exists for DFTs. It is worth noting that
so far, for all sinusoidal transforms that have been considered, a mapping into a DFT has always
produced an algorithm that is at least as efficient as any direct factorization. And if an improvement
is ever achieved with a direct factorization, then it could be used to improve the DFT as well. This is
the main reason why establishing equivalences between computational problems is fruitful, since it
allows improvement of the whole class when any member can be improved.

Figure 7.11 shows the various ways the different transforms are related: starting from any transform
with the best-known number of operations, you may obtain by following the appropriate arrows the
corresponding transform for which the minimum number of operations will be obtained as well.

7.9 Multidimensional Transforms

We have already seen in Sections 7.4 and 7.5 that both types of divide and conquer strategies resulted in
a multi-dimensional transform with some particularities: in the case of the Cooley-Tukey mapping,
some “twiddle factors” operations had to be performed between the treatment of both dimensions,
while in the Good’s mapping, the resulting array had dimensions that were coprime.

Here, we shall concentrate on true 2-D FFTs with the same size along each dimension (generaliza-
tion to more dimensions is usually straightforward).

Another characteristic of the 2-D case is the large memory size required to store the data. It is
therefore important to work in-place. As a consequence, in-place programs performing FFTs on real
data are also more important in the 2-D case, due to this memory size problem. Furthermore, the
required memory is often so large that the data are stored in mass memory and brought into core
memory when required, by rows or columns. Hence, an important parameter when evaluating 2-D
FFT algorithms is the amount of memory calls required for performing the algorithm.

The 2-D DFT to be computed is defined as follows:

Xk,r =
N−1∑
i=0

N−1∑
j=0

xi,jW
ik+jr
N , k, r = 0, . . . , N − 1 . (7.70)
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FIGURE 7.11: (a). Consistency of the split-radix based algorithms. Path showing the connections
between the various transforms.

The methods for computing this transform are distributed in four classes: row-column algorithms,
vector-radix algorithms, nested algorithms, and polynomial transform algorithms. Among them,
only the vector-radix and the polynomial transform were specifically designed for the 2-D case. We
shall only give the basic principles underlying these algorithms and refer to the literature for more
details.

7.9.1 Row-Column Algorithms

Since the DFT is separable in each dimension, the 2-D transform given in (7.70) can be performed
in two steps, as was explained for the PFA.

— First compute N FFTs on the columns of the data.

FIGURE 7.11: (b). Consistency of the split-radix based algorithms. Weighting of each connection
in terms of real operations.
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— Then compute N FFTs on the rows of the intermediate result.

Nevertheless, when considering 2-D transforms, one should not forget that the size of the data
becomes huge quickly: a length 1024× 1024DFT requires 106 words of storage, and the matrix is
therefore stored in mass memory. But, in that case, accessing a single data is not more costly than
reading the whole block in which it is stored. An important parameter is then the number of memory
accesses required for computing the 2-D FFT.

This is why the row-column FFT is often performed as shown in Fig. 7.12, by performing a matrix
transposition between the FFTs on the columns and the FFTs on the rows, in order to allow an access
to the data by blocks. Row-column algorithms are very easily implemented and only require efficient
1-D FFTs, as described before, together with a matrix transposition algorithm (for which an efficient
algorithm [84] was proposed). Note, however, that the access problem tends to be reduced with the
availability of huge core memories.

FIGURE 7.12: Row-column implementation of the 2-D FFT.

7.9.2 Vector-Radix Algorithms

A computationally more efficient way of performing the 2-D FFT is a direct approach to the multi-
dimensional problem: the vector-radix (VR) algorithm [85, 91, 92].

They can easily be understood through an example: the radix-2 DIT VRFFT.
This algorithm is based on the following decomposition:

Xk,r =
N/2−1∑

i=0

N/2−1∑
j=0

x2i,2jW
ik+jr

N/2 + Wk
N

N/2−1∑
i=0

N/2−1∑
j=0

x2i+1,2jW
ik+jr

N/2

+ Wr
N

N/2−1∑
i=0

N/2−1∑
j=0

x2i,2j+1W
ik+jr

N/2 + Wk+r
N

N/2−1∑
i=0

N/2−1∑
j=0

x2i+1,2j+1W
ik+jr

N/2 ,(7.71)

and the redundancy in the computation of Xk,r , Xk+N/2,r , Xk,r+N/2 and Xk+N/2,r+N/2 leads to
simplifications which allow reduction of the arithmetic complexity.

This is the same approach as was used in the Cooley-Tukey FFTs, the decomposition being applied
to both indices altogether.

Of course, higher radix decompositions or split radix decompositions are also feasible [86], the
main difference being that the vector-radix SRFFT, as derived in [86], although being more efficient
than the one in [90], is not the algorithm with the lowest arithmetic complexity in that class: For the
2-D case, the best algorithm is not only a mixture of radices 2 and 4.

Figure 7.13 shows what kind of decompositions are performed in the various algorithms. Due to
the fact that the VR algorithms are true generalizations of the Cooley-Tukey approach, it is easy to
realize that they will be obtained by repetitive use of small blocks of the same type (the “butterflies”,
by extension). Figure 7.14 provides the basic butterfly for a vector radix-2 FFT, as derived by (7.71).
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It should be clear, also, from Fig. 7.13 that the complexity of these butterflies increases very quickly
with the radix: a radix-2 butterfly involves 4 inputs (it is a 2 × 2 DFT followed by some “twiddle
factors”), while VR4 and VSR butterflies involve 16 inputs.

FIGURE 7.13: Decomposition performed in various vector radix algorithms.

FIGURE 7.14: General vector-radix 2 butterfly.

Note also that the only VR algorithms that have seriously been considered all apply to lengths that
are powers of 2, although other radices are of course feasible.

The number of read/write cycles of the whole set of data needed to perform the various FFTs of
this class, compared to the row-column algorithm, can be found in [86].

7.9.3 Nested Algorithms

They are based on the remark that the nesting property used in Winograd’s algorithm, as explained in
Section 7.5.3, is not bound to the fact that the lengths are coprime (this requirement was only needed
for Good’s mapping). Hence, if the length of the DFT allows the corresponding 1-D DFT to be of a
nested type (product of mutually prime factors), it is possible to nest further the multiplications, so
that the overall 2-D algorithm is also nested.

The number of multiplications thus obtained are very low (see Table 7.4), but the main problem
deals with memory requirements: WFTA is not performed in-place, and since all multiplications
are nested, it requires the availability of a number of memory locations equal to the number of
multiplications involved in the algorithms. For a length 1008× 1008FFT, this amounts to about
6·106 locations. This restricts the practical usefulness of these algorithms to small or medium length
DFTs.
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TABLE 7.4 Number of Non-Trivial Real Multiplications Per Output Point

for Various 2-D FFTs on Real Data
N × N N × N
(WFTA) (Others) R.C. VR2 VR4 VSR WFTA P.T.

2 × 2 0 0  0  0
4 × 4 0 0 0 0  0
8 × 8 0.5 0.375 0.375 0.375

16 × 16 1.25 1.25 0.844 0.844 0.844
30 × 30 32 × 32 2.125 2.062 1.43 1.435 1.336

64 × 64 3.0625 3.094 2.109 2.02 1.834
120 × 120 128 × 128 4.031 4.172 2.655 1.4375 2.333
240 × 240 256 × 256 5.015 5.273 3.48 3.28 1.82 2.833
504 × 504 512 × 512 6.008 6.386 3.92 2.47 3.33

1008 × 1008 1024 × 1024 7.004 7.506 4.878 4.56 3.12 3.83

7.9.4 Polynomial Transform

Polynomial transforms were first proposed by Nussbaumer [74] for the computation of 2-D cyclic
convolutions. They can be seen as a generalization of Fourier transforms in the field of polynomials.
Working in the field of polynomials resulted in a simplification of the multiplications by the root
of unity, which was changed from a complex multiplication to a vector reordering. This powerful
approach was applied in [87, 88] to the computation of 2-D DFTs as follows.

Let us consider the case where N = 2n, which is the most common case. The 2-D DFT of (7.70)
can be represented by the following three polynomial equations:

Xi(z) =
N−1∑
j=0

xi,j · zj , (7.72a)

X̄k(z) =
N−1∑
i=0

Xi(z)W
ik
N mod

(
zN − 1

)
, (7.72b)

Xk,r = X̄k(z) mod
(
z − Wr

N

)
. (7.72c)

This set of equations can be interpreted as follows: (7.72a) writes each row of the data as a
polynomial, (7.72b) computes explicitly the DFTs on the columns, while (7.72c) computes the
DFTs on the rows as a polynomial reduction [it is merely the equivalent of (7.5)]. Note that the
modulo operation in (7.72b) is not necessary (no polynomial involved has a degree greater than
N), but it will allow a divide and conquer strategy on (7.72c).

In fact, since (zN − 1) = (zN/2 − 1)(zN/2 + 1), the set of two equations (7.72b), (7.72c) can be
separated into two cases, depending on the parity of r :

X̄1
k(z) =

N−1∑
i=0

Xi(z)W
ik
N mod

(
zN/2 − 1

)
, (7.73a)

Xk,2r = X̄1
k(z) mod

(
z − W2r

N

)
, (7.73b)

X̄2
k (z) =

N−1∑
i=0

Xi(z)W
ik
N mod

(
zN/2 + 1

)
, (7.74a)

Xk,2r+1 = X̄2
k (z) mod

(
z − W2r+1

N

)
. (7.74b)

Equation (7.73) is still of the same type as the initial one, hence the same procedure as the one
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being derived will apply. Let us now concentrate on (7.74) which is now recognized to be the key
aspect of the problem.

Since (2r + 1, N) = 1, the permutation (2r + 1) · k(mod N) maps all values of k, and replacing
k with (2r + 1) · k in (7.73a) will merely result in a reordering of the outputs:

X̄2
k(2r+1)(z) =

N−1∑
i=0

Xi(z)W
(2r+1)ik
N mod

(
zN/2 + 1

)
, (7.75a)

Xk(2r+1),2r+1 = X̄2
k(2r+1)(z) mod

(
z − W2r+1

N

)
. (7.75b)

and, since z = W2r+1
N in (7.75b), we can replace W 2r+1

N by z in (7.75a):

X̄2
k(2r+1)(z) =

N−1∑
i=0

Xi(z)z
ik mod

(
ZN/2 + 1

)
, (7.76)

which is exactly a polynomial transform, as defined in [74]. This polynomial transform can be com-
puted using an FFT-type algorithm, without multiplications, and with only N2/2log2 N additions.

Xk,2r+1 will now be obtained by application of (7.75b). X̄2(z) being computed mod (zN/2 + 1)

is of degree N/2 − 1. For each k, (7.75b) will then correspond to the reduction of one polynomial
modulo the odd powers of WN . From (7.5), this is seen to be the computation of the odd outputs of
a length N DFT, which is sometimes called an odd DFT.

The termsXk,2r+1 are seen tobeobtainedbyone reductionmod (zN/2+1) (7.74), onepolynomial
transform of N terms mod ZN/2 + 1 (7.76) and N odd DFTs. This procedure is then iterated on the
terms X2k+1,2r , by using exactly the same algorithm, the role of k and r being interchanged. X2k,2r

is exactly a length N/2 × N/2 DFT, on which the same algorithm is recursively applied.
In the first version of the polynomial transform computation of the 2-D FFT, the odd DFT was

computed by a real-factor algorithm, resulting in an excess in the number of additions required.
As seen in Tables 7.4 and 7.5, where the number of multiplications and additions for the various 2-D

FFT algorithms are given, the polynomial transform approach results in the algorithm requiring the
lowest arithmetic complexity, when counting multiplications and additions altogether. The addition
counts given in Table 7.5 are updates of the previous ones, assuming that the odd DFTs are computed
by a split-radix algorithm.

TABLE 7.5 Number of Real Additions Per Output Point for Various 2-D

FFTs on Real Data
N × N N × N
(WFTA) (Others) R.C. VR2 VR4 VSR WFTA P.T.

2 × 2 2. 2. 2. 2.
4 × 4 3.25 3.25 3.25 3.25 3.25
8 × 8 5.56 5.43 5.43 5.43

16 × 16 8.26 8.14 7.86 7.86 7.86
30 × 30 32 × 32 11.13 11.06 10.43 12.98 10.34

64 × 64 14.06 14.09 13.11 13.02 12.83
120 × 120 128 × 128 17.03 17.17 15.65 17.48 15.33
240 × 240 256 × 256 20.01 20.27 18.48 17.67 22.79 17.83
504 × 504 512 × 512 23.00 23.38 20.92 34.42 20.33

1008 × 1008 1024 × 1024 26.00 26.5 23.88 23.56 45.30 22.83

Note that the same kind of performance was obtained by Auslander et al. [82, 83] with a similar
approach which, while more sophisticated, gave a better insight on the mathematical structure of this
problem. Polynomial transforms were also applied to the computation of 2-D DCT [52, 79].

c©1999 by CRC Press LLC



7.9.5 Discussion

A number of conclusions can be stated by considering Tables 7.4 and 7.5, keeping the principles of
the various methods in mind.

VR2 ismorecomplicated to implement thanrow-columnalgorithms, andrequiresmoreoperations
for lengths ≥ 32. Therefore, it should not be considered. Note that this result holds only because
efficient and compact 1-D FFTs, such as SRFFT, have been developed.

The row-column algorithm is the one allowing the easiest implementation, while having a reason-
able arithmetic complexity. Furthermore, it is easily parallelized, and simplifications can be found for
the reorderings (bit reversal, and matrix transposition [66]), allowing one of them to be free in nearly
any kind of implementation. WFTA has a huge number of additions (twice the number required
for the other algorithms for N = 1024), requires huge memory, has a difficult implementation,
but requires the least multiplications. Nevertheless, we think that, in today’s implementations, this
advantage will in general not outweigh its drawbacks.

VSR is difficult to implement, and will certainly seldom defeat VR4, except in very special cases
(huge memory available and N very large).

VR4 is a good compromise between structural and arithmetic complexity. When row-column
algorithms are not fast enough, we think it is the next choice to be considered.

Polynomial transforms have the greatest possibilities: lowest arithmetic complexity, possibility
of in-place computation, but very little work was done on the best way of implementing them.
It was even reported to be slower than VR2 [103]. Nevertheless, it is our belief that looking for
efficient implementations of polynomial transform based FFTs is worth the trouble. The precise
understanding of the link between VR algorithms and polynomial transforms may be a useful guide
for this work.

7.10 Implementation Issues

It is by now well recognized that there is a strong interaction between the algorithm and its imple-
mentation. For example, regularity, as discussed before, will only pay off if it is closely matched by
the target architecture. This is the reason why we will discuss in the sequel different types of imple-
mentations. Note that very often, the difference in computational complexity between algorithms
is not large enough to differentiate between the efficiency of the algorithm and the quality of the
implementation.

7.10.1 General Purpose Computers

FFT algorithms are built by repetitive use of basic building blocks. Hence, any improvement (even
small) in these building blocks will pay in the overall performance. In the Cooley-Tukey or the split-
radix case, the building blocks are small and thus easily optimizable, and the effect of improvements
will be relatively more important than in the PFA/WFTA case where the blocks are larger.

When monitoring the amount of time spent in various elementary ftoating point operations,
it is interesting to note that more time is spent in load/store operations than in actual arithmetic
computations [30, 107, 109] (this is due to the fact that memory access times are comparable to
ALU cycle times on current machines). Therefore, the locality of the algorithm is of paramount
importance. This is why the PFA and WFTA do not meet the performance expected from their
computational complexity only.

On another side, this drawback of PFA is compensated by the fact that only a few coefficients
have to be stored. On the contrary, classical FFTs must store a large table of sine and cosine values,
calculate them as needed, or update them with resulting roundoff errors.
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Note that special automatic code generation techniques have been developed in order to produce
efficient code for often used programs like the FFT. They are based on a “de-looping” technique that
produces loop free code from a given piece of code [107]. While this can produce unreasonably large
code for large transforms, it can be applied successfully to sub-transforms as well.

7.10.2 Digital Signal Processors

Digital signalprocessors (DSPs) strongly favormultiply/accumulatebasedalgorithms. Unfortunately,
this is not matched by any of the fast FFT algorithms (where sums of products have been changed
to fewer but less regular computations). Nevertheless, DSPs now take into account some of the
FFT requirements, like modulo counters and bit-reversed addressing. If the modulo counter is
general, it will help the implementation of all FFT algorithms, but it is often restricted to the Cooley-
Tukey/SRFFT case only (modulo a power of 2) for which efficient timings are provided on nearly all
available machines by manufacturers, at least for small to medium lengths.

7.10.3 Vector and Multi-Processors

Implementations of Fourier transforms on vectorized computers must deal with two interconnected
problems [93]. First, the vector (the size of data that can be processed at the maximal rate) has to be
full as often as possible. Then, the loading of the vector should be made from data available inside the
cache memory (as in general purpose computers) in order to save time. The usual hardware design
parameters will, in general, favor length-2m FFT implementations. For example, a radix-4 FFT was
reported to be efficiently realized on a commercial vector processor [93].

In the multi-processor case, the performance will be dependent on the number and power of
the processing nodes but also strongly on the available interconnection network. Because the FFT
algorithms are deterministic, the resource allocation problem can be solved off-line. Typical con-
figurations include arithmetic units specialized for butterfly operations [98], arrays with attached
shuffle networks, and pipelines of arithmetic units with intermediate storage and reordering [17].
Obviously, these schemes will often favor classical Cooley-Tukey algorithms because of their high
regularity. However, SRFFT or PFA implementations have not been reported yet, but could be
promising in high speed applications.

7.10.4 VLSI

The discussion of partially dedicated multi-processors leads naturally to fully dedicated hardware
structures like the ones that can be realized in very large scale integration (VLSI) [9, 11]. As a
measure of efficiency, both chip area (A) and time (T ) between two successive DFT computations
(set-up times are neglected since only throughput is of interest) are of importance. Asymptotic lower
bounds for the product A · T 2 have been reported for the FFT [116] and lead to

�AT 2( DFT (N)) = N2 log2(N) , (7.77)

that is, no circuit will achieve a better behavior than (7.77) for large N . Interestingly, this lower bound
is achieved by several algorithms, notably the algorithms based on shuffle-exchange networks and the
ones based on square grids [96, 114]. The trouble with these optimal schemes is that they outperform
more traditional ones, like the cascade connection with variable delay [98] (which is asymptotically
suboptimal), only for extremely large Ns and are therefore not relevant in practice [96].

Dedicated chips for the FFT computation are therefore often based on some traditional algorithm
which is then efficiently mapped into a layout. Examples include chips for image processing with
small size DCTs [115] as well as wafer scale integration for larger transforms. Note that the cost is
dominated both by the number of multiplications (which outweigh additions in VLSI) and the cost

c©1999 by CRC Press LLC



of communication. While the former figure is available from traditional complexity theory, the latter
one is not yet well studied and depends strongly on the structure of the algorithm as discussed in
Section 7.7. Also, dedicated arithmetic units suited for the FFT problem have been devised, like the
butterfly unit [98] or the CORDIC unit [94, 97] and contribute substantially to the quality of the
overall design. But, similarly to the software case, the realization of an efficient VLSI implementation
is still more an art than a mere technique.

7.11 Conclusion

The purpose of this paper has been threefold: a tutorial presentation of classic and recent results, a
review of the state of the art, and a statement of open problems and directions.

After a brief history of the FFT development, we have shown by simple arguments, that the
fundamental technique used in all fast Fourier transforms algorithms, namely the divide and conquer
approach, will always improve the computational efficiency.

Then, a tutorial presentation of all known FFT algorithms has been made. A simple notation,
showing how various algorithms perform various divisions of the input into periodic subsets, was
used as the basis for a unified presentation of Cooley-Tukey, split-radix, prime factor, and Winograd
fast Fourier transforms algorithms. From this presentation, it is clear that Cooley-Tukey and split-
radix algorithms are instances of one family of FFT algorithms, namely FFTs with twiddle factors.

The other family is based on a divide and conquer scheme (Good’s mapping) which is costless
(computationally speaking). The necessary tools for computing the short-length FFTs which then
appear were derived constructively and led to the presentation of the PFA and of the WFTA.

These practical algorithms were then compared to the best possible ones, leading to an evaluation
of their suboptimality. Structural considerations and special cases were addressed next. In particular,
it was shown that recently proposed alternative transforms like the Hartley transform do not show
any advantage when compared to real valued FFTs.

Special attention was then paid to multidimensional transforms, where several open problems
remain. Finally, implementation issues were outlined, indicating that most computational structures
implicitly favor classical algorithms. Therefore, there is room for improvements if one is able to
develop architectures that match more recent and powerful algorithms.
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Software

FORTRAN (or DSP) code can be found in the following references.

[7] contains a set of classical FFT algorithms.

[111] contains a prime factor FFT program.

[4] contains a set of classical programs and considerations on program optimization, as well as TMS
32010 code.

[113] contains a compact split-radix Fortran program.

[29] contains a speed-optimized split-radix FFT.

[77] contains a set of real-valued FFTs with twiddle factors.

[65] contains a split-radix real valued FFT, as well as a Hartley transform program.

[112] as well as [7] contains a Winograd Fourier transform Fortran program.

[66], [67] and [75] contain improved bit-reversal algorithms.
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8.1 Introduction

One of the first applications of the Cooley-Tukey fast Fourier transform (FFT) algorithm was to
implement convolution faster than the usual direct method [13, 25, 30]. Finite impulse response
(FIR) digital filters and convolution are defined by

y(n) =
L−1∑
k=0

h(k) x(n − k) (8.1)

where, for an FIR filter, x(n) is a length-N sequence of numbers considered to be the input signal,
h(n) is a length-L sequence of numbers considered to be the filter coefficients, and y(n) is the filtered
output. Examination of this equation shows that the output signal y(n) must be a length-(N +L−1)

sequence of numbers, and the direct calculation of this output requires NL multiplications and
approximately NL additions (actually, (N − 1)(L − 1)). If the signal and filter length are both
length-N , we say the arithmetic complexity is of order N2, O(N2). Our goal is calculate this
convolution or filtering faster than directly implementing (8.1). The most common way to achieve
“fast convolution” is to section or block the signal and use the FFT on these blocks to take advantage

c©1999 by CRC Press LLC



of the efficiency of the FFT. Clearly, one disadvantage of this technique is an inherent delay of one
block length.

Indeed, this approach is so common as to be almost synonymous with fast convolution. The
problem is to implement on-going, noncyclic convolution with the finite-length, cyclic convolution
that the FFT gives. An answer was quickly found in a clever organization of piecing together blocks
of data using what is now called the overlap-add method and the overlap-save method. These two
methods convolve length-L blocks using one length-L FFT, L complex multiplications, and one
length-L inverse FFT [22].

Later this was generalized to arbitrary length blocks or sections to give block convolution and block
recursion [5]. By allowing the block lengths to be even shorter than one word (bits and bytes!) we
come up with an interesting implementation called distributed arithmetic that requires no explicit
multiplications [7, 34].

Another approach for improving the efficiency of convolution and recursion uses fast algorithms
other than the traditional FFT. One possibility is to use a transform based on number-theoretic
roots of unity rather than the usual complex roots of unity [17]. This gives rise to number-theoretic
transforms that require no multiplications and no trigonometric functions. Still another method
applies Winograd’s fast algorithms directly to convolution rather than through the Fourier transform.
Finally, we remark that somefiltersh(n) require fewerarithmeticoperationsbecauseof their structure.

8.2 Overlap-Add and Overlap-Save Methods
for Fast Convolution

If one implements convolution by use of the FFT, then it is cyclic convolution that is obtained. In
order to use the FFT, zeros are appended to the signal or filter sequence until they are both the same
length. If the FFT of the signal x(n) is term-by-term multiplied by the FFT of the filter h(n), the
result is the FFT of the output y(n). However, the length of y(n) obtained by an inverse FFT is the
same as the length of the input. Because the DFT or FFT is a periodic transform, the convolution
implemented using this FFT approach is cyclic convolution, which means the output of (8.1) is
wrapped or aliased. The tail of y(n) is added to it head — but that is not usually what is wanted for
filtering or normal convolution and correlation. This aliasing, the effects of cyclic convolution, can
be overcome by appending zeros to both x(n) and h(n) until their lengths are N +L−1 and by then
using the FFT. The part of the output that is aliased is zero and the result of the cyclic convolution
is exactly the same as noncyclic convolution. The cost is taking the FFT of lengthened sequences —
sequences for which about half the numbers are zero. Now that we can do noncyclic convolution
with the FFT, how do we account for the effects of sectioning the input and output into blocks?

8.2.1 Overlap-Add

Because convolution is linear, the output of a long sequence can be calculated by simply summing
the outputs of each block of the input. What is complicated is that the output blocks are longer
than the input. This is dealt with by overlapping the tail of the output from the previous block with
the beginning of the output from the present block. In other words, if the block length is N and
it is greater than the filter length L, the output from the second block will overlap the tail of the
output from the first block and they will simply be added. Hence the name: overlap-add. Figure 8.1
illustrates why the overlap-add method works, for N = 10, L = 5.

Combining the overlap-add organization with use of the FFT yields a very efficient algorithm for
calculating convolution that is faster than direct calculation for lengths above 20 to 50. This cross-over
point depends on the computer being used and the overhead needed by use of the FFTs.
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FIGURE 8.1: Overlap-add algorithm. The sequence y(n) is the result of convolving x(n) with an
FIR filter h(n) of length 5. In this example, h(n) = 0.2 for n = 0, . . . , 4. The block length is 10, the
overlap is 4. As illustrated in the figure, x(n) = x1(n)+ x2(n)+ · · · and y(n) = y1(n)+ y2(n)+ · · ·
where yi(n) is the result of convolving xi(n) with the filter h(n).

8.2.2 Overlap-Save

A slightly different organization of the above approach is also often used for high-speed convolution.
Rather than sectioning the input and then calculating the output from overlapped outputs from
these individual input blocks, we will section the output and then use whatever part of the input
contributes to that output block. In other words, to calculate the values in a particular output block,
a section of length N +L−1 from the input will be needed. The strategy is to save the part of the first
input block that contributes to the second output block and use it in that calculation. It turns out
that exactly the same amount of arithmetic and storage are used by these two approaches. Because
it is the input that is now overlapped and, therefore, must be saved, this second approach is called
overlap-save.

Thismethodhasalsobeencalledoverlap-discard in [12]because, rather thanadding theoverlapping
output blocks, the overlapping portion of the output blocks are discarded. As illustrated in Fig. 8.2,
both the head and the tail of the output blocks are discarded. It may appear in Fig. 8.2 that an FFT
of length 18 is needed. However, with the use of the FFT (to get cyclic convolution), the head and
the tail overlap, so the FFT length is 14. (In practice, block lengths are generally chosen so that the
FFT length N + L − 1 is a power of 2).

8.2.3 Use of the Overlap Methods

Because the efficiency of the FFT is O(N log(N)), the efficiency of the overlap methods for convo-
lution increases with length. To use the FFT for convolution will require one length-N forward FFT,
N complex multiplications, and one length-N inverse FFT. The FFT of the filter is done once and
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FIGURE 8.2: Overlap-save algorithm. The sequence y(n) is the result of convolving x(n) with an
FIR filter h(n) of length 5. In this example, h(n) = 0.2 for n = 0, . . . , 4. The block length is 10,
the overlap is 4. As illustrated in the figure, the sequence y(n) is obtained, block by block, from the
appropriate block of yi(n), where yi(n) is the result of convolving xi(n) with the filter h(n).

stored rather than done repeatedly for each block. For short lengths, direct convolution will be more
efficient. The exact length of filter where the efficiency cross-over occurs depends on the computer
and software being used.

If it is determined that the FFT is potentially faster than direct convolution, the next question is
what block length to use. Here, there is a compromise between the improved efficiency of long FFTs
and the fact you are processing a lot of appended zeros that contribute nothing to the output. An
empirical plot of multiplication (and, perhaps, additions) per output point vs. block length will have
a minimum that may be several times the filter length. This is an important parameter that should
be optimized for each implementation. Remember that this increased block length may improve
efficiency but it adds a delay and requires memory for storage.

8.3 Block Convolution

The operation of a finite impulse response (FIR) filter is described by a finite convolution as

y(n) =
L−1∑
k=0

h(k) x(n − k) (8.2)
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where x(n) is causal, h(n) is causal and of length L, and the time index n goes from zero to infinity
or some large value. With a change of index variables this becomes

y(n) =
n∑

k=0

h(n − k) x(k) (8.3)

which can be expressed as a matrix operation by


y0
y1
y2
...


 =




h0 0 0 · · · 0
h1 h0 0
h2 h1 h0
...

...






x0
x1
x2
...


 . (8.4)

The H matrix of impulse response values is partitioned into N by N square submatrices and the X

and Y vectors are partitioned into length-N blocks or sections. This is illustrated for N = 3 by

H0 =

 h0 0 0

h1 h0 0
h2 h1 h0


 , H1 =


 h3 h2 h1

h4 h3 h2
h5 h4 h3


 , etc. (8.5)

x0 =

 x0

x1
x2


 , x1 =


 x3

x4
x5


 , y

0
=

 y0

y1
y2


 , etc. (8.6)

Substituting these definitions into (8.4) gives


y
0

y
1

y
2
...


 =




H0 0 0 · · · 0
H1 H0 0
H2 H1 H0
...

...






x0
x1
x2
...


 (8.7)

The general expression for the nth output block is

y
n

=
n∑

k=0

Hn−k xk (8.8)

which is a vector or block convolution. Since the matrix-vector multiplication within the block
convolution is itself a convolution, (8.9) is a sort of convolution of convolutions and the finite length
matrix-vector multiplication can be carried out using the FFT or other fast convolution methods.

The equation for one output block can be written as the product

y
2

= [
H2 H1 H0

] x0
x1
x2


 (8.9)

and the effects of one input block can be written
 H0

H1
H2


 x1 =


 y

0
y

1
y

2


 . (8.10)

These are generalized statements of overlap-save and overlap-add [11, 30]. The block length can be
longer, shorter, or equal to the filter length.
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8.3.1 Block Recursion

Although less well known, infinite impulse response (IIR) filters can be implemented with block
processing [5, 6]. The block form of an IIR filter is developed in much the same way as the block
convolution implementation of the FIR filter. The general constant coefficient difference equation
which describes an IIR filter with recursive coefficients al , convolution coefficients bk , input signal
x(n), and output signal y(n) is given by

y(n) =
N−1∑
l=1

al yn−l +
M−1∑
k=0

bk xn−k (8.11)

using both functional notation and subscripts, depending on which is easier and clearer. The impulse
response h(n) is

h(n) =
N−1∑
l=1

al h(n − l) +
M−1∑
k=0

bk δ(n − k) (8.12)

which, for N = 4, can be written in matrix operator form


1 0 0 · · · 0
a1 1 0
a2 a1 1
a3 a2 a1
0 a3 a2
...

...







h0
h1
h2
h3
h4
...




=




b0
b1
b2
b3
0
...




In terms of smaller submatrices and blocks, this becomes


A0 0 0 · · · 0
A1 A0 0
0 A1 A0
...

...






h0
h1
h2
...


 =




b0
b1
0
...


 (8.13)

for blocks of dimension two. From this formulation, a block recursive equation can be written that
will generate the impulse response block by block.

A0 hn + A1 hn−1 = 0 for n ≥ 2 (8.14)

or
hn = −A−1

0 A1 hn−1 = K hn−1 for n ≥ 2 (8.15)

with initial conditions given by

h1 = −A−1
0 A1A

−1
0 b0 + A−1

0 b1 (8.16)

Next, we develop the recursive formulation for a general input as described by the scalar difference
equation (8.12) and in matrix operator form by



1 0 0 · · · 0
a1 1 0
a2 a1 1
a3 a2 a1
0 a3 a2
...

...







y0
y1
y2
y3
y4
...




=




b0 0 0 · · · 0
b1 b0 0
b2 b1 b0
0 b2 b1
0 0 b2
...

...







x0
x1
x2
x3
x4
...




(8.17)
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which, after substituting the definitions of the submatrices and assuming the block length is larger
than the order of the numerator or denominator, becomes


A0 0 0 · · · 0
A1 A0 0
0 A1 A0
...

...






y
0

y
1

y
2
...


 =




B0 0 0 · · · 0
B1 B0 0
0 B1 B0
...

...






x0
x1
x2
...


 . (8.18)

From the partitioned rows of (8.19), one can write the block recursive relation

A0 y
n+1

+ A1 y
n

= B0 xn+1 + B1 xn (8.19)

Solving for y
n+1

gives

y
n+1

= −A−1
0 A1 y

n
+ A−1

0 B0 xn+1 + A−1
0 B1 xn (8.20)

y
n+1

= K y
n

+ H0 xn+1 + H̃1 xn (8.21)

which is a first order vector difference equation [5, 6]. This is the fundamental block recursive
algorithm that implements the original scalar difference equation in (8.12). It has several important
characteristics.

1. The block recursive formulation is similar to a state variable equation but the states are
blocks or sections of the output [6].

2. If the block length were shorter than the denominator, the vector difference equation
would be higher than first order. There would be a nonzero A2. If the block length
were shorter than the numerator, there would be a nonzero B2 and a higher order block
convolution operation. If the block length were one, the order of the vector equation
would be the same as the scalar equation. They would be the same equation.

3. The actual arithmetic that goes into the calculation of the output is partly recursive and
partly convolution. The longer theblock, themore theoutput is calculatedbyconvolution,
and the more arithmetic is required.

4. There are several ways of using the FFT in the calculation of the various matrix prod-
ucts in (8.20). Each has some arithmetic advantage for various forms and orders of the
original equation. It is also possible to implement some of the operations using rectan-
gular transforms, number theoretic transforms, distributed arithmetic, or other efficient
convolution algorithms [6, 36].

8.4 Short and Medium Length Convolution

For the cyclic convolution of short sequences (n ≤ 10) and medium length sequences (n ≤ 100),
special algorithms are available. For short lengths, algorithms that require the minimum number
of multiplications possible have been developed by Winograd [8, 17, 35]. However, for longer
lengths Winograd’s algorithms, based on his theory of multiplicative complexity, require a large
number of additions and become cumbersome to implement. Nesting algorithms, such as the
Agarwal-Cooley and split-nesting algorithm, are methods that combine short convolutions. By
nesting Winograd’s short convolution algorithms, efficient medium length convolution algorithms
can thereby be obtained.

In the following section we give a matrix description of these algorithms and of the Toom-Cook
algorithm. Descriptionsbasedonpolynomials canbe found in [4, 8, 19, 21, 24]. Thepresentation that
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follows relies upon the notions of similarity transformations, companion matrices, and Kronecker
products. With them, the algorithms are described in a manner that brings out their structure and
differences. It is found that when companion matrices are used to describe cyclic convolution, the
algorithms block-diagonalize the cyclic shift matrix.

8.4.1 The Toom-Cook Method

A basic technique in fast algorithms for convolution is interpolation: two polynomials are evaluated
at some common points, these values are multiplied, and by computing the polynomial interpolating
these products, the product of the two original polynomials is determined [4, 19, 21, 31]. This
interpolation method is often called the Toom-Cook method and can be described by a bilinear
form. Let n = 2,

X(s) = x0 + x1s + x2s
2

H(s) = h0 + h1s + h2s
2

Y (s) = y0 + y1s + y2s
2 + y3s

3 + y4s
4 .

The linear convolution of x and h can be represented by a matrix-vector product y = Hx,


y0
y1
y2
y3
y4


 =




h0
h1 h0
h2 h1 h0

h2 h1
h2




 x0

x1
x2




or as a polynomial product Y (s) = H(s)X(s). In the former case, the linear convolution matrix can
be written as h0H0 + h1H1 + h2H2 where the meaning of Hk is clear. In the later case, one obtains
the expression

y = C {Ah ∗ Ax} (8.22)

where ∗ denotes point-by-point multiplication. The terms Ah and Ax are the values of H(s) and
X(s) at some points i1, . . . i2n−1 (n = 2 ). The point-by-point multiplication gives the values
Y (i1), . . . , Y (i2n−1). The operation of C obtains the coefficients of Y (s) from its values at the point
i1, . . . i2n−1. Equation (8.22) is a bilinear form and it implies that

Hk = C diag (Aek)A

where ek is the kth standard basis vector. (Aek is the kth column of A). However, A and C do not
need to be Vandermonde matrices as suggested above. As long as A and C are matrices such that
Hk = C diag (Aek)A, then the linear convolutionofx andh is givenby thebilinear formy = C{Ah∗
Ax}. More generally, as long as A, B, and C are matrices satisfying Hk = C diag (Bek)A, then
y = C{Bh ∗ Ax} computes the linear convolution of h and x. For convenience, if C{Bh ∗ Ax}
computes the n point linear convolution of h and x (both h and x are n point sequences), then we
say “(A, B, C) describes a bilinear form for n point linear convolution.”

EXAMPLE 8.1:

(A, A, C) describes a 2-point linear convolution where

A =

 1 0

1 1
0 1


 and C =


 1 0 0

0 1 0
−1 −1 1


 . (8.23)
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8.4.2 Cyclic Convolution

The cyclic convolution of x and h can be represented by a matrix-vector product
 y0

y1
y2


 =


 h0 h2 h1

h1 h0 h2
h2 h1 h0




 x0

x1
x2




oras the remainderofapolynomialproductafterdivisionby sn−1, denotedbyY (s) = 〈H(s)X(s)〉sn−1.
In the former case, the cyclic convolution matrix can be written as h0I + h1S2 + h2S

2
2 where Sn is

the cyclic shift matrix,

Sn =




1
1

. . .

1


 .

It will be useful to make a more general statement.
The companion matrix of a monic polynomial, M(s) = m0 + m1s + · · · + mn−1s

n−1 + sn is
given by

CM =




−m0
1 −m1

. . .
...

1 −mn−1


 .

Its usefulness in the following discussion comes from the following relation, which permits a matrix
formulation of convolution:

Y (s) = 〈H(s)X(s)〉M(s) ⇐⇒ y =
(

n−1∑
k=0

hkC
k
M

)
x (8.24)

where x, h, and y are the vectors of coefficients and CM is the companion matrix of M(s). In (8.24),
we say y is the convolution of x and h with respect to M(s). In the case of cyclic convolution,
M(s) = sn − 1 and Csn−1 is the cyclic shift matrix, Sn.

Similarity transformations can be used to interpret the action of some convolution algorithms. If
CM = T −1QT for some matrix T (CM and Q are similar, denoted CM ∼ Q), then (8.24) becomes

y = T −1

(
n−1∑
k=0

hkQ
k

)
T x .

That is, by employing the similarity transformation given by T in this way, the action of Sk
n is replaced

by that of Qk . Many cyclic convolution algorithms can be understood, in part, by understanding
the manipulations made to Sn and the resulting new matrix Q. If the transformation T is to be
useful, it must satisfy two requirements: (1) T x must be simple to compute, and (2) Q must have
some advantageous structure. For example, by the convolution property of the DFT, the DFT matrix
F diagonalizes Sn and, therefore, it diagonalizes every circulant matrix. In this case, T x can be
computed by an FFT and the structure of Q is the simplest possible: a diagonal.

8.4.3 Winograd Short Convolution Algorithm

The Winograd algorithm [35] can be described using the notation above. Suppose M(s) can be
factored as M(s) = M1(s)M2(s) where M1(s) and M2(s) have no common roots, then CM ∼
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(
CM1 ⊕ CM2

)
where ⊕ denotes the matrix direct sum. Using this similarity and recalling (8.24),

the original convolution can be decomposed into two disjoint convolutions. This is a statement
of the Chinese remainder theorem for polynomials expressed in matrix notation. In the case of
cyclic convolution, sn − 1 can be written as the product of cyclotomic polynomials — polynomials
whose coefficients are small integers. Denoting the dth cyclotomic polynomial by 8d(s), one has
sn − 1 = ∏

d|n 8d(s). Therefore, Sn can be transformed to a block diagonal matrix,

Sn ∼




C81

C8d

. . .

C8n


 =


⊕

d|n
C8d


 . (8.25)

The symbol ⊕ denotes the matrix direct sum (diagonal concatenation). Each matrix on the diagonal
is the companion matrix of a cyclotomic polynomial.

EXAMPLE 8.2:

s15 − 1 = 81(s)83(s)85(s)815(s)

= (s − 1)(s2 + s + 1)(s4 + s3 + s2 + s + 1)(s8 − s7 + s5 − s4 + s3 − s + 1)

S15 = T −1




1
−1

1 −1
−1

1 −1
1 −1

1 −1
−1

1 1
1

1 −1
1 1

1 −1
1

1 1




T . (8.26)

Each block represents a convolution with respect to a cyclotomic polynomial, or a “cyclotomic
convolution.” When n has several prime divisors the similarity transformation T becomes quite
complicated. However, when n is a prime power, the transformation is very structured, as described
in [29].

As in the previous section, we can write a bilinear form for cyclotomic convolution. Let d be any
positive integer and letX(s) andH(s)bepolynomials ofdegreeφ(d)−1whereφ(·) is theEuler totient

function. If A, B, and C are matrices satisfying
(
C8d

)k = C diag (Bek)A for 0 ≤ k ≤ φ(d) − 1,
then the coefficients of Y (s) = 〈X(s)H(s)〉8d(s) are given by y = C{Bh ∗ Ax}. As above, for such
A, B, and C, we say “(A, B, C) describes a bilinear form for 8d(s) convolution.”

But since 〈X(s)H(s)〉8d(s) can be found by computing the product of X(s) and H(s) and reducing
the result, a cyclotomic convolution algorithm can always be derived by following a linear convolution
algorithm by the appropriate reduction operation: If G is the appropriate reduction matrix and if
(A, B, C) describes a bilinear form for a φ(d) point linear convolution, then (A, B, GC) describes
a bilinear form for 8d(s) convolution. That is, y = GC{Bh ∗ Ax} computes the coefficients of
〈X(s)H(s)〉8d(s).
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EXAMPLE 8.3:

Abilinear formfor83(s) convolution is describedby (A, A, GC)whereA andC are given in (8.23)
and G is given by

G =
[

1 0 −1
0 1 −1

]
.

The Winograd short cyclic convolution algorithm decomposes the convolution into smaller (cy-
clotomic) ones, and can be described as follows. If (Ad, Bd, Cd) describes a bilinear form for 8d(s)

convolution, then a bilinear form for cyclic convolution is provided by

A = (⊕d|nAd

)
T B = (⊕d|nBd

)
T C = T −1 (⊕d|nCd

)
.

The matrix T decomposes the problem into disjoint parts, and T −1 recombines the results.

8.4.4 The Agarwal-Cooley Algorithm

The Agarwal-Cooley [3] algorithm uses a similarity of another form. Namely, when n = n1n2, and
(n1, n2) = 1

Sn = P t
(
Sn1 ⊗ Sn2

)
P (8.27)

where ⊗ denotes the Kronecker product and P is a permutation matrix. The permutation is
k → 〈k〉n1 + n1〈k〉n2. This converts a one-dimensional cyclic convolution of length n into a two-
dimensional one of length n1 along one dimension and length n2 along the second. Then an n1-point
and an n2-point cyclic convolution algorithm can be combined to obtain an n-point algorithm.

8.4.5 The Split-Nesting Algorithm

The split-nesting algorithm [21] combines the structures of the Winograd and Agarwal-Cooley
methods, so that Sn is transformed to a block diagonal matrix as in (8.25),

Sn ∼
⊕
d|n

9(d) . (8.28)

Here 9(d) = ⊗
p|d,p∈P C8Hd(p)

where Hd(p) is the highest power of p dividing d , and P is the set
of primes. An example clarifies this decomposition.

EXAMPLE 8.4:

S45 = P tR−1




1
C83

C89

C85

C83 ⊗ C85

C89 ⊗ C85




RP (8.29)

where P is the same permutation matrix of (8.27), and R is a matrix described in [29].
In the split-nesting algorithm, each matrix along the diagonal represents a multidimensional

cyclotomic convolution rather than a one-dimensional one. To obtain a bilinear form for the split-
nesting method, bilinear forms for one-dimensional convolutions can be combined to obtain bilinear
forms for multi-dimensional cyclotomic convolution. This is readily explained by an example.
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EXAMPLE 8.5:

A 45-point circular convolution algorithm:

y = P tR−1C {BRPh ∗ ARPx} (8.30)

where

A = 1 ⊕ A3 ⊕ A9 ⊕ A5 ⊕ (A3 ⊗ A5) ⊕ (A9 ⊗ A5)

B = 1 ⊕ B3 ⊕ B9 ⊕ B5 ⊕ (B3 ⊗ B5) ⊕ (B9 ⊗ B5)

C = 1 ⊕ C3 ⊕ C9 ⊕ C5 ⊕ (C3 ⊗ C5) ⊕ (C9 ⊗ C5)

and where (Api , Bpi , Cpi ) describes a bilinear form for 8pi (s) convolution.
Split-nesting (1) requires a simpler similarity transformation than the Winograd algorithm and

(2) decomposes cyclic convolution into several disjoint multidimensional convolutions. For these
reasons, for medium lengths, split-nesting can be more efficient than the Winograd convolution
algorithm, even though it does not achieve the minimum number of multiplications. An explicit
matrix description of the similarity transformation is provided in [29].

8.5 Multirate Methods for Running Convolution

While fast FIR filtering, based on block processing and the FFT, is computationally efficient, for
real-time processing it has three drawbacks: (1) A delay is incurred; (2) the multiply-accumulate
structure of the convolutional sum, a command for which DSPs are optimized, is lost; and (3) extra
memory and communication (data transfer) time is needed. For real-time applications, this has
motivated the development of alternative methods for convolution that partially retain the FIR
filtering structure [18, 33].

In the z-domain, the running convolution of x and h is described by a polynomial product

Y (z) = H(z)X(z) (8.31)

where X(z) and Y (z) are of infinite degree, and H(z) is of finite degree. Let us write the polynomials
as follows

X(z) = X0

(
z2
)

+ z−1X1

(
z2
)

(8.32)

Y (z) = Y0

(
z2
)

+ z−1Y1

(
z2
)

(8.33)

H(z) = H0

(
z2
)

+ z−1H1

(
z2
)

(8.34)

where

X0(z) =
∞∑
i=0

x2iz
−i X1(z) =

∞∑
i=0

x2i+1z
−i

and Y0, Y1, H0, H1 are similarly defined. (These are known as polyphase components, although that
is not important here). The polynomial product (8.31) can then be written as

Y0

(
z2
)

+ z−1Y1

(
z2
)

=
(
H0

(
z2
)

+ z−1H1

(
z2
)) (

X0

(
z2
)

+ z−1X1

(
z2
))

(8.35)

or in matrix form as

[
Y0
Y1

]
=
[

H0 z−2H1
H1 H0

] [
X0
X1

]
(8.36)
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where Y0 = Y0(z
2), etc.

The general form of (8.34) is given by

X(z) =
N−1∑
k=0

z−1Xk(z
N)

where
Xk(z) =

∑
i

xNi+kz
−i

and similarly for H and Y . For clarity, N = 2 is used in this exposition.
Note that the right hand side of (8.35) is a product of two polynomials of degree N , where

the coefficients are themselves polynomials, either of finite degree (Hi), or of infinite degree (Xi).
Accordingly, the Toom-Cook algorithm described previously can be employed, in which case the
sums and products become polynomial sums and products. The essential key is that the polynomial
products are themselves equivalent to FIR filtering, with shorter filters.

A Toom-Cook algorithm for carrying out (8.35) is given by[
Y0
Y1

]
= C

{
A

[
H0
H1

]
∗ A

[
X0
X1

]}

where

A =

 1 0

1 1
0 1


 C =

[
1 0 z−2

−1 1 −1

]
.

This Toom-Cook algorithm yields the multirate filter bank structure shown in Fig. 8.3. The outputs
of the two downsamplers, on the left side of the structure shown in the figure, are X0(z) and X1(z).
The outputs of the two upsamplers, on the right side of the structure, are Y0(z

2) and Y1(z
2). Note

that the three filters H0, H0+H1, and H1 operate at half the sampling rate. The right-most operation
shown in Fig. 8.3 is not an arithmetic addition — it is a merging of the two sequences, Y0(z

2) and
z−1Y1(z

2), by interleaving. The arithmetic overhead is 1 “input” addition and 3 “output” additions
per 2 samples; that is a total of 2 additions per sample.

If the original filter H(z) is of length L and operates at the rate fs , then the structure in Fig. 8.3 is
an implementation of H(z) that employs three filters of length L/2, each operating at the rate 1

2fs .

FIGURE 8.3: Filter structure based on a two-point convolution algorithm. Let H0 be the even
coefficients of a filter H , let H1 be the odd coefficients. The structure implements the filter H using
three half-length filters, each running at half the rate of H .

Theconvolutional sumforH(z), when implementeddirectly, requiresLmultiplicationsperoutput
point and L − 1 additions per output point. Per output point, the structure in Fig. 8.3 requires 3

4L

multiplications and 2 + 3
2(L/2 − 1) = 3

4L + 1
2 additions.
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The decomposition can be repeatedly applied to each of the three filters; however, the benefit
diminishes for small L, and quantization errors may accumulate. Table 8.1 gives the number of
multiplications needed to implement a length 32 FIR filter, using various levels of decomposition.

TABLE 8.1 Computation of Running Convolution
Method Subsampling Delay Mult./Point

1 32-pt. FIR filter 1 0 32
3 16-pt. FIR filters 2 1 24
9 8-pt. FIR filters 4 3 18
27 4-pt. FIR filters 8 7 13.5
81 2-pt. FIR filters 16 15 10.125
243 1-pt. mults. 32 31 7.59

Based on repeated application of two-point convolution structure
in Fig. 8.3. (From [33].)

Other short linear convolutionalgorithmscanbeobtained fromexistingonesbya techniqueknown
as transposition. The transposed form of a short convolution algorithm has the same arithmetic
complexity, but in a different arrangement. It was observed in [18] that the transposed forms
generally have more input additions and fewer output additions. Consequently, the transposed
forms should be more robust to quantization noise.

Various short-length convolution algorithms that are appropriate for this approach are provided
in [18]. Also addressed is the issue of when to stop successive decompositions — and the problem of
finding the best way to combine small-length filters, depending on various criteria. In particular, it is
noted that DSPs generally perform a multiply-accumulate (MAC) operation in a single clock cycle,
in which case a MAC should be considered a single operation.

It appears that this approach is amenable to (1) efficient multiprocessor implementations due to
their inherent parallelism, and (2) efficient VLSI realization, since the implementation requires only
local communication, instead of global exchange of data as in the case of FFT-based algorithms.

In [33], the following is noted. The mapping of long convolutions into small, subsampled convo-
lutions is attractive in hardware (VLSI), software (signal processors), and multiprocessor implemen-
tations since the basic building blocks remain convolutions which can be computed efficiently once
small enough.

8.6 Convolution in Subbands

Maximally decimated perfect reconstruction filter banks have been used for a variety of applications
where processing in subbands is advantageous. Such filter banks can be regarded as generalizations
of the short-time Fourier transform, and it turns out that the convolution theorem can be extended
to them [23, 32]. In other words, the convolution of two signals can be found by directly convolving
the subband signals and combining the results. In [23], both uniform and nonuniform decimation
ratios are considered for orthonormal and biorthonormal filter banks. In [32], the results of [23] are
generalized.

The advantage of this method is that the subband signals can be quantized based on the signal
variance in each subband and other perceptual considerations, as in traditional subband coding. In-
stead of quantizing x(n) and then convolving with g(n), the subbands xk(n) and gk(n) are quantized,
and the results are added. When quantizing in the subbands, the subband energy distribution can
be exploited and bits can be allocated to subbands accordingly. For a fixed bit rate, this approach
increases the accuracy of the overall convolution — that is, this approach offers a coding gain.

In [23] an optimal bit allocation formula and the optimized coding gain is derived for orthogonal
filter banks. The contribution to coding gain comes partly from the nonuniformity of the signal

c©1999 by CRC Press LLC



spectrum and partly from the nonuniformity of the filter spectrum. When the filter impulse response
is taken to be the unit impulse δ(n), the formulas for the bit allocation and coding gain reduce to
those for traditional subband and transform coding.

Theefficiency that is gained fromsubbandconvolutioncomes fromtheability tousea fewernumber
of bits to achieve a given level of accuracy. In addition, in [23], low sensitivity filter structures are
derived from the subband convolution theorem and examined.

8.7 Distributed Arithmetic

Rather than grouping the individual scalar data values in a discrete-time signal into blocks, the scalar
values can be partitioned into groups of bits. Because multiplication of integers, multiplication
of polynomials, and discrete-time convolution are the same operations, the bit-level description of
multiplication can be mixed with the convolution of the signal processing. The resulting structure is
called distributed arithmetic [7, 34].

8.7.1 Multiplication is Convolution

To simplify the presentation, we will assume the data and coefficients to be positive integers with
simple binary coding and the problem of carrying will be omitted. Assume the product of two B-bit
words is desired

y = a x (8.37)

where

a =
B−1∑
i=0

ai2
i and x =

B−1∑
i=0

aj 2j (8.38)

with ai, xj ∈ {0, 1}. This gives

y =
∑

i

ai2
i
∑
j

xj 2j (8.39)

which, with a change of variables k = i + j , becomes

y =
∑

k

∑
i

ai xk−i2
k . (8.40)

Using the binary description of y as

y =
∑

k

yk2k (8.41)

we have for the binary coefficients

yk =
∑

i

ai xk−i (8.42)

as a convolution of the binary coefficients for a and x. We see that multiplying two numbers is the
same as convolving their coefficient representation any base. Multiplication is convolution.

8.7.2 Convolution is Two Dimensional

Consider the following convolution of number strings (FIR filtering)

y(n) =
∑

`

a(`) x(n − `) . (8.43)
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Using the binary representation of the coefficients and data, we have

y(n) =
∑

`

∑
i

ai(`) 2i
∑
j

xj (n − `) 2j (8.44)

y(n) =
∑

`

∑
i

∑
i

ai(`)xj (n − `)2i+j (8.45)

which after changing variables, k = i + j , becomes

y(n) =
∑

k

∑
`

∑
i

ai(`) xk−i (n − `) 2k . (8.46)

A one-dimensional convolution of numbers is a two-dimensional convolution of the binary (or other
base) representations of the numbers.

8.7.3 Distributed Arithmetic by Table Lookup

The usual way that distributed arithmetic convolution is calculated does the arithmetic in a special
concentratedalgorithmorpieceofhardware. Wearenowgoing to reorder theverygeneral description
in (8.46) to allow some of the operations to be precomputed and stored in a lookup table. The
arithmetic will then be distributed with the convolution itself.

If (8.46) is summed over the index i, we have

y(n) =
∑
j

∑
`

a(`) xj (n − `) 2j . (8.47)

Each sum over ` convolves the word string a(n) with the bit string xj (n) to produce a partial product
which is then shifted and added by the sum over j to give y(n).

If (8.47) is summed over ` to form a table which can be addressed by the binary numbers xj (n),
we have

y(n) =
∑
j

f (xj (n), xj (n − 1), · · ·) 2j (8.48)

where
f (xj (n), xj (n − 1), · · ·) =

∑
`

a(`) xj (n − `) (8.49)

The numbers a(i) are the coefficients of the filter, which as usual is assumed to be fixed. Consider
a filter of length L. This function f () is a function of L binary variables and, therefore, takes on
2L possible values. The function is determined by the filter, a(i). For example, if L = 3, the table
(function values) would contain eight values:

0, a(0), a(1), a(2), (a(0) + a(1)), (a(1) + a(2)), (a(0) + a(2)), (a(0) + a(1) + a(2)) (8.50)

and if the words were stored as B bits, they would require 2LB bits of memory.
There are extensions and modifications of this basic idea to allow a very flexible trade of memory

for logic. The idea is to precompute as much as possible, store it in a table, and fetch it when needed.
The two extremes of this are on one hand to compute all possible outputs and simply fetch them using
the input as an address. The other extreme is the usual system which simply stores the coefficients
and computes what is needed as needed.

This table lookup is illustrated in Fig. 8.4 where the blocks represent 4 b words, where the least
significant bit of each of the four most recent data words form the address for the table lookup from
memory. After 4 b shifts and accumulates, the output wordy(n) is available, using no multiplications.
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FIGURE 8.4: Distributed arithmetic by Table Lookup. In this example, a sequence x(n) is filtered
with a length 3 FIR filter. The wordlength for x(n) is 4 b. The function f (·) is a function of three
binary variables, and can be implemented by table lookup. The bits of x(n) are shifted, bit by bit,
through the input registers. Accordingly, the bits of y(n) are shifted through the accumulator —
after 4 b shifts, a new output y(n) becomes available.

Distributed arithmetic with table lookup can be used with FIR and IIR filters and can be arranged
in direct, transpose, cascade, parallel, etc. structures. It can be organized for serial or parallel
calculations or for combinations of the two. Because most microprocessors or DSP chips do not
have appropriate instructions or architectures for distributed arithmetic, it is best suited for special
purpose VLSI design and in those cases, it can be extremely fast.

An alternative realization of these ideas can be developed using a form of periodically time varying
system that is oversampled [10].

8.8 Fast Convolution by Number Theoretic Transforms

If one performs all calculations in a finite field or ring of integers rather than the usual infinite
field of real or complex numbers, a very efficient type of Fourier transform can be formulated
that requires no floating point operations — it supports exact convolution with finite precision
arithmetic [1, 2, 17, 26]. This is particularly interesting because a digital computer is a finite machine
and arithmetic over finite systems fits it perfectly. In the following, all arithmetic operations are
performed modulo some integer M , called the modulus. A bit of number theory can be found
in [17, 20, 28].

8.8.1 Number Theoretic Transforms

Here we look at the conditions placed on a general linear transform in order for it to support cyclic
convolution. The form of a linear transformation of a length-N sequence of number is given by

X(k) =
N−1∑
n=0

t (n, k) x(n) mod M (8.51)

for k = 0, 1, · · · , (N − 1). The definition of cyclic convolution of two sequences in ZM is given by

y(n) =
N−1∑
m=0

x(m) h(n − m) mod M (8.52)

for n = 0, 1, · · · , (N − 1) where all indices are evaluated modulo N . We would like to find the
properties of the transformation such that it will support cyclic convolution. This means that ifX(k),
H(k), and Y (k) are the transforms of x(n), h(n), and y(n) respectively, then

Y (k) = X(k) H(k) . (8.53)
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The conditions are derived by taking the transform defined in (8.1) of both sides of Eq. (8.52) which
gives the form for our general linear transform (8.51) as

X(k) =
N−1∑
n=0

αnk x(n) (8.54)

where α is a root of order N , which means that N is the smallest integer such that αN = 1.

THEOREM 8.1 The transform (8.11) supports cyclic convolution if and only if α is a root of order N

and N−1 mod M is defined.

This is discussed in [1, 2]. This transform supports N-point cyclic convolution only if a particular
relationship between the modulus M and the data length N is satisfied. The following theorem
describes that relationship.

THEOREM 8.2 The transform (8.11) supports N-point cyclic convolution if and only if

N |O(M) (8.55)

where
O(M) = gcd{p1 − 1, p2 − 1, · · · , pl − 1} (8.56)

and the prime factorization of M is

M = p
r1
1 p

r2
2 · · ·prl

l . (8.57)

Equivalently, N must divide pi − 1 for every prime pi dividing M . This theorem is a more useful
form of Theorem 8.1. Notice that Nmax = O(M).

One needs to find appropriate N , M , and α such that

• N should be appropriate for a fast algorithm and handle the desired sequence lengths.

• M should allow the desired dynamic range of the signals and should allow simple modular
arithmetic.

• α should allow a simple multiplication for αnk x(n).

We see that if M is even, it has a factor of 2 and, therefore, O(M) = Nmax = 1 which implies M

should be odd. If M is prime the O(M) = M − 1 which is as large as could be expected in a field of
M integers. For M = 2k − 1, let k be a composite k = pq where p is prime. Then 2p − 1 divides
2pq − 1 and the maximum possible length of the transform will be governed by the length possible
for 2p − 1. Therefore, only the prime k need be considered interesting. Numbers of this form are
know as Mersenne numbers and have been used by Rader [26]. For Mersenne number transforms, it
can be shown that transforms of length at least 2p exist and the corresponding α = − 2. Mersenne
number transforms are not of as much interest because 2p is not highly composite and, therefore,
we do not have FFT-type algorithms.

For M = 2k + 1 and k odd, 3 divides 2k + 1 and the maximum possible transform length is 2.
Thus, we consider only even k. Let k = s2t , where s is an odd integer. Then 22t

divides 2s2t +1 and
the length of the possible transform will be governed by the length possible for 22t + 1. Therefore,
integers of the form M = 22t +1are of interest. These numbers are known as Fermat numbers [26].
Fermat numbers are prime for 0 ≤ t ≤ 4 and are composite for all t ≥ 5.
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Since Fermat numbers up to F4 are prime, O(Ft ) = 2b where b = 2t and t ≤ 4, we can have
a Fermat number transform for any length N = 2m where m ≤ b. For these Fermat primes the
integer α = 3 is of order N = 2b allowing the largest possible transform length. The integer
α = 2 is of order N = 2b = 2t+1. Then all multiplications by powers of α are bit shifts — which
is particularly attractive because in (8.54), the data values are multiplied by powers of α.

Table 8.2 gives possible parameters for various Fermat number moduli.

TABLE 8.2 Fermat Number Transform Moduli
t b M = Ft N2 N√

2 Nmax α for Nmax

3 8 28 + 1 16 32 256 3
4 16 216 + 1 32 64 65536 3
5 32 232 + 1 64 128 128

√
2

6 64 264 + 1 128 256 256
√

2

This table gives values of N for the two most important values of α which are 2 and
√

2. The second
column gives the approximate number of bits in the number representation. The third column gives
the Fermat number modulus, the fourth is the maximum convolution length for α = 2, the fifth
is the maximum length for α = √

2, the sixth is the maximum length for any α, and the seventh is
the α for that maximum length. Remember that the first two rows have a Fermat number modulus
which is prime and the second two rows have a composite Fermat number as modulus. Note the
differences.

The number theoretic transform itself seems to be very difficult to interpret or use directly. It seems
to be useful only as a means for high-speed convolution where it has remarkable characteristics. The
books, articles, and presentations that discuss NTT and related topics are [4, 17, 21]. A recent book
discusses NT in a signal processing context [14].

8.9 Polynomial-Based Methods

The use of polynomials in representing elements of a digital sequence and in representing the convo-
lution operation has led to the development of a family of algorithms based on the fast polynomial
transform [4, 16, 21]. These algorithms are especially useful for two-dimensional convolution. The
Chinese remainder theorem for polynomials (CRT), which is central to Winograd’s short convo-
lution algorithm, is also conveniently described in polynomial notation. An interesting approach
combines the use of the polynomial-based methods with the number theoretic approach to convo-
lution (NTTs), wherein the elements of a sequence are taken to lie in a finite field [9, 15]. In [15] the
CRT is extended to the case of a ring of polynomials with coefficients from a finite ring of integers.
It removes the limitations on both word length and sequence length of NNTs and serves as a link
between the two methods (CRT and NNT). The new result so obtained, which specializes to both the
NNTs and the CRT for polynomials, has been called the AICE-CRT (the American-Indian-Chinese
extension of the CRT). A complex version has also been derived.

8.10 Special Low-Multiply Filter Structures

In the use of convolution for digital filtering, the convolution operation can be simplified, if the filter
h(n) is chosen appropriately.

Some filter structures are especially simple to implement. Some examples are:

• A simple implementation of the recursive running sum (RRS) is based on the factorization
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L−1∑
k=0

zk = (zL + 1)/(z − 1).

• If the transfer function H(z) of the filter possesses a root at z = − 1 of multiplicity K ,
the factor (z + 1)/2 can be extracted from the transfer function. The factor (z + 1)/2
can be implemented very simply.

• This idea is extended in prefiltering and IFIR filtering techniques — a filter is implemented
as a cascade of two filters: one with a crude response that is simple to implement, another
that makes up for it, but requires the usual implementation complexity. The overall
response satisfies specifications and can be implemented with reduced complexity.

• The maximally flat symmetric FIR filter can be implemented without multiplications
using the De Casteljau algorithm [27].

In summary, a filter can often be designed so that the convolution operation can be performed with
less computational complexity and/or at a faster rate. Much work has focused on methods that take
into account implementation complexity during the approximation phase of the filter design process.
(See the chapter on digital filter design).
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9.1 Introduction

Complexity theory of computation attempts to determine how “inherently” difficult are certain
tasks. For example, how inherently complex is the task of computing an inner product of two
vectors of length N? Certainly one can compute the inner product

∑N
j=1 xjyj by computing the

N products xjyj and then summing them. But can one compute this inner product with fewer
than N multiplications? The answer is no, but the proof of this assertion is no trivial matter. One
first abstracts and defines the notions of the algorithm and its components (such as addition and
multiplication); then a theorem is proven that any algorithm for computing a bilinear form which
uses K multiplications can be transformed to a quadratic algorithm (some algorithm of a very special
form, which uses no divisions, and whose multiplications only compute quadratic forms) which uses
at most K multiplications [20]; and finally a proof by induction on the length N of the summands in
the inner product is made to obtain the lower bound result [6, 13, 22, 25]. We will not present the
details here; we just want to let the reader know that the process for even proving what seems to be
an intuitive result is quite complex.

Consider next the more complex task of computing the product of an N point vector by an M ×N

matrix. This corresponds to the task of computing M separate inner products of N-point vectors. It
is tempting to jump to the conclusion that this task requires MN multiplications. But we should not
jump to fast conclusions. First, the M inner products are separate, but not independent (the term is
used loosely, and not in any linear algebra sense). After all, the second factor in the M inner products
is always the same. It turns out [6, 22, 25] that, indeed, our intuition this time is correct again. And
the proof is really not much more difficult than the proof for the complexity result for inner products.
In fact, once the general machinery is built, the proof is a slight extension of the previous case. So
far intuition proved accurate.

In complexity theory one learns early on to be skeptical of intuitions. An early surprising result in
complexity theory — and to date still one of its most remarkable — contradicts the intuitive guess that
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computing the product of two 2 × 2 matrices requires 8 multiplications. Remarkably, Strassen [21]
has shown that it can be done with 7 multiplication. His algorithm is very nonintuitive; I am not
aware of any good algebraic explanation for it except for the assertion that the mathematical identities
which define the algorithm indeed are valid. It can also be shown [15] that 7 is the minimum number
of multiplications required for the task.

The consequences of Strassen’s algorithm for general matrix multiplication tasks are profound.
The task of computing the product of two 4× 4 matrices with real entries can be viewed as a task of
computing two 2 × 2 matrices whose entries are themselves 2 × 2 matrices. Each of the 7 multipli-
cations in Strassen’s algorithm now become matrix multiplications requiring 7 real multiplications
plus a bunch of additions; and each addition in Strassen’s algorithm becomes an addition of 2 × 2
matrices, which can be done with 4 real additions. This process of obtaining algorithms for large
problems, which are built up of smaller ones in a structures manner, is called the “nesting” proce-
dure [25]. It is a very powerful tool in both complexity theory and algorithm design. It is a special
form of recursion.

The set of N × N matrices form a noncommutative algebra. A branch of complexity theory
called “multiplicative complexity theory” is quite well established for certain relatively few algebras,
and wide open for the rest. In this theory complexity is measured by the number of “essential
multiplications.” Given an algebra over a field F , an algorithm is a sequence of arithmetic operations
in the algebra. A multiplication is called essential if neither factor is an element in F . If one of the
factors in a multiplication is an element in F , the operation is called a scaling.

Consider an algebra of dimension N over a field F, with basis b1, . . . , bN . An algorithm for
computing the product of two elements

∑N
j=1 fjbj and

∑N
j=1 gjbj with fj , gj ∈ F is called

bilinear, if every multiplication in the algorithm is of the form L1(f1, . . . , fN) ∗ L2(g1, . . . , gN),
where L1 and L2 are linear forms and ∗ is the product in the algebra, and it uses no divisions.
Because none of the arithmetic operations in bilinear algorithms rely on the commutative nature
of the underlying field, these algorithms can be used to build recursively via the nesting process
algorithms for noncommutative algebras of increasingly large dimensions, which are built from the
smaller algebras via the tensor product. For example, the algebra of 4×4matrices (over some field F;
I will stop adding this necessary assumption, as it will be obvious from content) is isomorphic to the
tensor product of the algebra of 2× 2 matrices with itself. Likewise, the algebra of 16× 16matrices
is isomorphic to the tensor product of the algebra of 4× 4 matrices with itself. And this proceeds to
higher and higher dimensions.

Suppose we have a bilinear algorithm for computing the product in an algebra T1 of dimension D,
which uses M multiplications and A additions (including subtractions) and S scalings. The algebra
T2 = T1⊗T1 has dimension D2. By the nesting procedure we can obtain an algorithm for computing
the product in T2 which uses M multiplications of elements in T1, A additions of elements in T1,
and S scalings of elements in T1. Each multiplication in T1 requires M multiplications, A additions,
and S scalings; each addition in T1 requires D additions; and each scaling in T1 requires D scalings.
Hence, the total computational requirements for this new algorithm is M2 multiplications, A(M+D)

additions and S(M + D) scalings. If the nesting procedure is continued to yield an algorithm for
the product in the D4 dimensional algebra T4 = T2 ⊗ T2, then its computational requirements
would be M4 multiplications, A(M + D)(M2 + D2) additions and S(M + D)(M2 + D2) scalings.
One more iteration would yield an algorithm for the D8 dimensional algebra T8 = T4 ⊗ T4, which
uses M8 multiplications, A(M + D)(M2 + D2)(M4 + D4) additions, M8 multiplications, and
S(M + D)(M2 + D2)(M4 + D4) scalings. The general pattern should be apparent by now. We see
that the growth of the number of operations (the high order term, that is) is governed by M and not
by A or S. A major goal of complexity theory is the understanding of computational requirements
as problem sizes increase, and nesting is the natural way of building algorithms for larger and larger
problems. We see one reason why counting multiplications (as opposed to all arithmetic operations)
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became so important in complexity theory. (Historically, in the early days multiplications were
indeed much more expensive than additions.)

Algebras of polynomials are important in signal processing; filtering can be viewed as polynomial
multiplications. Theproductof twopolynomialsofdegreesd1 andd2 canbecomputedwithd1+d2−1
multiplications. Furthermore, it is rather easy to prove (a straightforward dimension argument)
that this is the minimal number of multiplications necessary for this computation. Algorithms
which compute these products with these numbers of multiplications (so-called optimal algorithms)
are obtained using Lagrange interpolation techniques. For even moderate values of dj , they use
inordinately many additions and scalings. Indeed, they use (d1 + d2 − 3)(d1 + d2 − 2) additions,
and a half as many scalings. So these algorithms are not very practical, but they are of theoretical
interest. Also of interest is the asymptotic complexity of polynomial products. They can be computed
by embedding them in cyclic convolutions of sizes at most twice as long. Using FFT techniques,
these can be achieved with order D logD arithmetic operations, where D is the maximum of the
degrees. With optimal algorithms, while the number of (essential) multiplications is linear, the total
number of operations is quadratic. If nesting is used, then the asymptotic behavior of the number
of multiplications is also quadratic.

Convolution algebras are derived from algebras of polynomials. Given a polynomial P(u) of
degree D, one can define an algebra of dimension D whose entries are all polynomials of degree
less than D, with addition defined in the standard way, and multiplication is modulo P(u). Such
algebras are called convolution algebras. For polynomials P(u) = uD − 1, the algebras are cyclic
convolutions of dimensionD. For polynomialsP(u) = uD+1, these algebras are called signed-cyclic
convolutions. The product of two polynomials modulo P(u) can be obtained from the product of
the two polynomials without any extra essential multiplications. Hence, if the degree of P(u) is D,
then the product modulo P(u) can be done with 2D − 1 multiplications. But can it be done with
fewer multiplications?

Whereas complexity theory has huge gaps in almost all areas, it has triumphed in convolution
algebras. The minimum number of multiplications required to compute a product in an algebra
is called the multiplicative complexity of the algebra. The multiplicative complexity of convolution
algebras (over infinite fields) is completely determined [22]. If P(u) factors (over the base field; the
role of the field will be discussed in greater detail soon) to a product of k irreducible polynomials,
then the multiplicative complexity of the algebra is 2D −k. So if P(u) is irreducible, then the answer
to the question in the previous paragraph is no. Otherwise, it is yes.

The above complexity result for convolution algebras is a sharp bound. It is a lower bound in that
every algorithm for computing the product in the algebra requires at least 2D − k multiplications,
where k is the number of factors of the defining polynomial P(u). It is also an upper bound, in
that there are algorithms which actually achieve it. Let us factor P(u) = ∏

Pj (u) into a product of
irreducible polynomials (here we see the role of the field; more about this soon). Then the convolution
algebra modulo P(u) is isomorphic to a direct sum of algebras modulo Pj (u); the isomorphism is via
the Chinese remainder theorem. The multiplicative complexity of the direct summands are 2dj − 1,
where dj are the degrees of Pj (u); these are sharp bounds. The algorithm for the algebra modulo
P(u) is derived from these smaller algorithms; because of the isomorphism, putting them all together
requires no extra multiplications. The proof that this is a lower bound, first given by Winograd [23],
is quite complicated.

The above result is an example of a “direct sum theorem.” If an algebra is decomposable to a direct
sum of subalgebras, then clearly the multiplicative complexity of the algebra is less than or equal to
the sum of the multiplicative complexities of the summands. In some (relatively rare) circumstances
equality canbe shown. The exampleof convolutionalgebras is sucha case. The results for convolution
algebras are very strong. Winograd has shown that every minimal algorithm for computing products
in a convolution algebra is bilinear and is a direct sum algorithm. The latter means that the algorithm
actually computes a minimal algorithm for each direct summand and then combines these results
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without any extra essential multiplications to yield the product in the algebra itself.
Things get interesting when we start considering algebras which are tensor products of convolution

algebras (these are called multi-dimensional convolution algebras). A simple example already is
enlightening. Consider the algebra C of polynomial multiplications modulo u2+1over the rationals
Q; this algebra is called the Gaussian rationals. The polynomial u2 + 1 is irreducible over Q (the
algebra is a field), so by the previous result, its multiplicative complexity is 3. The nesting procedure
would yield an algorithm the product in C ⊗ C which uses 9 multiplications. But it can in fact be
computed with 6 multiplications. The reason is due to an old theorem, probably due to Kroeneker
(though I cannot find the original proof); the reference I like best is Adrian Albert’s book [1]. The
theorem asserts that the tensor product of fields is isomorphic to a direct sum of fields, and the
proof of the theorem is actually a construction of this isomorphsim. For our example, the theorem
yields that the tensor product C ⊗ C is isomorphic to a direct sum of two copies of C. The product
in C ⊗ C can, therefore, be computed by computing separately the product in each of the two
direct summands, each with 3 multiplications, and the final result can be obtained without any
more essential multiplications. The explicit isomorphism was presented to the complexity theory
community by Winograd [22]. Since the example is sufficiently simple to work out, and the results
so fundamental to much of our later discussions, we will present it here explicitly.

Consider A, the polynomial ring modulo u2 + 1 over the Q. This is a field of dimension 2 over
Q, and it has the matrix representation (called its regular representation) given by

ρ(a + bu) =
(

a −b

b a

)
. (9.1)

While for all b 6= 0 the matrix above is not diagonalizable over Q, the field (algebra) is diagonalizable
over the complexes. Namely,

(
1 i

1 −i

) (
a −b

b a

) (
1 i

1 −i

) −1

=
(

a + ib 0
0 a − ib

)
. (9.2)

The elements 1 and i of A correspond (in the regular representation) in the tensor algebra A ⊗ A to
the matrices

ρ( 1 ) =
(

1 0
0 1

)
(9.3)

and

ρ( i ) =
(

0 −1
1 0

)
, (9.4)

respectively. Hence, the 4 × 4 matrix

R =
(

ρ( 1 ) ρ( i )

ρ( 1 ) ρ( −i )

)
(9.5)

diagonalizes the algebra A ⊗ A. Explicitly, we can compute




1 0 0 −1
0 1 1 0
1 0 0 1
0 1 −1 0







x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 −x3 x0 −x1
x3 x2 x1 x0







1 0 0 −1
0 1 1 0
1 0 0 1
0 1 −1 0




−1

=




y0 −y1 0 0
y1 y0 0 0
0 0 y2 −y2
0 0 y3 y3


 , (9.6)
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where y0 = x0 − x3, y1 = x1 + x2, y2 = x0 + x3 and y3 = x1 − x2. A simple way to derive this is
by setting X0 to be the top left 2 × 2 minor of the matrix with xj entries in the above equation, X1
to be its bottom left 2 × 2 minor, and observing that

R

(
X0 −X1
X1 X0

)
R−1 =

(
ρ( 1 )X0 + ρ( i )X1

ρ( 0 )X0 − ρ( i )X1

)
. (9.7)

The algorithmic implications are straightforward. The product in A ⊗ A can be computed with
fewer multiplications than the nesting process would yield. Straightforward extensions of the above
construction yield recipes for obtaining minimal algorithms for products in algebras which are
tensor products of convolution algebras. The example also highlights the role of the base field. The
complexity of A as an algebra over Q is 3; the complexity of A as an algebra over the complexes is 2,
as over the complexes this algebra diagonalizes.

Historically, multiplicativecomplexity theorygeneralized in twoways (and invariouscombinations
of the two). The first addressed the question: what happens when one of the factors in the product
is not an arbitrary element but a fixed element not in the basefield? The second addressed: what is
the complexity of semidirect systems — those in which several products are to be computed, and
one factor is arbitrary but fixed, while the others are arbitrary? Computing an arbitrary product in
an n-dimensional algebra can be thought of (via the regular representation) as computing a product
of a matrix A(X) times a vector Y , where the entries in the matrix A(X) are linear combinations of
n indeterminates x1, . . . , xn and y is a vector of n indeterminates y1, . . . , yn. When one factor is
a fixed element in an extension field, the entries in A(X) are now entries in some extension field of
the basefield which may have algebraic relations. For example, consider

G =
(

γ (1, 8) −γ (3, 8)

γ (3, 8) γ (1, 8)

)
(9.8)

whereγ (m, n) = cos(2πm/n). The complex numbersγ (1, 8) andγ (3, 8) are linearly independent
over Q, but they satisfy the algebraic relation γ (1, 8) / γ (3, 8) = √

2. This algebraic relation gives
a relation of the two numbers to the rationals, namely γ (1, 8)2 / γ (3, 8)2 = 2. Now this is
not a linear relation; linear independence over Q has complexity ramifications. But this algebraic
relation also has algorithmic ramifications. The linear independence implies that the multiplicative
complexity of multiplying an arbitrary vector by G is 3. But because of the algebraic relation, it is
not true (as is the case for quadratic extensions by indeterminates) that all minimal algorithms for
this product are quadratic. A nonquadratic minimal algorithm is given via the factorization

G =
(

γ (1, 8) 0
0 γ (1, 8)

) (
1 1− √

2√
2 − 1 1

)
. (9.9)

As for computing the product of G and k distinct vectors, theory has it that the multiplicative
complexity is 3k [5]. In other words, a direct sum theorem hold for this case. This result, and its
generalization, due to Auslander and Winograd [5], is very deep; its proof is very complicated. But
it yields great rewards.

The multiplicative complexity of all DFTs and DCTs are established using this result. The key
to obtaining multiplicative complexity results for DFTs and DCTs is to find the appropriate block
diagonalizations that transform these linear operators to such direct sums, and then to invoke this
fundamental theorem. We will next cite this theorem, and then describe explicitly how we apply it
to DFTs and DCTs.

Fundamental Theorem (Auslander-Winograd): Let Pj be polynomials of degrees dj , respectively,
over a field φ. Let Fj denote polynomials of degree dj − 1 with complex coefficients (that is, they
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are complex numbers). For non-negative integers kj , let T (kj , Fj , Pj ) denote the task of computing
kj products of arbitrary polynomials by Fj modulo Pj . Let

∑
j T (kj , Fj , Pj ) denote the task of

simultaneously computing all of these products. If the coefficients span a vector space of dimension∑
j dj over φ, then the multiplicative complexity of

∑
j T (kj , Fj , Pj ) is

∑
j kj (2dj − 1). In other

words, if the dimension assumption holds, then so does the direct sum theorem for this case.

Multiplicative complexity results for DFTs and DCTs assert that their computation is linear in the
size of the input. The measure is number of nonrational multiplications. More specifically, in all cases
(arbitrary input sizes, arbitrary dimensions), the number of nonrational multiplications necessary
for computing these transforms is always less than twice the size of the input. The exact numbers
are interesting, but more important is the algebraic structure of the transforms which lead to these
numbers. This is what will be emphasized in the remainder of this chapter. Some special cases will
be discussed in greater detail; general results will be reviewed rather briefly.

The following notation will be convenient. If A, B are matrices with real entries, and R, S are
invertible rational matrices such that A = RBS, then we will say that A is rationally equivalent (or
more plainly, equivalent) to B and write A ≈ B. The multiplicative complexity of A is the same as
that of B.

9.2 One-Dimensional DFTs

We will build up the theory for the DFT in stages. The one-dimensional DFT on input size N is a
linear operator whose matrix is given by FN = (

wjk
)
, where w = e2πi/N , and j, k index the rows

and columns of the matrix, respectively. The first row and first column of FN have all entries equal to
1, so the multiplicative complexity of FN are the same as that of its “core” CN , its minor comprising
its last N − 1 rows and N − 1 columns. The first results were for one-dimensional DFTs on input
sizes which are prime [24]. For p a prime integer, the set of integers between 0and p−1 form a cyclic
group under multiplication modulo p. It was shown by Rader [19] that there exist permutations

of the rows and columns of the core CN that bring it to the cyclic convolution wgj +k , where g is
any generator of the cyclic group described above. Using the decomposition for cyclic convolutions
described above, we decompose the core to a direct sum of convolutions modulo the irreducible
factors of up−1 − 1. This decomposition into cyclotomic polynomials is well known [18]. There are
τ(p − 1) irreducible factors, where τ(n) is the number of positive divisors of the positive integer n.
One direct summand is the 1 × 1 matrix corresponding to the factor u − 1, and its entry is −1 (in
particular, rational). Also, the coefficients of the other polynomials comprising the direct summands
are all linearly independent over Q, hence the fundamental theorem (in its weakest form) applies. It
yields that the multiplicative complexity of Fp for p a prime is 2p − τ(p − 1) − 3.

Next is the case for N = pk where p is an odd prime and the integer k is greater than 1. The group
of units comprising those integers between 0 and p − 1 which are relatively prime to p, and under
multiplication modulo p, is of order pk −pk−1. A Rader-like permutation [24] brings the sub-core,
whose rows and columns are indexed by the entries in this group of units, to a cyclic convolution. The
group of units, when multiplied by p, forms an orbit of order pk−1−pk−2 (p elements in the group of
units map to the same element in the orbit), and the Rader-like permutations induces a permutation
on theorbit, whichyields cyclic convolutionsof the sizesof theorbit. Thisproceedsuntil thefinal orbit
of sizep−1. These cyclic convolutions aredecomposedvia theChinese remainder theorem, and (after
much cancellation and rearrangement) it can be shown that the coreCN in this case reduces to k direct
summands, each of which is a semi-direct sum of j (p−1)(pk−j −pk−j−1)dimensional convolutions
modulo irreducible polynomials, j = 1, 2, . . . , k. Also, the dimension of the coefficients of the
polynomials is precisely

∑k
j=1(p−1)(pk−j −pk−j−1). These are precisely the conditions sufficient

to invoke the fundamental theorem. This algebraic decomposition yields minimal algorithms. When
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one adds all these up, the numerical result is that the multiplicative complexity for the DFT on pk

points where p is an odd prime and k a positive integer, is 2pk − k − 2 − k2+k
2 τ(p − 1).

The case of the one dimensional DFT on N = 2n points is most familiar. In this case,

FN = PN

(
FN/2

GN/2

)
RN (9.10)

where PN is the permutation matrix which rearranges the output to even entries followed by odd
entries, RN is a rational matrix for computing the so-called “butterfly additions,” and GN/2 =
DN/2FN/2, where DN/2 is a diagonal matrix whose entries are the so-called “twiddle factors.” This
leads to the classical divide-and-conquer algorithm called the FFT. For our purposes, GN/2 is equiva-

lent to a direct sum of two polynomial products modulou2j
j = 0, . . . , n−3. It is routine to proceed

inductively, and then show that the hypothesis of the fundamental theorem are satisfied. Without
details, the final result is that the complexity of the DFT on N = 2n points is 2n+1 − n2 − n − 2.
Again, the complexity is below 2N .

For the general one-dimensional DFT case, we start with the equivalence Fmn ≈ Fm ⊗ Fn,
whenever m and n are relatively prime, and where ⊗ denotes the tensor product. If m and n are of the
forms pk for some prime p and positive integer k, then from above, both Fm and Fn are equivalent
to direct sums of polynomial products modulo irreducible polynomials. Applying the theorem of
Kroeneker/Albert, which states that the tensor product of algebraic extension fields is isomorphic to a
direct sum of fields, we have that Fmn is, therefore, equivalent to a direct sum of polynomial products
modulo irreducible polynomials. When one follows the construction suggested by the theorem and
counts the dimensionality of the coefficients, one can show that this direct sum system satisfies the
hypothesis of the fundamental theorem. This argument extends to the general one-dimensional case

of FN where N = ∏
j p

kj

j with pj distinct primes.

9.3 Multidimensional DFTs

The k-dimensional DFT on N1, . . . , Nk points is equivalent to the tensor productFN1 ⊗ · · · ⊗ FNk
.

Directly from the theorem of Kroeneker/Albert, this is equivalent to a direct sum of polynomial prod-
ucts modulo irreducible polynomials. It can be shown that this system satisfies the hypothesis of the
fundamental theorem so that complexity results can be directly invoked for the general multidimen-
sional DFT. Details can be found in [4]. More interesting than the general case are some special cases
with unique properties.

The k-dimensional DFT on p , . . . , p points, where p is an odd prime, is quite remarkable. The

core of this transform is a cyclic convolution modulo upk−1−1. The core of the matrix corresponding
to Fp ⊗ · · · ⊗ Fp , which is the entire matrix minus its first row and column, can be brought into
this large cyclic convolution by a permutation derived from a generator of the group of units of the
field with pk elements. The details are in [2]. Even more remarkably, this large cyclic convolution is
equivalent to a direct sum of p + 1 copies of the same cyclic convolution obtainable from the core of
the one-dimensional DFT on p points. In other words, the k-dimensional DFT on p, . . . , p points,
where p is an odd prime, is equivalent to a direct sum of p + 1 copies of the one-dimensional DFT
on p points. In particular, its multiplicative complexity is (p + 1)(2p − τ(p − 1) − 3).

Another particularly interesting case is the k-dimensional DFT on N, . . . , N points, where N =
2k . This transform is equivalent to the k-fold tensor product FN ⊗ · · · ⊗ FN , and we have seen
above the recursive decomposition of FN to a direct sum of FN/2 and GN/2. The semi-simple Abelian
construction [3, 8] yields that FN/2 ⊗ GN/2 is equivalent to N/2 copies of GN/2, and likewise that
FN/2⊗GN/2 is equivalent to N/2copies of GN/2. Hence, FN and FN is equivalent to 3N/2copies of
GN/2 plus FN/2 ⊗FN/2. This leads recursively to a complete decomposition of the two-dimensional
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DFT to a direct sum of polynomial products modulo irreducible polynomials (of the form u2m + 1
in this case). The extensions to arbitrary dimensions are quite detailed but straightforward.

9.4 One-Dimensional DCTs

As in the case of DFTs, DCTs are also all equivalent to direct sums of polynomial multiplications
modulo irreducible polynomials and satisfy the hypothesis of the fundamental theorem. In fact,
some instances are easier to handle. A fast way to see the structure of the DCT is by relating it to
the DFT. Let CN denote the one-dimensional DCT on N points; recall we defined FN to be the
one-dimensional DFT on N points.

It can be shown [14] that F4N is equivalent to a direct sum of two copies of CN plus one copy
of F2N . This is sufficient to yield complexity results for all one-dimensional DCTs. But for some
special cases, direct derivations are more revealing. For example, when N = 2k, CN is equivalent

to a direct sum of polynomial products modulo u2j + 1, for j = 1, . . . , k − 1. This is a much
simpler form than the corresponding one for the DFT on 2k points. It is then straightforward to
check that this direct sum system satisfies the hypothesis of the fundamental theorem, and then that
the multiplicative complexity of C2k is 2k+1 − n − 2.

Another (not so) special case is when N is an odd integer. Then CN is equivalent to FN , from
which complexity results follow directly. Another useful result is that, as in the case of the DFT, Cpq

is equivalent to Cp ⊗ Cq where p and q are relatively prime [26]. We can then use the theorem of
Kroeneker/Albert [10] to build direct sum structures for DCTs of composites given direct sums of
the various components.

9.5 Multidimensional DCTs

Here too, once the one-dimensional DCT structures are known, their extensions to multidimensions
via tensor products, utilizing the theorem of Kroeneker/Albert, is straightforward. This leads to
the appropriate direct sum structures, proving that the coefficients satisfy the hypothesis of the
fundamental theorem does require some careful applications of elementary number theory. This is
done in [10].

A most interesting special case is multidimensional DCT on input sizes which are powers of 2 in
each dimension. If the input is k dimensional with size 2j1 × . . . × 2jk , and j1 ≤ ji , i = 2, . . . , k,
then the multidimensional DCT is equivalent to 2j2 × . . . × 2jk copies of the one-dimensional DCT
on 2j1 points [11]. This is a much more straightforward result than the corresponding one for
multidimensional DFTs.

9.6 Nonstandard Models and Problems

DCTs have become popular because of their role in compression. In such roles, the DCT is usually
followed by quantization. Therefore, in such applications, one need not actually compute the DCT
but a scaled version of it, and then absorb the scaling into the quantization step. For the one-
dimensional case this means that one can replace the computation of a product by C with a product
by a matrix DC, where D is diagonal. It turns out [9, 16] that for propitious choices of D, the
computation of the product by DC is easier than that by C. The question naturally arises—what is
the minimum number of steps required to compute a product of the form DC, where D can be any
diagonal matrix? Our ability to answer such a question is very limited. All we can say today is that if
we can compute a scaled DCT on N points with m multiplications, then certainly we can compute a
DCT on N multiplications with m + N points. Since we know the complexity of DCTs, this gives a
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lower bound on the complexity of scaled DCTs. For example, the one-dimensional DCT on 8 points
(the most popular applied case) requires 12 multiplications. (The reader may see the number 11 in
the literature; this is for the case of the “unnormalized DCT” in which the DC component is scaled.
The unnormalized DCT is not orthogonal.) Suppose a scaled DCT on 8 points can be done with m

multiplications. Then 8 + m ≥ 12, or m ≥ 4. An algorithm for the scaled DCT on 8 points which
uses 5 multiplications is known [9, 16]. It is an open question whether one can actually do it in 4
multiplications or not. Similarly, the two-dimensional DCT on 8 × 8 points can be done with 54
multiplications [9, 12], and theory says that at least 24 are needed [11]. The gap is very wide, and I
know of stronger results as of this writing.

Machines whose primitive operations are fused multiply-accumulate are becoming very popular,
especially in the higher end workstation arena. Here a single cycle can yield a result of the form
ab + c for arbitrary floating point numbers a, b, c; we call such an operation a “mutiply/add.”
Lower bounds are obviously bounded below by lower bounds for number of multiplications and
also for lower bounds on number of additions. The latter is a wide open subject. A simple yet
instructive example involves multiplications of a 4 × 4 Hadamard matrix. It is well known that, in
general, multiplication by an N × N Hadamard matrix, where N is a power of 2, can be done with
N log2N additions. Recently it was shown [7] that the 4 × 4 case can be done with 7 multiply/add
operations [7]. This result has not been extended, and it may in fact be rather hard to extend except
in most trivial (and uninteresting) ways.

Upper bounds of DFTs have been obtained. It was shown in [17] that a complex DFT on N = 2k

points can be done with 8
3Nk − 16

9 N + 2 − 2
9(−1)k real multiply/adds. For real input, an upper

bound of 4
3Nk− 17

9 N +3− 2
9(−1)k real multiply/adds was given. These were later improved slightly

using the results of the Hadamard transform computation. Similar multidimensional results were
also obtained.

In the past several years new, more powerful, processors have been introduced. Sun and HP have
incorporated new vector instructions. Intel has introduced its aggressive Intel’s MMX architecture.
And new MSPs (multimedia signal processors) from Philips, Samsung, and Chromatic are pushing
similar designs even more aggressively. These will lead to new models of computation. Astounding
(though probably not surprising) upper bounds will be announced; lower bounds are sure to continue
to baffle.
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10.1 Introduction

This chapter presents two major approaches to fast matrix multiplication. We restrict our attention
to matrix multiplication, excluding matrix addition and matrix inversion, since matrix addition
admits no fast algorithm structure (save for the obvious parallelization), and matrix inversion (i.e.,
solution of large linear systems of equations) is generally performed by iterative algorithms that
require repeated matrix-matrix or matrix-vector multiplications. Hence, matrix multiplication is
the real problem of interest.

We present two major approaches to fast matrix multiplication. The first is the divide-and-conquer
strategy made possible by Strassen’s [1] remarkable reformulation of non-commutative 2×2 matrix
multiplication. We also present the APA (arbitrary precision approximation) algorithms, which
improve on Strassen’s result at the price of approximation, and a recent result that reformulates matrix
multiplication as convolution and applies number theoretic transforms. The second approach is to
use a wavelet basis to sparsify the representation of Calderon-Zygmund operators as matrices. Since
electromagnetic Green’s functions are Calderon-Zygmund operators, this has proven to be useful
in solving integral equations in electromagnetics. The sparsified matrix representation is used in
an iterative algorithm to solve the linear system of equations associated with the integral equations,
greatly reducing the computation. We also present some new insights that make the wavelet-induced
sparsification seem less mysterious.

10.2 Divide-and-Conquer Fast Matrix Multiplication

10.2.1 Strassen Algorithm

It is not obvious that there should be any way to perform matrix multiplication other than using
the definition of matrix multiplication, for which multiplying two N × N matrices requires N3
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multiplications and additions (N for each of the N2 elements of the resulting matrix). However, in
1969 Strassen [1] made the remarkable observation that the product of two 2 × 2 matrices

[
a1,1 a1,2
a2,1 a2,2

] [
b1,1 b1,2
b2,1 b2,2

]
=

[
c1,1 c1,2
c2,1 c2,2

]
(10.1)

may be computed using only seven multiplications (fewer than the obvious eight), as

m1 = (a1,2 − a2,2)(b2,1 + b2,2); m3 = (a1,1 − a2,1)(b1,1 + b1,2)

m2 = (a1,1 + a2,2)(b1,1 + b2,2)

m4 = (a1,1 + a1,2)b2,2; m7 = (a2,1 + a2,2)b1,1

m5 = a1,1(b1,2 − b2,2); m6 = a2,2(b2,1 − b1,1)

c1,1 = m1 +m2 −m4 +m6; c1,2 = m4 +m5

c2,2 = m2 −m3 +m5 −m7; c2,1 = m6 +m7 (10.2)

A vital feature of (10.2) is that it is non-commutative, i.e., it does not depend on the commutative
property of multiplication. This can be seen easily by noting that each of the mi are the product
of a linear combination of the elements of A by a linear combination of the elements of B, in that
order, so that it is never necessary to use, say a2,2b2,1 = b2,1a2,2. We note there exist commutative
algorithms for 2 × 2 matrix multiplication that require even fewer operations, but they are of little
practical use.

The significance of noncommutativity is that the noncommutative algorithm (10.2) may be applied
as is to block matrices. That is, if the ai,j , bi,j and ci,j in (10.1) and (10.2) are replaced by block
matrices, (10.2) is still true. Since matrix multiplication can be subdivided into block submatrix
operations (i.e. (10.1) is still true if ai,j , bi,j and ci,j are replaced by block matrices), this immediately
leads to a divide-and-conquer fast algorithm.

10.2.2 Divide-and-Conquer

To see this, consider the 2n × 2n matrix multiplication AB = C, where A,B,C are all 2n × 2n

matrices. Using the usual definition, this requires (2n)3 = 8n multiplications and additions. But
if A,B,C are subdivided into 2n−1 × 2n−1 blocks ai,j , bi,j , ci,j , then AB = C becomes (10.1),
which can be implemented with (10.2) since (10.2) does not require the products of subblocks of A
and B to commute. Thus the 2n × 2n matrix multiplication AB = C can actually be implemented
using only seven matrix multiplications of 2n−1 × 2n−1 subblocks of A and B. And these subblock
multiplications can in turn be broken down by using (10.2) to implement them as well. The end result
is that the 2n×2n matrix multiplicationAB = C can be implemented using only 7n multiplications,
instead of 8n.

The computational savings grow as the matrix size increases. For n = 5 (32× 32 matrices) the
savings is about 50%. For n = 12 (4096× 4096matrices) the savings is about 80%. The savings as
a fraction can be made arbitrarily close to unity by taking sufficiently large matrices. Another way of
looking at this is to note that N ×N matrix multiplication requiresO(N log2 7) = O(N2.807) < N3

multiplications using Strassen.
Of course we are not limited to subdividing into 2 × 2 = 4 subblocks. Fast non-commutative

algorithms for 3× 3 matrix multiplication requiring only 23< 33 = 27multiplications were found
by exhaustive search in [2] and [3]; 23 is now known to be optimal. Repeatedly subdividingAB = C

into 3 × 3 = 9 subblocks computes a 3n × 3n matrix multiplication in 23n < 27n multiplications;
N ×N matrix multiplication requiresO(N log3 23) = O(N2.854)multiplications, so this is not quite
as good as using (10.2). A fast noncommutative algorithm for 5× 5 matrix multiplication requiring
only 102< 53 = 125multiplications was found in [4]; this also seems to be optimal. Using this
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algorithm, N × N matrix multiplication requires O(N log5 102) = O(N2.874) multiplications, so
this is even worse. Of course, the idea is to write N = 2a3b5c for some a, b, c and subdivide into
2×2 = 4 subblocks a times, then subdivide into 3×3 = 9 subblocks b times, etc. The total number
of multiplications is then 7a23b102c < 8a27b125c = N3.

Note that we have not mentioned additions. Readers familiar with nesting fast convolution algo-
rithms will know why; now we review why reducing multiplications is much more important than
reducing additions when nesting algorithms. The reason is that at each nesting stage (reversing the
divide-and-conquer to build up algorithms for multiplying large matrices from (10.2)), each scalar
addition is replaced by a matrix addition (which requires N2 additions for N × N matrices), and
each scalar multiplication is replaced by a matrix multiplication (which requires N3 multiplications
and additions forN ×N matrices). Although we are reducingN3 to aboutN2.8, it is clear that each
multiplication will produce more multiplications and additions as we nest than each addition. So
reducing the number of multiplications from eight to seven in (10.2) is well worth the extra additions
incurred. In fact, the number of additions is alsoO(N2.807).

The design of these base algorithms has been based on the theory of bilinear and trilinear forms.
The review paper [5] and book [6] of Pan are good introductions to this theory. We note that reducing
the exponent of N in N × N matrix multiplication is an area of active research. This exponent has
been reduced to below 2.5; a known lower bound is two. However, the resulting algorithms are too
complicated to be useful.

10.2.3 Arbitrary Precision Approximation (APA) Algorithms

APA algorithms are noncommutative algorithms for 2 × 2 and 3 × 3 matrix multiplication that
require even fewer multiplications than the Strassen-type algorithms, but at the price of requiring
longer word lengths. Proposed by Bini [7], the APA algorithm for multiplying two 2 × 2 matrices is
this:

p1 = (a2,1 + εa1,2)(b2,1 + εb1,2) ;
p2 = (−a2,1 + εa1,1)(b1,1 + εb1,2)

p3 = (a2,2 − εa1,2)(b2,1 + εb2,2) ;
p4 = a2,1(b1,1 − b2,1) ;
p5 = (a2,1 + a2,2)b2,1

c1,1 = (p1 + p2 + p4)/ε − ε(a1,1 + a1,2)b1,2 ;
c2,1 = p4 + p5;
c2,2 = (p1 + p3 − p5)/ε − εa1,2(b1,2 − b2,2) . (10.3)

If we now let ε → 0, the second terms in (10.3) become negligible next to the first terms, and so
they need not be computed. Hence, three of the four elements of C = AB may be computed using
only five multiplications. c1,2 may be computed using a sixth multiplication, so that, in fact, two
2×2matrices may be multiplied to arbitrary accuracy using only six multiplications. The APA 3×3
matrix multiplication algorithm requires 21 multiplications. Note that APA algorithms improve on
the exact Strassen-type algorithms (6< 7, 21< 23).

The APA algorithms are often described as being numerically unstable, due to roundoff error as
ε → 0. We believe that an electrical engineering perspective on these algorithms puts them in a light
different from that of the mathematical perspective. In fixed point implementation, the computation
AB = C can be scaled to operations on integers, and the pi can be bounded. Then it is easy to set ε
a sufficiently small (negative) power of two to ensure that the second terms in (10.3) do not overlap
the first terms, provided that the wordlength is long enough. Thus, the reputation for instability
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is undeserved. However, the requirement of large wordlengths to be multiplied seems also to have
escaped notice; this may be a more serious problem in some architectures.

The divide-and-conquer and resulting nesting of APA algorithms work the same way as for the
Strassen-typealgorithms. N×Nmatrixmultiplicationusing(10.3) requiresO(N log2(6)) = O(N2.585)

multiplications, which improves on theO(N2.807)multiplications using (10.2). But the wordlengths
are longer.

A design methodology for fast matrix multiplication algorithms by grouping terms has been
proposed in a series of papers by Pan (see References [5] and [6]). While this has proven quite
fruitful, the methodology of grouping terms becomes somewhat ad hoc.

10.2.4 Number Theoretic Transform (NTT) Based Algorithms

An approach similar in flavor to the APA algorithms, but more flexible, has been taken recently in [8].
First, matrix multiplication is reformulated as a linear convolution, which can be implemented as the
multiplication of two polynomials using the z-transform. Second, the variable z is scaled, producing
a scaled convolution, which is then made cyclic. This aliases some quantities, but they are separated
by a power of the scaling factor. Third, the scaled convolution is computed using pseudo-number-
theoretic transforms. Finally, the various components of the product matrix are read off of the
convolution, using the fact that the elements of the product matrix are bounded. This can be done
without error if the scaling factor is sufficiently large.

This approach yields algorithms that require the same number of multiplications or fewer as APA
for 2× 2 and 3× 3 matrices. The multiplicands are again sums of scaled matrix elements as in APA.
However, the design methodology is quite simple and straightforward, and the reason why the fast
algorithm exists is now clear, unlike the APA algorithms. Also, the integer computations inherent in
this formulation make possible the engineering insights into APA noted above.

We reformulate the product of twoN×N matrices as the linear convolution of a sequence of length
N2 and a sparse sequence of lengthN3 −N + 1. This results in a sequence of lengthN3 +N2 −N ,
from which elements of the product matrix may be obtained. For convenience, we write the linear
convolution as the product of two polynomials. This result (of [8]) seems to be new, although a
similar result is briefly noted in ([3], p. 197). Define

ai,j = ai+jN ; bi,j = bN−1−i+jN ; 0 ≤ i, j ≤ N − 1


N−1∑
i=0

N−1∑
j=0

ai+jNxi+jN




N−1∑
i=0

N−1∑
j=0

bN−1−i+jNxN(N−1−i+jN)



=
N3+N2−N−1∑

i=0

cix
i

ci,j = cN2−N+i+jN2; 0 ≤ i, j ≤ N − 1 . (10.4)

Note that coefficients of all three polynomials are read off of the matricesA,B,C column-by-column
(each column of B is reversed), and the result is noncommutative. For example, the 2 × 2 matrix
multiplication (10.1) becomes

(
a1,1 + a2,1x + a1,2x

2 + a2,2x
3
) (
b2,1 + b1,1x

2 + b2,2x
4 + b1,2x

6
)

= ∗ + ∗x + c1,1x
2 + c2,1x

3 + ∗x4 + ∗x5 + c1,2x
6 + c2,2x

7 + ∗x8 + ∗x9 , (10.5)
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where ∗ denotes an irrelevant quantity. In (10.5) substitute x = sz and take the resultmod(z6 −1).
This gives (

a1,1 + a2,1sz+ a1,2s
2z2 + a2,2s

3z3
) (
(b2,1 + b1,2s

6)+ b1,1s
2z2 + b2,2s

4z4
)

= (∗ + c1,2s
6)+ (∗s + c2,2s

7)z+ (c1,1s
2 + ∗s8)z2

+ (c2,1s
3 + ∗s9)z3 + ∗z4 + ∗z5; mod(z6 − 1) (10.6)

If |ci,j |, | ∗ | < s6 then the ∗ and ci,j may be separated without error, since both are known to be
integers. If s is a power of two, c0,1 may be obtained by discarding the 6 log2 s least significant bits in
the binary representation of ∗+c0,1s

6. The polynomial multiplicationmod(z6−1) can be computed
using number-theoretic transforms [9] using six multiplications. Hence, 2×2matrix multiplication
requires six multiplications. Similarly, 3 × 3 matrices may be multiplied using 21 multiplications.
Note these are the same numbers required by the APA algorithms, quantities multiplied are again
sums of scaled matrix elements, and results are again sums in which one quantity is partitioned from
another quantity which is of no interest.

However, this approach is more flexible than the APA approach (see [8]). As an extreme case,
setting z = 1 in (10.5) computes a 2 × 2 matrix multiplication using ONE (very long wordlength)
multiplication! For example, using s = 100[

2 4
3 5

] [
9 8
7 6

]
=

[
46 40
62 54

]
(10.7)

becomes the single scalar multiplication

(5,040,302)(8,000,600,090,007) = 40,325, 440,634,862, 462,114. (10.8)

This is useful in optical computing architectures for multiplying large numbers.

10.3 Wavelet-Based Matrix Sparsification

10.3.1 Overview

A common application of solving large linear systems of equations is the solution of integral equations
arising in, say, electromagnetics. The integral equation is transformed intoa linear systemofequations
using Galerkin’s method, so that entries in the matrix and vectors of knowns and unknowns are
coefficients of basis functions used to represent the continuous functions in the integral equation.
Intelligent selection of the basis functions results in a sparse (mostly zero entries) system matrix.
The sparse linear system of unknowns is then usually solved using an iterative algorithm, which is
where the sparseness becomes an advantage (iterative algorithms require repeated multiplication of
the system matrix by the current approximation to the vector of unknowns).

Recently, wavelets have been recognized as a good choice of basis function for a wide variety of
applications, especially in electromagnetics. This is true because in electromagnetics the kernel of
the integral equation is a 2-D or 3-D Green’s function for the wave equation, and these are Calderon-
Zygmund operators. Using wavelets as basis functions makes the matrix representation of the kernel
dropoff rapidly away fromthemaindiagonal, more rapidly thandiscretizationof the integral equation
would produce.

Here we quickly review the wavelet transform as a representation of continuous functions and
show how it sparsifies Calderon-Zygmund integral operators. We also provide some insight into why
this happens and present some alternatives that make the sparsification less mysterious. We present
our results in terms of continuous (integral) operators, rather than discrete matrices, since this is the
proper presentation for applications, and also since similar results can be obtained for the explicitly
discrete case.
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10.3.2 The Wavelet Transform

We will not attempt to present even an overview of the rich subject of wavelets. The reader is
urged to consult the many papers and textbooks (e.g., [10]) now being published on the subject.
Instead, we restrict our attention to aspects of wavelets essential to sparsification of matrix operator
representations.

The wavelet transform of an L2 function f (x) is defined as

fi(n) = 2i/2
∫ ∞

−∞
f (x)ψ(2ix − n)dx; f (x) =

∑
i

∑
n

fi(n)ψ(2
ix − n)2i/2 (10.9)

where {ψ(2ix−n), i, n ∈ Z} is a complete orthonormal basis forL2. That isL2 (the space of square-
integrable functions) is spanned by dilations (scaling) and translations of a wavelet basis function
ψ(x). Constructing this ψ(x) is nontrivial, but has been done extensively in the literature.

Since the summations must be truncated to finite intervals in practice, we define the wavelet scaling
functionφ(x)whose translations on a given scale span the space spanned by the wavelet basis function
ψ(x) at all translations and at scales coarser than the given scale. Then we can write

f (x) = 2I/2
∑
n

cI (n)φ(2
I x − n)+

∞∑
i=I

∑
n

fi(n)ψ(2
ix − n)2i/2

cI (n) = 2I/2
∫ ∞

−∞
f (x)φ(2I x − n)dx (10.10)

So the projection cI (n) of f (x) on the scaling function φ(x) at scale I replaces the projections
fi(n) on the basis function ψ(x) on scales coarser (smaller) than I . The scaling function φ(x) is
orthogonal to its translations but (unlike the basis function ψ(x)) is not orthogonal between scales.
Truncating the summation at the upper end approximates f (x) at the resolution defined by the finest
(largest) scale i; this is somewhat analogous to truncating Fourier series expansions and neglecting
high-frequency components.

We also define the 2-D wavelet transform of f (x, y) as

fi,j (m, n) = 2i/22j/2
∫ ∞

−∞

∫ ∞

−∞
f (x, y)ψ(2ix −m)ψ(2j y − n)dx dy

f (x, y) =
∑
i,j,m,n

fi,j (m, n)ψ(2
ix −m)ψ(2j y − n)2i/22i/2 (10.11)

However, it is more convenient to use the 2-D counterpart of (10.10), which is

cI (m, n) = 2I
∫ ∞

−∞

∫ ∞

−∞
f (x, y)φ(2I x −m)φ(2I y − n)dx dy

f 1
i (m, n) = 2i

∫ ∞

−∞

∫ ∞

−∞
f (x, y)φ(2ix −m)ψ(2iy − n)dx dy

f 2
i (m, n) = 2i

∫ ∞

−∞

∫ ∞

−∞
f (x, y)ψ(2ix −m)φ(2iy − n)dx dy

f 3
i (m, n) = 2i

∫ ∞

−∞

∫ ∞

−∞
f (x, y)ψ(2ix −m)ψ(2iy − n)dx dy

f (x, y) =
∑
m,n

cI (m, n)φ(2
I x −m)φ(2I y − n)2I
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+
∞∑
i=I

∑
m,n

f 1
i (m, n)φ(2

ix −m)ψ(2iy − n)2i

+
∞∑
i=I

∑
m,n

f 2
i (m, n)ψ(2

ix −m)φ(2iy − n)2i

+
∞∑
i=I

∑
m,n

f 3
i (m, n)ψ(2

ix −m)ψ(2iy − n)2i . (10.12)

Once again the projection cI (m, n) on the scaling function at scale I replaces all projections on the
basis functions on scales coarser thanM .

Some examples of wavelet scaling and basis functions:

Scaling pulse B-spline sinc softsinc Daubechies
Wavelet Haar Battle-Lemarie Paley-Littlewood Meyer Daubechies

An important property of the wavelet basis function ψ(x) is that its first k moments can be made
zero, for any integer k [10]:

∫ ∞

−∞
xiψ(x)dx = 0, i = 0 . . . k (10.13)

10.3.3 Wavelet Representations of Integral Operators

We wish to use wavelets to sparsify the L2 integral operatorK(x, y) in

g(x) =
∫ ∞

−∞
K(x, y)f (y)dy (10.14)

A common situation: (10.14) is an integral equation with known kernel K(x, y) and known g(x)
in which the goal is to compute an unknown function f (y). Often the kernelK(x, y) is the Green’s
function (spatial impulse response) relating observed wave field or signal g(x) to unknown source
field or signal f (y).

For example, the Green’s function for Laplace’s equation in free space is

G(r) = − 1

2π
logr (2D); 1

4πr
(3D) (10.15)

where r is the distance separating the points of source and observation. Now consider a line source in
an infinite 2-D homogeneous medium, with observations made along the same line. The observed
field strength g(x) at position x is

g(x) = − 1

2π

∫ ∞

−∞
log |x − y|f (y)dy (10.16)

where f (y) is the source strength at position y.
Using Galerkin’s method, we expand f (y) and g(x) as in (10.9) andK(x, y) as in (10.11). Using

the orthogonality of the basis functions yields
∑
j

∑
n

Ki,j (m, n)fj (n) = gi(m) (10.17)

Expanding f (y) and g(x) as in (10.10) andK(x, y) as in (10.12) leads to another system of equations
which isdifficultnotationally towriteout ingeneral, but canclearlybedone in individual applications.
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We note here that the entries in the system matrix in this latter case can be rapidly generated using
the fast wavelet algorithm of Mallat (see [10]).

The point of using wavelets is as follows. K(x, y) is a Calderon-Zygmund operator if

| ∂
k

∂xk
K(x, y)| + | ∂

k

∂yk
K(x, y)| ≤ Ck

|x − y|k+1
(10.18)

for some k ≥ 1. Note in particular that the Green’s functions in (10.15) are Calderon-Zygmund
operators. Then the representation (10.12) ofK(x, y) has the property [11]

|f 1
i (m, n)| + |f 2

i (m, n)| + |f 3
i (m, n)| ≤ Ck

1 + |m− n|k+1
, |m− n| > 2k (10.19)

if the wavelet basis function ψ(x) has its first k moments zero (10.13).
This means that using wavelets satisfying (10.13) sparsifies the matrix representation of the kernel

K(x, y). For example, adirect discretizationof the3-DGreen’s function in (10.15)decays as1/|m−n|
as one moves away from the main diagonal m = n in its matrix representation. However, using
wavelets, we can attain the much faster decay rate 1/(1+|m− n|k+1) far away from the main diagonal.
By neglecting matrix entries less than some threshold (typically 1% of the largest entry) a sparse and
mostly banded matrix is obtained. This greatly speeds up the following matrix computations:

1. Multiplication by the matrix for solving the forward problem of computing the response
to a given excitation (as in (10.16));

2. Fast solution of the linear system of equations for solving the inverse problem of re-
constructing the source from a measured response (solving (10.16) as an integral equa-
tion). This is typically performed using an iterative algorithm such as conjugate gradient
method. Sparsification is essential for convergence in a reasonable time.

A typical sparsified matrix from an electromagnetics application is shown in Figure 6 of [12].
Battle-Lemarie wavelet basis functions were used to sparsify the Galerkin method matrix in an integral
equation for planar dielectric millimeter-wave waveguides and a 1% threshold applied (see [12] for
details). Note that the matrix is not only sparse but (mostly) banded.

10.3.4 Heuristic Interpretation of Wavelet Sparsification

Why does this sparsification happen? Considerable insight can be gained using (10.13). Let ψ̂(ω)
be the Fourier transform of the wavelet basis function ψ(x). Since the first k moments of ψ(x) are
zero by (10.13) we can expand ψ̂(ω) in a power series around ω = 0:

ψ̂(ω) ≈ ωk; |ω| << 1 . (10.20)

This shows that for small |ω| taking the wavelet transform of f (x) is roughly equivalent to taking
the kth derivative of f (x). This can be confirmed that many wavelet basis functions bear a striking
resemblance to the impulse responses of regularized differentiators. Since K(x, y) is assumed a
Calderon-Zygmund operator, its kth derivatives in x and y drop off as 1/|x − y|k+1. Thus, it is not
surprising that the wavelet transform ofK(x, y), which is roughly taking kth derivatives, should drop
off as 1/|m− n|k+1. Of course there is more to it, but this is why it happens.

It is not surprising thatK(x, y) can be sparsified by taking advantage of its derivatives being small.
To see a more direct way of accomplishing this, apply integration by parts to (10.14) and take the
partial derivative with respect to x. This gives

dg(x)

dx
= −

∫ ∞

−∞

(
∂

∂x

∂

∂y
K(x, y)

) (∫ y

−∞
f (y′)dy′

)
dy (10.21)
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which will likely sparsify a smoothK(x, y). Of course, higher derivatives can be used until a condition

like (10.18) is reached. The operations of integrating f (y) and ∂kg

∂xk
(to get g(x)) k times can be

accomplished using nk << n2 additions, so considerable savings can result. This is different from
using wavelets, but in the same spirit.
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11 Digital Filtering Lina J. Karam, James H. McClellan, Ivan W. Selesnick, and C. Sidney
Burrus
Introduction • Steps in Filter Design • Classical Filter Design Methods • Other Developments in
Digital Filter Design • Software Tools

D IGITAL FILTERING is one of the most important functions in digital signal processing, and
this single chapter not only provides a thorough coverage of conventional topics such as FIR
and IIR filtering, it also presents material on design methods and new research directions

that have not been widely available in the open literature.
Karam and McClellan present an “Introduction to Digital Filtering”, followed by Karam’s “Steps

in Filter Design”. A comprehensive coverage of FIR and IIR classical filter design follows in “FIR
Design Methods” by Selesnick, Burrus, Karam, and McClellan, and “IIR Design Methods” by Karam,
Selesnick and Burrus, respectively. Unique to this chapter is the special discussion of “Software Tools”
for filtering by McClellan.

The various topics covered in this section are integrated together very well, ensuring a coherent
and authoritative coverage of the filtering area.
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11.1 Introduction

Digital filters are widely used in processing digital signals of many diverse applications, including
speech processing and data communications, image and video processing, sonar, radar, seismic and
oil exploration, and consumer electronics. One class of digital filters, the linear shift-invariant (LSI)
type, are the most frequently used because they are simple to analyze, design, and implement. This
chapter treats the LSI case only; other filter types, such as adaptive filters, require quite different
design methodologies.

An LSI digital filter can be uniquely identified in the time/space domain by its impulse response
h(n) (where n is an integer index). Alternatively, the LSI digital filter can be uniquely characterized
in the frequency domain by its frequency response H(ω) (where ω is a real-valued frequency variable
in radians), which is also the Discrete-Time Fourier Transform (DTFT) of the sequence h(n). LSI
digital filters are of two main types: Finite-duration Impulse Response (FIR) filters for which the
impulse response h(n) is non-zero for only a finite number of samples, and Infinite-duration Impulse
Response (IIR) filters for which h(n) has an infinite number of non-zero samples. In the FIR case,
the samples of the sequence h(n) are commonly referred to as the filter coefficients; for the IIR case,
the filter coefficients include feedback terms in a difference equation.

Digital filter design has been extensively addressed within the last 25 years. The design and
realization of digital filters involve a blend of theory, applications, and technologies. For most
applications, it is desirable to design frequency-selective filters which alter or pass unchanged different
frequency components. In this case, the desired design specifications are given in the frequency
domain by specifying a desired frequency response D(f ). Note that D(f ) is, in general, complex
valued, consisting of a desired magnitude response |D(f )| and a desired phase response 6 D(f ).
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One of the most important problems is the design of a highly frequency-selective filter with sharp
cutoff edges (short transition bands). However, ideal sharp edges correspond mathematically to
discontinuities and cannot be realized in practice. Therefore, the filter design problem consists
in finding an implementable filter whose order is low and whose frequency response H(f ) best
approximates the specified ideal magnitude and phase responses which are given as the desired
design specifications or constraints.

The design of digital filters is typically done by performing the following steps:

1. Convert the desired design constraints into precise specifications of the desired magnitude
and phase responses, designed filter type (FIR or IIR), filter order, error tolerance, or
criteria.

2. Approximate the design specifications (of Step 1) by finding the implementable FIR or
IIR filter such that the obtained filter frequency response best meets the design specs
according to a mathematical error criterion.

3. Realize the filter using the digital technology most suitable for the considered application.

While Step 2 is performed using mathematical optimization and approximation methods, Step 1
is highly dependent on the application and the detail provided by the user. Step 3 depends on the
technology or software used to build the filter.

Nowadays, the optimization needed in Step 2 is usually done with computer software that im-
plements sophisticated numerical optimization routines. In addition, these design packages usually
have a convenient graphical user interface to aid in the conversion of specs needed in Step 1. With
such software, a filter design can be carried out quickly so that many designs can be tried in the
process of getting the best filter. Since most filter design techniques involve the trade-off among
competing parameters, the software can also incorporate design rules that allow the user to predict
the order needed for certain specs without actually designing the filter, for example.

This chapter is organized as follows. Section 11.2 provides a discussion of Steps 1 and 3, including
creating the design specifications, selecting the filter type and order, specifying the error tolerances
and criteria, and realizing the designed filter. Step 2 is treated in Sections 11.3 and 11.4. Section 11.3
describes the classical FIR and IIR design methods. Section 11.4 presents nonclassic and more
recently developed design methods with added efficiency and/or flexibility. Finally, Section 11.5 gives
examples of some of the currently available software design tools and describes the characteristics
that a user can expect from such tools.

11.2 Steps in Filter Design

Lina J. Karam
The general filter design problem can be briefly stated as follows. Given some ideal frequency re-

sponse, D(ω), find a realizable IIR or FIR digital filter whose frequency response,H(ω), approximates
D(ω). The realizable filter is found by optimizing some measure of the filter’s performance, e.g.,
minimizing the filter order (IIR) or the filter length (FIR), or minimizing the width of the transition
bands, or reducing the passband error and/or stopband error. Setting up the specifications for the
general filter design problem will define these parameters and show which trade-offs are possible.

11.2.1 Creating the Design Specifications

Since the frequency response of a digital filter is always periodic in the frequency variable ω with
a period of 2π , the design specifications need only be specified for one period; usually, over the
frequency region [−π, π]. Furthermore, when the frequency response is conjugate-symmetric (i.e.,
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D∗(ω) = D(−ω)), then it is sufficient to specify the response only on the positive frequency interval
[0, π]. The conjugate-symmetric case is the most common, because it corresponds to filters with
real coefficients.

The simplest case is that of an ideal low-pass digital filter with zero phase, whose frequency response
can be expressed as:

D(ω) =
{

1, |ω| < ωc

0, ωc < |ω| < π
(11.1)

where ωc is the cutoff frequency corresponding to the location of a sharp cutoff edge, as shown in
Fig. 11.1(a). In this case, the frequency response, D(ω), is real-valued and, therefore, corresponds
also to the magnitude response of the filter (since the phase is zero). Ideal frequency responses of
other commonly used frequency-selective filters are shown in Fig. 11.1.

FIGURE 11.1: Common ideal digital filter types.

These ideal filters have frequency responses with sharp cutoff edges (discontinuities) and cannot be
implemented directly. They must be approximated with a realizable system—the sharp cutoff edges
need to be replaced with transition bands in which the designed frequency response would change
smoothly in going from one band to the other. So, design templates need to be provided where the
sharp cutoff edges are replaced with non-zero width transition bands located around the ideal cutoff
edges. A typical design template for a lowpass filter is shown in Fig. 11.2, where:

• ωp is the passband cutoff frequency.

• ωs is the stopband cutoff frequency. The cutoff frequencyωc is usually taken to be midway
between the passband and stopband cutoff frequencies.

• The open interval (ωp, ωs) is the transition band of width 1ωt = ωs − ωp . In the
common design methods, no design specifications are given in the transition bands which
are therefore commonly known as “don’t care bands.” However, it is usually desirable to
have the frequency response change smoothly (i.e., no fluctuations or overshoots) in the
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transition bands; this requirement might not be satisfied by a design method that places
no design constraints on the frequency response in the transition bands.

• δp is known as the passband ripple and is the maximum allowable error in the passband.

• δs is known as the stopband ripple and is the maximum allowable error in the stopband.

FIGURE 11.2: Design template for a lowpass filter.

The objective of filter design then is to find a realizable FIR or IIR filter whose frequency response
H(ω) approximates the specified design constraints given by the design template. Ideally, the filter
design process would make each of the following parameters as small as possible: δp , δs , 1ωt , IIR
filter order (number of poles of H(z) which is a rational function) or FIR filter length (number of
zeros of H(z) which is a finite polynomial). Practically, the filter design process minimizes one of
these parameters while holding the others fixed.

Traditionally, many of the filters designed in practice are specified in terms of constraints on the
magnitude response and no constraints on the phase response other than those imposed implicitly by
stability and/or causality requirements (e.g., poles inside unit circle in the complex Z-plane for IIR,
and linear-phase for FIR [1]). More recently, design methods that include phase design specifications
have been presented [2, 3, 4, 5]. In this latter case, two design templates must be provided, one for
the magnitude response and another for the (passband) phase response. An ideal phase response is
most likely a constant slope phase function:

6 D(ω) = −Mω

The parameter M is equivalent to the desired delay of the filter (in samples). An error template for the
phase would be a tolerance about the desired phase, e.g., δφ would denote the maximum allowable
phase ripple, so that we require

|6 H(ω) − 6 D(ω)| < δφ

11.2.2 Specs Derived from Analog Filtering

Often, the desired design specifications are not given directly in the digital domain. Instead, an
equivalent analog filtering operation is desired but is to be performed using an embedded digital
filter. Figure 11.3 shows a standard system for processing continuous-time (-space) signals using a
digital filter. The analog input signal is first transformed into a digital signal through an analog-to-
digital (A/D) conversionoperation; then, filtering is carriedoutusing adigital filter; finally, thefiltered
digital output is converted back to the analog domain using a digital-to-analog (D/A) converter. For

c©1999 by CRC Press LLC



this system, if the sampling period Ts of the A/D and D/A converters is chosen appropriately to avoid
aliasing of the input spectrum, the overall system (consisting of the A/D converter, the digital filter,
and the D/A converter) behaves as an equivalent analog filter. In this case, the frequency response
Ha(�) of the equivalent analog filter is related to the frequency response H(ω) of the digital filter
through a simple linear scaling relation between the digital frequency ω and the analog frequency �.
This linear scaling relation is given by

ω = �Ts (11.2)

leading to the following expression of the analog Ha(�) in terms of the digital H(ω):

Ha(�) =




H(�Ts), |�| <
π

Ts

0, |�| ≥ π

Ts

(11.3)

FIGURE 11.3: Standard system for processing analog signals using a digital (discrete-time) filter.

Equivalently, H(ω) can also be expressed in terms of Ha(�) as follows:

H(ω) = Ha(ω/Ts), |ω| < π. (11.4)

A typical filter design problem corresponding to this system is to design the digital filter such that
the overall equivalent analog filter best approximates some ideal analog specifications. So, if we
are given the desired analog specifications of the overall analog system, these can be turned into
specifications for the desired digital filter by using Eq. (11.4). Then, a digital filter H(ω) can be
designed to approximate the derived desired digital specifications. Finally, the resulting analog
frequency response of the overall system can be found using Eq. (11.3), for example, to compare with
the ideal analog response.

11.2.3 Specifying an Error Measure

An error measure is needed to assess how much the designed filter H(ω) deviates from the desired
filter D(ω). Defining the pointwise error E(ω) as:

E(ω) = [D(ω) − H(ω)], (11.5)

we must reduce E(ω) to a scalar error measure (also called an error norm). With a correctly chosen
norm, there are many possible optimization algorithms that will compute the best filter parameters
to minimize the chosen error norm. The following error norms are the most commonly used in filter
design:
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• Mean Squared Error (MSE) or L2 norm

E2 =
[

1

2π

∫
B

|E(ω)|2 dω

]1/2

(11.6)

• Lp norm which is a generalization of the L2 norm and where p is a non-zero integer

Ep =
[

1

2π

∫
B

|E(ω)|p dω

]1/p

(11.7)

• Chebyshev or L∞ norm
E∞ = max

ω∈B
|E(ω)| (11.8)

The Chebyshev error norm limits the worst case deviation from the ideal specifications.

In the above definitions, | · | denotes the complex error magnitude and B is the frequency region of
interest over which the error norm is to be minimized. The frequency subset B ⊂ [−π, π) is taken
to be the union of the desired passbands and stopbands.

A more selective control of the approximation accuracy can be achieved by introducing a weighting
function W(ω) in Eq. (11.5) as follows:

E(ω) = W(ω)[D(ω) − H(ω)]. (11.9)

The weighting function W(ω) must be a real, strictly positive and continuous function on B. It
can force a better match over selected regions or frequency points relative to other regions in B.
Alternatively, note that Eq. (11.5) reduces to Eq. (11.9) if we replace D(ω) with W(ω)D(ω) and
H(ω) with W(ω)H(ω).

11.2.4 Selecting the Filter Type and Order

As mentioned in Section 11.1, there are two main types of filters, namely FIR and IIR. These differ in
their characteristics and in the way they are designed. Since the design algorithm depends strongly on
the choice of IIR vs. FIR filter, the designer should make this decision as early as possible. Although
the desired frequency response specifications can be approximated with either type of filter, deciding
which of the two filter types to use depends on many factors including the implementation hardware,
as well as the magnitude and phase characteristics of the resulting filter. To aid in this decision, the
main characteristics of FIR and IIR filters are discussed below.

11.2.4.1 FIR Characteristics

1. The impulse response h(n) has a finite length, i.e., h(n) is non-zero only for a finite range
of indices n. For a general N-length FIR system, h(n) 6= 0 only for N1 ≤ n ≤ N2 =
(N1 + N − 1). When N1 ≥ 0, the filter is also causal.

2. The FIR frequency response H(ω) is a finite-degree polynomial in ejω of the form

H(ω) =
N2∑

n=N1

h(n)(ejω)−n (11.10)

where N1 and N2 are (negative or positive) integers corresponding to the indices of the
first and last samples of h(n), respectively. The N impulse response samples are the free
parameters of the design procedure. This form is general enough to represent non-causal
filters such as zero-phase filters.
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3. Designing anFIRfilter consists infinding thepolynomialH(ω) that best approximates the
design specifications. This is done by computing the “optimal” (relative to some criteria)

impulse response samples {h(n)}N2
n=N1

, which correspond to the unknown coefficients of
the polynomial H(ω). The impulse response length N is usually fixed, but it could also
be considered as a free parameter to be optimized. Procedures for designing FIR filters
are given in Sections 11.3.1 and 11.4.1.

4. The filter transfer function, denoted by H(z), is the z-transform of h(n) and is useful for
studying the stability of the system. For FIR filters, H(z) is a finite-degree polynomial in
the complex variable z and is given by

H(z) = H(ejω)|ejω=z =
N2∑

n=N1

h(n)z−n. (11.11)

It follows that the function H(z) has no poles except possibly at 0 or ∞, i.e., it cannot be
infinite for any point z with 0 < |z| < ∞. It has only zeros (points z at which H(z) = 0).
Therefore, an FIR filter is always stable.

5. FIR filters allow the design of causal linear-phase systems which are very important and
widely used in practice. In fact, in many signal processing applications, such as speech
and image processing, it is desirable to pass some portion of the signal frequency band
with minimal distortion. For that purpose, linear-phase systems are particularly desirable
since the effect of the linear-phase is a pure time delay. For a more detailed discussion of
linear-phase systems, the reader is referred to [1].

6. Because the impulse response is of finite length, FIR filters are realized using the convo-
lution operation [1] which can be implemented directly in the time/space domain, or in
terms of the FFT in the frequency domain. More details about the implementation will
be given in Section 11.2.6.

7. Since FIR filters have no feedback loops, they are relatively insensitive to round-off noise.
Noise due to coefficient quantization can be a problem for very long filters, but can be
mitigated by avoiding the direct-form structures, and using special structures such as the
cascade form for implementation.

8. FIR filters with very long impulse responses (N ≈ 500) might be required to meet certain
design specifications, e.g., high accuracy and/or short transition bands. Longer filters lead
to an increased complexity for both design and implementation. They require significant
computing time to optimize all the parameters h(n), and also many operations per second
in the actual filter implementation.

9. The trade-off among the filter design parameters has been determined empirically for
some types of FIR designs. The following simple (approximate) formula shows the
relationship among the ripples, bandedges, and filter length (N) for one method, the
Parks-McClellan algorithm :

(N − 1)1ω ≈ −20 log10
√

δpδs − 13

2.324

where 1ω = ωs −ωp is the transition width. This formula allows the designer to predict
the value of N that will be needed to satisfy specs given for { ωp, ωs, δp, δs }. Other
design formulas are given in Section 11.3.1.
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11.2.4.2 IIR Characteristics

1. The impulse response h(n) has an infinite number of non-zero samples (infinite length).
As an example, for a general IIR filter, h(n) 6= 0 only for No ≤ n ≤ ∞, where No is a
non-negative integer (commonly, No is taken to be 0; in this case, the filter is said to be
causal).

2. The frequency response H(ω) is a rational function, i.e., a ratio of two finite-degree
polynomials in ejω of the form

H(ω) = B(ω)

A(ω)
= e−jωNo

∑M
k=0 bke

−jωk∑N
k=0 ake−jωk

(11.12)

where No is an integer constant. The order of an IIR filter is equal to N , which is the
degree of the denominator in Eq. (11.12); usually the degree of the numerator M is no
greater than N . The order N also determines the number of previous output samples that
need to be stored and then fed back to compute the current output sample. Therefore,
IIR systems are also known as feedback systems. The filter coefficients {bn} and {an} in
Eq. (11.12) correspond to the unknown (free) parameters of the design.

3. Designing an IIR filter amounts to finding the rational function H(ω) that best approx-
imates the design specifications. In the frequency domain, this is done by computing
the “optimal” (relative to some criteria) coefficients {bn} and {an} in Eq. (11.12) for the
rational function H(ω). The filter order N is usually fixed, but can also be considered
as a free parameter to be optimized. Procedures for designing IIR filters are given in
Sections 11.3.2 and 11.4.2.

4. As mentioned previously, the filter transfer function, denoted by
H(z), is the z-transform of h(n) and is useful for studying the stability of the system. In
the context of LSI filters, stability implies that a bounded input to the filter will always
result in a bounded output. For IIR filters, H(z) is a rational function in the complex
variable z and is given by

H(z) = H
(
ejω

)
|ejω=z = z−No

∑M
k=0 bkz

−k∑N
k=0 akz−k

(11.13)

The roots of the denominator polynomial are poles of the function H(z), i.e., H(z) is
infinite at points z with 0 ≤ |z| < ∞. Stability then requires that no poles lie on the
Unit Circle (U.C.) (|z| = 1) in the z-plane. Causality and stability require that the poles
lie inside the U.C. in the z-plane. So, it is possible to obtain a resulting IIR filter that is
unstable. Also, coefficient quantization noise might severely affect the response of the
filter and its stability by disturbing the poles locations and by driving some of the poles
closer to or onto the U.C.

5. It is not possible to design causal linear-phase IIR filters. The resulting IIR causal realizable
filters must have a non-linear phase response. Forward-backward filtering can be used as
an implementation to approximate a zero-phase response [1].

6. Because the impulse response is infinitely long, convolution can no longer be used to
implement the IIR filters. Instead, IIR filters are efficiently implemented using feedback
difference equations as described in Section 11.2.6.

7. The noise characteristics of an IIR filter can be a major consideration when doing an
implementation, especially in fixed-point arithmetic. Coefficient quantization degrades
the actual filter response from that designed by high-precision software. More critical is
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round-off noise sensitivity which can be amplified by the feedback loops in the filter.

8. Compared to FIR filters, IIR filters can achieve the desired design specifications with a
relatively low order (as few as 4 to 6 poles). So, fewer unknown parameters need to be
computedand stored, whichmight lead to a lowerdesignand implementation complexity.
However, the phase response of IIR filters is never linear, which leads to the use of all-
pass filters to compensate the group delay, and thus raises the order of the filter and the
complexity of the design process.

9. IIR filters are commonly designed by using closed-form design formulas corresponding
to classical filter types. While for FIR filters the length-estimating formulas are only
approximate, the order-estimating formulas for IIR filters are exact since they are derived
from the mathematical properties of the classical prototypes. These formulas are very
useful to obtain the IIR filter order needed to satisfy the desired design specifications.

11.2.5 Designing the Filter

After the designed filter type (FIR or IIR) is specified, a suitable design procedure can be selected
depending on the chosen filter type. Popular design procedures are based on computing the unknown
filter parameters by optimizing one of the error criteria indicated in Section 11.2.3.

For FIR filters, the two main classical methods are the windowing method [1] and the Parks-
McClellan (Remez) algorithm [6]. The windowing method minimizes the MSE when a rectangular
window (corresponding to pure truncation of the ideal impulse response) is used at the expense of
possible large overshoots near the band edges and large ripples in the resulting frequency response. It
is suboptimal when other general windows are used. However, the edge overshoot, transition width,
and ripple height can be controlled by using different types of windows as described in Section
on page 11-13. The Parks-McClellan (Remez) algorithm minimizes the Chebyshev (L∞) error
norm resulting in optimal equiripple designs. However, the original Parks-McClellan algorithm is
restricted to the design of linear-phase filters with a symmetric magnitude response. An extension
of this algorithm that allows the design of optimal FIR filters with arbitrary magnitude and phase
specificationshasbeenpresentedbyKaramandMcClellan in [2, 3]. Linear-programming-based[4, 7]
andConstrained least square [8]optimizationmethodsalsohavebeenpresented toallow the inclusion
of additional important design constraints. These and other FIR design procedures are described in
Sections 11.3.1 and 11.4.1.

While the design of FIR filters is typically performed directly in the digital domain, IIR filters are
commonlydesignedby transforming thedigital design specifications into analogdesign specifications
and performing the filter design in the analog domain. The resulting analog filter is then transformed
into a digital filter using a suitable transformation. One important classical IIR design method is
the Bilinear Transformation method. Digital-only IIR design methods have also been presented. A
description of IIR design procedures is given in Sections 11.3.2 and 11.4.2.

11.2.6 Realizing the Designed Filter

Realizing the designed digital filter corresponds to computing the output of the filter in response to
any given input. For LSI filters, this is simplified by the fact that the input and output signals are
related through a simple convolution operation in the time/space domain. If x(n) is the input, y(n)

the corresponding output, and h(n) the impulse response of the LSI filter, then this relation is given
by

y(n) = h(n) ∗ x(n) =
N2∑

k=N1

h(k)x(n − k), (11.14)
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where N1 and N2 are the indices of the first and last non-zero samples of h(n). In the frequency
(Fourier transform) domain, the convolution relation (11.14) corresponds to a multiplication of the
respective Fourier transforms:

Y (ω) = H(ω)X(ω) (11.15)

where X(ω), H(ω), and Y (ω) are the DTFT of x(n), h(n), and y(n), respectively. The variable
ω in Eq. (11.15) is continuous and, therefore, Eq. (11.15) cannot be implemented in practice. An
implementable version of Eq. (11.15) is obtained by using the Discrete Fourier Transform (DFT),
which is a sampled version of the DTFT and which consists of samples of the DTFT evaluated at the
points ω = (2πk/NDFT), k = 0, . . . , (N − 1). NDFT is the size of the DFT and corresponds to the
number of sample points within the period 2π . It is a known fact that the time/space digital signal
can be exactly recovered from its DFT if NDFT is chosen to be greater than or equal to the length of
the time/space signal. Using the DFT, Eq. (11.15) becomes

Y (k) = H(k)X(k), k = 0, . . . , NDFT (11.16)

where NDFT ≥ max{length of x(n)+ length of h(n)− 1} in order to perform the pointwise multipli-
cation. The DFT can be computed very efficiently using the Fast Fourier Transform (FFT) algorithm.

11.2.6.1 Realizing FIR Filters

For FIR filters, the impulse response has a finite length and, therefore, N1 and N2 in Eq. (11.14)
are finite. Also, in this case, a finite-size DFT is sufficient to exactly represent h(n) (NDFT ≥ (N2 −
N1+1)). Consequently, for finite-length input signals x(n), Eq. (11.14) or Eq. (11.16) can be directly
used to realize the designed FIR filter in software or hardware. Commonly, the FIR filter coefficients
h(n) (or the DFT values if Eq. (11.16) is used) are quantized to the precision of the processor or chip,
stored, and used as in Eq. (11.14) to realize the designed FIR filter. While for Eq. (11.14) the storage
can be fixed to the size of h(n) and is independent of the input, the size of the DFTs in Eq. (11.16) and,
therefore, the needed storage vary with the size of the input signal. To overcome this problem and
to handle the processing of large-size signals, block-based convolution (also known as sectioned or
high-speed convolution) is used where the input signal is divided into blocks (sections) of fixed equal
size; then, the convolution of each input block with h(n) is computed using Eq. (11.16) with X(k)

being, in this case, the DFT of the considered block; the computed block convolutions are finally
properly combined to lead the final output y(n). Two popular ways of performing block convolutions
are [1, 9] (1) overlap-add and (2) overlap-save.

11.2.6.2 Realizing IIR Filters

For IIR filters, the impulse response has infinite length and, therefore, the summation in
Eq. (11.14) involves an infinite number of terms (N1 and/or N2 infinite). This makes Eq. (11.14)
not suitable for realizing IIR filters. Similarly, the direct realization of Eq. (11.16) would require
computing the infinite-length DFT H(k), which is not possible. These problems are overcome by
using feedback difference equations to realize the designed IIR filters. In fact, using Eq. (11.15) with
H(ω) replaced by Eq. (11.12), we get

Y (ω) = e−jωNo

∑M
k=0 bke

−jωk∑N
k=0 ake−jωk

X(ω). (11.17)

For simplicity and without loss of generality, assume No = 0; we can rewrite Eq. (11.17) as:

N∑
k=0

ake
−jωkY (ω) =

M∑
k=0

bke
−jωkX(ω). (11.18)
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Taking the inverse DTFT of both sides of Eq. (11.18) and noting that multiplication by e−jωk corre-
sponds to a shift by k in the time/space domain, we obtain the input-output relation of the system in
the time/space domain:

N∑
k=0

aky(n − k) =
M∑

n=0

bkx(n − k) (11.19)

The difference equation (11.19) can be rearranged leading a recursive (feedback) input-output rela-
tion. For instance, in order to compute the right-sided output sequence y(n), for n ≥ no (no integer
constant), Eq. (11.19) can be rewritten as:

y(n) =
M∑

n=0

bk

ao

x(n − k) −
N∑

k=1

ak

ao

y(n − k). (11.20)

where ao is commonly taken to be 1, without loss of generality, since it can be integrated into the
parametersbk andak . Realizing Eq. (11.20) requires thatN initial output values, y(no−1), . . . y(no−
N), be specified. For LSI filters, initial rest conditions are required: if the input x(n) = 0 for n < no,
then set y(n) = 0 for n < no.

For a left-sided output sequence, Eq. (11.19) can be rearranged as follows:

y(n − N︸ ︷︷ ︸
m

) =
M∑

k=0

bk

aN

x(n − k) −
N−1∑
k=0

ak

aN

y(n − k). (11.21)

So, Eq. (11.21) can be used to compute y(m), m ≤ no, by setting n = m + N and specifying the N

initial values y(no + 1), . . . , y(no + N).
The feedback difference equations (11.20) and (11.21) are simple to implement in software or

hardware. The MatlabTM1 software command y = filter(b,a,x) implements Eq. (11.20). In hard-
ware, typical DSP chips implement low-order filters (N = 1 or N = 2); the low-order filters can
be combined together (in cascade and/or parallel) to produce the desired higher-order filters (see
Section 11.5). To implement the filter in hardware, the difference equations (or, equivalently, the
rational frequency response) are represented by structures, which are flow graphs describing the algo-
rithm, that is to be implemented, in terms of basic building blocks [1, Chap. 6]. The basic building
blocks include adders, multipliers, branch points, and delay elements.

11.2.6.3 Quantization: Finite Wordlength Effect

In thedesign step, thefilter coefficients areusually computedwithaveryhighprecision. Inprac-
tice, these coefficients can be implemented with finite wordlength only. Since the design algorithm
yields coefficients computed to the highest precision available (e.g., double-precision floating-point),
the filter coefficients must be quantized to the internal format of the DSP. In addition, fixed-point
chips are widely used since they generally provide higher processing speed at lower cost than do
the floating point systems. In the case of a fixed-point DSP, this quantization also requires scaling
of the coefficients to a predetermined maximum value. The quantization and/or truncation of the
coefficients will generally cause the frequency response of the implemented filter to deviate from the
designed filter frequency response. The deviation from the desired specifications will depend on the
chosen filter type and on the structure used to implement the filter. For IIR filters, the quantization
of the coefficients might turn a stable filter into an unstable one. Other effects are due to the fact

1Matlab is a trademark of The Mathworks, Inc.
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that arithmetic operations performed on finite wordlength numbers generally result in numbers
with larger wordlengths, which then need to be quantized or truncated to the allowable precision.
Therefore, it is important to specify the required minimum wordlength that can be tolerated. As
indicated in Section 11.5, very few design algorithms perform the optimization of quantized coef-
ficients. Studies of the different wordlength effects has resulted in “rules of thumb” for the design
and realization of a system such that the desired properties can be achieved with reduced errors and
expense. A detailed study of the wordlength effects and the characterization of the resulting errors
can be found in Sections 6.7 through 6.10 of [1] and Sections 7.5 through 7.7 of [9].

11.3 Classical Filter Design Methods

The methods described in this section are magnitude-only approximation methods, i.e., the desired
phase response is assumed to be constant or linear and is not included in the design. These classical
methods mainly design frequency-selective filters with real-valued coefficients h(n).

Methods for the design of filters with general specifications [2, 4, 10] have been developed more
recently and are presented in Section 11.4.

11.3.1 FIR Design Methods

Ivan W. Selesnick, C. Sidney Burrus,
Lina J. Karam, and
James H. McClellan

The classical FIR design methods are mainly concerned with the design of linear-phase FIR filters
with real-valued coefficients h(n). These filters are of four possible types [1, 11]. The properties of
the four types of linear-phase filters are summarized in Table 11.1 and illustrated in Fig. 11.4.

FIGURE 11.4: Examples of impulse responses corresponding to the four types of linear-phase filters.
H(f ) is the corresponding frequency response, where the normalized frequency variable f = ω/2π .
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TABLE 11.1 Summary of the Four Types of Linear-Phase FIR Filters

Odd length (N) Even length (N)

Even symmetry Type I Type II

h(α + n) = h(α − n)

1
2 [N−1]∑

k=0

a(k) cos(ωk)

1
2N∑
k=1

b(k) cos(ω[k − 1

2
])

α = N−1
2 a(0) = h( N−1

2 ) zero at ω = π

β = 0 a(k) = 2h( N−1
2 − k) b(k) = 2h( N

2 − k)

cos(
1

2
ω)

1
2N−1∑
k=0

b̂(k) cos(ωk)

Odd symmetry Type III Type IV

h(α + n) = −h(α − n)

1
2 [N−1]∑

k=1

c(k) sin(ωk)

1
2N∑
k=1

d(k) sin(ω[k − 1

2
])

α = N−1
2 zeros at ω = 0, π zero at ω = 0

β = π
2 c(k) = 2h( N−1

2 − k) d(k) = 2h( N
2 − k)

h( N−1
2 ) = 0

sin(ω)

α−1∑
k=0

ĉ(k) cos(ωk) sin( 1
2ω)

1
2N−1∑
k=0

d̂(k) cos(ωk)

11.3.1.1 Design by Windowing

The Fourier relationship between the impulse response and H(ω) suggests that h(n) can be
obtained via

h(n) = 1

2π

∫ π

−π

D(ω)ejωndω (11.22)

where D(ω) is the desired frequency response. However, these Fourier series coefficients are usually
infinitely supported. The windowing technique proposes that the infinitely supported Fourier series
be truncated and multiplied by an appropriate function (a “window”) to obtain an FIR filter. For the
design of odd length symmetric filters, it is appropriate that D(ω) be a real-valued even function —
then h(n) is real and h(n) = h(−n). A casual filter is obtained by then shifting h(n).

Steps in Window Filter Design

1. Create the ideal impulse response, using the inverse DTFT to obtain hd [n]:

hd [n] = 1

2π

∫ π

−π

D(ω) ejωn dω

where D(ω) is the ideal frequency response. For example, D(ω) might be the ideal LPF.

2. Note: If the length of the window is N , then the “ideal” frequency response must contain
a linear phase term. For example, the ideal LPF would be specified as:

D(ω) =
{

1 · e−jω(N−1)/2 −ωc ≤ ω ≤ +ωc

0 ωc ≤ |ω| < π
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This allows both even-length and odd-length filters to be designed.

3. Create the FIR filter coefficients by multiplying by the window:

h[n] = w[n] · hd [n] n = 0, 1, . . . , N−1

4. In the frequency domain, this windowing operation results in a convolution of the ideal
frequency response with the Fourier transform of the window, W(ω).

H(ω) = 1

2π

∫ π

−π

D(θ) W(ω − θ) dθ

Note that this convolution is periodic with period 2π .

5. Transition Width: The result is that the ideal frequency response is smeared by the con-
volution, so the actual frequency response has a smooth roll-off from the passband to the
stopband.

6. PassbandandStopbandDeviations: Inaddition, allwindowshave sidelobes in theirFourier
transforms, so the convolution gives rise to ripples in the frequency response of the FIR
filter.

Examples of commonly used windows and their transforms are shown in Fig. 11.5. Windowed filter
design examples are shown in Fig. 11.6.

WindowSelection LetD(ω)be the response of an ideal lowpass filter with cut-off frequency
ωc, illustrated in Fig. 11.7. The Fourier series of D(ω) are samples of the sinc function:

sinc(n) =



ωc

π
sin(ωcn)

ωcn
n 6= 0

ωc

π
n = 0.

(11.23)

Simple truncation of the sinc function samples is generally not found to be acceptable because the
frequency responses of filters so obtained have large errors near the cut-off frequency. Moreover, as
the filter length is increased, the size of this error does not diminish to zero (although the square error
does). This is known as Gibbs phenomenon. Figure 11.8 illustrates a filter obtained by truncating
the sinc function.

To overcome this problem, the windowing technique obtains h(n) by multiplying the sinc function
by a “window” that is tapered near its endpoints:

h(n) = w(n) · sinc(n). (11.24)

The generalized cosine windows and the Bartlett (triangular) window are examples of well-known
windows. A useful window function has a frequency response that has a narrow mainlobe, a small
relative peak sidelobe height, and good sidelobe roll-off. Roughly, the width of the mainlobe affects
the width of the transition band of H(ω), while the relative height of the sidelobes affects the size of
the ripples in H(ω). These cannot be made arbitrarily good at the same time. There is a trade-off
between mainlobe width and relative sidelobe height. Some windows, such as the Kaiser window [12],
provide a parameter that can be varied to control this trade-off.

One approach to window design computes the window sequence that has most of its energy in a
given frequency band, say [−B, B]. Specifically, the problem is formulated as follows. Find w(n) of
specified finite support that maximizes

λ =
∫ B

−B
|W(ω)|2dω∫ π

−π
|W(ω)|2dω

(11.25)
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FIGURE 11.5: Common windows and their Fourier transforms. The window length is N = 49.

where W(ω) is the Fourier transform of w(n). The solution is a particular discrete prolate spheroidal
(DPS) sequence [13], that can be normalized so that W(0) = 1. The solution to this problem
was traditionally found by finding the largest eigenvector2 of a matrix whose entries are samples
of the sinc function [13]. However, that eigenvalue problem is numerically ill conditioned — the
eigenvalues cluster around to 0 and 1. Recently, an alternative eigenvalue problem has become more
widely known, that has exactly the same eigenvectors as the first eigenvalue problem (but different
eigenvalues), and is numerically well conditioned [14, 15, 16]. The well conditioned eigenvalue

2The eigenvector with the largest eigenvalue.
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FIGURE 11.6: Examples of windowed filter design. The window length is N = 49.

FIGURE 11.7: Ideal lowpass filter, ωc = 0.3π .
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FIGURE 11.8: Lowpass filter obtained by sinc function truncation, ωc = 0.3π .

problem is described by Av = θv where A is tridiagonal and has the following form:

Ai,j =




1
2i(N − i) j = i − 1(

N−1
2 − i

)2
cosB j = i

1
2(i + 1)(N − 1 − i) j = i + 1

0 |j − i| > 1

(11.26)

for i, j = 0, . . . , N − 1. Again, the eigenvector with the largest eigenvalue is the sought solution.
The advantage of A in Eq. (11.26) over the first eigenvalue problem is twofold: (1) The eigenvalues
of A in Eq. (11.26) are well spread (so that the computation of its eigenvectors is numerically well
conditioned); (2) The matrix A in Eq. (11.26) is tridiagonal, facilitating the computation of the largest
eigenvector via the power method.

By varying the bandwidth, B, a family of DPS windows is obtained. By design, these windows
are optimal in the sense of energy concentration. They have good mainlobe width and relative peak
sidelobe height characteristics. However, it turns out that the sidelobe roll-off of the DPS windows
is relatively poor, as noted in [16].

The Kaiser [12] and Saramäki [17, 18] windows were originally developed in order to avoid the
numerically ill conditioning of the first matrix eigenvalue problem described above. They approx-
imate the prolate spheroidal sequence, and do not require the solution to an eigenvalue problem.
Kaiser’s approximation to the prolate spheroidal window [12] is given by

w(n) = I0(β
√

1 − (n − M)2/M2)

I0(β)
for n = 0, 1, . . . N−1 (11.27)

where M = 1
2(N −1), β is an adjustable parameter, and Io(x) is the modified zero-th-order Bessel

function of the first kind. The window in Eq. (11.27) is known as the Kaiser window of length N .
For an odd-length window, the midpoint M is an integer. The parameter β controls the tradeoff
between the mainlobe width and the peak sidelobe level — it should be chosen to lie between 0 and
10 for useful windows. High values of β produce filters having high stopband attenuation, but wide
transition widths. The relationship between β and the ripple height in the stopband (or passband)
is illustrated in Fig. 11.9 and is given by:

β =



0 ATT < 21
0.5842( ATT − 21)0.4 + 0.07886(ATT − 21) 21 ≤ ATT ≤ 50
0.1102(ATT − 8.7) 50 < ATT

(11.28)
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where ATT = −20 log10 δs is the ripple height in dB.

FIGURE 11.9: Kaiser window: stopband attenuation vs. β.

For lowpass FIR filter design, the following design formula helps the designer to estimate the Kaiser
window length N in terms of the desired maximum passband and stopband error δ, 3 and transition
width 1F = (ωp − ωs)/2π :

N ≈ −20 log10(δ) − 7.95

14.3571F
+ 1 (11.29)

Examples of filter designs using the Kaiser window are shown in Fig. 11.10.
A second approach to window design minimizes the relative peak sidelobe height. The solution

is the Dolph-Chebyshev window [17, 19], all the sidelobes of which have equal height. Saramäki
has described a family of transitional windows that combine the optimality properties of the DPS
window and the Dolph-Chebyshev window. He has found that the transitional window yields better
results than both the DPS window and the Dolph-Chebyshev window, in terms of attenuation vs.
transition width [17].

An extensive list and analysis of windows is given in [19]. In addition, the use of nonsymmetric
windows for the design of fractional delay filters has been discussed in [20, 21].

Remarks

• The technique is conceptually and computationally simple.

• Using the window method, it is not possible to weight the passband and stopband dif-
ferently. The ripple sizes in each band will be approximately the same. But requirements
are often more strict in the stopband.

3For Kaiser window designs, δ = δp = δs .
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FIGURE 11.10: Frequency responses (log scale) of filters designed using the Kaiser window with
selected values for the parameter β. Note the tradeoff between mainlobe width and sidelobes height.

• It is difficult to specify the band edges and maximum ripple size precisely.

• The technique is not suitable for arbitrary desired responses.

• The use of windows for filter design is generally considered suboptimal because they do
not solve a clear optimization problem, but see [22].

11.3.1.2 Optimal Square Error Design

The formulation is as follows. Given a filter length N , a desired amplitude function D(ω), and
a non-negative function W(ω), find the symmetric filter that minimizes the weighted integral square
error (or “L2 error”), defined by

||E(ω)||2 =
(

1

π

∫ π

0
W(ω) (A(ω) − D(ω))2 dω

) 1
2

. (11.30)

For simplicity, symmetric odd-length filters4 will be discussed here, in which caseA(ω) can be written
as

A(ω) = 1√
2
a(0) +

M∑
n=1

a(n) cosnω (11.31)

where N = 2M + 1 and where the impulse response coefficients h(n) are related to the cosine

4To treat the four linear phase types together, see Eqs. (11.51) through (11.55) in the sequel. Then, ||E(ω)||2 be-

comes
(

1
π

∫ π
0 W(ω)(A(ω) − D(ω))2 dω

) 1
2 where W(ω) = W(ω)Q2(ω) and D(ω) = D(ω)/Q2(ω) and A(ω) is as in

Eq. (11.31).
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coefficients a(n) by

h(n) =




1
2a(M − n) for 0 ≤ n ≤ M − 1

1√
2
a(0) for n = M

1
2a(n − M) for M + 1 ≤ n ≤ N − 1

0 otherwise.

(11.32)

The nonstandard choice of 1√
2

here simplifies the notation below.

The coefficients a = (a(0), . . . , a(M))t are found by solving the linear system

Ra = c (11.33)

where the elements of the vector c are given by

c0 =
√

2

π

∫ π

0
W(ω)D(ω) dω (11.34)

ck = 2

π

∫ π

0
W(ω)D(ω) coskω dω (11.35)

and the elements of the matrix R are given by

R0,0 = 1

π

∫ π

0
W(ω) dω (11.36)

R0,k = Rk,0 =
√

2

π

∫ π

0
W(ω) coskω dω (11.37)

Rk,l = Rl,k = 2

π

∫ π

0
W(ω) coskω coslω dω (11.38)

for l, k = 1, . . . , M . Often it is desirable that the coefficients satisfy some linear constraints, say
Ga = b. Then the solution, found with the use of Lagrange multipliers, is given by the linear system[

R Gt

G 0

] [
a
µ

]
=
[

c
b

]
(11.39)

the solution of which is easily verified to be given by

µ =
(
GR−1Gt

)−1
(GR−1c − b) a = R−1(c − Gtµ) (11.40)

where µ are the Lagrange multipliers.
In the unweighted case (W(ω) = 1) the solution is given by a simpler system:[

IM+1 Gt

G 0

] [
a
µ

]
=
[

c
b

]
. (11.41)

In Eq. (11.41), IM+1 is the (M + 1) by (M + 1) identity matrix. It is interesting to note that in the
unweighted case, the least square filter minimizes a worst case pointwise error in the time domain
over a set of bounded energy input signals [23].

In the unweighted case with no constraint, the solution becomes: a = c. This is equivalent
to truncation of the Fourier series coefficients (the “rectangular window” method). This simple
solution is due to the orthogonality of the basis functions { 1√

2
, cosω, cos 2ω, . . .} when W(ω) = 1.

In general, whenever the basis functions are orthogonal, then the solution takes this simple form.
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Discrete Squares Error When D(ω) is simple, the integrals above can be found analytically.
Otherwise, entries of R and b can be found numerically. Define a dense uniform grid of frequencies
over [0, π) as ωi = iπ/L for i = 0, . . . , L − 1 and for some large L (say L ≈ 10M). Let d be
the vector given by di = D(ωi) and C be the L by M + 1 matrix of cosine terms: Ci,0 = 1√

2
,

Ci,k = coskωi for k = 1, . . . , M . (C has many more rows than columns.) Let W be the diagonal
weighting matrix diag{W(ωi)}. Then

R ≈ 2

Lπ
CtWC c ≈ 2

Lπ
CtWd. (11.42)

Using these numerical approximations for R and c is equivalent to minimizing the discrete squares
error,

L−1∑
i=0

W(ωi) (D(ωi) − A(ωi))
2 (11.43)

that approximates the integral square error. In this way, an FIR filter can be obtained easily, whose
response approximates an arbitrary D(ω) with an arbitrary W(ω). This makes the least squares
error approach very useful. It should be noted that the minimization of Eq. (11.43) is most naturally
formulatedas the least squares solution toanover-determined linear systemof equations, anapproach
described in [11]. The solution is the same, however.

Transition Regions As an example, the least squares design of a length N = 2M + 1
symmetric lowpass filter according to the desired response and weight functions

D(ω) =
{

1 ω ∈ [0, ωp]
0 ω ∈ [ωs, π] W(ω) =




Kp ω ∈ [0, ωp]
0 ω ∈ [ωp, ωs]
Ks ω ∈ [ωs, π]

(11.44)

is developed. For this D(ω) and W(ω), the vector c in Eq. (11.33) is given by

c0 =
√

2Kpωp

π
ck = 2Kp sin(kωp)

kπ
1 ≤ k ≤ M (11.45)

and the matrix R is given by

R = T(toeplitz(p, p) + hankel(p, q))T (11.46)

where the matrix T is the identity matrix everywhere except for T0,0, which is 1√
2
. The vectors p and

q are given by

p0 = Kpωp + Ks(π − ωs)

π
(11.47)

pk = Kp sin(kωp) − Ks sin(kωs)

kπ
1 ≤ k ≤ M (11.48)

qk = Kp sin((k + M)ωp) − Ks sin((k + M)ωs)

(k + M)π
0 ≤ k ≤ M. (11.49)

The matrix toeplitz (p, p) is a symmetric matrix with constant diagonals, the first row and column
of which is p. The matrix hankel (p, q) is a symmetric matrix with constant anti-diagonals, the
first column of which is p, the last row of which is q. The structure of the matrix R makes possible
the efficient solution of Ra = b [24]. Because the error is weighted by zero in the transition band
[ωp, ωs], the Gibbs phenomenon is eliminated: the peak error diminishes to zero as the filter length
is increased. Figure 11.11 illustrates an example.
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FIGURE 11.11: Weighted least squares example. N = 41, ωp = 0.25π , ωs = 0.35π , K = 4.

Other Least Squares Approaches Another approach modifies the discontinuous ideal low-
pass response of Fig. 11.7 so that a fractional order spline is used to continuously connect the passband
and stopband [25]. In this case, with uniform error weighting, (1) a simple closed form expression
for the least squares error solution is available, and (2) Gibbs phenomenon is eliminated. The use
of spline transition regions also facilitates the design of multiband filters by combining various low-
pass filters [26]. In that case, a least squares error multiband filter can be obtained via closed form
expressions, where the transition region widths can be independently specified.

Similar expressions can be derived for the even length filter and the odd symmetric filters. It should
also be noted that the least squares error approach is directly applicable to the design of nonsymmetric
FIR filters, complex-valued FIR filters, and two-dimensional FIR filters.

In addition, another approach to filter design according to a square error criterion, produces filters
known as eigenfilters [27]. This approach gives the filter coefficients as the largest eigenvalue of a
matrix that is readily constructed.

Remarks
• Optimal with respect to square error criterion.

• Simple, non-iterative method.

• Analytic solutions sometimes possible, otherwise solution is obtained via solution to
linear system of equations.

• Allows the use of a frequency dependent weighting function.

• Suitable for arbitrary D(ω) and W(ω).

• Easy to include arbitrary linear constraints.

• Does not allow direct control of maximum ripple size.

11.3.1.3 Equiripple Optimal Chebyshev Filter Design

The minimization of the Chebyshev norm is useful because it permits the user to explicitly
specify band-edges and relative error sizes in each band. Furthermore, the designed equiripple FIR
filters have the smallest transition width among all FIR filters with the same deviation.

Linear phase FIR filters that minimize a Chebyshev error criterion can be obtained with the Remez
exchange algorithm [28, 29] or by linear programming techniques [30]. Both these methods are
iterative numerical procedures and are applicable to arbitrary desired frequency response amplitudes.

Remez Exchange (Parks-McClellan) Parks and McClellan proposed the use of the Remez
algorithm for FIR filter design and made programs available [29, 31, 6]. Many texts describe the
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Parks-McClellan (PM) algorithm in detail [1, 11].

Problem Formulation Given a filter length, N , a desired (real-valued) amplitude function,
D(ω), and a non-negative weighting function, W(ω), find the symmetric (or antisymmetric) filter
that minimizes the weighted Chebyshev error, defined by

||E(ω)||∞ = max
ω∈B

|W(ω)(A(ω) − D(ω))| (11.50)

where B is a closed subset of [0, π]. Both D(ω) and W(ω) should be continuous over B. The
solution to this problem is called the best weighted Chebyshev approximation to D(ω) over B.

To treat each of the four linear phase cases together, note that in each case, the amplitude A(ω)

can be written as [32]:
A(ω) = Q(ω)P (ω) (11.51)

where P(ω) is a cosine polynomial (Table 11.1). By expressing A(ω) in this way, the weighted error
function in each of the four cases can be written as:

E(ω) = W(ω) [A(ω) − D(ω)] (11.52)

= W(ω)Q(ω)

[
P(ω) − D(ω)

Q(ω)

]
. (11.53)

Therefore, an equivalent problem is the minimization of

||E(ω)||∞ = max
ω∈B

|W(ω)(P (ω) − D(ω))| (11.54)

where

W(ω) = W(ω)Q(ω) D(ω) = D(ω)

Q(ω)
P (ω) =

r−1∑
k=0

a(k) coskω (11.55)

and B = B − {endpoints where Q(ω) = 0}.
The Remez exchange algorithm, for computing the best Chebyshev solution, uses the alternation

theorem. This theorem characterizes the best Chebyshev solution.

Alternation Theorem If P(ω) is given by Eq. (11.55), then a necessary and sufficient condi-
tion that P(ω) be the unique minimizer of Eq. (11.54) is that there exist in B at least r + 1 extremal
points ω1, . . . , ωr+1 (in order: ω1 < ω2 < · · · < ωr+1), such that

E(ωi) = c · (−1)i ||E(ω)||∞ for i = 1, . . . , r + 1 (11.56)

where c is either 1 or −1.
The alternation theorem states that |E(ω)| attains its maximum value at a minimum of r+1points,

and that the weighted error function alternates sign on at least r + 1 of those points. Consequently,
the weighted error functions of best Chebyshev solutions exhibit an equiripple behavior.

For lowpass filter design via the PM algorithm, the functions D(ω) and W(ω) in Eq. (11.44) are
usually used. For lowpass filters so obtained, the deviations δp and δs satisfy the relation δp/δs =
Ks/Kp . For example, consider the design of a real symmetric lowpass filter of length N = 41. Then
Q(ω) = 1 and r = (N + 1)/2 = 21. With the desired amplitude and weight function, Eq. (11.44),
with K = 4 and ωp = 0.25π , ωs = 0.35π , the best Chebyshev solution and its weighted error
function are illustrated in Fig. 11.12. The maximum errors in the passband and stopband are
δp = 0.0178and δs = 0.0714, respectively. The circular marks in Fig. 11.12(c) indicate the extremal
points of the alternation theorem.
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FIGURE 11.12: Equiripple lowpass filter obtained via the PM algorithm. N = 41, ωp = 0.25π , ωs = 0.35π , δp/δs = 4.
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To elaborate on the alternation theorem, consider the design of a length 21 lowpass filter and a
length 41 bandpass filter. Several optimal Chebyshev filters are illustrated in Figs. 11.13 through
11.16. It can be verified by inspection that each of the filters illustrated in Figs. 11.13 through 11.16 is
Chebyshev optimal, by verifying that the alternation theorem is satisfied. In each case, a set of r + 1
extremal points, which satisfies the necessary and sufficient conditions of the alternation theorem, is
indicated by circular marks in Figs. 11.13 through 11.16.

Several remarks regarding the weighted error function of a best Chebyshev solution are worth
noting.

1. E(ω) may have local minima and maxima in B at which |E(ω)| does not attain its
maximum value. See Fig. 11.14.

2. |E(ω)| may attain its maximum value at more than r + 1 points in B. See Fig. 11.15.

3. If there exists in B s ordered points ω1, . . . , ωs , with s > r + 1, at which |E(ωi)| =
||E(ω)||∞ (i.e., there are more than r + 1 extremal points), then it is possible that
E(ωi) = E(ωi+1) for some i. See Fig. 11.16. This is rare and, for lowpass filter design,
impossible.

Figure 11.14 illustrates two filters that possess “scaled-extra ripples" (ripples of non-maximal
size [30]). Figure 11.15 illustrates two maximal ripple filters. Maximal ripple filters are a subset
of optimal Chebyshev filters that occur for special values of ωp , ωs , etc. (The first algorithms for
equiripple filter design produced only maximal ripple filters [33, 34]). Figure 11.16 illustrates a filter
that possesses two scaled-extra ripples and one extra ripple of maximal size. These extra ripples have
no bearing on the alternation theorem. The set of r + 1 points, indicated in Fig. 11.16, is a set that
satisfies the alternation theorem; therefore, the filter is optimal in the Chebyshev sense.

FIGURE 11.13: Parks-McClellan example. (a) Lowpass: N = 21, ωp = 0.3161π , ωs = 0.4444π .
(b) Bandpass: N = 41, ω1 = 0.2415π , ω2 = 0.3189π , ω3 = 0.6811π , ω4 = 0.7585π .

Remez Algorithm To understand the Remez exchange algorithm, first note that Eq. (11.56)
can be written as

r−1∑
k=0

a(k) coskωi − (−1)iδ

W(ωi)
= D(ωi) for i = 1, . . . , r + 1. (11.57)
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FIGURE 11.14: Parks-McClellan example. (a) Lowpass: N = 21, ωp = 0.3889π , ωs = 0.5082π .
(b) Bandpass: N = 41, ω1 = 0.2378π , ω2 = 0.3132π , ω3 = 0.6870π , ω4 = 0.7621π .

where δ represents ||E(ω)||∞, and consider the following. If the set of extremal points in the
alternation theorem were known in advance, then the solution could be found by solving the system
of Eq. (11.57). The system in Eq. (11.57) represents an interpolation problem, which in matrix form

FIGURE 11.15: Parks-McClellan example. Lowpass: N = 21, ωp = 0.3919π , ωs = 0.5103π .
Bandpass: N = 41ω1 = 0.2370π , ω2 = 0.3115π , ω3 = 0.6885π , ω4 = 0.7630π .

becomes




1 cosω1 · · · cos(r − 1)ω1 1/W(ω1)

1 cosω2 · · · cos(r − 1)ω2 −1/W(ω2)
...

...

1 cosωr+1 · · · cos(r − 1)ωr+1 (−1)r/W(ωr+1)







a(0)

a(1)
...

a(r − 1)

δ
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FIGURE 11.16: Parks-McClellan example. N = 41, ω1 = 0.2374π , ω2 = 0.3126π , ω3 = 0.6876π ,
ω4 = 0.7624π .

=




D(ω1)

D(ω2)
...

D(ωr+1)


 (11.58)

to which there is a unique solution. Therefore, the problem becomes one of finding the correct set
of points over which to solve the interpolation problem in Eq. (11.57).

The Remez exchange algorithm proceeds by iteratively
1. solving the interpolation problem in Eq. (11.58) over a specified set of r + 1 points (a

reference set), and

2. updating the reference set (by an exchange procedure).

The initial reference set can be taken to be r + 1 points uniformly spaced over B. Convergence
is achieved when ||E(ω)||∞ − |δ| < ε, where ε is a small number (such as 10−6) indicating the
numerical accuracy desired.

During the interpolation step, the solution to Eq. (11.58) is facilitated by the use of a closed form
solution for δ and interpolation formulas [29].

After the interpolation step is performed, the reference set is updated as follows. The weighted
error function is computed, and a new reference set ω1, . . . , ωr+1 is found such that: (1) The current
weighted error function E(ω) alternates sign on the new reference set, (2) |E(ωi)| ≥ |δ| for each
point ωi of the new reference set and (3) |E(ωi)| > |δ| for at least one point ωi of the new reference
set. Generally, the new reference set is found by taking the set of local minima and maxima of E(ω)

that exceed the current value of δ, and taking a subset of this set that satisfies the alternation property.
Figure 11.17 illustrates the operation of the Parks-McClellan algorithm.

Design Rules for Lowpass Filters [12, 35, 36, 37] While the PM algorithm is applicable for
the approximation of arbitrary responses D(ω), the lowpass case has received particular attention.
In the design of lowpass filters via the PM algorithm, there are five parameters of interest: the filter
length N , the passband and stopband edges ωp and ωs , and the maximum error in the passband and
stopband δp and δs . Their values are not independent — any four determines the fifth. Formulas for
predicting the required filter length for a given set of specifications make this clear. Kaiser developed
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FIGURE 11.17: Operation of the Parks-McClellan algorithm. (a) Block Diagram. (b) Exchange
steps. Extremal points constituting the current extremal set are shown as solid circles; extremal
points selected to form the new extremal set are shown as solid squares.

the following approximate relation for estimating the equiripple FIR filter length for meeting the
specifications,

N ≈ −20 log10(
√

δpδs) − 13

14.61F
+ 1 (11.59)

where 1F = (ωs − ωp)/(2π). Defining the filter attenuation ATT to be −20 log10(
√

δpδs), and
comparing Eq. (11.29) with Eq. (11.59), it can be seen that the optimal Chebyshev design results in
filters with about 5 dB more attenuation than the windowed designed filters when the same specs are
used for the other design parameters (N and 1F ). Figure 11.18 compares window-based designs
with Chebyshev (Parks-McClellan)-based designs.

Herrmann et al. gave a somewhat more accurate design formula for the optimal Chebyshev FIR
filter design [37]:

N ≈ D∞(δp, δs) − f (δp, δs)(1F)2

1F
+ 1 (11.60)

where

D∞(δp, δs) = 0.005309(log2
10 δp + 0.07114 log10 δp − 0.4761) log10 δs

−(0.00266 log210 δp + 0.5941 log10 δp + 0.4278),
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FIGURE 11.18: Comparison of window designs with optimal Chebyshev (Parks-McClellan) designs. The window length
is N = 49. (a) Frequency response of designed filter using linear scale. (b) Frequency response of designed filter using
log (dB) scale.
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f (δp, δs) = 11.01217+ 0.51244(log10 δp − log10 δs). (11.61)

These formulas assume that δs < δp . If otherwise, then interchange δp and δs . Equation (11.60)
is the one used in the Matlab implementation (remezord() function) as part of the Matlab Signal
Processing toolbox.

To use the PM algorithm for lowpass filter design, the user specifies N, ωp, ωs, δp/δs . The PM
algorithm can be modified so that the user specifies other parameter sets [38]. For example, with one
modification, the user specifiesN, ωp, δp, δs ; or similarly, N, ωs, δp, δs . With a second modification,
the user specifies N, ωp, ωs, δp ; or similarly, N, ωp, ωs, δs .

Note that Eq. (11.59) states that the filter length N and the transition width 1F are inversely
proportional. This is in contrast to the relation for maximally flat symmetric filters. For equiripple
filters with fixed δp and δs , 1F diminishes like 1/N ; while for maximally flat filters, 1F diminishes

like 1/
√

N .

Remarks

• Optimal with respect to Chebyshev norm.

• Explicit control of band edges and relative ripple sizes.

• Efficient algorithm, always converges.

• Allows the use of a frequency dependent weighting function.

• Suitable for arbitrary D(ω) and W(ω).

• Does not allow arbitrary linear constraints.

Summary of Optimal Chebyshev Linear Phase FIR Filter Design

1. The desired frequency response can be written as

D(ω) = A(ω) e−j (αω+β)

where α = (N − 1)/2 always, and β = 0 for filters with even symmetry. Since A(ω) is
a real-valued function, the Chebyshev approximation is applied to A(ω) and the linear
phase comes for free. However, the delay will be proportional to the designed filter length.

2. The mathematical theory of Chebyshev Approximation is applied. In this type of opti-
mization, the maximum value of the error is minimized, as opposed to the error energy as
in least squares. Minimizing the maximum error is consistent with the desire to keep the
passband and stopband deviations as small as possible. (Recall that least squares suffers
from the Gibbs effect). However, minimization of the maximum error does not permit
the use of derivatives to find the optimal solution.

3. The Alternation Theorem gives the necessary and sufficient conditions for the optimum
in terms of equal-height ripples in the (weighted) error function.

4. The Remez exchange algorithm will compute the optimal approximation by searching for
the locations of the peaks in the error function. This algorithm is iterative.

5. The inputs to the algorithm are the filter length, N , the locations of the passband, and
stopband cutoff frequencies: ωp and ωs , and a weight function to weight the error in the
passband and stopband differently.

6. The Chebyshev approximation problem can also be reformulated as a linear program.
This is useful if additional linear design constraints need to be included.

7. Transition Width is minimized among all FIR filters with the same deviations.
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8. Passband and Stopband Deviations: The response is equiripple, it does not fall off away
from the transition region. Compared to the Kaiser window design, the optimal Cheby-
shev FIR design gives about 5 dB more attenuation (where attenuation is given by
−20 log10 δ and δ is the stopband or passband error) for the same specs on all other
filter design parameters.

Linear Programming Often it is desirable that an FIR filter be designed to minimize the
Chebyshev error subject to linear constraints that the Parks-McClellan algorithm does not allow. An
example described by Rabiner and Gold includes time domain constraints — in that example [30],
the oscillatory behavior of the step response of a lowpass filter is included in the design formulation.

Another example comes from a communication application [39] — given h1(n), design h2(n) so
that h(n) = (h1 ∗ h2)(n) is an Mth band filter [i.e., h(Mn) = 0 for all n 6= 0 and M 6= 0]. Such
constraints are linear in h1(n). [In the special case that h1(n) = δ(n), h2(n) is itself an Mth band
filter, and is often used for interpolation.]

Linear programming formulations of approximation problems (and optimization problems in
general) are very attractive because well-developed algorithms exist (namely the simplex algorithm
and more recently, interior point methods) for solving such problems. Although linear programming
requires significantly more computation than the methods described above, for many problems it is a
very rapid and viable technique [7]. Furthermore, this approach is very flexible — it allows arbitrary
linear equality and inequality constraints.

The problem of minimizing the weighted Chebyshev error W(ω)(A(ω) − D(ω)) where A(ω) is
given by Q(ω)

∑r−1
k=0 a(k) coskω can be formulated as a linear program as follows:

minimize δ (11.62)

subject to

A(ω) − δ

W(ω)
≤ D(ω) (11.63)

−A(ω) − δ

W(ω)
≤ −D(ω). (11.64)

The variables are a(0), . . . , a(r −1) and δ. The cost function and the constraints are linear functions
of the variables, hence the formulation is that of a linear program.

Remarks

• Optimal with respect to chosen criteria.

• Easy to include arbitrary linear constraints.

• Criteria limited to linear programming formulation.

• High computational cost.

11.3.2 IIR Design Methods

Lina J. Karam,
Ivan W. Selesnick, and C. Sidney Burrus

The objective in IIR filter design is to find a rational function H(ω) [as in Eq. (11.12)] that
approximates the ideal specifications according to some design criteria.

The approximation of an arbitrary specified frequency response is more difficult for IIR filters
than is so for FIR filters. This is due to the nonlinear dependence of H(ω) on the filter coefficients
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in the IIR case. However, for the ideal lowpass response, there exist analytic techniques to directly
obtain IIR filters. These techniques are based on converting analog filters into IIR digital filters.
One such popular IIR design method is the Bilinear Transformation Method [1, 11]. Other types of
frequency-selective filters (shown in Fig. 11.1) can be obtained from the designed lowpass prototype
using additional frequency transformations [1, Chap. 7].

Direct “discrete-time” iterative IIR design methods have also been proposed (see Section 11.4.2).
While these methods can be used to approximate general magnitude responses (i.e., not restricted to
the design of the standard frequency-selective filters), they are iterative and slower than the traditional
“continuous-time/space” based approaches that make use of simple and efficient closed-form design
formulas.

11.3.2.1 Bilinear Transformation Method

The traditional IIR design approaches reduce the “discrete-time/space” (digital) filter design
problem into a “continuous-time/space” (analog) filter design problem, which can be solved using
well-developed and relatively simple design procedures based on closed-form design formulas. Then,
a transformation is used to map the designed analog filter into a digital filter meeting the desired
specifications.

Let H(z) denote the transfer function of a digital filter [i.e., H(z) is the Z-transform of the filter
impulse response h(n)] and let Ha(s) denote the transfer function of an analog filter [i.e., Ha(s) is the
Laplace transform of the continuous-time filter impulse response h(t)]. The bilinear transformation
is a mapping between the complex variables s and z and is given by:

s = K (
1 − z−1

1 + z−1
) (11.65)

where K is a design parameter. Replacing s by Eq. (11.65) in Ha(s), the analog filter with transfer
function Ha(s) can be converted into a digital filter whose transfer function is equal to

H(z) = Ha(s)|
s=K( 1−z−1

1+z−1 )
(11.66)

Alternatively, the mapping can be used to convert a digital filter into an analog filter by expressing z

in function of s.
Note that the analog frequency variable � corresponds to the imaginary part of s (i.e., s =

σ + j�), while the digital frequency variable ω (in radians) corresponds to the angle (phase) of
z (i.e., z = reω). The bilinear transformation (11.65) was constructed such that it satisfies the
following important properties:

1. The left-half plane (LHP) of the s-plane maps into the inside of the unit circle in the
z-plane. As a result, a stable and causal analog filter will always result in a stable and
causal digital filter.

2. The � axis (imaginary axis) in the s-plane maps into the U.C. in the z-plane (i.e,
z = eω). This results in a direct relationship between the continuous-time frequency
� and the discrete-time frequency ω. Replacing z by eω (unit circle) in Eq. (11.65), we
obtain the following relation:

� = K tan(ω/2) (11.67)

or, equivalently,

ω = 2 arctan(�/K) (11.68)
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The design parameter K can be used to map one specific frequency point in the analog
domain to a selected frequency point in the digital domain, and to control the location
of the designed filter cutoff frequency. Equations (11.67) and (11.68) are non-linear,
resulting in a warping of the frequency axis as the filter frequency response is transformed
from one domain to another. This follows from the fact that the bilinear transformation
maps [via Eq. (11.67) or Eq. (11.68)] the entire � axis, i.e., −∞ ≤ � ≤ ∞, onto
one period −π ≤ ω ≤ π (which corresponds to one revolution of the unit circle in the
z-plane).

The bilinear transformation design procedure can be summarized as follows:

1. Transformthedigital frequencydomainspecifications to theanalogdomainusingEq. (11.67).
The frequency domain specs are given typically in terms of magnitude response specs as
shown in Fig. 11.2. After the transformation, the digital magnitude response specs are
converted into specs on the analog magnitude response.

2. Design a stable and causal analog filter with transfer function Ha(s) such that |Ha(s =
�)| approximates the derived analog specs. This is typically done by using one of
the classical frequency-selective analog filters whose magnitude responses are given in
terms of closed-form formulas; the parameters in the closed-form formulas (e.g., needed
analog filter order, analog cutoff frequency) can then be computed to meet the desired
analog specs. Typical analog prototypes include Butterworth, Chebyshev, and Elliptic
filters; the characteristics of these filters are discussed in Section on page 11-33. The
closed-form formulas give only the magnitude response |Ha(�)| of the analog filter and,
therefore, do not uniquely specify the complete frequency response (or corresponding
transfer function) which also should include a phase response. From all the filters having
magnitude response |Ha(�)|, we need to select the filter that is stable and, if needed,
causal. Using the fact that the computed magnitude-squared response |Ha(�)|2 =
|Ha(s)|2, for s = �, and that |Ha(s)|2 = Ha(s)H

∗
a (−s∗), where s∗ denotes the complex

conjugate of s, the system function Ha(s) of the desired stable and causal filter is obtained
by selecting the poles of |Ha(�)|2 lying in the LHP of the s-plane [11].

3. Obtain the transfer function H(z) for the digital filter by applying the bilinear transfor-
mation (11.65) to Ha(s). The design parameter K can be fixed or chosen to map one
analog frequency point � (e.g., the passband or stopband cutoff) into a desired digital
frequency point ω.

4. The frequency response H(ω) of the resulting stable digital filter can be obtained from
the transfer function H(z) by replacing z by eω; i.e.,

H(ω) = H(z)|z=eω (11.69)

11.3.2.2 Classical IIR Filter Types

The four standard classical analog filter types are known as (1) Butterworth, (2) Chebyshev
I, (3) Chebyshev II, and (4) Elliptic [1, 11]. The characteristics of these analog filters are described
briefly below.

Digital versions of these filters are obtained via the bilinear transformation [1, 11], and examples
are illustrated in Fig. 11.19.

Butterworth The magnitude-squared function of an N th order Butterworth lowpass filter
is given by

|Ha(�)|2 = 1

1 + (�/�c)2N
(11.70)
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where �c is the cutoff frequency.
The Butterworth filter is optimal according to a flatness criterion. For a specified filter order and

cut-off frequency, the magnitude response of the Butterworth filter is the solution that attains the
maximum number of derivatives equal to 0 at � = 0 and ∞ (ω = 0 and π for the digital filter).
This magnitude response is maximally flat in the passband [i.e., the first (2N − 1) derivatives of
|Ha(�)|2 are zero at � = 0], and it decreases monotonically in the passband and stopband. Note
that |Ha(� = 0)| = 1 and |Ha(� = �c)| = 1/

√
2, for all N . Also, as the filter order N increases,

the transition width decreases, yielding a sharper cutoff edge.
The Butterworth filter has the poorest frequency selectivity compared to the Chebyshev and Elliptic

filters, but it is the simplest to design.
Chebyshev: Types I and II If the filter specs are given in terms of passband and stopband

ripples (as shown in Fig. 11.2), then these specs are exceeded for a Butterworth filter because of
the monotonic behavior of the magnitude response. The specs can be met more efficiently with a
lower-order filter if the error is distributed uniformly over the passband or the stopband or (best)
both. This can be accomplished by choosing an approximating filter with an equiripple behavior.

The magnitude response of a Type I Chebyshev filter is equiripple in the passband and monotonic
in the stopband. The magnitude-squared response is given by

|Ha(�)|2 = 1

1 + ε2T 2
N(�/�c)

, (11.71)

where TN(x) is the N th degree Chebyshev polynomial in x, ε is a parameter specified by the allowable
passband ripple, �c is the filter cutoff frequency, and N is the filter order. The Type I Chebyshev
filter is optimal according to a Chebyshev criterion in the passband and a flatness criterion in the
stopband. For a specified filter order and passband edge, the magnitude response of this filter attains
the minimum Chebyshev error in the passband and the maximum number of vanishing derivatives
at � = ∞ (ω = π for the digital filter).

Note that |Ha(�)|2 ripples between 1 and 1/(1 + ε2) in the passband (0 ≤ |�| ≤ �c) since
0 ≤ T 2

N(x) ≤ 1 for 0 ≤ x ≤ 1. For x > 1, T 2
N(x) increases monotonically; so, |Ha(�)|2 decreases

monotonically in the stopband (� > �c).
From Eq. (11.71), three parameters are required to specify the filter: ε, �c, and N . In a typical

design, ε is specified by the allowable passband ripple δp by solving

1

1 + ε2
= (1 − δp)2. (11.72)

�c is specified by the desired passband cutoff frequency, and N is then chosen so that the stopband
specs are met.

A similar treatment can be made for Chebyshev II filters (also called inverse Chebyshev). The
Type II Chebyshev filter has a magnitude response that is monotonic in the passband and equiripple
in the stopband. It can be obtained from the Type I Chebyshev filter by replacing ε2T 2

N(�/�c) in
Eq. (11.71) by [ε2T 2

N(�c/�)]−1, resulting in the following magnitude-squared function:

|Ha(�)|2 = 1

1 + [
ε2T 2

N(�c/�)
]−1

. (11.73)

For the Chebyshev II filter, the parameter ε is determined by the allowable stopband ripple δs as
follows:

ε2

1 + ε2
= (1 − δs)

2. (11.74)

The order N is determined so that the passband specs are met.
The Chebyshev filter is so called because the Chebyshev polynomials are used in the formula.
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Elliptic The magnitude response of an Elliptic filter is equiripple in both the passband and
stopband. It is optimal according to a weighted Chebyshev criterion. For a specified filter order and
band edges, the magnitude response of the Elliptic filter attains the minimum weighted Chebyshev
error. In addition, for a given order N , the transition width is minimized among all filters with the
same passband and stopband deviations.

The magnitude-squared response of an Elliptic filter is given by:

|Ha(�)|2 = 1

1 + ε2E2
N(�)

, (11.75)

where EN(�) is a Jacobian elliptic function [11]. Elliptic filters are so called because elliptic functions
are used in the formula.

Remarks Note that, for these four filter types, the approximation is in the magnitude and
no phase approximation is achieved. Also note that each of these filter types has a symmetric FIR
counterpart.

The four types of IIR filters shown in Fig. 11.19 are usually obtained from analog prototypes via
the bilinear transformation (BLT), as described in Section on page 11-32. The analog filter H(s) is
designed to approximate the ideal lowpass filter over the imaginary axis. The BLT maps the imaginary
axis to the unit circle |z| = 1, and is given by the change of variables, s = K z−1

z+1 . This mapping
preserves the optimality of the four classical filter types. Another method for obtaining IIR digital
filters from analog prototypes is the impulse-invariant method [11]. In this method, the impulse
response of a digital filter is obtained by sampling the continuous-time/space impulse response of
the analog prototype. However, the impulse invariance method usually results in aliasing distortion
and is appropriate only for bandlimited filters. For this reason, the bilinear transformation method
is usually preferred.

Note that, for the four analog prototypes described above, the numerator degree of the designed
digital IIR filter equals the denominator degree.5 For the design of digital IIR filters with unequal
numerator and denominator degree, analytic techniques are available only for special cases (see
Section 11.4.2). For other cases, iterative numerical methods are required.

Highpass, bandpass, and band-reject filters can also be obtained from analog prototypes (or from
the digital versions) by appropriate frequency transformations [11]. Those transformations are
generally useful only when the IIR filter has equal degree numerator and denominator, which is the
case for the digital versions of the classical analog prototypes.

A fifth IIR filter for which closed form expressions are readily available is the all-pole filter that
possesses a maximally flat group delay at ω = 0. In this case, no magnitude approximation is
achieved. It should be noted that this filter is not obtained directly from the analog equivalent, the
Bessel filter (the BLT does not preserve the maximally flat group delay characteristic). Instead, it
can be derived directly in the digital domain [40]. For a specified filter order and DC group delay,
the group delay of this filter attains the maximal number of vanishing derivatives at ω = 0. The
particularly simple formula for H(z) is

H(z) =
∑N

k=0 ak∑N
k=0 akz−k

where ak = (−1)k
(

N

k

)
(2τ)k

(2τ + N + 1)k
(11.76)

where τ is the DC group delay, and the pochhammer symbol (x)k denotes the rising factorial:
(x) · (x + 1) · (x + 2) · · · (x + k − 1). An example is shown in Fig. 11.20, where it is evident that the

5Possibly, however, a single pole is located at z = 0, in which case their degrees differ by one.
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FIGURE 11.19: Classical IIR digital filters.
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magnitude response makes a poor lowpass filter. However, such a filter (1) can be cascaded with a
symmetric FIR filter that improves the magnitude without affecting its phase linearity [41], and (2)
is useful for fractional delay allpass filters as described in Section 11.4.2.2.

11.3.2.3 Comments and Generalizations

The design of IIR digital filters by transformation of classical analog prototypes is attractive
because formulas exist for these filters. Unfortunately, digital filters so obtained necessarily possess
an equal number of poles and zeros away from the origin. For some specifications, it is desired that
the numerator and denominator degrees not be restricted to be equal.

Several authors have addressed the design and the advantages of IIR filters with unequal numerator
and denominator degrees [42, 43, 44, 45, 46, 47, 48]. In [46, 49], Saramäki finds that the classical
Elliptic and Chebyshev filter types are seldom the best choice. In [42] Jackson improves the Mar-
tinez/Parks algorithm and notes that, for equiripple filters, the use of just two poles “is often the
most attractive compromise between computational complexity and other performance measures of
interest.”

Generally, thedesignof recursivedigital filtershavingunequaldenominator andnumeratordegrees
requires the use of iterative numerical methods. However, for some special cases, formulas are
available. For example, a digital generalization of the classical Butterworth filter can be obtained
with the formulas given in [50]. Figure 11.21 illustrates an example. It is evident from the figure,
that some zeros of the filter contribute to the shaping of the passband. The zeros at z = −1 produce
a flat behavior at ω = π , while the remaining zeros, together with the poles, produce a flat behavior
at ω = 0. The specified cut-off frequency determines the way in which the zeros are split between
the z = −1 and the passband.

To illustrate the effect of various numerator and denominator degrees, examine a set of filters for
which (1) the sum of the numerator degree and the denominator degree is constant, say 20, and
(2) the cut-off frequency is constant, say ωc = 0.6π . By varying the number of poles from 0 to 10 in
steps of 2 (so that the number of zeros is decreased from 20 to 10 in steps of 2), the filters shown in
Fig. 11.22 are obtained.

Figure 11.22 also shows the negative reciprocal of the slope of the magnitude response at the cut-off
frequency — this indicates the width of the transition band. Notice that, for this example, as the
number of poles and zeros become more equal, the transition becomes sharper. It is interesting to
note that the improvement is greatest when the number of poles is increased from 0 to 2. When
implementation issues are taken into consideration, the filters with two or four poles appear to attain
a good trade-off between performance and implementation complexity.

11.4 Other Developments in Digital Filter Design

11.4.1 FIR Filter Design

Ivan W. Selesnick, C. Sidney Burrus,
Lina J. Karam, and
James H. McClellan

11.4.1.1 Maximally Flat Real Symmetric FIR Filters

By requiring the derivatives of the amplitude function A(ω) to satisfy derivative constraints at
ω = 0 and ω = π , a lowpass filter is obtained having a very flat monotone response, see Fig. 11.23.
The resulting design is very simple, efficient implementations of such filters exist [51, 52], and the
filters have been found to be useful when used together [53] or in conjunction with other filters [54].
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FIGURE 11.20: Maximally flat delay IIR filter, N = 6, τ = 1.2.
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FIGURE 11.21: Generalized Butterworth filter.

Such filters preserve the input signal around ω = 0 very well, and achieve very high attenuation
in the stopband. The transition between the passband and stopband is wide, however. This design
problem was introduced by Herrmann [55] and is formulated as follows.

Given N = 2M + 1 and K (1 ≤ K ≤ M), find a symmetric filter of length N such that the
amplitude response, given by

A(ω) = h(M) + 2
M∑

n=1

h(M − n) cosnω (11.77)

satisfies the following constraints:

1. A(ω = 0) = 1

2. ∂2i

∂2iω
A(ω = 0) = 0 for i = 1, 2, . . . , M − K .

3. ∂2i

∂2iω
A(ω = π) = 0 for i = 0, 1, . . . , K − 1.

The odd indexed derivatives of A(ω) are automatically zero at ω = 0, so they do not need to be
specified. The solution has the property that A(i)(ω = 0) = 0 for i = 1, . . . , 2(M − K) + 1
and A(i)(ω = π) = 0 for i = 1, . . . , 2K − 1. These equations are linear in the unknown filter
coefficients; however, they are ill-conditioned. Fortunately, the solution can be written in closed
form in several ways [55, 56].

It is convenient to use the transformation x = 1
2(1− cosω), then the solution can be written [55]

as

A(x) = (1 − x)K
M−K∑
n=0

d(n)xn (11.78)

where

d(n) =
(

K − 1 + n

n

)
= (K − 1 + n)!

(K − 1)! n! . (11.79)

The transfer function has 2K zeros at z = −1, and these are the only stopband zeros. The zeros not
lying at z = −1 can be found by computing the roots of

∑M−K
n=0 d(n)xn and mapping them back
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FIGURE 11.22: The filters for which the cut-off frequency is ωo = 0.6π , and for which the sum of
the number of poles and the number of zeros is 20. N denotes the number of poles.

to the z domain via z = 1 − 2x ± √
(2x − 1) − 1. This equation is understood by writing cosω as

1
2(ejω + e−jω) and, in turn, as 1

2(z + 1
z
).

For the special case 2K = M + 1, the polynomial A(x) in Eq. (11.78) has become famous for its
role in Daubechies’ construction of compactly supported orthogonal wavelets [57].

Given a desired cut-off frequency and transition width, design formulas have been found [55, 58]
that give approximate values for N and K . In particular, Kaiser reported that the filter length is

approximately inversely proportional to the square of the transition width: M ≈
(

π
ωb−ωa

)2
where

ωb is that frequency at which A(ω) = 0.05 and ωa is that frequency at which A(ω) = 0.95.
Accordingly, halving the width of the transition band requires increasing the filter length by roughly
a factor of four.

Because the filter has 2K zeros at z = −1 the number of multiplications can be reduced by

extracting the factor
(

1+z−1

2

)2K

as is indicated in Eq. (11.78). (This factor can be implemented

without multiplications.) The large dynamic range of d(n) can be avoided by using the structure
suggested by Vaidyanathan [52] that uses the observation d(n) = K+n−1

n
d(n − 1). A multiplierless

implementation based on the De Casteljau algorithm is described in [51].
The formulas above permit only an approximate specification of the cut-off frequency — the only

parameters the user controls is N and K . For N = 21, Fig. 11.24 illustrates the filters obtained
by letting K = 5 and K = 6. Call them h1(n) and h2(n). To obtain a maximally flat symmetric
filter having a half-magnitude frequency6 ωo between those of h1 and h2, a weighted average of
h1 and h2 can be used [59, 60]. The desired filter is h(n) = c · h1(n) + (1 − c) · h2(n) where
c = (0.5 − H2(ωo))/(H1(ωo) − H2(ωo)). For ωo = 0.56π , the response of the new filter h(n) is
shown as a dashed line in Fig. 11.24.

Remarks

• Extremely good at ω = 0 and ω = π .

6The half-magnitude frequency ωo is that frequency such that A(ωo) = 1
2 .
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FIGURE 11.23: Maximally flat filter, N = 41, K = 14.
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FIGURE 11.24: Three maximally flat filters, N = 21.

• Simple design.

• Efficient implementations.

• Smooth impulse response.

• Wide transition.

11.4.1.2 The Affine Filter Structure

It is frequently useful to employ the structure shown in Fig. 11.25, the transfer function of
which is

H(z) = H1(z)H2(z) + H3(z). (11.80)

In many cases, H2(z) and H3(z) are already known or determined, and it is desired that H1(z) be
designed so that the overall transfer function approximates a desired transfer functionD(z) according
to some chosen criteria.

FIGURE 11.25: Affine filter structure.

Note that (1) if h1, h2, and h3 are each symmetric, (2) if h1 ∗ h2 has the same type of symmetry as
h3, and (3) if h1 ∗ h2 and h3 are of the same length, then the filter Eq. (11.80) is itself symmetric. In
this case, designing H1(z) by minimizing either the weighted square error or the weighted Chebyshev
error is particularly straightforward. An equivalent problem is obtained as follows, having a modified
desired function and a modified weighting function.

Let the amplitudes of the filters be A1(ω), A2(ω), and A3(ω), where A1(ω) = Q(ω)P (ω) and
P(ω) is a cosine polynomial as in Table 11.1. Then A(ω) = Q(ω)P (ω)A2(ω)+A3(ω).First consider
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the design via the Chebyshev norm:

||E(ω)||∞ = max
ω

|W(ω)(P (ω) − D(ω))| (11.81)

where

W(ω) = W(ω)Q(ω)A2(ω) D(ω) = D(ω) − A3(ω)

Q(ω)A2(ω)
. (11.82)

The minimization of Eq. (11.81) can be accomplished by the Parks-McClellan algorithm or by linear
programming if it is required that additional linear constraints be satisfied.

For the least squares error:

||E(ω)||2 =
(

1

π

∫ π

0
W(ω)

(
P(ω) − D(ω)

)2
dω

) 1
2

(11.83)

where

W(ω) = W(ω)(Q(ω)A2(ω))2 D(ω) = D(ω) − A3(ω)

(Q(ω)A2(ω))2
. (11.84)

The minimization of Eq. (11.83) can be accomplished by solving the linear system Eq. (11.33), or
Eq. (11.39) if it is required that additional linear constraints be satisfied.

In some design problems, the form of Eq. (11.80) is useful because it describes a parameterization
(or constraint) where H1(z) represents the available degrees of freedom [61, 62, 63].

Prefilters In addition, the design of filters having low implementation complexity often
employs the structure in Fig. 11.25. One strategy is to choose transfer functions H2(z), H3(z), having
very low implementation complexity — such filters may have crude frequency responses, but they
can often be implemented without multipliers and few additions. H1(z) is then designed so that the
overall transfer function meets the specified requirements.

This approach, introduced in [64], is often called “prefiltering,” especially when H3(z) = 0. In
this case, H2(z) is the prefilter. Prefilters are filters having (1) very low implementation complexity,
but (2) imperfect frequency responses. In this case, H1(z) is sometimes called an equalizer. In [64], it
is shown that this approach provides benefits in (1) reduced computational complexity, (2) reduced
sensitivity to coefficient quantization, and (3) reduced roundoff noise. For narrowband filters, this
approach gives a particularly good reduction in implementation complexity.

One class of prefilters [64, 65] is obtained by combining recursive running sum (RRS) building
blocks.7 The RRS filter is simple to implement and has all its zeros equally spaced on the unit-
circle (except at z = 1). Other prefilters are obtained from cyclotomic polynomials [66] — all the
roots of which lie on the U.C. Because all the coefficients are simple small integers [the first 105
cyclotomic polynomials (CPs) have coefficients in {−1, 0, 1}], CPs can be implemented as filters
without requiring multipliers. In [67], it is shown that the problem of designing prefilters from
CPs can be formulated as an optimization problem with linear objective functions by applying the
logarithm to the transfer function of the CP prefilter. The design problem is then solved in [67] by
mixed integer linear programming.

IFIR Filters Another useful structure has the transfer function H1(z
M)H2(z) [54]. The

impulse response of H1(z
M) is sparse, so arithmetic complexity is reduced. A time domain interpre-

tation emerges by considering the convolution of h1(Mn) and h2(n). h2(n) fills in, or interpolates,
the gaps in h1(Mn). This structure is particularly well suited for efficient implementations of narrow
band lowpass filters. For other frequency responses, the generalization is masking, see for exam-
ple [17].

7Based on the factorization
∑L−1

k=0 zk = (zL − 1)/(z − 1), the RRS filter is a recursive implementation of the running
sum.
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11.4.1.3 Nonsymmetric or Nonlinear Phase FIR Filter Design

Although the requirement that an FIR filter be real and symmetric simplifies the filter approxi-
mation problem, it is sometimes more restrictive than is desirable. The following scenarios motivate
the consideration of nonsymmetric and/or non-linear phase FIR filters:

1. In some cases, phase linearity is of little importance and it is more important that the delay
be low. Recall that the group delay of a symmetric filter is half its filter order. This delay
is higher than necessary. In other cases, exactly linear phase is not required, but some
degree of phase linearity is desired. It is then desirable to sacrifice exactly linear phase
in exchange for delay reduction and/or delay control. The desired constant delay can be
specified by explicitly including the phase or desired group delay as part of the design
specifications as indicated in the following subsection on optimal design of FIR filters.
The resulting designed nearly linear-phase filter has a conjugate symmetric frequency
response and a real-valued, nonsymmetric, impulse response (See Design Examples at
the end of the subsection on optimal design of FIR filters).

2. Sometimes it is required that H(ω) approximate a desired nonsymmetric or nonlinear
phase frequency response D(ω).8 Examples include equalizer design [68], fractional
delay filter design [21], and seismic migration filter design [2].

In each case, the additional degrees of freedom that are made available by giving up symmetry or
phase linearity can be used to improve the phase and/or magnitude response.

Approaches to the design of nonsymmetric and/or non-linear phase FIR filters fall roughly into at
least three categories:

1. General complex approximation (see “Optimal Design of FIR Filters with Arbitrary Mag-
nitude and Phase, below). Given an arbitrary desired frequency response D(ω), the best
Chebyshev, or least square, approximation is found. For the Chebyshev criterion, the
approximation is significantly more difficult in the general complex case than in the real
symmetric case. Recently, several algorithms have been presented for designing general
filters in the Chebyshev sense [2, 3, 4, 5, 69, 141, 143].

2. Design of minimum-phase filters by spectral factorization of square magnitude approx-
imation [70]. This is a very effective technique, and it can be used in conjunction with
the maximally flat, least square, and Chebyshev criterion.

3. The simultaneous approximation of magnitude and group delay. There is little theory
to facilitate the solution to this nonlinear problem, but see [71, 72, 73, 74, 75, 142] and
“Delay Variation of Maximally Flat FIR Filters” .

11.4.1.4 Optimal Design of FIR Filters with Arbitrary Magnitude and Phase

As indicated before, the alternation theorem [76] is at the basis of the Parks-McClellan (second
Remez exchange) algorithm described in Section 11.3.1. Karam and McClellan recently extended
the alternation theorem from the real-only to the general complex case [2]. As a result, they derived
an efficient multiple-exchange algorithm [3, 10] for the design of optimal FIR filters with arbitrary
magnitude and phase specifications approximated in the Chebyshev sense. Both causal and non-
causal filters with complex or real-valued impulse responses can be designed. In addition, the
Karam-McClellan algorithm exactly reduces to the classic Parks-McClellan (second Remez exchange)
algorithm when real-only or imaginary-only filters are designed and is, therefore, a true generalization

8Note that the frequency response of a filter can be symmetric with a nonlinear phase (e.g., seismic migration filters
designed in the next section).
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of the classic Remez algorithm to the complex case. A version of the Karam-McClellan algorithm
(cremez) is currently available as part of the Signal Processing Toolbox in MatlabTM (Version 5).

Problem Formulation The complex FIR filter design problem may be stated as follows.

Let D(ω) be the desired magnitude and phase of the filter frequency response defined
on a compact frequency subset B ⊂ [−π, π). D(ω) is to be approximated by an FIR
filter having a frequency response H(ω) and an impulse response hn, n = N1, . . . , N2,
of length N = N2 − N1 + 1. The filter design problem consists in finding the filter
coefficients {hn} that will minimize the Chebyshev error norm

‖E(ω)‖ = max
ω∈B

{|D(ω) − H(ω)|}, (11.85)

where

H(ω) =
N2∑

n=N1

hne
−jωn (11.86)

The error norm (11.85) can include a real, strictly positive, and continuous weight-
ing function W(ω) on B by simply replacing D(ω) with W(ω)D(ω) and H(ω) with
W(ω)H(ω).

Note that this formulation will handle both causal filters (N1 ≥ 0) and noncausal filters (N1 < 0).
Although some authors [77] have reported an ill-conditioned behavior when using Eq. (11.86), the
error (11.85) can be rewritten so that the problem is well-posed by removing a linear phase term due
to N1. This new problem, with a guaranteed unique optimal solution, results by rewriting D(ω) and
H(ω) with respect to a linear phase term as

D(ω) = e
−j

N1+N2
2

ω
A(ω) (11.87)

and

H(ω) = e
−j

N1+N2
2

ω
Hnc(ω). (11.88)

The linear phase e
−j

N1+N2
2

ω does not affect the magnitude of the error (11.85); so the design problem
works with the following equivalent expression for the error magnitude:

|E(ω)| = |A(ω) − Hnc(ω)|. (11.89)

The function Hnc(ω) can be expressed as a linear combination of real basis functions satisfying
the Haar Condition [2, 78]:

Hnc(ω) =



∑(N−1)/2

k=0 αk coskω +∑(N−1)/2
k=1 βk sinkω, N odd

∑(N−2)/2
k=0 [αk cos(k + 1

2)ω + βk sin(k + 1
2)ω], N even

(11.90)

The Haar condition [76, 79], which is satisfied by the cos() and sin() basis functions, guarantees
that the optimal solution is unique and that the set of extremal points of the optimal error function,
Eo(ω), consists of at least n + 1 points, where n is the number of approximating basis functions.

The parameters {αk, βk} in Eq. (11.90) are the complex coefficients that need to be determined
such that Hnc(ω) best approximates A(ω). The filter coefficients {hn} can be very easily obtained
from {αk, βk} [78]. Usually, the number of approximating basis functions in Eq. (11.90) is n = N ,
but this number is reduced by half when A(ω) is symmetric (all {βk} are equal to 0), or antisymmetric
(all {αk} are equal to 0).
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The Design Algorithm A main strategy in Chebyshev approximation is to work on sparse
finite subsets, Bs , of the desired frequency set B and relate the optimal error on Bs to the optimal
error on B. The norm of the optimal error on Bs will always be a lower bound to the error norm on
B [79]. If ‖Es‖ denotes the optimal error norm on the sparse set Bs , and ‖Eo‖ the optimal error
norm on B, the design problem on B is solved by finding the subset Bs on which ‖Es‖ is maximal and
equal to its upper bound ‖Eo‖. This could be done by iteratively constructing new subsets Bs with
monotonically increasing error norms ‖Es‖. For that purpose, two main issues must be addressed
in developing the approximation algorithm:

1. Finding an efficient way to compute the best approximation Hs(ω) on a given subset Bs

of r points (r ≥ n + 1).

2. Devising a simple strategy to construct a new subset Bs where the optimal error norm
‖Es‖ is guaranteed to increase.

While in the real case it is sufficient to consider subsets containing r = n+1points, theminimal subset
size r is not known a priori in the complex case. The fundamental theorem of complex Chebyshev
approximation tells us that r can take any value between n + 1 and 2n + 1. It is desirable, whenever
possible, to keep the size of the subsets, Bs , small since the computational complexity increases with
the size of Bs . The case where r = n + 1 points is important because, in that case, it was shown [2]
that the best approximation on a subset of n + 1 points can be simply computed by solving a linear
system of equations. So, the first issue is directly resolved.

In addition, by exploiting the alternation property9 of the complex optimal error on Bs efficient
multi-point exchange rules can be derived and the second issue is easily resolved. These exchange
rules were derived in [2, 78] resulting in the very efficient complex Remez algorithm which iteratively
constructs best approximations on subsets of n+1points with monotonically increasing error norms
‖Es‖.

The complex Remez algorithm terminates when finding the set Bs having the largest error norm
(‖Es‖ = |δ|) among all subsets consisting of exactly n + 1 points. This complex Remez multiple-
exchange algorithm converges to the optimal Chebyshev solution on B when the optimal error Eo(ω)

satisfies an alternating property [78]. Otherwise, the computed solution is optimal over a reduced
set B ′ ⊂ B. In this latter case, the maximal error norm |δ| over the sets of n + 1 points is strictly less
than, but usually very close to, the upper bound ‖Eo‖. To compute the optimum over B, subsets
consisting of more than n + 1 (r > n + 1) need to be considered. Such sets are constructed by the
second stage of the new algorithm presented in [3, 10], starting with the solution generated by the
initial complex Remez stage.

When r > n + 1, both issues mentioned above are much harder to resolve. In particular, a
simple and efficient point-exchange strategy, where the size of Bs is kept minimal and constant,
does not seem possible when r > n + 1. The approach in [3, 10] is to use a second ascent stage for
constructing a sequence of best approximations on subsets of r points (r > n+1) with monotonically
increasing error norms (ascent strategy). The algorithm starts with the best approximation on subsets
of n + 1 points (minimum possible size) using the very efficient complex Remez algorithm [2] and
then continues constructing the sequence of best approximations with increasing error norms on
subsets Bs of more than n + 1 points by means of a second stage. Since the continuous domain
B is represented by a dense set of discrete points, the proposed design algorithm must yield an
approximation of maximum norm in a finite number of iterations since there is a finite number of
distinct subsets Bs containing r (n + 1 ≤ r ≤ 2n + 1) points in the discrete set B.

9Alternation in the complex case corresponds to a phase shift of π when going from one extremal point to the next in
sequence.
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A detailed block diagram of the design algorithm is shown in Fig. 11.26. The two stages of the new
algorithm have the same basic ascent structure. They both consist of the two main steps shown in
Fig. 11.26, and they only differ in the way these steps are implemented.

A detailed block diagram of the complex Remez stage (Stage 1) is also shown in Fig. 11.27. Note that
when D(ω) is real-valued, δ will also be real and, therefore, the real phase-rotated errorEr(ω) is equal
to±E(ω). In this case, the presented algorithm reduces to the Parks-McClellan algorithm as modified
by McCallig [80] for approximating general real-valued frequency responses in the Chebyshev sense.
Moreover, for many problems, the resulting initial approximation computed by the complex Remez
method is the optimal Chebyshev solution and, thus, the second stage of the algorithm does not
need to execute. Even when the resulting initial solution is not optimal, it has been observed that the
computed deviation |δ| is very close to the optimal error norm ‖Eo‖ (its upper bound).

As indicated above, the second stage is invoked only when the complex Remez stage (Stage 1) results
in a subset optimal solution. In this case, the initial set Bs of Stage 2 is formed by taking the set of
all local maxima of the error corresponding to the final solution computed by Stage 1. The resulting
Bs ⊂ B would then contain r points, where n + 1 < r ≤ 2n + 1. The best approximation on
the constructed subset, Bs , is computed by means of a generalized descent method [10, 78] suitably
adapted for minimizing the nondifferentiable Chebyshev error norm. The total number of ascent
iterations is independent of the method used for computing the best solution Hs(ω) on Bs . Then,
the new sets, Bs , are constructed by locating and adding the new local maxima of the error on B to
the current subset, Bs , and by removing from Bs those points where the error magnitude is relatively
small. So, the size of the constructed subsets varies up and down. The algorithm terminates when
all the extremal points of E(ω) are in Bs .

It should be noted that each iteration of Stage 2 includes descent iterations, which we will refer to
as descent steps.10 An observation in relation to the complexity of the two stages of the algorithm is
in order. The initial complex Remez stage is extremely efficient and does not produce any significant
overhead. However, one iteration of the second stage includes several descent steps, each one having
higher computational complexity than the initial complex Remez stage. For convenience, the term
major iterations will be used to refer to the iterations of the second stage. From the discussion above,
it follows that the initial complex Remez stage is comparable to one step in a major iteration and can
thus be regarded as an initialization step in the first major iteration.

An interesting analogy of the proposed two-stage algorithm with the first and second algorithms
of Remez can be made. It should be noted that both Remez algorithms can be used for solving real
one-dimensional Chebyshev approximation problems satisfying the Haar condition. The two real
Remez algorithms involve the solution of a sequence of discrete problems [81]: at each iteration, a
finite discrete subset, Bs , is defined and the best Chebyshev approximation is computed on Bs . In
the second algorithm of Remez, the successive subsets Bs contain exactly n + 1 points: an initial
subset of n + 1 points is replaced by n + 1 local maxima of the current real error function. In
the first algorithm of Remez, the initial point set contains at least n + 1 points, and these points are
supplemented at each iteration by the global maximum of the current approximation error. As shown
in [2], the complex Remez stage (Stage 1) of the new proposed algorithm is a generalization of the
second Remez algorithm to the complex case and reduces to it when real-valued or pure imaginary
functions are approximated. On the other hand, the second stage of the proposed algorithm can be
compared to the first Remez algorithm in that the size of the constructed subsets Bs is variable and
is greater than n + 1, except at the initial iteration. A main difference between the second stage and
the first Remez algorithm is that the second stage is based on a multiple-exchange strategy while the

10The simplex method of linear programming could also be used for the descent steps.
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FIGURE 11.26: Block diagram of the Karam-McClellan design algorithm. |δ| is the maximal optimal
deviation on the sets Bs consisting of n + 1 points in B. ‖E‖ is the Chebyshev error norm on B.
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FIGURE 11.27: Block diagram of the complex Remez (Stage 1) algorithm.

first algorithm of Remez is a single-exchange method.

Descent Steps In what follows, we describe the generalized descent method and the sim-
plex method which can be used in Step 1 of Stage 2 to compute the optimal Chebyshev solution
on the discrete set of points Bs . The descent method presented in this section is based on the
work of Demjanov–Malozemov [82, 83] and Wolfe [84], and is suitably adapted for minimizing the
nondifferentiable Chebyshev error norm.

Let D(ω) be the function that is to be approximated on Bs , and let Hs,0(ω) be an initial approxi-
mation given by the basis coefficient vector

c0 = [c01, c02, . . . , c0n]T (11.91)

whose elements are the n (complex or real) coefficients associated with the cos() and/or sin() basis
functions {φi}ni=0. The superscript T in Eq. (11.91) refers to the transpose operation. The descent
method iteratively generates a sequence {ck} of basis coefficient vectors, {dk} of perturbation vectors,
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and {tk} of positive scalars such that
ck+1 = ck + tkdk (11.92)

and
‖Es,k+1(ω)‖ ≤ ‖Es,k(ω)‖ for ω ∈ Bs (11.93)

where Es,k(ω) is the approximation error

Es,k(ω) = D(ω) − Hs,k(ω) = D(ω) −
n∑

i=1

ckiφi(ω) (11.94)

and k is the iteration number. The perturbation vectors {dk} correspond to descent directions and
{tk} must be chosen so that ‖Ek(ω)‖ would significantly decrease at the next iteration. Once dk

is chosen, a line search method could be used to find the optimal tk for a maximum decrease of
‖Es,k(ω)‖ along the direction dk . Alternatively, a more efficient procedure for finding the best tk
was presented in [83, pp. 109–112]. Standard gradient techniques cannot be used in this case for
generating the directions {dk} since the Chebyshev error norm is a nondifferentiable function of the
coefficient vector c.

With r denoting the number of points in Bs , the Chebyshev approximation problem can be
reformulated as the minimization of the function

ϕ(c) = max
i∈(1,...,r)

ei(c) (11.95)

where

ei(c) =
∣∣∣D(ωi) − 8T

i c
∣∣∣2 (11.96)

and
8i = [φ1(ωi), φ2(ωi), . . . , φn(ωi)]

T . (11.97)

Each ei(c) is a convex differentiable function with a complex gradient vector gi given by

gi = ∂ei(c)

∂c
= −28iEi (11.98)

where 8i is the complex conjugate of 8i , and Ei = D(ωi) − 8T
i c. Note that gi is a vector in the

n-dimensional complex space Zn which is isomorphic to the 2n-dimensional real Euclidean space
R2n. A point z = (z1, . . . , zn) ∈ Zn, with complex coordinates zj = αj + jβj , corresponds to the
point z = (α1, . . . , αn, β1, . . . , βn) ∈ R2n. In what follows, gi refers to the real vector in R2n.

For a given coefficient vector c, consider the set of extremal indices Ie(c) defined as

Ie(c) = {i ∈ (1, . . . , r) : ei(c) = ϕ(c)}. (11.99)

In other words, Ie(c) contains every index i (corresponding to the ith point ωi in Bs) for which E(ω)

attains its maximum on Bs . Letting

G(c) = {gi : i ∈ Ie(c)} , (11.100)

consider the convex hull Gc(c) of G(c). Gc(c) is a polyhedron in R2n and there is a unique point
gmin ∈ Gc(c) having minimum Euclidean norm [85]. The following gradient characterization
results for ϕ(c) [82, 85]

∇ϕ(c) = gmin (11.101)

and −gmin is the direction of steepest descent at c. Note that ∇ϕ(c) depends only on the set of
extremal points represented by Ie(c). So, the problem of finding the steepest descent direction
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reduces to the problem of finding the point of smallest norm in the convex hull of a given finite point
set. An algorithm especially designed for that calculation has been presented by Wolfe [84]. The
filter coefficient vector co minimizes ϕ(c), and therefore the approximation error norm ‖Es‖, if and
only if

∇ϕ(co) = 0 (11.102)

or, equivalently [see Eq. (11.101)],
0 ∈ Gc(co) . (11.103)

Using Eq. (11.98), it can be shown that the optimality condition (11.103) reduces to the Kolmogoroff
optimality criterion for Chebyshev approximation [86, p. 21].

While a direct generalization of the steepest descent method does not in general lead to conver-
gence [82, 85], successive approximation and conjugate subgradient methods based on Eq. (11.101)
have been developed for minimizing nondifferentiable functions [83, 85, 87]. The descent method
presented in this section is based on the techniques presented in [83] and [84]. It is suitably
adapted for solving the Chebyshev approximation problem, which was reformulated as Eqs. (11.95
through 11.97), and, consequently, for solving the filter design problem. Before describing the steps
of the proposed descent method, some new definitions are needed. Define

Ie,ε(c) = {i ∈ (1, . . . , r) : ϕ(c) − ei(c) ≤ ε}, ε ≥ 0 (11.104)

and
Gε(c) = {gi : i ∈ Ie,ε(c)}. (11.105)

Also, let Gc,ε(c) denote the convex hull of Gε(c) and gmin,ε the point in Gc,ε(c) nearest to the origin.
Clearly, Ie,0(c) = Ie(c), G0(c) = G(c), Gc,0(c) = Gc(c), and gmin,0 = gmin.

The basic steps of the descent algorithm can now be summarized as follows:

1. Set initial parameters. Fix two parameters ε0 > 0 and ρ0 > 0, and take an initial
approximation c0 on the desired set Bs , i.e., φs,0(x) = ∑n

i=1 c0iφi(x). Suggested values
for ε0 and ρ0 are ε0 = 0.012 and ρ0 = 1.0. Since the passage from ck to ck+1 (k =
0, 1, . . .) is effected the same way, suppose that the kth approximation ck is already
computed.

2. Set current approximation and accuracy. Set c = ck , ε = ε0/2k , and ρ = ρ0/2k .

3. Compute the ε-gradient, gmin,ε . Find the point gmin,ε of Gc,ε(c) nearest to the origin
using the technique by Wolfe [84].

4. Check accuracy of current approximation. If ‖gmin,ε‖ ≤ ρ, go to Step 8.

5. Compute the ε-steepest descent direction dk

dk = − gmin,ε

‖gmin,ε‖ (11.106)

6. Determine the best step size tk . Consider the ray

c(t) = c + tdk (11.107)

and determine tk ≥ 0 such that

ϕ(c(tk)) = min
t≥0

ϕ(c(t)) (11.108)

7. Refine approximation accuracy. Set c = c(tk) and repeat from Step 3.
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8. Compute generalized gradient, gmin. The technique by Wolfe [84] is used to find the
point gmin of Gc(ck) nearest to the origin (see also [83, Appendix IV]).

9. Check stopping criteria. If gmin ≡ 0, then c is the vector of the coefficients of the
best approximation Hs(ω) of the function D(ω) on Bs = {ωi : i = 1, . . . , r} and the
algorithm terminates.

10. Update approximation and repeat with higher accuracy. The approximation ck+1 is
now given by

ck+1 = c. (11.109)

Return to Step 2.

This successive approximation descent method is guaranteed to converge, as shown in [83].

Descent via the Simplex Method [4, 88] Other general optimization techniques (e.g., the
simplex method of linear programming [4, 88]) can also be used instead of the descent method in the
second stage of the proposed algorithm. The advantage of the linear-programming method over the
generalized descent method is that additional linear constraints can be incorporated into the design
problem.

Using the real rotation theorem [11, p. 122]

|z| = max−π≤θ<π
Re{zejθ }, where z complex, (11.110)

the complex filter design problem on the frequency set Bs can be restated as the following linear
approximation problem: find the optimal length-N impulse response h∗ = [hN1 . . . hN2]∗ such that

δ(h∗) = min
h

δ(h) (11.111)

where

δ(h) = max
ω∈Bs

max−π≤θ<π
(Re{E(ω)ejθ })

E(ω) = D(ω) − H(ω) [refer to Eq. (11.86)].

This problem can, in turn, be formulated as a linear program by defining

u =
[
hr

N1
, . . . , hr

N2
, hi

N1
, . . . , hi

N1
, δ
]

k = [0, . . . , 0, 0, . . . , 0, 1]

where hr
n = Re{hn}, hi

n = Re{hn}, and δ = ukT . The resulting linear program becomes

min
u

ukT (11.112)

subject to Re{E(ω)ejθ } ≤ δ, for all ω ∈ Bs and θ ∈ [−π, π]. Alternatively, the dual linear program
can be formulated and solved [4, 88].

Design Examples In the following design examples, the filter specifications are given in
terms of the normalized frequency f = ω/2π .
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Low Delay Filters with Nearly Linear Phase In many signal processing applications, linear-
phase systems are particularly desirable because the effect of exact linear-phase is a perfect delay.
While exactly linear-phase causal filters exhibit a constant group delay, the delay they introduce is
proportional to the filter length N and is always equal to (N − 1)/2. This delay may be unacceptably
large, especially when using filters having a high degree of selectivity (sharp cutoff edges). Fur-
thermore, in real-time applications (e.g., real-time speech and video processing), selective filters are
required to have a constant group delay that is as small as possible. Minimum-phase FIR filters cause
less delay, but introduce phase distortion which may have a severe effect on the shape of the processed
signal. Chen and Parks [89] observed that the desired group delay which gives the minimum error
deviation can be smaller than that of an exactly linear-phase filter of the same length.

Complex approximation can be used to design filters that have less delay than the exactly linear-
phase filter of the same length, and which have approximately a constant group delay in the passband.
The resulting complex filters are called “nearly linear-phase” and are obtained by defining the desired
linear-phase frequency response to be:

D(ω) =
{

e−j τi ω , ω ∈ ith passband
0 , ω ∈ stopbands

(11.113)

where τi is the desired group delay in the ith passband. Since the phase term is explicitly included
in the approximation problem, the desired delay is fixed (τi) and is not determined by the FIR
filter length N . Moreover, increasing N does not increase the group delay, but potentially leads to
a better approximation of the desired constant delay. The definition of D(ω) should be conjugate
symmetric. Then the frequency response of the optimal Chebyshev filter approximating Eq. (11.113)
will also be conjugate symmetric [79, p. 27] and, therefore, the approximating filter coefficients will
be real-valued.

Figure 11.28 shows the properties of a reduced delay, length-32, FIR filter designed with the
following desired specifications:

Desired: D(f ) =
{

e−j (2πf )12.5 if 0 ≤ |f | ≤ 0.06

0 if 0.12 ≤ |f | ≤ 0.5

Weight: W(f ) =
{

1 if |f | ≤ 0.06

10 if 0.12 ≤ |f | ≤ 0.5

The term “reduced delay” refers to the fact that the desired group delay (τ = 12.5) is set to be smaller
than (N − 1)/2 = 15.5, which is the delay of an exactly linear-phase filter. The complex Remez
stage of the multiple-exchange algorithm converges to the optimal solution in 11 exchange steps.
The resulting optimal filter has a Chebyshev error norm ‖Eopt‖ = |δ| = 0.0439. The FIR filter’s
group delay (Fig. 11.28(b)) corresponds to the nearly linear-phase characteristic in the passband.
Note that the optimal error (Fig. 11.28(c)) assumes its maximum value at N + 2 extremal points
with an alternating phase shift of π . This alternation can be clearly seen from the plot of the real
phase-rotated error Er(f ) in Fig. 11.28(c).

Real-ValuedorExactlyLinear-PhaseFilters Thereal-valuedfilterdesignproblemcorresponds
to the case where the function A(ω), given by Eq. (11.87), reduces to a real-valued function. In this
case, the initial complex Remez stage (Stage 1 described above) always converges to the unique optimal
solution of the desired function D(ω) on the specified frequency bands B.

Figure 11.29 shows the characteristics of the exactly linear-phase filter corresponding to the nearly
linear-phase filter shown in Fig. 11.28; i.e., the same design specifications were used except that the
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FIGURE 11.28: Example 1 — nearly linear-phase filter, N = 32. (a) FIR filter magnitude response
in dB. (b) FIR filter (solid) and desired filter (dashed) passband group delays. (c) Magnitude of the
weighted error (top), and real phase-rotated weighted error (bottom).

delay is set to be equal to (N − 1)/2 = 15.5 in the passband, because N = 32 in this example. The
complex Remez stage converged to the optimal solution in eight exchange steps. The resulting optimal
filter has an optimal error norm ‖Eopt‖ = |δ| = 0.04956which is larger than the corresponding
reduced delay, nearly linear-phase filter of Fig. 11.28, which indicates that a nearly linear-phase filter
not only can have less group delay but also a reduced Chebyshev error norm. Note that although
the phase specifications were explicitly included as part of the approximation problem, the exactly
linear-phase optimal solution was obtained as expected.

Seismic Migration Filters The objective of seismic migration is to define the boundaries of
the earth layers [90, 91]. For this purpose, downward propagating waves are initiated by acoustic
sources at the earth. Then the migration procedure starts with the wave field measured at the earth’s
surface and computes the wave field values at all desired depths. This extrapolation operation is
performed using a digital space-time filter whose frequency response approximates

D(kx, ω) = DA

(
kx

1x
,

ω

1t

)
= exp


j

1z

1x

√
1x2

1t2

ω2

v2
− k2

x


 (11.114)

where kx is the spatial frequency and ω is the temporal frequency. The extrapolation in depth is
usually done for a fixed frequency ωo and a fixed velocity vo. The process is repeated for other
frequency and velocity values using frequency- and velocity-dependent migration filters. Therefore,
for a fixed ratio ωo/vo, D(kx, ωo) = D(kx) is a 1-D migration filter with a cutoff frequency equal to
α = (1x/1t)(ωo/vo). The objective of the migration filter design problem is to approximate the
ideal frequency response D(kx). Since D(kx) is a complex-valued even-symmetric function, it can
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FIGURE 11.29: Example 2 — exactly linear-phase lowpass filter, N = 32. (a) FIR filter magnitude
response in dB. (b) FIR filter (solid) and desired filter (dashed) passband group delays. (c) Magnitude
of the weighted error (top), and real phase-rotated weighted error (bottom).

be approximated by an N-length FIR digital filter whose frequency response is given by [92]

H(kx) = ho + 2
(N+1)/2∑

n=1

hn cosnkx (11.115)

where the filter coefficients hn are complex-valued. Note that, even if a symmetry constraint is not
imposed on the FIR filter, the resulting optimal filter will be even-symmetric when an odd-length
filter is used to approximate D(kx). This property follows directly from Chebyshev approximation
theory [79, p. 27]. The approximation of D(kx) needs mostly to be accurate in the region |kx | < |α|
(passband) which corresponds to the wavenumbers (kx) for which waves are propagating [90, 93].
The evanescent region |kx | > |α| (stopband) will contain little or no energy.

Figure 11.30 displays the properties of the optimal, length-31, seismic migration filter that approx-
imates the following specifications:

Desired: D(f ) =

 ej

√
(2)2−(2πf )2

if |f | ≤ 2 sin(75o)/2π

0 if 2/2π ≤ |f | ≤ 0.5

Weight: W(f ) =
{

500 if |f | ≤ 2 sin(75o)/2π

1 if 2/2π ≤ |f | ≤ 0.5

For this design example, the starting impulse response index is N1 = −15. The large passband
weighting is used to force an almost perfect match in the passband. In fact, for migration filters, the
approximation need only be accurate in the passband as long as the stopband magnitude deviation
is not larger than unity [93, p. 361]. The optimal solution was obtained in five major iterations.
Since D(f ) is symmetric with respect to f = 0, the resulting optimal filter is also symmetric with an
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optimal error ‖Eo‖=0.9755. The lower bound |δ|, which is computed by the complex Remez stage,
is 0.9704.

FIGURE 11.30: Example 3 — seismic migration filter, N = 31. (a) FIR filter magnitude response in
dB. (b) FIR filter (solid) and desired filter (dashed) passband phase responses. (c) Magnitude of the
weighted error (top), and real phase-rotated weighted error (bottom). (d) Phase error in passband.

11.4.1.5 Design of Minimum-Phase FIR Filters

A minimum-phase FIR lowpass filter whose magnitude response is optimal in the Chebyshev
sense is most conveniently designed by first designing a symmetric FIR filter [63, 70]. By modifying an
equiripple symmetric filter, a new filter can be obtained, the amplitude of which is nonnegative. That
filter can then be spectrally factored to obtain a filter whose magnitude is equiripple. For example,
see Fig. 11.31.

The top row in Fig. 11.31 illustrates a filter h(n) obtained using the Parks-McClellan program. Let
δ1 and δ2 denote the deviations from 1 and 0 in the passband and stopband, respectively. By adding
δ2 to h(15), and then scaling h(n) appropriately, the filter illustrated in the second row of Fig. 11.31
is obtained. The amplitude response of that filter is nonnegative and the zeros of that filter lying on
the unit circle are double zeros. That being the case, that filter can be spectrally factored to obtain the
filter shown in the third row of Fig. 11.31. The new nonsymmetric filter has a smaller delay, although
its phase is nonlinear. Note that the frequency response magnitude of the nonsymmetric filter is the
square root of that of the filter from which it was obtained. Denote the deviations from 1 and 0 in
the passband and stopband of the nonsymmetric filter by δp and δs . Then, the following relationship
holds [63]:

δ1 = 4δp

2 + 2δ2
p − δ2

s

(11.116)
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FIGURE 11.31: Design of a minimum-phase FIR filter whose magnitude response is optimal in the Chebyshev sense.
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FIGURE 11.31: Design of a minimum-phase FIR filter whose magnitude response is optimal in the Chebyshev sense
(continued).
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δ2 = δ2
s

2 + 2δ2
p − δ2

s

(11.117)

Given specifications for δp and δs , Eqs. (11.116) and (11.117) give the appropriate values to guide
the design of the prototype symmetric FIR filter.

This method can also be used for the Chebyshev design of minimum-phase bandpass filters, as long
as the stopband error in each stopband is equally weighted. If this is not the case, then the Remez
exchange algorithm, used in the Parks-McClellan algorithm, can be modified so that it produces
symmetric filters whose amplitude functions are nonnegative. The appropriate modification is
simple: the interpolation equations in the Remez algorithm of the form A(ωi) = −δ are to be
replaced by interpolation equations of the form A(ωi) = 0. The resulting symmetric FIR filters can
then be spectrally factored. This modification makes possible the design of equiripple minimum-
phase FIR bandpass filters where the stopband ripple in each band does not have to be the same. If
a least squares error criterion is used, then symmetric filters with non-negative amplitudes can be
obtained by using a constrained least squares method.

11.4.1.6 Delay Variation of Maximally Flat FIR Filters

Consider the problem of giving up exactly linear-phase for approximately linear-phase in return
for a smaller delay. This problem was also considered in Section on page 11-44. By subjecting the
frequency response magnitude and the group delay (individually) to differing numbers of flatness
constraints, a family of nonsymmetric lowpass maximally flat FIR filters is obtained [94]. This
approach is appropriate when:

1. Exactly linear phase is not required.

2. Some degree of phase linearity is desired.

3. A maximally flat frequency response is desired.

The resulting filters can be made to have approximately linear phase in the passband and a smaller
group delay at ω = 0, in comparison to a symmetric filter of equal length.

Problem Formulation Let F(ω) denote the square magnitude response: F(ω) = |H(ω)|2,
let G(ω) denote the group delay: G(ω) = − ∂

∂ω
6 H(ω). Given the flatness parameters K , L, M ,

(with K > 0, M ≥ 0, L ≤ M), find N filter coefficients h(0), . . . , h(N − 1) such that:

1. N = K + L + M + 1.

2. F(0) = 1.

3. H(z) has a root at z = −1 of order K .

4. F (2i)(0) = 0 for i = 1, . . . , M .

5. G(2i)(0) = 0 for i = 1, . . . , L.

The odd indexed derivatives of F(ω) and G(ω) are automatically zero at ω = 0, so they do not need
to be specified. Linear-phase filters and minimum-phase filters result from the special cases L = M

and L = 0, respectively.
This problem gives rise to nonlinear equations. Consequently, the existence of multiple solutions

should not be surprising and, indeed, that is true here. It is informative to construct a table indicating
the number of solutions as a function of K , L, and M . It turns out that the number of solutions
is independent of K . The number of solutions as a function of L and M is indicated in Table 11.2
for the first few L and M . Many solutions have complex coefficients or possess frequency response
magnitudes that are unacceptable between 0 and π . For this reason, it is useful to tabulate the
number of real solutions possessing monotonic responses, as is done in Table 11.3. From Table 11.3,
two distinct regions emerge. Define two regions in the (L, M) plane. Define region I as all pairs
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TABLE 11.2 Total Number of Solutions
L

0 1 2 3 4 5 6 7

0 1
1 2 3
2 4 4 5

M 3 8 6 6 7
4 16 8 8 8 9
5 32 16 10 10 10 11
6 64 26 12 12 12 12 13
7 128 48 24 14 14 14 14 15

(L, M) for which

bM − 1

2
c ≤ L ≤ M.

Define region II as all pairs (L, M) for which

0 ≤ L ≤ bM − 1

2
c − 1.

See Table 11.4. It turns out that for (L, M) in region I, all the variables in the problem formulation,
except G(0), are linearly related and can be eliminated, yielding a polynomial in G(0); the details are
given in [94]. For region II, no similarly simple technique is yet available (except for L = 0).

TABLE 11.3 Number of Real Monotonic

Solutions, Not Counting Time-Reversals
L

0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 1 1
3 2 1 1 1

M 4 2 1 1 1 1
5 4 2 1 1 1 1
6 4 2 1 1 1 1 1
7 8 4 2 1 1 1 1 1

Design Examples Figures 11.32 and 11.33 illustrate four different FIR filters of length 13
for which K + L + M = 12. Each of these filters has 6 zeros at z = −1 (K = 6) and 6 zeros
contributing to the flatness of the passband at z = 1 (L + M = 6). The four filters shown were
obtained using the four values L = 0, 1, 2, 3.

When L = 3, M = 3, the symmetric filter shown in Fig. 11.32 is obtained. This filter is most
easily obtained using formulas for maximally flat symmetric filters [55]. When L = 0, M = 6, the
minimum-phase filter shown in Fig. 11.33 is obtained. This filter is most easily obtained by spectrally
factoring a length 25 maximally flat symmetric filter. The other two filters shown (L = 2, M = 4and
L = 1, M = 5) cannot be obtained using the formulas of Herrmann. They provide a compromise
solution.

Observe that for the filters shown, the way in which the passband zeros are split between the interior
of the unit circle and its exterior is given by the values L and M . For real monotonic solutions in
region I, this is true in general — even though the location of these zeros in this regard was not part
of the way in which the problem was formulated.

It may be observed that the cut-off frequencies of the four filters in Fig. 11.32 are unequal. This is to
be expected because the cut-off frequency (denoted ωo) was not included in the problem formulation
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FIGURE 11.32: A selection of nonlinear-phase maximally flat filters of length 13(for which K +L+
M = 12). For each filter shown, the zero at z = −1 is of multiplicity 6.
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TABLE 11.4 Regions I and II

FIGURE 11.33: The magnitude responses and group delays of the filters shown in Fig. 11.32.

above. In the problem formulation, both the cut-off frequency and the DC group delay can be only
indirectly controlled by specifying K , L, and M .

Continuously Tuning ωo and G(0) To understand the relationship between ωo, G(0) and
K, L, M , it is useful to consider ωo and G(0) as coordinates in a plane. Then each solution can be
indicated by a point in the ωo-G(0) plane. For N = 13, those region I filters that are real and possess
monotonic responses appear as the vertices in Fig. 11.34.

To obtain filters of length 13 for which (ωo, G(0)) lie within one of the sectors, two degrees of
flatness must be given up. (Then K + L + M + 3 = N , in contrast to item 1 in the problem
formulation above.) In this way arbitrary (noninteger) DC group delays and cut-off frequencies can
be achieved exactly. This is ideally suited for applications requiring fractional delay lowpass filters.

The flatness parameters of a point in the ωo-G(0) plane are the (component-wise) minimum of
the flatness parameters of the vertices of the sector in which the point lies [94].

Reducing the Delay To design a set of filters of length 13 for which ωo = 0.636π and for
which G(0) is varied from 3.5 to 6 in increments of 0.5, Fig. 11.34 is used to determine the appropriate
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flatnessparameters—theyare tabulated inTable11.5. The resulting responses are shown inFig. 11.35.
It can be seen that the delay can be reduced while maintaining relatively constant group delay around
ω = 0, with no magnitude response degradation.

FIGURE 11.34: Specification sectors in the ωo-G(0) plane for length 13 filters in region I. The vertices
are points at which K+L+M+1 = 13. The three integers by each vertex are the flatness parameters
(K , L, M).

TABLE 11.5 The Flatness

Parameters for the Filters Shown in

Fig. 11.35.

N ωo/π G(0) K L M

3.5 3 2 5
4 3 2 5

4.5 4 2 4
13 0.636 5 3 3 4

5.5 3 3 4
6 4 3 3

11.4.1.7 Combining Criteria in FIR Filter Design

Ivan W. Selesnick and C. Sidney Burrus

Savitzky-Golay Filters The Savitzky-Golay filters are one example where two of the above
described criteria are combined. The two criteria that are combined in the Savitzky-Golay filter are (1)
maximally flat behavior (Section on page 11-37) and (2) least squares error (Section on page 11-19).
Interestingly, the Savitzky-Golay filters illustrate an equivalence between digital lowpass filtering and
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FIGURE 11.35: Length 13 filters obtained by giving up two degrees of flatness and by specifying that
the cut-off frequency be 0.636π — and that the specified DC group delay be varied from 3.5 to 6.

the smoothing of noisy data by polynomials [63, 95, 96]. As a consequence of this equivalence,
Savitzky-Golay filters can be obtained by two different derivations. Both derivations assume that
a sequence x(n) is available, where x(n) is composed of an unknown sequence of interest s(n),
corrupted by an additive zero-mean white noise sequence r(n): x(n) = s(n) + r(n). The problem
is the estimation of s(n) from x(n) in a way that minimizes the distortion suffered by s(n). Two
approaches yield the Savitzky-Golay filters: (1) polynomial smoothing and (2) moment preserving
maximal noise reduction.

Polynomial Smoothing Suppose a set of N = 2M + 1 contiguous samples of x(n), centered
around n0, can be well approximated by a degree L polynomial in the least squares sense. Then an
estimate of s(n0) is given by p(n0) where p(n) is the degree L polynomial that minimizes

M∑
k=−M

(p(no + k) − x(no + k))2 . (11.118)

It turns out that the estimate of s(n0) provided by p(n0) can be written as

p(n0) = (h ∗ x)(n0) (11.119)

whereh(n) is the Savitzky-Golay filter of lengthN = 2M+1and smoothing parameter L. Therefore,
the smoothing of noisy data by polynomials is equivalent to lowpass FIR filtering. Assuming L is
odd, with L = 2K + 1, h(n) can be written [63] as

h(n) =



CK
1
n

q2K+1(n) n = ±1, . . . ,±M

CK q ′
2K+1(0) n = 0

(11.120)

where

CK = (−1)K
(2K + 1)!

(K!)2

K∏
k=−K

1

2M + 2k + 1
(11.121)

and the polynomials ql are generated via the recurrence

q0(n) = 1 q1(n) = n (11.122)
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ql+1(n) = 2l + 1

l + 1
n ql(n) − l(2M + 1 + l)(2M + 1 − l)

4(l + 1)
ql−1(n). (11.123)

q ′
l (n) denotes the derivative of ql(n).
The impulse response (shifted so that it is casual) and frequency response amplitude of a length

41, L = 13, Savitzky-Golay filter is shown in Fig. 11.36. As is evident from the figure, Savitzky-Golay
filters have poor stopband attenuation — however, they are optimal according to the criteria by which
they are designed.

FIGURE 11.36: Savitzky-Golay filter, N = 41, L = 13, (K = 6). (a) Impulse response. (b) Magni-
tude response.

Moment Preserving Maximal Noise Reduction Consider again the problem of estimating s(n)

from x(n) via FIR filtering.

y(n) = (h1 ∗ x)(n) (11.124)

= (h1 ∗ s)(n) + (h1 ∗ r)(n) (11.125)

= y1(n) + er(n) (11.126)

where y1(n) = (h1 ∗ s)(n) and er(n) = (h1 ∗ r)(n). Consider designing h1(n) by minimizing the
variance of er(n), σ 2(n) = E[e2

r (n)]. Because σ 2(n) is proportional to ||h1||22 = ∑M
n=−M h2

1(n), the

filter minimizing σ 2(n) is the zero filter, h1(n) ≡ 0. However, the zero filter also eliminates s(n). A
more useful approach requires that h1(n) preserve the moments of s(n) up to a specified order L.
Define the lth moment:

ml[s] =
M∑

n=−M

nls(n). (11.127)

The requirement that ml[y1] = ml[s] for l = 0, . . . , L, is equivalent to the requirement that
m0[h1] = 1 and ml[h1] = 0 for l = 1, . . . , L. The filter h1(n) is then obtained by the problem
formulation

minimize ||h1||22 (11.128)

subject to

m0[h1] = 1 (11.129)

ml[h1] = 0 for l = 1, . . . , L. (11.130)
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As shown in [63, 96], the solution h1(n) is the Savitzky-Golay filter [Eq. (11.120)].
It should be noted that the problem formulated in Eqs. (11.128) through (11.130) is equivalent

to the least squares approach, as described in Section on page 11-42: minimize Eq. (11.30) with
D(ω) = 0, W(ω) = 1 subject to the constraints

A(ω = 0) = 1 (11.131)

A(i)(ω = 0) = 0 for i = 1, . . . , L.  (11.132)

(These derivative constraints can be expressed as Ga = b). As such, the solution to Eq. (11.41) is
the Savitzky-Golay filter [Eq. (11.120)] — however, with the constraints (11.131, 11.132), the result-
ing linear system (11.41) is numerically ill-conditioned. Fortunately, the explicit solution (11.120)
eliminates the need to solve ill-conditioned equations.

Structure for Symmetric FIR Filter Having Flat Passband Define the transfer function G(z) =
z−M − H(z), where H(z) = ∑2M+1

n=0 h(n)z−n and h(n) is the length N = 2M + 1 Savitzky-Golay
filter in Eq. (11.120), shifted so that it is casual, as in Fig. 11.36. The filter G(z) is a highpass filter
that satisfies derivative constraints at ω = 0. It follows that G(z) possesses a zero at z = 1 of

order 2K + 2, and so can be expressed as G(z) = (−1)K+1
(

1−z−1

2

)2K+2
H1(z). Accordingly,11 the

transfer function of a symmetric filter of length N = 2M + 1, satisfying Eqs. (11.131 and 11.132),
can be written as

H(z) = z−M − (−1)K+1
(

1 − z−1

2

)2K+2

H1(z) (11.133)

where H1(z) is a symmetric filter of length N − 2K − 2 = 2(M − K) − 1. The amplitude response
of H(z) is

A(ω) = 1 −
(

1 − cosω

2

)K+1

A1(ω) (11.134)

where A1(ω) is the amplitude response of H1(z). Equation (11.133) structurally imposes the desired
derivative constraints (11.131, 11.132) withL = 2K+1, and reduces the implementation complexity

by extracting the multiplierless factor
(

1−z−1

2

)2K+2
. In addition, this structure possesses good

passband sensitivity properties with respect to coefficient quantization [97].
Equation (11.133) is a special case of the affine form (11.80). Accordingly, as discussed in Section

on page 11-42, h1(n) in Eq. (11.133) could be obtained by minimizing Eq. (11.83), with suitably
defined D(ω) and W(ω). Although this is unnecessary for the design of Savitzky-Golay filters, it
is useful for the design of other symmetric filters for which A(ω) is flat at ω = 0, for example, the
design of such filters in the least squares sense with various W(ω) and D(ω), or the design of such
filters according to the Chebyshev norm.

Remarks

• Solution to two optimal smoothing techniques: (1) polynomial smoothing and (2) mo-
ment preserving maximal noise reduction.

• Explicit formulas for solution.

• Excellent at ω = 0.

11Note that −1 ·
(

1−z−1

2

)2
∣∣∣∣
z=ejω

= e−jω
(

1−cosω
2

)
, so the amplitude response of −1 ·

(
1−z−1

2

)2
is 1−cosω

2 .
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• Polynomial assumption for s(n).

• Poor stopband attenuation.

FlatPassband,ChebyshevStopband Theuseofafilterhavingaveryflatpassband isdesirable
because it minimizes the distortion of low frequency signals. However, in the removal of high
frequency noise from a low frequency signal by lowpass filtering, it is often desirable that the stopband
attenuation be greater than that offered by a Savitzky-Golay filter. One approach [98] minimizes the
weighted Chebyshev error, subject to the derivative constraints (11.131, 11.132) imposed at ω = 0.
As discussed above, the form (11.133) facilitates the design and implementation of such filters. To
describe this approach [97], let the desired amplitude and weight function be as in Eq. (11.44). For

the form (11.133), A2(ω) and A3(ω) in Section on page 11-42 are given by A2(ω) = −
(

1−cosω
2

)K

and A3(ω) = 1. H1(z) can then be designed by minimizing Eq. (11.81) via the Parks-McClellan
algorithm. Passband monotonicity, which is sometimes desired, can be ensured by setting Kp = 0
in Eq. (11.44) [99]. Then the passband is shaped by the derivative constraints at ω = 0 that are
structurally imposed by Eq. (11.133).

Figure 11.37 illustrates a length 41 symmetric filter, whose passband is monotonic. The filter
shown was obtained with K = 6 and

D(ω) = 0 ω ∈ [ωs, π] W(ω) =
{

0 ω ∈ [0, ωs]
1 ω ∈ [ωs, π] (11.135)

where ωs = 0.3387π . Because W(ω) is positive only in the stopband, ωp is not part of the problem
formulation.

FIGURE 11.37: Lowpass FIR filter designed via minimization of stopband Chebyshev error subject
to derivative constraints at ω = 0.

Bandpass Filters To design bandpass filters having very flat passbands, one specifies a pass-
band frequency, ωp , where one wishes to impose flatness constraints. The appropriate form is
H(z) = z−(N−1)/2 + H1(z)H2(z) with

H2(z) =
(

1 − 2(cosωp)z−1 + z−2

4

)K

(11.136)
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where N is odd, and H1(z) is a filter whose impulse response is symmetric and of length N − 2K .
The overall frequency response amplitude A(ω) is given by

A(ω) = 1 + (−1)K
(

cosωp − cosω

2

)K

A1(ω). (11.137)

As above, H1(z) can be found via the Parks-McClellan algorithm. Monotonicity of the passband
on either side of ωp can be ensured by weighting the passband by 0, and by taking K to be even.
The filter of length 41 illustrated in Fig. 11.38 was obtained by minimizing the Chebyshev error with
ωp = 0.25π , K = 8, and

D(ω) = 0 W(ω) =




1 ω ∈ [0, ω1]
0 ω ∈ [ω1, ω2]
1 ω ∈ [ω2, π]

(11.138)

where ω1 = 0.1104π and ω2 = 0.3889π .

FIGURE 11.38: Bandpass FIR filter designed via minimization of stopband Chebyshev error subject
to derivative constraints at ω = 0.25π .

Constrained Least Square The constrained least square approach to filter design provides
a compromise between the square error and Chebyshev criteria. This approach produces least
square error and best Chebyshev filters as special cases, and is motivated by an observation made by
Adams [100]. Least square filter design is based on the assumption that the size of the peak error
can be ignored. Likewise, filter design according to the Chebyshev norm assumes the integral square
error is irrelevant. In practice, however, both of these criteria are often important. Furthermore,
the peak error of a least square filter can be reduced with only a slight increase in the square error.
Similarly, the square error of an equiripple filter can be reduced with only a slight increase in the
Chebyshev error [100, 8]. In Adams’ terminology, both equiripple filters and least square filters are
inefficient.

Problem Formulation Suppose the following are given: the filter length N , the desired
response D(ω), a lower bound function L(ω), and an upper bound function U(ω), where D(ω),
L(ω), and U(ω) satisfy
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1. L(ω) ≤ D(ω)

2. U(ω) ≥ D(ω)

3. U(ω) > L(ω).

Find the filter of length N that minimizes

||E||22 = 1

π

∫ π

0
W(ω)(A(ω) − D(ω))2 dω (11.139)

such that (1) the local maxima of A(ω) do not exceed U(ω) and (2) the local minima of A(ω) do not
fall below L(ω).

Design Examples Figure 11.39 illustrates two length 41 filters obtained by minimizing
Eq. (11.139), subject to the bound constraints, where

D(ω) =
{

1 ω ∈ [0, ωc]
0 ω ∈ (ωc, π] (11.140)

W(ω) =
{

1 ω ∈ [0, ωc]
20 ω ∈ (ωc, π] (11.141)

L(ω) =
{

1 − δp ω ∈ [0, ωc]
−δs ω ∈ (ωc, π] (11.142)

U(ω) =
{

1 + δp ω ∈ [0, ωc]
δs ω ∈ (ωc, π] (11.143)

and where ωc = 0.3π . For the filter on the left of the figure, δp = δs = 0.0178= 10−35/20; for
the filter on the right of the figure, δp = δs = 0.0032= 10−50/20. The extremal points of A(ω) lie
within the upper and lower bound functions. Note that the filter on the right is an equiripple filter
— it could have been obtained with the PM algorithm, given the appropriate parameter values.

FIGURE 11.39: Lowpass filter design via bound constrained least squares.

This approach is not a quadratic program (QP) because the domain of the constraints are not
explicit. Two observations regarding this formulation and example should be noted:

c©1999 by CRC Press LLC



1. For a fixed length, the maximum ripple size can be made arbitrarily small. When the
specified values δp and δs are small enough, the solution is an equiripple filter. As the
constraints are made more strict, the transition width of the solution becomes wider. The
width of the transition automatically increases as appropriate.

2. As the example illustrates, it is not necessary to use a “don’t care” band, e.g., it is not
necessary to exclude from the square error a region around the discontinuity of the ideal
lowpass filter. The problem formulation, however, does not preclude the use of a zero-
weighted transition band.

Quadratic Programming Approach Some lowpass filter specifications require that A(ω) lie
within U(ω) and L(ω) for all ω ∈ [0, ωp] ∪ [ωs, π] for given bandedges ωp and ωs . While the
approach described above ensures that the local maxima and minima of A(ω) lie below U(ω) and
above L(ω), respectively, it does not ensure that this is true at the given bandedges ωp and ωs . This
is because ωp and ωs are not generally extremal points of A(ω). The approach described above can
be modified so that bandedge constraints are satisfied; however, it should be recognized that in this
case, a quadratic program (QP) formulation is possible.

Adams formulates the constrained least square filter design problem as a QP and describes algo-
rithms for solving the relevant QP in [100, 101]. The design of a lowpass filter, for example, can be
formulated as a QP as follows.

QP Formulation Suppose the following are given: the filter length, N , the bandedges, ωp

and ωs , and maximum allowable deviations, δp and δs . Find the filter that minimizes the square
error:

||E||22 = 1

π

∫ π

0
W(ω) (A(ω) − D(ω))2 dω (11.144)

such that
L(ω) ≤ A(ω) ≤ U(ω) ω ∈ [0, ωp] ∪ [ωs, π]. (11.145)

where

D(ω) =
{

1 ω ∈ [0, ωp]
0 ω ∈ [ωs, π] (11.146)

W(ω) =




Kp ω ∈ [0, ωp]
0 ω ∈ [ωp, ωs]
Ks ω ∈ [ωs, π]

(11.147)

L(ω) =
{

1 − δp ω ∈ [0, ωp]
−δs ω ∈ [ωs, π] (11.148)

U(ω) =
{

1 + δp ω ∈ [0, ωp]
δs ω ∈ [ωs, π] (11.149)

This is a QP because the constraints are linear inequality constraints and the cost function is a
quadratic function of the variables. The QP formulation is useful because it is very general and
flexible. For example, it can be used for arbitrary D(ω), W(ω) and arbitrary constraint functions.

Note, however, that for a fixed filter length and a fixed δp and δs (each less than 0.5), it is not
possible to obtain an arbitrarily narrow transition band. Therefore, if the band edges ωp and ωs are
taken to be too close together, then the quadratic program has no solution. Similarly, for a fixed ωp

and ωs , if δp and δs are taken too small, then there is again no solution.

c©1999 by CRC Press LLC



Remarks

• Compromise between square error and Chebyshev criterion.

• Two options: formulation without bandedge constraints or as a QP.

• QP allows (requires) bandedge constraints, but may have no solution.

• Formulationwithoutbandedge constraints can satisfy arbitrarily strict boundconstraints.

• QP is well formulated for arbitrary D(ω) and W(ω).

• QP is well formulated for the inclusion of arbitrary linear constraints.

11.4.2 IIR Filter Design

Ivan W. Selesnick and C. Sidney Burrus

11.4.2.1 Numerical Methods for Magnitude-Only IIR Design

Numerical methods for magnitude only approximation for IIR filters generally proceed by
constructing a noncausal symmetric IIR filter whose amplitude response is nonnegative. Equiva-
lently, a rational function is found, the numerator and denominator of which are both symmetric
polynomials of odd degree, with two properties: (1) all zeros lying on the U.C. |z| = 1 have even
multiplicity and (2) no poles lie on the U.C. A spectral factorization then yields a stable casual digital
filter.

The differential correction algorithm for Chebyshev approximation by rational functions, and
variations thereof, have been applied to IIR filter design [102, 103, 104, 105, 106]. This algorithm
is guaranteed to converge to an optimal solution, and is suitable for arbitrary desired magnitude
responses. However, (1) it does not utilize the characterization theorem (see [28] for a characteriza-
tion theorem for rational Chebyshev approximation), and (2) it proceeds by solving a sequence of
(semi-infinite) linear programs. Therefore, it can be slow and computationally intensive.

A Remez algorithm for rational Chebyshev approximation [28] is applicable to IIR filter design, but
it is not guaranteed to converge. Deczky’s numerical optimization program [107] is also applicable
to this problem, as are other optimization methods. It should be noted that general optimization
methods can be used for IIR filter design according to a variety of criteria, but the following aspects
make it a challenge: (1) initialization, (2) local optimal (nonglobal) solutions, and (3) ensuring the
filter’s stability.

11.4.2.2 Allpass (Phase-Only) IIR Filter Design

An allpass filter is a filter with a frequency response H(ω) for which |H(ω)| = 1 for all
frequencies ω. The only FIR allpass filter is the trivial delay h(n) = δ(n − k). IIR allpass filters, on
the other hand, must have a transfer function of the form

H(z) = zNP (z−1)

P (z)
(11.150)

where P(z) is a degree N polynomial in z. The problem is the design of the polynomial P(z) so that
the phase, or group delay, of H(z) approximates a desired function. The form (11.150) structurally
imposes the allpass property of H(z).

The design of digital allpass filters has received much attention, for (1) low complexity structures
with low roundoff noise behavior are available for allpass filters [108, 109] and (2) they are useful
components in a variety of applications. Indeed, while the traditional application of allpass filters is
phase equalization [68, 107], their uses in fractional delay design [21], multirate filtering, filterbanks,
notch filtering, recursive phase splitters, and other applications have also been described [63, 110].
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Of particular recent interest has been the design of frequency selective filters realizable as a parallel
combination of two allpasses,

H(z) = 1

2
[A1(z) + A2(z)] . (11.151)

It is interesting to note that digital filters, obtained from the classical analog (Butterworth, Cheby-
shev, and elliptic) prototypes via the bilinear transformation, can be realized as allpass sums [109,
111, 112]. As allpass sums, such filters can be realized with low complexity structures that are robust
to finite precision effects [109]. More importantly, the allpass sum is a generalization of the classical
transfer functions that is honored with a number of benefits. Certainly, examples have been given
where the utility of allpass sums is well illustrated [113, 114]. Specifically, when some degree of phase
linearity is desired, nonclassical filters of the form (11.151) can be designed that achieve superior
results with respect to implementation complexity, delay, and phase linearity.

The desired degree of phase linearity can, in fact, be structurally incorporated. If one of the allpass
branches in an allpass sum contains only delay elements, then the allpass sum exhibits approximately
linear phase in the passbands [115, 116]. The frequency selectivity is then obtained by appropriately
designing the remaining allpass branch. Interestingly, by varying the number of delay elements used
and the degrees of A1(z) and A2(z), the phase linearity can be affected. Simultaneous approximation
of the phase and magnitude is a difficult problem in general, so the ability to structurally incorporate
this aspect of the approximation problem is most useful.

While general procedures for allpass design [117, 118, 119, 120, 121, 122] are applicable to the
design of frequency selective allpass sums, several publications have addressed, in addition to the
general problem, the details specific to allpass sums [63, 123, 124, 125]. Of particular interest are
the recently described iterative Remez-like exchange algorithms for the design of allpass filters and
allpass sums according to the Chebyshev criterion [113, 114, 126, 127].

A simple procedure for obtaining a fractional delay allpass filter uses the maximally flat delay all-
pole filter (11.76). By using the denominator of that IIR filter for P(z) in Eq. (11.150), a fractional
delay filter is obtained [21]. The group delay of the allpass filter is 2τ + N where τ is that of the
all-pole filter used and N is the filter order.

11.4.2.3 Magnitude and Phase Approximation

The optimal frequency domain design of an IIR filter where both the magnitude and the phase
are specified, is more difficult than the approximation of one alone. One of the difficulties lies in the
choice of the phase function. If the chosen phase function is inconsistent with a stable filter, then the
best approximation according to a chosen norm may be unstable. In that case, additional stability
constraints must be made explicit. Nevertheless, several numerical methods have been described for
the approximation of both magnitude and phase. Let D(ejω) denote the complex valued desired
frequency response.

The minimization of the weighed integral square error

∫ π

0
W(ω)

∣∣∣∣B(ejω)

A(ejω)
− D(ejω)

∣∣∣∣
2

dω (11.152)

is a nonlinear optimization problem. If a good initial solution is known, and if the phase of D(ejω) is
chosen appropriately, then Newton’s method, or other optimization algorithms, can be successfully
used [107, 128]. A modified minimization problem, that comes from the observation that B/A ≈
D → B ≈ DA is the minimization of the weighted equation error [11]∫ π

0
W(ω)|B(ejω) − D(ejω)A(ejω)|2dω (11.153)
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which is linear in the filter coefficients. There is a family of iterative methods [129] based on
iteratively minimizing the weighted equation error, or a variation thereof, with a weighting function
that is appropriately modified from one iteration to the next.

The minimization of the complex Chebyshev error has also been addressed by several authors.
The Ellacott-Williams algorithm for complex Chebyshev approximation by rational functions, and
variations thereof, have been applied to this problem [130]. This algorithm calls for the solution to
a sequence of complex polynomial Chebyshev problems, and is guaranteed to converge to a local
minimum.

Structure Based Methods Several approaches to the problem of magnitude and phase ap-
proximation, or magnitude and group delay approximation, use a combination of filters. There are
at least three such approaches.

1. One approach cascades (1) a magnitude optimal IIR filters and (2) an allpass filter [107].
The allpass filter is designed to equalize the phase.

2. A second approach cascades (1) a phase optimal IIR filter and (2) a symmetric FIR
filter [41]. The FIR filter is designed to equalize the magnitude.

3. A third approach employs a parallel combination of allpass filters. Their phases can be
designed so that their combined frequency response is selective and has approximately
linear phase [113].

11.4.2.4 Time-Domain Approximation

Another approach is based on knowledge of the time domain behavior of the filter sought.
Prony’s method [11] obtains filter coefficients of an IIR filter that has specified impulse response
values h(0), . . . , h(K−1), where K is the total number of degrees of freedom in the filter coefficients.
To obtain an IIR filter whose impulse response approximates desired valuesd(0), . . . , d(L−1), where
L > K , an equation error approach can be minimized, as above, by solving a linear system. The true
square error, a nonlinear function of the coefficients, can be minimized by iterative methods [131].
As above, initialization, local-minima, and stability can make this problem difficult.

A more general problem is the requirement that the filter approximately reproduce other input-
output data. In those cases, where the sought filter is given only by input-output data, the problem
is the identification of the system. The problem of designing an IIR filter that reproduces observed
input-output data is an important modeling problem in system and control theory, some methods
for which can be used for filter design [129].

11.4.2.5 Model Order Reduction

Model order reduction (MOR) techniques, developed largely in the control theory literature,
are generally noniterative linear algebraic techniques. Given a transfer function, these techniques
produce a second transfer function of specified (lower) degree that approximates the given transfer
function. Suppose input-output data of an unknown system is available. One two-step modeling
approach proceeds by first constructing a high order model that well reproduces the observed input-
output data and, second, obtains a lower order model by reducing the order of the high-order model.
Two common methods for MOR are (1) balanced model truncation [132] and (2) optimal Hankel
norm MOR [133]. These methods, developed for both continuous and discrete time, produce stable
models for which the numerator and denominator degrees are equal.

MOR has been applied to filter design in [134, 135, 136, 137]. One approach [134] begins with a
high order FIR filter (obtained by any technique), and uses MOR to obtain a lower order IIR filter,
that approximates the FIR filter. As noted above, the phase of the FIR filter used can be important.
MOR techniques can yield different results when applied to minimum, maximum, and linear phase
FIR filters [134].
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11.5 Software Tools

James H. McClellan

Over the past 30 years, many design algorithms have been introduced for optimizing the char-
acteristics of frequency-selective digital filters. Most of these algorithms now rely on numerical
optimization, especially when the number of filter coefficients is large. Many sophisticated com-
puter optimization methods have been programmed and distributed for widespread use in the DSP
engineering community. Since it is challenging to learn the details of every one of these methods
and to understand subtleties of various methods, a designer must now rely on software packages
that contain a subset of the available methods. With the proliferation of DSP boards for PCs, the
manufacturers have been eager to place design tools in the hands of their users so that the complete
design process can be accomplished with one piece of software. This software includes the filter
design and optimization, followed by a filter implementation stage. The steps in the design process
include:

1. Filter specification via a graphical user interface.

2. Filter design via numerical optimization algorithms. This includes the order estimation
stage where the filter specifications are used to compute a predicted filter length (FIR) or
number of poles (IIR).

3. Coefficient formatting for the DSP board. Since the design algorithm yields coefficients
computed to the highest precision available (e.g., double-precision floating-point), the
filter coefficients must be quantized to the internal format of the DSP. In the extreme
case of a fixed-point DSP, this quantization also requires scaling of the coefficients to a
predetermined maximum value.

4. Optimization of the quantized coefficients. Very few design algorithms perform this step.
Given the type of arithmetic in the DSP and the structure for the filter, search algorithms
can be programmed to find the best filter; however, it is easier to use some “rules of
thumb” that are based on approximations.

5. Downloading the coefficients. If the DSP board is attached to a host computer, then the
filter coefficients must be loaded to the DSP and the filtering program started.

11.5.1 Filter Design: Graphical User Interface (GUI)

Operating systems and application programs based on windowing systems have interface building
tools that provide an easy way to unify many algorithms under one view. This view concentrates
on the filter specifications, so the designer can set up the problem once and then try many different
approaches. If the view is a graphical rendition of the tolerance scheme, then the designer can also
see the difference between the actual frequency response and the template. Buttons or menu choices
can be given for all the different algorithms and parameters available.

With such a GUI, the human is placed in the filter design loop. It has always been necessary for the
human to be in the loop because filter design is the art of trading off many competing objectives.
The filter design programs will optimize a mathematical criterion such as minimum Lp error, but
that result might not exactly meet all the expectations of the designer. For example, trades between
the length of an FIR implementation and the order of an IIR implementation can only be done by
designing the individualfilters and thencomparing theordervs. length inaproposed implementation.

One implementation of the GUI approach to filter design can be found in a recent version of the
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MatlabTM software.12 The screen shot in Fig. 11.40 shows the GUI window presented by sptool,
which is the graphical tool for various signal processing operations, including filter design, in Matlab
version 5.0. In this case, the filter being designed is a length-23 FIR filter optimized for minimum
Chebyshev error via the Parks-McClellan method for FIR design. The filter order was estimated from
the ripples and band edges, but in this case N is too small. The simultaneous graphical view of both
the specifications and the actual frequency response makes it clear that the designed filter does meet
the desired specifications.

In the Matlab GUI, the user interface contains two types of controls: display modes and filter
design specifications. The display mode buttons are located across the top of the window and are
self-explanatory. The filter design specification fields and menus are at the left side of the window.
Figure 11.41 shows these in more detail. Previously, we listed the different parameters needed to
define the filter specifications: band edges, ripple heights, etc. In the GUI, we see that each of these
has an entry. The available design methods come from the pop-up menu that is presently set to
“Elliptic” in Fig. 11.41. The design method must be chosen from the list given in Fig. 11.41. The
shape of the desired magnitude response must also be chosen from four types; in Fig. 11.41, the type
is set to “Bandpass”, but the other choices are given in the list “Desired Magnitude.” This elliptic
bandpass filter is shown in Fig. 11.44.

FIGURE 11.40: Screen shot from the Matlab filter design tool called sptool. The equiripple filter
was designed by the Matlab function remez.

11.5.1.1 Band Edges and Ripples

An open box is provided so the user can enter numerical values for the parameters that define
the boundaries of the tolerance scheme. In the bandpass case, four band edges are needed, as well as
the desired ripple heights for the passband and the two stopbands. The band edges are denoted by
f1, f2, f3, and f4 in Fig. 11.41; the ripple heights (in dB) by Rp and Rs. A value of Rs = 40dB is

12Matlab is a trademark of the The Mathworks, Inc. The screen shots were made with permission of The Mathworks, Inc.
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FIGURE 11.41: Pop-up menu choices for filter design options.

taken to mean 40 dB of attenuation in both stopbands, i.e., |δs | ≤ 0.01. For the elliptic filter design,
the ripples cannot be different in the two stopbands. The passband specification is the difference
between the positive-going ripples at 1 and the negative-going ripples at 1 − δp .

Rp = −20 log10
(
1 − δp

)
In the FIR case, the specification for Rp can be confusing because it is the total ripple which is the
difference between the positive-going ripples at 1 + δp and the negative-going ripples at 1 − δp :

Rp = 20 log10(1 + δp) − 20 log10
(
1 − δp

)
In Fig. 11.42, the value 3 dB is the same as δp ≈ 0.171. As the expanded view of the passband in
Fig. 11.42 shows, the ripples are not expected to be symmetric on a logarithmic scale. This expanded

view for the FIR filter from Fig. 11.40 was obtained by pressing the Pass Band button at the top.

11.5.1.2 Graphical Manipulation of the Specification Template

With the graphical view of the filter specifications, it is possible to use a pointing device such
as a mouse to “grab” the specifications and move them around. This has the advantage that the
relative placement of band edges can be visualized while the movement is taking place. In the Matlab
GUI, the filter is quickly redesigned every time the mouse is released, so the user also gets immediate
feedback on how close the filter approximation can be to the new specification. Order estimation is
also done instantaneously, so the designer can develop some intuition concerning tradeoffs such as
transition width vs. filter order.

11.5.1.3 Frequency Scaling

The field for Fs is useful when the filter specifications come from the “analog world”, and are
expressed in Hertz with the sampling frequency given separately. Then the sampling frequency can
be specified, and the horizontal axis is labeled and scaled in terms of Fs. Since the design is only
carried out for 0 ≤ ω ≤ π , the highest frequency on the horizontal axis will be Fs/2. When Fs = 1,
we say that the frequency is normalized and the numbers on the horizontal axis can be interpreted as
a percentage of the sampling frequency, i.e., a value of 0.2 means 20% of Fs .
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FIGURE 11.42: Expanded view of the passband of the lowpass filter from Fig. 11.40.

11.5.1.4 Automatic Order Estimation

Perhaps the most important feature of a software filter design package is its use of design rules.
Since the design problem is always trying to trade off among the parameters of the specification, it is
useful to be able to predict what the result will be without actually carrying out the design. A typical
design formula involves the band edges, the desired ripples and the filter order. For example, a simple
approximate formula [12, 37] for FIR filters designed by the Remez exchange method is:

N(ωs − ωp) = −20 log10
√

δpδs − 13

2.324
(11.154)

Most often the desired filter is specified by { ωp, ωs, δp, δs }, so the design formula can be used to
predict the filter order. Since most algorithms must work with a fixed number of parameters (deter-
mined by N) in doing optimization, this step is necessary before an iterative numerical optimization
can be done.

The Matlab GUI allows the user to turn on this order-estimating feature, so that an estimate of the
filter order is calculated automatically whenever the filter specifications change. In the case of the FIR
filters, the order-estimating formulae are only approximate—being derived from an empirical study
of the parameters taken over many different designs. In some cases, the length N obtained is not large
enough, and when the filter is designed it will fail to meet the desired specifications (see Fig. 11.40).
On the other hand, the Kaiser window design in Fig. 11.43 does meet the specifications, even though
its length (47) was also estimated from an approximate formula [12] similar to Eq. (11.154).

For the IIR case, however, the formulas are exact because they are derived from the mathematical
properties of the Chebyshev polynomials or elliptic functions that define the classical filter types.
Typically, the band edges and the bilinear transformation define several simultaneous nonlinear
equations that must be satisfied, but these can be solved in succession to get an order N that is
guaranteed to work. The filter in Fig. 11.44 shows the case where the order estimate was used for the
bandpass design and the filter meets the specifications; but in Fig. 11.45 the filter order was set to 3,
which gave a sixth-order bandpass that fails to meet the specifications because its transition regions
are too wide.
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FIGURE 11.43: Length-47 FIR filter designed by the Kaiser window method. The order was estimated
to be 46, and in this case the filter does meet the desired specifications.

11.5.2 Filter Implementation

Another type of filter design tool ties in the filter’s implementation with the design. Many DSP board
vendors offer software products that perform filter design and then download the filter information to
a DSP to process the data stream. Representative of this type of design is the DFDP-4/plus software13

shown in the screen shots of Figs. 11.46 through 11.51.
Similar to the Matlab software, DFDP-4 can do the specification and design of the filter coefficients.

In fact, it possesses an even wider range of filter design methods that includes filter banks and
other special structures. It can design FIR filters based on the window method and the Parks-
McClellan algorithm (an example is shown in Fig. 11.46). For the IIR problem, the classical filter
types (Butterworth, Chebyshev, and Elliptic) are provided; Fig. 11.47 shows an elliptic bandpass filter.
In addition to the standard lowpass, highpass, and bandpass filter shapes, DFDP-4 can also handle
the multiband case as well as filters with an arbitrary desired magnitude (as in Fig. 11.51). When
designing IIR filters, the phase response presents a difficulty because it is not linear or close to linear.
The screen shot in Fig. 11.47 shows the phase response in the lower left-hand panel and the group
delay in the upper right-hand. The wide variation in the group delay, which is the derivative of the
phase, indicates that the phase is far from linear. DFDP-4 provides an algorithm to optimize the
group delay, which is a useful feature to compensate the phase response of an elliptic filter by using
several all-pass sections to flatten the group delay.

In DFDP-4, the filter design stage is specified by entering the band edges and the desired ripples
in dialog boxes until all the parameters are filled in for that type of design. Conflicts among the
specifications can be resolved at this point before the design algorithm is invoked. For some designs
such as the arbitrary magnitude design, the specification can involve many parameters to properly
define the desired magnitude.

The filter design stage is followed by an implementation stage in which DFDP-4 produces the

13DFDP is a trademark of Atlanta Signal Processors, Inc. The screen shots were made with permission of Atlanta Signal
Processors, Inc.
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FIGURE 11.44: Eight-pole elliptic bandpass filter. The order was calculated to be four, but the filter
exceeds the desired specifications by quite a bit.

appropriate filter coefficients for either a fixed-point or floating-point implementation, targeted to
a specific DSP microprocessor. The filter coefficients can be quantized over a range from 4 to 24
bits, as shown in Fig. 11.50. The filter’s frequency response would then be checked after quantization
to compare with the designed filter and the original specifications. In the FIR case, coefficient
quantization is the primary step needed prior to generating code for the DSP microprocessor, since
the preferred implementation on a DSP is direct form. Internal wordlength scaling is also needed if a
fixed-point implementation is being done. Once the wordlength is chosen, DFDP-4 will generate the
entire assembly language program needed for the TMS-320 processor used on the boards supported
by ASPI. As shown in Fig. 11.48, there are a variety of supported processors, and even within a given
processor family, the user can choose options such as “time optimization,” “size optimization,” etc.
In Fig. 11.48, the choice of “11” dictates a filter implementation on a TMS 320-C30, with ASM30
assembly language calls, and size optimization. The filter coefficients are taken from the file called
PMFIR.FLT, and the assembly code is written to the file PMFIR.S31.

11.5.2.1 Cascade of Second-Order Sections

In the IIR case, the implementation is often done with a cascade of second-order sections. The
numerator and denominator of the transfer function H(z) must first be factored as:

H(z) = B(z)

A(z)
= G

∏M
i=1

(
1 − ziz

−1
)

∏N
i=1

(
1 − piz−1

) (11.155)

where pi and zi are the poles and zeros of the filter. In the screen shot of Fig. 11.47 we see that the
poles and zeros of the eighth-order elliptic bandpass filter are displayed to the user. The second-
order sections are obtained by grouping together two poles and two zeros to create each second-order
section; conjugate pairs must be kept together if the filter coefficients are going to be real.

H(z) = B(z)

A(z)
=

N/2∏
k=1

β0k + β1kz
−1 + β2kz

−2

1 + α1kz−1 + α2kz−2
(11.156)
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FIGURE 11.45: Six-pole elliptic bandpass filter. The order was set at three, which is too small to meet
the desired specifications.

Each second-order factor defines a recursive difference equation with two feedback terms, α1k and
α2k . The product of all the sections is implemented as a cascade of the individual second-order
feedback filters. This implementation has the advantage that the overall filter response is relatively
insensitive to coefficient quantization and round-off noise when compared to a direct form structure.
Therefore, the cascaded second-order sections provide a robust implementation, especially for IIR
filters with poles very close to the unit circle.

Clearly, there are many different ways to pair the poles and zeros when defining the second-
order sections. Furthermore, there are many different orderings for the cascade, and each one will
produce different noise gains through the filter. Sections with a pole pair close to the U.C. will
be extremely narrowband with a very high gain at one frequency. The rules of thumb originally
developed by Jackson [138] give good orderings depending on the nature of the input signal—
wideband vs. narrowband. This choice can be seen in Fig. 11.51 where the section ordering slot
is set to NARROWBAND.

11.5.2.2 Scaling for Fixed-Point

A second consideration when ordering the second-order sections is the problem of scaling to
avoid overflow. This issue only arises when the IIR filter is targeted to a fixed-point DSP micropro-
cessor. Since the gain of individual sections may vary widely, the fixed-point data might overflow
beyond the maximum value allowed by the wordlength. To combat this problem, multipliers (or
shifters that multiply by a power of two) can be inserted in-between the cascaded sections to guard
against overflow. However, dividing by two will shift bits off the lower end of the fixed-point word,
thereby introducing more round-off noise. The value of the scaling factor can be approximated
via a worst-case analysis that prevents overflow entirely, or a mean square method that reduces the
likelihood of overflow depending on the input signal characteristics.

Proper treatment of the scaling problem requires that it be solved in conjunction with the ordering
of sections for minimal round-off noise. Similar “rules of thumb” can be employed to get a good
(if not optimal) implementation that simultaneously addresses ordering, pole-zero pairing, and
scaling [138]. The theoretical problem of optimizing the implementation for word length and
noise performance is rarely done because it is such a difficult problem, and not one for which an
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FIGURE 11.46: Length-57 FIR filter designed by the Parks-McClellan method, using the ASPI DFDP-
4/plus software.

FIGURE 11.47: Eighth-order IIR bandpass elliptic filter designed using DFDP-4.
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FIGURE 11.48: Code generation for an FIR filter using DFDP-4.

FIGURE 11.49: Eighth-order IIR bandpass elliptic filter with quantized coefficients.
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FIGURE 11.50: Eighth-order IIR bandpass elliptic filter. Saving 16-bit coefficients.

FIGURE 11.51: Arbitrary magnitude IIR filter.
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efficient solution has been found. Thus, most software tools rely on approximations to perform the
implementation and code-generation steps quickly.

Once the transfer function is factored into second-order sections, the code-generationphase creates
the assembly language program that will actually execute in the DSP and downloads it to the DSP
board. Coefficient quantization is done as part of the assembly code generation. With the program
loaded into the DSP, tests on real-time data streams can be conducted.

11.5.2.3 Comments and Summary

The two design tools presented here are representative of the capabilities that one should expect
in a state of the art filter design package. There are many software design products available and most
of them have similar characteristics, but may be more powerful in some respects, e.g., more design
algorithm choices, different DSP microprocessor support, alternative display options, etc. A user
can choose a design tool with these criteria in mind, confident that the GUI will make it relatively
easy to use the powerful mathematical design algorithms without learning the idiosyncrasies of each
method. The uniform view of the GUI as managing the filter specifications should simplify the design
process, while allowing the best possible filters to be designed through trial and comparison.

One limiting aspect of the GUI filter design tool is that it can easily do magnitude approximation,
but only for the standard cases of bandpass and multiband filters. It is easy to envision, however, that
the GUI could support graphical user entry of the specifications by having the user draw the desired
magnitude. Then other magnitude shapes could be supported, as in DFDP-4. Another extension
would be to provide a graphical input for the desired phase response, or group delay, in addition to
the magnitude specification. Although a great majority of filter designs are done for the bandpass
case, there has been a recent surge of interest in having the flexibility to do simultaneous magnitude
and phase approximation. With the development of better general magnitude and phase design
methods, the filter design packages now offer this capability.
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S TATISTICAL SIGNAL PROCESSING deals with random signals, their acquisition, their prop-
erties, their transformation by system operators, and their characterization in the time and
frequency domains. The goal is to extract pertinent information about the underlying mech-

anisms that generate them or transform them. The area is grounded in the theories of signals and
systems, random variables and stochastic processes, detection and estimation, and mathematical
statistics. Random signals are temporal or spatial and can be derived from man-made (e.g., binary
communication signals) or natural (e.g., thermal noise in a sensory array) sources. They can be
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continuous or discrete in their amplitude or index, but no exact expression describes their evolution.
Signals are often described statistically when the engineer has incomplete knowledge about their
description or origin. In these cases, statistical descriptors are used to characterize one’s degree of
knowledge (or ignorance) about the randomness. Especially interesting are those signals (e.g., sta-
tionary and ergodic) that can be described using deterministic quantities computable from finite data
records. Applications of statistical signal processing algorithms to random signals are omnipresent
in science and engineering in such areas as speech, seismic, imaging, sonar, radar, sensor arrays,
communications, controls, manufacturing, atmospheric sciences, econometrics, and medicine, just
to name a few. This chapter deals with the fundamentals of statistical signal processing, including
some interesting topics that deviate from traditional assumptions. The focus is on discrete index
random signals (i.e., time series) with possibly continuous-valued amplitudes. The reason is twofold:
measurements are often made in discrete fashion (e.g., monthly temperature data); and continuously
recorded signals (e.g., speech data) are often sampled for parsimonious representation and efficient
processing by computers.

The first chapter of the section, written by Charles Therrien, reviews definitions, characterization,
and estimation problems entailing random signals. The important notions outlined are stationar-
ity, independence, ergodicity, and Gaussianity. The basic operations involve correlations, spectral
densities, and linear time-invariant transformations. Stationarity reflects invariance of a signal’s
statistical description with index shifts. Absence (or presence) of relationships among samples of a
signal at different points is conveyed by the notion of (in)dependence, which provides information
about the signal’s dynamical behavior and memory as it evolves in time or space. Ergodicity allows
computation of statistical descriptors from finite data records. In increasing order of computational
complexity, descriptors include the mean (or average) value of the signal, the autocorrelation, and
higher than second-order correlations which reflect relations among two or more signal samples.
Complete statistical characterization of random signals is provided by probability density and dis-
tribution functions. Gaussianity describes probabilistically a particular distribution of signal values
which is characterized completely by its first- and second-order statistics. It is often encountered in
practice because, thanks to the central limit theorem, averaging a sufficient number of random signal
values (an operation often performed by, e.g., narrowband filtering) yields outputs which are (at least
approximately) distributed according to the Gaussian probability law. Frequency-domain statistical
descriptors inherit all the merits of deterministic Fourier transforms and can be computed efficiently
using the fast Fourier transform. The standard tool here is the power spectral density which describes
how average power (or signal variance) is distributed across frequencies; but polyspectral densities
are also important for capturing distributions of higher-order signal moments across frequencies.
Random input signals passing through linear systems yield random outputs. Input-output auto-
and cross-correlations and spectra characterize not only the random signals themselves but also the
transformation induced by the underlying system.

Many random signals as well as systems with random inputs and outputs possess finite degrees
of freedom and can thus be modeled using finite parameters. Depending on a priori knowledge,
one estimates parameters from a given data record, treating them either as random or deterministic.
Various approaches become available by adopting different figures of merit (estimation criteria).
Those outlined in this chapter include the maximum likelihood, minimum variance, and least-
squares criteria for deterministic parameters. Random parameters are estimated using the maximum
a posteriori and Bayes criteria. Unbiasedness, consistency, and efficiency are important properties
of estimators which, together with performance bounds and computational complexity, guide the
engineer to select the proper criterion and estimation algorithm.

While estimation algorithms seek values in the continuum of a parameter set, the need arises often
in signal processing to classify parameters or waveforms as one or another of prespecified classes.
Decision making with two classes is sought frequently in practice, including as a special case the
simpler problem of detecting the presence or absence of an information-bearing signal observed
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in noise. Such signal detection and classification problems along with the associated theory and
practice of hypotheses testing is the subject of the second chapter written by Alfred Hero. The
resulting strategies are designed to minimize the average number of decision errors. Additional
performance measures include receiver operating characteristics, signal-to-noise ratios, probabilities
of detection (or correct classification), false alarm (or misclassification) rates, and likelihood ratios.
Both temporal and spatio-temporal signals are considered, focusing on linear single- and multi-
variate Gaussian models. Trade-offs include complexity versus optimality, off-line versus real time
processing, and separate versus simultaneous detection and estimation for signal models containing
unknown parameters.

Parametric and nonparametric methods are described in the third chapter, written by Petar Djurić
and Steven Kay, for the basic problem of spectral estimation. Estimates of the power spectral density
have been used over the last century and continue to be of interest in numerous applications involving
retrieval of hidden periodicities, signal modeling, and time series analysis problems. Starting with the
periodogram (normalized square magnitude of the data Fourier transform), its modifications with
smoothing windows, and moving on to the more recent minimum variance and multiple window
approaches, the nonparametric methods described here constitute the first step used to characterize
the spectral content of stationary stochastic signals. Factors dictating the designer’s choice include
computational complexity, bias-variance, and resolution trade-offs. For data adequately described
by a parametric model, such as the auto-regressive (AR), moving-average (MA), or ARMA model,
spectral analysis reduces to estimating the model parameters. Such a data reduction step achieved by
modeling offers parsimony and increases resolution and accuracy, provided that the model and its
order (number of parameters) fit well the available time series. Processes containing harmonic tones
(frequencies) have line spectra, and the task of estimating frequencies appears in diverse applications
in science and engineering. The methods presented here include both the traditional periodogram
as well as modern subspace approaches such as the MUSIC and its derivatives.

Estimation from discrete-time observations is the theme of the next chapter, written by Jerry
Mendel. The unifying viewpoint treats both parameter and waveform (or signal) estimation from
the perspective of minimizing the averaged square error between observations and input-output
or state variable signal models. Starting from the traditional linear least-squares formulation, the
exposition includes weighted and recursive forms, their properties, and optimality conditions for
estimating deterministic parameters as well as their minimum mean-square error and maximum
a posteriori counterparts for estimating random parameters. Waveform estimation, on the other
hand, includes not only input-output signals but also state space vectors in linear and nonlinear
state variable models. Prediction, smoothing, and the celebrated Kalman filtering problems are
outlined in this framework and relationships are highlighted with the Wiener filtering formulation.
Nonlinear least-squares and iterative minimization schemes are discussed for problems where the
desired parameters are nonlinearly related with the data. Nonlinear equations can often be linearized,
and the extended Kalman filter is described briefly for estimating nonlinear state variable models.
Minimizing the mean-square error criterion leads to the basic orthogonality principle which appears
in both parameter and waveform estimation problems. Generally speaking, the mean-square error
criterion possesses rather universal optimality when the underlying models are linear and the random
data involved are Gaussian distributed.

Before accessing applicability and optimality of estimation algorithms in real life applications,
models need tobe checked for linearity, and the randomsignals involvedneed to tested forGaussianity
and stationarity. Performance bounds and parameter confidence intervals must also be derived in
order to evaluate the fit of the model. Finally, diagnostic tools for model falsification are needed to
validate that the chosen model represents faithfully the underlying physical system. These important
issues are discussed in the chapter written by Jitendra Tugnait. Stationarity, Gaussianity, and linearity
tests are presented in a hypothesis-testing framework relying upon second- and higher-order statistics
of the data. Tests are also described for estimating the number of parameters (or degrees of freedom)
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necessary for parsimonious modeling. Model validation is accomplished by checking for whiteness
and independence of the error processes formed by subtracting model data from measured data. Tests
may declare signal or noise data as non-Gaussian and/or nonstationary. The non-Gaussian models
outlined here include the generalized Gaussian, Middleton’s class, and the stable noise distribution
models.

As for nonstationary signals and time-varying systems, detection and estimation tasks become
more challenging and solutions are not possible in the most general case. However, structured
nonstationarities such as those entailing periodic and almost periodic variations in their statistical
descriptors are tractable. The resulting random signals are called (almost) cyclostationary and their
analysis is the theme of the final chapter in this section, which I have written. The exposition starts
with motivation and background material including links between cyclostationary signals and mul-
tivariate stationary processes, time-frequency representations, and multirate operators. Examples
of cyclostationary signals and cyclostationarity-inducing operations are also described along with
applications to signal processing and communication problems with emphasis on signal separation
and channel equalization.

Modern theoretical directions in the field appear toward non-Gaussian, nonstationary, and nonlin-
ear signal models. Advanced statistical signal processing tools (algorithms, software, and hardware)
are of interest in current applications such as manufacturing, biomedicine, multimedia services, and
wireless communications. Scientists and engineers will continue to search and exploit determinism
in signals that they create or encounter, and find it convenient to model, as random.
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13.1 Introduction

Detection and classification arise in signal processing problems whenever a decision is to be made
among a finite number of hypotheses concerning an observed waveform. Signal detection algo-
rithms decide whether the waveform consists of “noise alone” or “signal masked by noise.” Signal
classification algorithms decide whether a detected signal belongs to one or another of prespecified
classes of signals. The objective of signal detection and classification theory is to specify systematic
strategies for designing algorithms which minimize the average number of decision errors. This
theory is grounded in the mathematical discipline of statistical decision theory where detection and
classification are respectively called binary and M-ary hypothesis testing [1, 2]. However, signal pro-
cessing engineers must also contend with the exceedingly large size of signal processing datasets,
the absence of reliable and tractible signal models, the associated requirement of fast algorithms,
and the requirement for real-time imbedding of unsupervised algorithms into specialized software
or hardware. While ad hoc statistical detection algorithms were implemented by engineers before
1950, the systematic development of signal detection theory was first undertaken by radar and radio
engineers in the early 1950s [3, 4].

This chapter provides a brief and limited overview of some of the theory and practice of signal
detection and classification. The focus will be on the Gaussian observation model. For more details
and examples see the cited references.
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13.2 Signal Detection

Assume that for some physical measurement a sensor produces an output waveform x = {x(t) : t ∈
[0, T ]} over a time interval [0, T ]. Assume that the waveform may have been produced by ambient
noise alone or by an impinging signal of known form plus the noise. These two possibilities are called
the null hypothesis H and the alternative hypothesis K , respectively, and are commonly written in the
compact notation:

H : x = noise alone

K : x = signal + noise.

The hypotheses H and K are called simple hypotheses when the statistical distributions of x under H

and K involve no unknown parameters such as signal amplitude, signal phase, or noise power. When
the statistical distribution of x under a hypothesis depends on unknown (nuisance) parameters the
hypothesis is called a composite hypothesis.

To decide between the null and alternative hypotheses one might apply a high threshold to the
sensor output x and make a decision that the signal is present if and only if the threshold is exceeded
at some time within [0, T ]. The engineer is then faced with the practical question of where to set the
threshold so as to ensure that the number of decision errors is small. There are two types of error
possible: the error of missing the signal (decide H under K (signal is present)) and the error of false
alarm (decide K under H (no signal is present)). There is always a compromise between choosing
a high threshold to make the average number of false alarms small versus choosing a low threshold
to make the average number of misses small. To quantify this compromise it becomes necessary to
specify the statistical distribution of x under each of the hypotheses H and K .

13.2.1 The ROC Curve

Let the aforementioned threshold be denoted γ . Define the K decision region RK = {x : x(t) >

γ, for some t ∈ [0, T ]}. This region is also called the critical region and simply specifies the con-
ditions on x for which the detector declares the signal to be present. Since the detector makes
mutually exclusive binary decisions, the critical region completely specifies the operation of the de-
tector. The probabilities of false alarm and miss are functions of γ given by PFA = P(RK |H) and
PM = 1−P(RK |K)whereP(A|H) andP(A|K)denote the probabilities of arbitrary event Aunder
hypothesis H and hypothesis K , respectively. The probability of correct detection PD = P(RK |K)

is commonly called the power of the detector and PFA is called the level of the detector.
The plot of the pair PFA = PFA(γ ) and PD = PD(γ ) over the range of thresholds −∞ < γ < ∞

produces a curve called the receiver operating characteristic (ROC) which completely describes the
error rate of the detector as a function of γ (Fig. 13.1). Good detectors have ROC curves which
have desirable properties such as concavity (negative curvature), monotone increase in PD as PFA

increases, high slope of PD at the point (PFA, PD) = (0, 0), etc. [5]. For the energy detection
example shown in Fig. 13.1 it is evident that an increase in the rate of correct detections PD can
be bought only at the expense of increasing the rate of false alarms PFA. Simply stated, the job of
the signal processing engineer is to find ways to test between K and H which push the ROC curve
towards the upper left corner of Fig. 13.1 where PD is high for low PFA: this is the regime of PD and
PFA where reliable signal detection can occur.

13.2.2 Detector Design Strategies

When the signal waveform and the noise statistics are fully known, the hypotheses are simple, and
an optimal detector exists which has a ROC curve that upper bounds the ROC of any other detector,
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FIGURE 13.1: The receiver operating characteristic (ROC) curve describes the tradeoff between
maximizing the power PD and minimizing the probability of false alarm PFA of a test between two
hypotheses H and K . Shown is the ROC curve of the LRT (energy detector) which tests between
H : x = complex Gaussian random variable with variance σ 2 = 1, vs. K : x = complex Gaussian
random variable with variance σ 2 = 5 (7dB variance ratio).

i.e., it has the highest possible power PD for any fixed level PFA. This optimal detector is called
the most powerful (MP) test and is specified by the ubiquitous likelihood ratio test described below.
In the more common case where the signal and/or noise are described by unknown parameters, at
least one hypothesis is composite, and a detector has different ROC curves for different values of the
parameters (see Fig. 13.2). Unfortunately, there seldom exists a uniformly most powerful detector
whose ROC curves remain upper bounds for the entire range of unknown parameters. Therefore, for
composite hypotheses other design strategies must generally be adopted to ensure reliable detection
performance. There are a wide range of different strategies available including Bayesian detection [5]
and hypothesis testing [6], min-max hypothesis testing [2], CFAR detection [7], unbiased hypothesis
testing [1], invariant hypothesis testing [8, 9], sequential detection [10], simultaneous detection and
estimation [11], and nonparametric detection [12]. Detailed discussion of these strategies is outside
the scope of this chapter. However, all of these strategies have a common link: their application
produces one form or another of the likelihood ratio test.

13.2.3 Likelihood Ratio Test

Here we introduce an unknown parameter θ to simplify the upcoming discussion on composite
hypothesis testing. Define the probability density of the measurement x as f (x|θ) where θ belongs
to a parameter space 2. It is assumed that f (x|θ) is a known function of x and θ . We can now state
the detection problem as the problem of testing between

H : x ∼ f (x|θ), θ ∈ 2H (13.1)

K : x ∼ f (x|θ), θ ∈ 2K , (13.2)

where 2H and 2K are nonempty sets which partition the parameter space into two regions. Note
it is essential that 2H and 2K be disjoint (2H ∩ 2K = ∅) so as to remove any ambiguity on the
decisions, and exhaustive (2H ∪ 2K = 2) to ensure that all states of nature in 2 are accounted for.
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FIGURE 13.2: Eight members of the family of ROC curves for the LRT (energy detector) which tests
between H : x = complex Gaussian random variable with variance σ 2 = 1, vs. composite K : x =
complex Gaussian random variable with variance σ 2 > 1. ROC curves shown are indexed over a
range [0dB, 21dB] of variance ratios in equal 3dB increments. ROC curves approach a step function
as variance ratio increases.

Let a detector be specified by a critical region RK . Then for any pair of parameters θH ∈ 2H and
θK ∈ 2K the level and power of the detector can be computed by integrating the probability density
f (x|θ) over RK

PFA =
∫

x∈RK

f (x|θH )dx, (13.3)

and

PD =
∫

x∈RK

f (x|θK)dx. (13.4)

The hypotheses (13.1) and (13.2) are simple when 2 = {θH , θK} consists of only two values
and 2H = {θH } and 2K = {θK} are point sets. For simple hypotheses the Neyman-Pearson
Lemma [1] states that there exists a most powerful test which maximizes PD subject to the constraint
that PFA ≤ α, where α is a prespecified maximum level of false alarm. This test takes the form of a
threshold test known as the likelihood ratio test (LRT)

L(x)
def= f (x|θK)

f (x|θH )

K
>
<
H

η, (13.5)

where η is a threshold which is determined by the constraint PFA = α∫ ∞

η

g(l|θH )dl = α. (13.6)

Here g(l|θH ) is the probability density function of the likelihood ratio statistic L(x) when θ = θH . It
must alsobementioned that if thedensityg(l|θH ) containsdelta functions a simple randomization [1]
of the LRT may be required to meet the false alarm constraint (13.6).

The test statistic L(x) is a measure of the strength of the evidence provided by x that the probability
density f (x|θK) produced x as opposed to the probability density f (x|θH ). Similarly, the threshold
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η represents the detector designer’s prior level of “reasonable doubt” about the sufficiency of the
evidence — only above a level η is the evidence sufficient for rejecting H .

When θ takes on more than two values at least one of the hypotheses (13.1) or (13.2) are composite,
and the Neyman Pearson lemma no longer applies. A popular but ad hoc alternative which enjoys
some asymptotic optimality properties is to implement the generalized likelihood ratio test (GLRT):

Lg(x)
def= maxθK∈2K

f (x|θK)

maxθH ∈2H
f (x|θH )

K
>
<
H

η (13.7)

where, if feasible, the threshold η is set to attain a specified level of PFA. The GLRT can be interpreted
as a LRT which is based on the most likely values of the unknown parameters θH and θK , i.e., the
values which maximize the likelihood functions f (x|θH ) and f (x|θK), respectively.

13.3 Signal Classification

When, based on a noisy observed waveform x, one must decide among a number of possible signal
waveforms s1, . . . , sp , p > 1, we have a p-ary signal classification problem. Denoting f (x|θi) the
density function of x when signal si is present, the classification problem can be stated as the problem
of testing between the p hypotheses

H1 : x ∼ f (x|θ1), θ1 ∈ 21

...
...

...

Hp : x ∼ f (x|θp), θp ∈ 2p

where 2i is a space of unknowns which parameterize the signal si . As before, it is essential that the
hypotheses be disjoint, which is necessary for {f (x|θi)}pi=1 to be distinct functions of x for all θi ∈ 2i ,
i = 1, . . . , p, and that they be exhaustive, which ensures that the true density of x is included in
one of the hypotheses. Similarly to the case of detection, a classifier is specified by a partition of the
space of observations x into p disjoint decision regions RH1, . . . ,RHp . Only p −1of these decision
regions are needed to specify the operation of the classifier. The performance of a signal classifier is
characterized by its set of p misclassification probabilities PM1 = 1 − P(x ∈ RH1|H1), . . . , PMp =
P(x ∈ RHp |Hp). Unlike the case of detection (p = 2), even for simple hypotheses, where 2i = {θi}
consists of a single point, i = 1, . . . , p, optimal p-ary classifiers that uniformly minimize all PMi

’s
do not exist. However, classifiers can be designed to minimize other weaker criteria such as average
misclassification probability 1

p

∑p

i=1 PMi
[5], worst case misclassification probability maxi PMi

[2],
Bayes posterior misclassification probability [12], and others.

The maximum likelihood (ML) classifier is a popular classification technique which is closely
related to maximum likelihood parameter estimation. This classifier is specified by the rule

decide Hj if and only if maxθj ∈2j
f (x|θj ) ≥ maxk maxθk∈2k

f (x|θk), j = 1, . . . , p. (13.8)

When the hypotheses H1, . . . , Hp are simple, the ML classifier takes the simpler form:

decide Hj if and only if fj (x) ≥ maxk fk(x), j = 1, . . . , p

where fk = f (x|θk) denotes the known density function of x under Hk . For this simple case it can
be shown that the ML classifier is an optimal decision rule which minimizes the total misclassifica-
tion error probability, as measured by the average 1

p

∑p

i=1 PMi
. In some cases a weighted average

1
p

∑p

i=1 βiPMi
is a more appropriate measure of total misclassification error, e.g., when βi is the
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prior probability of Hi , i = 1, . . . , p,
∑p

i=1 βi = 1. For this latter case, the optimal classifier is given
by the maximum a posteriori (MAP) decision rule [5, 13]

decide Hj if and only if fj (x)βj ≥ maxk fk(x)βk, j = 1, . . . , p.

13.4 The Linear Multivariate Gaussian Model

Assume that X is an m × n matrix of complex valued Gaussian random variables which obeys the
following linear model [9, 14]

X = ASB + W (13.9)

where A, S, and B are rectangular m × q, q × p, and p × n complex matrices, and W is an m × n

matrix whose n columns are i.i.d. zero mean circular complex Gaussian vectors each with positive
definite covariance matrix Rw . We will assume that n ≥ m. This model is very general, and, as will
be seen in subsequent sections, covers many signal processing applications.

A few comments about random matrices are now in order. If Z is an m × n random matrix the
mean, E[Z], of Z is defined as the m × n matrix of means of the elements of Z, and the covariance
matrix is defined as the mn×mn covariance matrix of the mn× 1 vector, vec[Z], formed by stacking
columns of Z. When the columns of Z are uncorrelated and each have the same m × m covariance
matrix R, the covariance of Z is block diagonal:

cov[Z] = R ⊗ In. (13.10)

where In is the n × n identity matrix. For p × q matrix C and r × s matrix D the notation C ⊗ D
denotes the Kronecker product which is the following pr × qs matrix:

C ⊗ D =




C d11 C d12 . . . C d1s

C d21 C d22 . . . C d2s

...
...

...
...

C dr1 C dr2 . . . C drs


 . (13.11)

The density function of X has the form [14]

f (X; θ) = 1

πmn|Rw|n exp
(
−tr

{
[X − ASB][X − ASB]H R−1

w

})
, (13.12)

where |C| is the determinant and tr{D} is the trace of square matrices C and D, respectively. For
convenience we will use the shorthand notation

X ∼ Nmn(ASB, Rw ⊗ In)

which is to be read as X is distributed as an m×n complex Gaussian random matrix with mean ASB,
and covariance Rw ⊗ In,

In the examples presented in the next section, several distributions associated with the com-
plex Gaussian distribution will be seen to govern the various test statistics. The complex non-
central chi-square distribution with p degrees of freedom and vector of noncentrality parameters
(ρ, d) plays a very important role here. This is defined as the distribution of the random variable

χ2(ρ, d)
def= ∑p

i=1 di |zi |2 +ρ where the zi ’s are independent univariate complex Gaussian random
variables with zero mean and unit variance and where ρ is scalar and d is a (row) vector of positive
scalars. The complex noncentral chi-square distribution is closely related to the real noncentral
chi-square distribution with 2p degrees of freedom and noncentrality parameters (ρ, diag([d, d]))
defined in [14]. The case of ρ = 0and d = [1, . . . , 1] corresponds to the standard (central) complex
chi-square distribution. For derivations and details on this and other related distributions see [14].

c©1999 by CRC Press LLC



13.5 Temporal Signals in Gaussian Noise

Consider the time-sampled superposed signal model

x(ti) =
p∑

j=1

sj bj (ti) + w(ti), i = 1, . . . , n,

where here we interpret ti as time; but it could also be space or other domain. The temporal signal
waveforms bj = [bj (t1), . . . , bj (tn)]T , j = 1, . . . , p, are assumed to be linearly independent where
p ≤ n. The scalar sj is a time-independent complex gain applied to the j th signal waveform. The
noise w(t) is complex Gaussian with zero mean and correlation function rw(t, τ ) = E[w(t)w∗(τ )].
By concatenating the samples into a column vector x = [x(t1), . . . , x(tn)]T the above model is
equivalent to:

x = Bs + w, (13.13)

where B = [b1, . . . , bp], s = [s1, . . . , sp]T . Therefore, the density function (13.12) applies to the

vector x = xT with Rw = cov(w), m = q = 1, and A = 1.

13.5.1 Signal Detection: Known Gains

Forknowngain factors si , knownsignalwaveformsbi , andknownnoise covarianceRw , theLRT(13.5)
is the most powerful signal detector for deciding between the simple hypotheses H : x ∼ Nn(0, Rw)

vs. K : x ∼ Nn(Bs, Rw). The LRT has the form

L(x) = exp
(
−2 ∗ Re

{
xH R−1

w Bs
}

+ sH BH R−1
w Bs

) K
>
<
H

η. (13.14)

This test is equivalent to a linear detector with critical region RK = {x : T (x) > γ } where

T (x) = Re
{
xH R−1

w sc

}
and sc = Bs = ∑p

j=1 sj bj is the observed compound signal component.
Under both hypotheses H and K the test statistic T is Gaussian distributed with common variance

but different means. It is easily shown that the ROC curve is monotonically increasing in the
detectability index ρ = sH

c R−1
w sc. It is interesting to note that when the noise is white, Rw = σ 2In

and the ROC curve depends on the form of the signals only through the signal-to-noise ratio (SNR)

ρ = ‖sc‖2

σ2 . In this special case the linear detector can be written in the form of a correlator detector

T (x) = Re

{
n∑

i=1

s∗
c (ti)x(ti)

}
K
>
<
H

γ

where sc(t) = ∑p

j=1 sj bj (t). When the sampling times ti are equispaced, e.g., ti = i, the correlator
takes the form of a matched filter

T (x) = Re

{
n∑

i=1

h(n − i)x(i)

}
K
>
<
H

γ,

where h(i) = s∗
c (−i). Block diagrams for the correlator and matched filter implementations of the

LRT are shown in Figs. 13.3 and 13.4.
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FIGURE 13.3: The correlator implementation of the most powerful LRT for signal component
sc(ti) in additive Gaussian white noise. For nonwhite noise a prewhitening transformation must be
performed on x(ti) and sc(ti) prior to implementation of correlator detector.

FIGURE 13.4: The matched filter implementation of the most powerful LRT for signal compo-
nent sc(i) in additive Gaussian white noise. Matched filter impulse response is h(i) = s∗

c (−i).
For nonwhite noise a prewhitening transformation must be performed on x(i) and sc(i) prior to
implementation of matched filter detector.

13.5.2 Signal Detection: Unknown Gains

When the gains sj are unknown the alternative hypothesis K is composite, the critical region RK

depends on the true gains for p > 1, and no most powerful test for H : x ∼ Nn(0, Rw) vs.
K : x ∼ Nn(Bs, Rw) exists. However, the GLRT (13.7) can easily be derived by maximizing the
likelihood ratio for known gains (13.14) over s. Recalling from least squares theory that mins(x −
Bs)H R−1

w (x −Bs) = xH R−1
w x − xH R−1

w B[BH R−1
w B]−1BH R−1

w x the GLRT can be shown to take the
form

Tg(x) = xH R−1
w B[BH R−1

w B]−1BH R−1
w x

K
>
<
H

γ.

A more intuitive form for the GLRT can be obtained by expressing Tg in terms of the prewhitened

observations x̃ = R
− 1

2
w x and prewhitened signal waveform matrix B̃ = R

− 1
2

w B, where R
− 1

2
w is the

right Cholesky factor of R−1
w

Tg(x) = ‖B̃[B̃H
B̃]−1B̃

H
x̃‖2. (13.15)

B̃[B̃H
B̃]−1B̃

H
is the idempotent n × n matrix which projects onto column space of the prewhitened

signal waveform matrix B̃ (whitened signal subspace). Thus, the GLRT decides that some linear
combination of the signal waveforms b1, . . . , bp is present only if the energy of the component of x

lying in the whitened signal subspace is sufficiently large.
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Under the null hypothesis the test statistic Tg is distributed as a complex central chi-square random
variable with p degrees of freedom, while under the alternative hypothesisTg is noncentral chi-square
with noncentrality parameter vector (sH BH R−1

w Bs, 1). The ROC curve is indexed by the number of
signals p and the noncentrality parameter but is not expressible in closed form for p > 1.

13.5.3 Signal Detection: Random Gains

In some cases a random Gaussian model for the gains may be more appropriate than the unknown
gain model considered above. When the p-dimensional gain vector s is multivariate normal with
zero mean and p × p covariance matrix Rs the compound signal component sc = Bs is an n-
dimensional random Gaussian vector with zero mean and rank p covariance matrix BRsBH . A
standard assumption is that the gains and the additive noise are statistically independent. The
detection problem can then be stated as testing the two simple hypotheses H : x ∼ Nn(0, Rw) vs.
K : x ∼ Nn(0, BRsBH + Rw). It can be shown that the most powerful LRT has the form

T (x) =
p∑

i=1

(
λi

1 + λi

)
|v∗

i R
− 1

2
w x|2

K
>
<
H

γ, (13.16)

where {λi}pi=1 are the nonzero eigenvalues of the matrix R
− 1

2
w BRsBH R

−H
2

w and {vi}pi=1 are the
associated eigenvectors. Under H the test statistic T (x) is distributed as complex noncentral
chi-square with p degrees of freedom and noncentrality parameter vector (0, dH ) where dH =
[λ1/(1 + λ1), . . . , λp/(1 + λp)]. Under the alternative hypothesis T is also distributed as non-
central complex chi-square, however, with noncentrality vector (0, dK) where dK are the nonzero
eigenvalues of BRsBH . The ROC is not available in closed form for p > 1.

13.5.4 Signal Detection: Single Signal

We obtain a unification of the GLRT for unknown gain and the LRT for random gain in the case of
a single impinging signal waveform: B = b1, p = 1. In this case the test statistic Tg in (13.15) and
T in (13.16) reduce to the identical form and we get the same detector structure∣∣xH R−1

w b1

∣∣2
bH

1 R−1
w b1

K
>
<
H

η,

This establishes that the GLRT is uniformly most powerful over all values of the gain parameter s1 for
p = 1. Note that even though the form of the unknown parameter GLRT and the random parameter
LRT are identical for this case, their ROC curves and their thresholds γ will be different since the
underlying observation models are not the same. When the noise is white the test simply compares
the magnitude squared of the complex correlator output

∑n
i=1 b∗

1(ti)x(ti) to a threshold γ .

13.6 Spatio-Temporal Signals

Consider the general spatio-temporal model

x(ti) =
q∑

j=1

aj

p∑
k=1

sjkbk(ti) + w(ti), i = 1, . . . , n.

This model applies to a wide range of applications in narrowband array processing and has been
thoroughly studied in the context of signal detection in [14]. The m-element vector x(ti) is a
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snapshot at time ti of the m-element array response to p impinging signals arriving from q different
directions. The vector aj is a known steering vector which is the complex response of the array to
signal energy arriving from the j th direction. From this direction the array receives the superposition∑p

k=1 sjkbk of p known time varying signal waveforms bk = [bk(t1), . . . , bk(tn)]T , k = 1, . . . , p.
The presence of the superposition accounts for both direct and multipath arrivals and allows for more
signal sources than directions of arrivals when p > q. The complex Gaussian noise vectors w(ti)

are spatially correlated with spatial covariance cov[w(ti)] = Rw but are temporally uncorrelated
cov[w(ti), w(tj )] = 0, i 6= j .

By arranging the n column vectors {x(ti)}ni=1 in an m×n matrix X we obtain the equivalent matrix
model

X = ASBH + W,

where S = (
sij
)

is a q × p matrix whose rows are vectors of signal gain factors for each different
direction of arrival, A = [a1, . . . , aq ] is an m × q matrix whose columns are steering vectors for

different directions of arrival, and B = [b1, . . . , bp]T is a p × n matrix whose rows are different
signal waveforms. To avoid singular detection it is assumed that A is of rank q, q ≤ m, and that B is
of rank p, p ≤ n. We consider only a few applications of this model here. For many others see [14].

13.6.1 Detection: Known Gains and Known Spatial Covariance

First we assume the gain matrix S and the spatial covariance Rw are known. This case is only
relevant when one knows the direct path and multipath geometry of the propagation medium (S), the
spatial distribution of the ambient (possibly coherent) noise (Rw), the q directions of the impinging
superposed signals (A), and the p signal waveforms (B). Here, the detection problem is stated in
terms of the simple hypotheses H : X ∼ Nnm(0, Rw ⊗ In) vs. K : X ∼ Nnm(ASB, Rw ⊗ In). For
this case, the LRT (13.5) is the most powerful test and, using (13.12), has the form

T (x) = Re
(
tr
{
AH R−1

w XBH SH
}) K

>
<
H

γ.

Since the test statistic is Gaussian under H and K the ROC curve is of similar form to the ROC for
detection of temporal signals with known gains.

Identifying the quantities X̃ = R
− 1

2
w X and Ã = R

− 1
2

w A as the spatially whitened measurement
matrix and spatiallywhitenedarray responsematrix, respectively, the test statistic T canbe interpreted
as a multivariate spatiotemporal correlator detector. In particular, when there is only one signal
impinging on the array from a single direction then p = q = 1, Ã = ã a column vector, B = bT a
row vector, S = s a complex scalar, and the test statistic becomes

T (x) = Re
{
ãH ·s X̃ ·t b∗ s∗}

= Re


s∗

m∑
j=1

ã∗
j

n∑
i=1

b∗(ti)x̃j (ti)


 .

In the above the multiplication notation ·s and ·t is used to simply emphasize the respective matrix
multiplication operations (correlation) which occur over the spatial domain and the time domain. It
can be shown that the ROC curve monotonically increases in the detectability index ρ = naH R−1

w a ·
‖sb‖2.
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13.6.2 Detection: Unknown Gains and Unknown Spatial Covariance

By assuming the gain matrix S and Rw to be unknown, the detection problem becomes one of
testing for noise alone against noise plus p coherent signal waveforms, where the waveforms lie in
the subspace formed by all linear combinations of the rows of B but are otherwise unknown. This
gives a composite null and alternative hypothesis for which the generalized likelihood ratio test can
be derived by maximizing the known-gain likelihood ratio over the gain matrix S. The result is the
GLRT [14]

Tg(x) =

∣∣∣∣AH ˆ̂R
−1

K A

∣∣∣∣∣∣∣AH R̂
−1
H A

∣∣∣
K
>
<
H

γ,

where | · | denotes the determinant, R̂H = 1
n
XXH is a sample estimate of the spatial covariance matrix

using all of the snapshots, and ˆ̂RK = 1
n
X[In − BH [BBH ]−1B]XH is the sample estimate using only

those components of the snapshots lying outside of the row space of the signal waveform matrix B.
To gain insight into the test statistic Tg consider the asymptotic convergence of Tg as the number

of snapshots n goes to infinity. By the strong law ˆ̂RK converges to the covariance matrix of X[In −
BH [BBH ]−1B]. Since In − BH [BBH ]−1B annihilates the signal component ASB, this covariance is
the same quantity R, R ≤ Rw , under both H and K . On the other hand, R̂H converges to Rw under H

while it converges to Rw +ASBBH SH AH under K . Hence when strong signals are present Tg tends to
take on very large values near the quantity

(|AH R−1A|) / (|AH [Rw + ASBBH SH AH ]−1AH |) � 1.
The distribution of Tg under H (K) can be derived in terms of the distribution of a sum of central

(noncentral) complex beta random variables. See [14] for discussion of performance and algorithms
for data recursive computation of Tg . Generalizations of this GLRT exist which incorporate nonzero
mean [14, 15].

13.7 Signal Classification

Typical classification problems arising in signal processing are: classifying an individual signal wave-
form out of a set of possible linearly independent waveforms, classifying the presence of a particular
set of signals as opposed to other sets of signals, classifying among specific linear combinations of
signals, and classifying the number of signals present. The problem of classification of the number
of signals, also known as the order selection problem, is treated elsewhere in this Handbook. While
the Gaussian spatiotemporal model could be treated in analogous fashion, for concreteness we focus
on the case of the temporal signal model (13.13).

13.7.1 Classifying Individual Signals

Here it is of interest to decide which one of the p-scaled signal waveforms s1b1, . . . , spbp are present

in the observations x = [x(t1), . . . x(tn)]T . Denote by Hk the hypothesis that x = skbk + w. Signal
classification can then be stated as the problem of testing between the following simple hypotheses

H1 : x = s1b1 + w

...
...

...

Hp : x = spbp + w

For known gain factors sk , known signal waveforms bk , and known noise covariance Rw , these
hypotheses are simple, the density function f (x|sk, bk) = Nn(skbk, Rw) under Hk involves no
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unknown parameters, and the maximum likelihood classifier (13.8) reduces to the decision rule

decide Hj if and only if j = argmink=1,...,p(x − skbk)
H R−1

w (x − skbk) . (13.17)

Thus, the classifier chooses the most likely signal as that signal sj bj which has minimum normalized
distance from the observed waveform x. The classifier can also be interpreted as a minimum distance
classifier which chooses the signal which minimizes the Euclidean distance ‖x̃ − skb̃k‖ between the

prewhitened signal b̃k = R
− 1

2
w bk and the prewhitened measurement x̃ = R

− 1
2

w x.

Written in the minimum normalized distance form, the ML classifier appears to involve nonlinear
statistics. However, an obvious simplification of (13.17) reveals that the ML classifier actually only
requires computing linear functions of x

decide Hj if and only if j = argmaxk=1,...,p

{
Re
(
xH R−1

w bk sk
)− 1

2|sk|2 bH
k R−1

w bk

}
.

Note that this linear reduction only occurs when the covariances Rw are identical under each Hk ,
k = 1, . . . , p. In this case the ML classifier can be implemented using prewhitening filters followed
by a bank of correlators or matched filters, an offset adjustment, and a maximum selector (Fig. 13.5).

FIGURE 13.5: The ML classifier for classifying presence of one of p signals sj (ti)
def= sj bj (ti),

j = 1, . . . , p, under additive Gaussian white noise. dj = −1
2|sj |2 ‖bj‖2 is an offset and jmax is the

index of correlator output which is maximum. For nonwhite noise a prewhitening transformation
must be performed on x(ti) and the bj (ti)’s prior to implementation of ML classifier.

An additional simplification occurs when the noise is white, Rw = In, and all signal energies
|sk|2‖bH

k ‖2 are identical: the classifier chooses the most likely signal as that signal bj (ti)sj which is
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maximally correlated with the measurement x:

decide Hj if and only if j = argmax k=1,...,pRe

(
sk

n∑
i=1

b∗
k (ti)x(ti)

)
.

The decision regions RHk
= {x : decide Hk} induced by (13.17) are piecewise linear regions,

known as Voronoi cells Vk , centered at each of the prewhitened signals skb̃k . The misclassification
error probabilities PMk

= 1 − P(x ∈ RHk
|Hk) = 1 − ∫

x∈Vk
f (x|Hk)dx must generally be com-

puted by integrating complex multivariate Gaussian densities f (x|Hk) = Nn(skbk, Rw) over these
regions. In the case of orthogonal signals biR

−1
w bj = 0, i 6= j , this integration reduces to a single

integral of a univariate N1(ρk, ρk) density function times the product of p − 1 univariate N1(0, ρi)

cumulative distribution functions, i = 1, . . . , p, i 6= k, where ρk = bH
k R−1

w bk . Even for this case
no general closed form expressions for PMk

is available. However, analytical lower bounds on PMk

and on average misclassification probability 1
p

∑p

k=1 PMk
can be used to qualitatively assess classifer

performance [12].

13.7.2 Classifying Presence of Multiple Signals

We conclude by treating the problem where the signal component of the observation is the linear
combination of one of J hypothesized subsets Sk , k = 1, . . . , J , of the signal waveforms b1, . . . , bp .
Assume that subset Sk contains pk signals and that the Sk , k = 1, . . . , J , are disjoint, i.e., they
do not contain any signals in common. Define the n × pk matrix Bk whose columns are formed
from the subset Sk . We can now state the classification problem as testing between the J composite
hypotheses

H1 : x = B1s1 + w, s1 ∈ Cl p1

...
...

...

HJ : x = BJ sJ + w, sJ ∈ Cl pJ

where sk is a column vector of pk unknown complex gains.
The density function under Hk , f (x|sk, Bk) = Nn(Bksk, Rw), is a function of unknown pa-

rameters sk and, therefore, the ML classifier (13.8) involves finding the largest among maximized
likelihoods maxsk

f (x|sk, Bk), k = 1, . . . , J . This yields the following form for the ML classifier:

decide Hj if and only if j = argmink=1,...,J

(
x − Bkŝk

)H
R−1

w

(
x − Bkŝk

)
, (13.18)

where ŝk = [
BH

k R−1
w Bk

]−1
BH

k R−1
w x is the maximum likelihood gain vector estimate. The decision

regions are once again piecewise linear but with Voronoi cells having centers at the least squares
estimates of the hypothesized signal components Bkŝk , k = 1, . . . , J .

Similarly to the case of noncomposite hypotheses considered in the previous subsection, a simpli-
fication of (13.18) is possible

decide Hj if and only if j = argmaxk=1,...,J xH R−1
w Bk

[
BH

k R−1
w Bk

]−1
BH

k R−1
w x

Defining the prewhitened versions x̃ = R
− 1

2
w x and B̃k = R

− 1
2

w Bk of the observations and the kth
signal matrix, the ML classifier is seen to decide that the linear combination of the pj signals in Hj

is present when the length ‖B̃j [B̃H

j B̃j ]−1B̃
H

j ] x̃‖ of the projection of x̃ onto the j th signal space

(colspan{B̃j }) is greatest. This classifer can be implemented as a bank of p adaptive matched filters
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each matched to one of the least squares estimates B̃kŝk , k = 1, . . . , p, of the prewhitened signal
component. Under any Hi the quantities xH R−1

w Bk[BH
k R−1

w Bk]−1R−1
w x, k = 1, . . . J , are distributed

as complex noncentral chi-square with pk degrees of freedom. For the special case of orthogonal
prewhitened signals biR

−1
w bj = 0, i 6= j , these variables are also statistically independent and PMi

can be computed as a one-dimensional integral of a univariate noncentral chi-square density times
the product of J − 1 univariate noncentral chi-square cumulative distribution functions.
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14.6 Recent Developments
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14.1 Introduction

The main objective of spectrum estimation is the determination of the power spectrum density (PSD)
of a random process. The PSD is a function that plays a fundamental role in the analysis of stationary
random processes in that it quantifies the distribution of total power as a function of frequency. The
estimation of the PSD is based on a set of observed data samples from the process. A necessary
assumption is that the random process is at least wide sense stationary, that is, its first and second
order statistics do not change with time. The estimated PSD provides information about the structure
of the random process which can then be used for refined modeling, prediction, or filtering of the
observed process.

Spectrum estimation has a long history with beginnings in ancient times [17]. The first significant
discoveries that laid the grounds for later developments, however, were made in the early years of the
eighteenth century. They include one of the most important advances in the history of mathematics,
Fourier’s theory. According to this theory, an arbitrary function can be represented by an infinite
summationof sineandcosine functions. Later came theSturm-Liouville spectral theoryofdifferential
equations, which was followed by the spectral representations in quantum and classical physics
developed by John von Neuman and Norbert Wiener, respectively. The statistical theory of spectrum
estimation started practically in 1949 when Tukey introduced a numerical method for computation
of spectra from empirical data. A very important milestone for further development of the field
was the reinvention of the fast Fourier transform (FFT) in 1965, which is an efficient algorithm for
computation of the discrete Fourier transform. Shortly thereafter came the work of John Burg, who
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proposed a fundamentally new approach to spectrum estimation based on the principle of maximum
entropy. In the past three decades his work was followed up by many researchers who have developed
numerous new spectrum estimation procedures and applied them to various physical processes from
diverse scientific fields. Today, spectrum estimation is a vital scientific discipline which plays a major
role in many applied sciences such as radar, speech processing, underwater acoustics, biomedical
signal processing, sonar, seismology, vibration analysis, control theory, and econometrics.

14.2 Important Notions and Definitions

14.2.1 Random Processes

The objects of interest of spectrum estimation are random processes. They represent time fluctua-
tions of a certain quantity which cannot be fully described by deterministic functions. The voltage
waveform of a speech signal, the bit stream of zeros and ones of a communication message, or the
daily variations of the stock market index are examples of random processes. Formally, a random
process is defined as a collection of random variables indexed by time. (The family of random vari-
ables may also be indexed by a different variable, for example space, but here we will consider only
random time processes.) The index set is infinite and may be continuous or discrete. If the index
set is continuous, the random process is known as a continuous-time random process, and if the set
is discrete, it is known as a discrete-time random process. The speech waveform is an example of
a continuous random process and the sequence of zeros and ones of a communication message, a
discrete one. We shall focus only on discrete-time processes where the index set is the set of integers.

A random process can be viewed as a collection of a possibly infinite number of functions, also
called realizations. We shall denote the collection of realizations by {x̃[n]} and an observed realization
of it by {x[n]}. For fixed n, {x̃[n]} represents a random variable, also denoted as x̃[n], and x[n] is the
n-th sample of the realization {x[n]}. If the samples x[n] are real, the random process is real, and if
they are complex, the random process is complex. In the discussion to follow, we assume that {x̃[n]}
is a complex random process.

The random process {x̃[n]} is fully described if for any set of time indices n1, n2, ..., nm, the joint
probability density function of x̃[n1], x̃[n2], ..., and x̃[nm] is given. If the statistical properties of the
process do not change with time, the random process is called stationary. This is always the case if for
any choice of random variables x̃[n1], x̃[n2], ..., and x̃[nm], their joint probability density function
is identical to the joint probability density function of the random variables x̃[n1 + k], x̃[n2 + k],
..., and x̃[nm + k] for any k. Then we call the random process strictly stationary. For example, if the
samples of the random process are independent and identically distributed random variables, it is
straightforward to show that the process is strictly stationary. Strict stationarity, however, is a very
severe requirement and is relaxed by introducing the concept of wide-sense stationarity. A random
process is wide-sense stationary if the following two conditions are met:

E (x̃[n]) = µ (14.1)

and

r[n, n+ k] = E
(
x̃∗[n]x̃[n+ k])

= r[k] (14.2)

where E(·) is the expectation operator, x̃∗[n] is the complex conjugate of x̃[n], and {r[k]} is the
autocorrelation function of the process. Thus, if the process is wide-sense stationary, its mean value
µ is constant over time, and the autocorrelation function depends only on the lag k between the
random variables. For example, if we consider the random process

x̃[n] = a cos(2πf0n+ θ̃ ) (14.3)
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where the amplitude a and the frequency f0 are constants, and the phase θ̃ is a random variable that
is uniformly distributed over the interval (−π, π), one can show that

E(x̃[n]) = 0 (14.4)

and

r[n, n+ k] = E
(
x̃∗[n]x̃[n+ k])

= a2

2
cos(2πf0k) . (14.5)

Thus, Eq. (14.3) represents a wide-sense stationary random process.

14.2.2 Spectra of Deterministic Signals

Before we define the concept of spectrum of a random process, it will be useful to review the analogous
concept for deterministic signals, which are signals whose future values can be exactly determined
without any uncertainty. Besides their description in the time domain, the deterministic signals have
a very useful representation in terms of superposition of sinusoids with various frequencies, which
is given by the discrete-time Fourier transform (DTFT). If the observed signal is {g[n]} and it is not
periodic, its DTFT is the complex valued functionG(f ) defined by

G(f ) =
∞∑

n=−∞
g[n]e−j2πf n (14.6)

where j = √−1, f is the normalized frequency, 0 ≤ f < 1, and ej2πf n is the complex exponential
given by

ej2πf n = cos(2πf n)+ j sin(2πf n) . (14.7)

The sum in Eq. (14.6) converges uniformly to a continuous function of the frequency f if

∞∑
n=−∞

|g[n]| < ∞ . (14.8)

The signal {g[n]} can be determined fromG(f ) by the inverse DTFT defined by

g[n] =
∫ 1

0
G(f )ej2πf ndf (14.9)

which means that the signal {g[n]} can be represented in terms of complex exponentials whose
frequencies span the continuous interval [0,1).

The complex functionG(f ) can be alternatively expressed as

G(f ) = |G(f )|ejφ(f ) (14.10)

where |G(f )| is called the amplitude spectrum of {g[n]}, and φ(f ) the phase spectrum of {g[n]}.
For example, if the signal {g[n]} is given by

g[n] =
{

1, n = 1
0, n 6= 1

(14.11)

then
G(f ) = e−j2πf (14.12)
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and the amplitude and phase spectra are

|G(f )| = 1, 0 ≤ f < 1

φ(f ) = −2πf, 0 ≤ f < 1 . (14.13)

The total energy of the signal is given by

E =
∞∑

n=−∞
|g[n]|2 (14.14)

and according to Parseval’s theorem, it can also be obtained from the amplitude spectrum of the
signal, i.e.,

∞∑
n=−∞

|g[n]|2 =
∫ 1

0
|G(f )|2df . (14.15)

From Eq. (14.15), we deduce that |G(f )|2df is the contribution to the total energy of the signal
from the frequency band (f, f + df ). Therefore, we say that |G(f )|2 represents the energy density
spectrum of the signal {g[n]}.

When {g[n]} is periodic with period N , that is

g(n) = g(n+N) (14.16)

for all n, and whereN is the period of {g[n]}, we use the discrete Fourier transform (DFT) to express
{g[n]} in the frequency domain, that is,

G(fk) =
N−1∑
n=0

g[n]e−j2πfkn, fk = k

N
, k ∈ {0,1, · · · , N − 1} . (14.17)

Note that the frequency here takes values from a discrete set. The inverse DFT is defined by

g[n] = 1

N

N−1∑
k=0

G(fk)e
j2πfkn, fk = k

N
. (14.18)

Now Parseval’s relation becomes

N−1∑
n=0

|g[n]|2 = 1

N

N−1∑
k=0

|G(fk)|2, fk = k

N
(14.19)

where the two sides are the total energy of the signal in one period. If we define the average power of
the discrete-time signal by

P = 1

N

N−1∑
n=0

|g[n]|2 (14.20)

then from Eq. (14.19)

P = 1

N2

N−1∑
k=0

|G(fk)|2, fk = k

N
. (14.21)

Thus, |G(fk)|2/N2 is the contribution to the total power from the term with frequency fk , and so it
represents the power spectrum “density” of {g[n]}. For example, if the periodic signal in one period
is defined by

g[n] =
{

1, n = 0
0, n = 1,2, · · · , N − 1

(14.22)
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its PSD P(fk) is

P(fk) = 1

N2
, fk = k

N
, k ∈ {0,1, · · · , N − 1} . (14.23)

Again, note that the PSD is defined for a discrete set of frequencies.
In summary, the spectra of deterministic aperiodic signals are energy densities defined on the

continuous set of frequencies Cf = [0,1). On the other hand, the spectra of periodic signals are
power densities defined on the discrete set of frequencies Df = {0,1/N,2/N, · · · , (N − 1)/N},
where N is the period of the signal.

14.2.3 Spectra of Random Processes

Suppose that we observe one realization of the random process {x̃[n]}, or {x[n]}. From the definition
of the DTFT and the assumption of wide-sense stationarity of {x̃[n]}, it is obvious that we cannot
use the DTFT to obtainX(f ) from {x[n]} because Eq. (14.8) does not hold when we replace g[n] by
x[n]. And indeed, if {x[n]} is a realization of a wide-sense stationary process, its energy is infinite.
Its power, however, is finite as was the case with the periodic signals. So if we observe {x[n]} from
−N toN , {x[n]}N−N , and assume that outside this interval the samples x[n] are equal to zero, we can
find its DTFT, XN(f ) from

XN(f ) =
N∑

n=−N
x[n]e−j2πf n. (14.24)

Then according to Eq. (14.15), |XN(f )|2df represents the energy of the truncated realization that
is contributed by the components whose frequencies are between f and f + df . The power due to
these components is given by

|XN(f )|2df
2N + 1

(14.25)

and |XN(f )|2/(2N + 1) can be interpreted as power density. If we let N → ∞, under suitable
conditions [15],

lim
N→∞

|XN(f )|2
2N + 1

(14.26)

is finite for all f , and this is then the PSD of {x[n]}. We would prefer to find, however, the PSD of
{x̃[n]}, which we define as

P(f ) = lim
N→∞E

{
|X̃N(f )|2
2N + 1

}
(14.27)

where X̃N(f ) is the DTFT of {x̃[n]}N−N . Clearly, P(f )df is interpreted as the average contribution
to the total power from the components of {x̃[n]} whose frequencies are between f and f + df .

There is a very important relationship between the PSD of a wide-sense stationary random process
and its autocorrelation function. By Wold’s theorem, which is the analogue of Wiener-Khintchine
theorem for continuous-time random processes, the PSD in Eq. (14.27) is the DTFT of the autocor-
relation function of the process [15], that is,

P(f ) =
∞∑

k=−∞
r[k]e−j2πf k (14.28)

where r[k] is defined by Eq. (14.2).
For all practical purposes, there are three different types of P(f ) [15]. If P(f ) is an absolutely

continuous function of f , the random process has a purely continuous spectrum. If P(f ) is iden-
tically equal to zero for all f except for frequencies f = fk , k = 1,2, ..., where it is infinite, the
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random process has a line spectrum. In this case, a useful representation of the spectrum is given by
the Dirac δ-functions,

P(f ) =
∑
k

Pkδ(f − fk) (14.29)

wherePk is thepower associatedwith thek line component. Finally, the spectrumof a randomprocess
may be mixed if it is a combination of a continuous and line spectra. Then P(f ) is a superposition
of a continuous function of f and δ-functions.

14.3 The Problem of Power Spectrum Estimation

The problem of power spectrum estimation can be stated as follows: Given a set ofN samples {x[0],
x[1], ..., x[N−1]} of a realization of the random process {x̃[n]}, denoted also by {x[n]}N−1

0 , estimate
the PSD of the random process, P(f ). Obviously this task amounts to estimation of a function and
is distinct from the typical problem in elementary statistics where the goal is to estimate a finite set
of parameters.

Spectrumestimationmethods canbeclassified into twocategories: nonparametric andparametric.
The nonparametric approaches do not assume any specific parametric model for the PSD. They are
based solely on the estimate of the autocorrelation sequence of the random process from the observed
data. For the parametric approaches on the other hand, we first postulate a model for the process
of interest, where the model is described by a small number of parameters. Based on the model, the
PSD of the process can be expressed in terms of the model parameters. Then the PSD estimate is
obtained by substituting the estimated parameters of the model in the expression for the PSD. For
example, if a random process {x̃[n]} can be modeled by

x̃[n] = −ax̃[n] + w̃[n] (14.30)

where a is an unknown parameter and {w̃[n]} is a zero mean wide-sense stationary random process
whose random variables are uncorrelated and with the same variance σ 2, it can be shown that the
PSD of {x̃[n]} is

P(f ) = σ 2

|1 + ae−j2πf |2 . (14.31)

Thus, to find P(f ) it is sufficient to estimate a and σ 2.
The performance of a PSD estimator is evaluated by several measures of goodness. One is the bias

of the estimator defined by

b(f ) = E
(
P̂ (f )− P(f )

)
(14.32)

where P̂ (f ) and P(f ) are the estimated and true PSD, respectively. If the bias b(f ) is identically
equal to zero for all f , the estimator is said to be unbiased, which means that on average it yields the
true PSD. Among the unbiased estimators, we search for the one that has minimal variability. The
variability is measured by the variance of the estimator

v(f ) = E
(
[P̂ (f )− E( ˆP(f ))]2

)
. (14.33)

A measure that combines the bias and the variance is the relative mean square error given by [15]

ν(f ) = v(f )+ b(f )2

P(f )
. (14.34)

c©1999 by CRC Press LLC



The variability of a PSD estimator is also measured by the normalized variance [8]

ψ(f ) = v(f )

E2(P̂ (f ))
. (14.35)

Finally, another important metric for comparison is the resolution of the PSD estimators. It
corresponds to the ability of the estimator to provide the fine details of the PSD of the random
process. For example if the PSD of the random process has two peaks at frequencies f1 and f2, then
the resolution of the estimator would be measured by the minimum separation of f1 and f2 for
which the estimator still reproduces two peaks at f1 and f2.

14.4 Nonparametric Spectrum Estimation

When the method for PSD estimation is not based on any assumptions about the generation of the
observed samples other than wide-sense stationarity, then it is termed a nonparametric estimator.
According to Eq. (14.28),P(f ) can be obtained by first estimating the autocorrelation sequence from
the observed samples x[0], x[1], · · ·, x[N − 1], and then applying the DTFT to these estimates. One
estimator of the autocorrelation is given by

r̂[k] = 1

N

N−1−k∑
n=0

x∗[n]x[n+ k], 0 ≤ k ≤ N − 1 . (14.36)

The estimates of r̂[k] for −N < k < 0 are obtained from the identity

r̂[−k] = r̂∗[k] (14.37)

and those for |k| ≥ N are set equal to zero. This estimator, although biased, has been preferred over
others. An important reason for favoring it is that it always yields nonnegative estimates of the PSD,
which is not the case with the unbiased estimator.

Many nonparametric estimators rely on using Eq. (14.36) and then transform the obtained
autocorrelation sequence to estimate the PSD. Other nonparametric methods, however, operate
directly on the observed data.

14.4.1 Periodogram

The periodogram was introduced by Schuster in 1898 when he was searching for hidden periodicities
while studying sunspot data [19]. To find the periodogram of the data {x[n]}N−1

0 , first we determine
the autocorrelation sequence r[k] for −(N − 1) ≤ k ≤ N − 1 and then take the DTFT, i.e.,

P̂PER(f ) =
N−1∑

k=−N+1

r̂[k]e−j2πf k . (14.38)

It is more convenient to write the periodogram directly in terms of the observed samples x[n]. It
is then defined as

P̂PER(f ) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πf n

∣∣∣∣∣
2

. (14.39)

Thus, the periodogram is proportional to the squared magnitude of the DTFT of the observed data.
In practice, the periodogram is calculated by applying the FFT, which computes it at a discrete set of
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frequencies Df = {fk : fk = k/N, k = 0,1,2, · · · , (N − 1)}. The periodogram is then expressed
by

P̂PER(fk) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πkn/N

∣∣∣∣∣
2

, fk ∈ Df . (14.40)

To allow for finer frequency spacing in the computed periodogram, we define a zero padded sequence
according to

x′[n] =
{
x[n], n = 0,1, · · · , N − 1
0, n = N,N + 1, · · · , N ′ . (14.41)

Then we specify the new set of frequencies D′
f = {fk : fk = k/N ′, k ∈ {0,1,2, · · · , (N ′ − 1)}},

and obtain

P̂PER(fk) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πkn/N ′
∣∣∣∣∣
2

, fk ∈ D′
f . (14.42)

A general property of good estimators is that they yield better estimates when the number of
observed data samples increases. Theoretically, if the number of data samples tends to infinity, the
estimates should converge to the true values of the estimated parameters. So, in the case of a PSD
estimator, as we get more and more data samples, it is desirable that the estimated PSD tends to the
true value of the PSD. In other words, if for finite number of data samples the estimator is biased, the
bias should tend to zero asN → ∞ as should the variance of the estimate. If this is indeed the case, the
estimator is called consistent. Although the periodogram is asymptotically unbiased, it can be shown
that it is not a consistent estimator. For example, if {x̃[n]} is real zero-mean white Gaussian noise,
which is a process whose random variables are independent, Gaussian, and identically distributed
with variance σ 2, the variance of P̂PER(f ) is equal to σ 4 regardless of the length N of the observed
data sequence [12]. The performance of the periodogram does not improve asN gets larger because
asN increases, so does the number of parameters that are estimated, P(f0), P(f1), ..., P(fN−1). In
general, for the variance of the periodogram, we can write [12]

var(P̂PER(f )) ' P 2(f ) (14.43)

where P(f ) is the true PSD.
Interesting insight can be gained if one writes the periodogram as follows

P̂PER(f ) = 1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πf n

∣∣∣∣∣
2

= 1

N

∣∣∣∣∣
∞∑

n=−∞
x[n]wR[n]e−j2πf n

∣∣∣∣∣
2

(14.44)

where wR[n] is a rectangular window defined by

wR[n] =
{

1, n ∈ {0,1, · · · , N − 1}
0, otherwise

. (14.45)

Thus, wecan regard thefinitedata recordused for estimating thePSDasbeingobtainedbymultiplying
the whole realization of the random process by a rectangular window. Then it is not difficult to show
that the expected value of the periodogram is given by [8]

E
{
P̂PER(f )

}
= 1

N

∫ 1

0
|WR(f − ξ)|2P(ξ)dξ (14.46)
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where WR(f ) is the DTFT of the rectangular window. Hence, the mean value of the periodogram
is a smeared version of the true PSD. Since the implementation of the periodogram as defined in
Eq. (14.44) implies the use of a rectangular window, a question arises as to whether we could use a
window of different shape to reduce the variance of the periodogram. The answer is yes, and indeed
many windows have been proposed which weight the data samples in the middle of the observed
data more than those towards the ends of the observed data. Some frequently used alternatives
to the rectangular window are the windows of Bartlett, Hanning, Hamming, and Blackman. The
magnitude of the DTFT of a window provides two important characteristics about it. One is the
width of the window’s mainlobe and the other is the strength of its sidelobes. A narrow mainlobe
allows for a better resolution, and low sidelobes improve the smoothing of the estimated spectrum.
Unfortunately, the narrower its mainlobe, the higher the sidelobes, which is a typical trade-off in
spectrum estimation. It turns out that the rectangular window allows for the best resolution but has
the largest sidelobes.

14.4.2 The Bartlett Method

One approach to reduce the variance of the periodogram is to subdivide the observed data record into
K nonoverlapping segments, find the periodogram of each segment, and finally evaluate the average
of the so-obtained periodograms. This spectrum estimator, also known as the Bartlett’s estimator,
has variance that is smaller than the variance of the periodogram.

Suppose that the number of data samples N is equal to KL, where K is the number of segments
and L is their length. If the i-th segment is denoted by {xi[n]}L−1

0 , i = 1,2 · · · ,K , where

xi[n] = x[n+ (i − 1)L], n ∈ {0,1, · · · , L− 1} (14.47)

and its periodogram by

P̂
(i)
PER(f ) = 1

L

∣∣∣∣∣
L−1∑
n=0

xi[n]e−j2πf n

∣∣∣∣∣
2

(14.48)

then the Bartlett spectrum estimator is

P̂B(f ) = 1

K

K∑
i=1

P̂
(i)
PER(f ) . (14.49)

This estimator is consistent and its variance compared to the variance of the periodogram is
reduced by a factor of K . This reduction, however, is paid by a decrease in resolution. The Bartlett
estimator has a resolutionK times less than that of the periodogram. Thus, this estimator allows for
a straightforward trading of resolution for variance.

14.4.3 The Welch Method

The Welch method is another estimator that exploits the periodogram. It is based on the same idea as
Bartlett’s approach of splitting the data into segments and finding the average of their periodograms.
The difference is that the segments are overlapped, where the overlaps are usually 50% or 75% large,
and the data within a segment are windowed. Let the length of the segments be L, the i-th segment
be denoted again by {xi[n]}L−1

0 , and the offset of successive sequences byD samples. Then

N = L+D(K − 1) (14.50)

whereN is the total number of observed samples andK the total number of sequences. Note that if
there is no overlap, K = N/L, and if there is 50% overlap, K = 2N/L − 1. The i-th sequence is
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defined by
xi[n] = x[n+ (i − 1)D], n ∈ {0,1, · · · , L− 1} (14.51)

where i = 1,2, · · · ,K , and its periodogram by

P̂
(i)

M (f ) = 1

L

∣∣∣∣∣
L−1∑
n=0

w[n]xi[n]e−j2πf n

∣∣∣∣∣
2

. (14.52)

Here P̂ (i)M (f ) is the modified periodogram of the data because the samples x[n] are weighted by a
nonrectangular window w[n]. The Welch spectrum estimate is then given by

P̂B(f ) = 1

K

K∑
i=1

P̂
(i)
M (f ) . (14.53)

By permitting overlap of sequences, we can form more segments than in the case of Bartlett’s
method. Also, if we keep the same number of segments, the overlap allows for longer segments. The
increased number of segments reduces the variance of the estimator, and the longer segments improve
its resolution. Thus, with the Welch method we can trade reduction in variance for improvement
in resolution in many more ways than with the Bartlett method. It can be shown that if the overlap
is 50%, the variance of the Welch estimator is approximately 9/16 of the variance of the Bartlett
estimator [8].

14.4.4 Blackman-Tukey Method

The periodogram can be expressed in terms of the estimated autocorrelation lags as

P̂PER(f ) =
N−1∑

k=−(N−1)

r̂[k]e−j2πf k . (14.54)

where

r̂[k] =
{

1
N

∑N−1−k
n=0 x∗[n]x[n+ k], k = 0,1, · · · , N − 1

r̂∗[−k], k = −(N − 1),−(N − 2), · · · ,−1
. (14.55)

From Eqs. (14.54) and (14.55) we see that the estimated autocorrelation lags are given the same
weight in the periodogram regardless of the difference of their variances. From Eq. (14.55), however,
it is obvious that the autocorrelations with smaller lags will be estimated more accurately than the
ones with lags close toN because of the different number of terms that are used in the summation. For
example, r̂[N−1] has only the term x∗[0]x[n−1] compared to theN terms used in the computation
of r̂[0]. Therefore, the large variance of the periodogram can be ascribed to the large weight given to
the poor autocorrelation estimates used in its evaluation.

Blackman and Tukey proposed to weight the autocorrelation sequence so that the autocorrelations
with higher lags are weighted less [3]. Their estimator is given by

P̂BT(f ) =
N−1∑

k=−(N−1)

w[k]r̂[k]e−j2πf k (14.56)

where the window w[k] is real nonnegative, symmetric, and nonincreasing with |k|, that is

1. 0 ≤ w[k] ≤ w[0] = 1 ,

2. w[−k] = w[k], and (14.57)

3. w[k] = 0, M < |k|, M ≤ N − 1 .
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Note that the symmetry property of w[k] ensures that the spectrum is real.
The Blackman-Tukey estimator can be expressed in the frequency domain by the convolution

P̂BT(f ) =
∫ 1

0
W(f − ξ)P̂PER(ξ)dξ . (14.58)

From Eq. (14.58) we deduce that the window’s DTFT should satisfy

W(f ) ≥ 0, f ∈ [0,1) (14.59)

so that the spectrum is guaranteed to be a nonnegative function, i.e.,

P̂BT(f ) ≥ 0, |f | ≤ 1

2
. (14.60)

The bias, the variance, and the resolution of the Blackman-Tukey method depend on the applied
window. For example, if the window is triangular (Bartlett),

wB [k] =
{

M−|k|
M

, |k| ≤ M

0, otherwise
(14.61)

and if N >> M >> 1, the variance of the Blackman-Tukey estimator is [12]

var(P̂BT(f )) ' 2M

3N
P 2(f ) (14.62)

where P(f ) is the true spectrum of the process. Compared to Eq. (14.43), it is clear that the variance
of this estimator may be significantly smaller than the variance of the periodogram. However, asM
decreases, so does the resolution of the Blackman-Tukey estimator.

14.4.5 Minimum Variance Spectrum Estimator

The periodogram [Eq. (14.44)] can also be written as

P̂PER(f ) = 1

N

∣∣∣eH (f )x∣∣∣2
= N

∣∣∣hH (f )x∣∣∣2 (14.63)

where e(f ) is an N × 1 vector defined by

e(f ) = [1 ej2πf ej4πf · · · ej2(N−1)πf ]T (14.64)

and h(f ) = e(f )/N withH denoting complex conjugate transpose. We could interpret h(f ) as the
impulse response of a finite impulse response (FIR) filter. It is easy to show that h(f ) is a bandpass
filter centered at f with a bandwidth of approximately 1/N . Then starting with Eq. (14.63) we can
show that the value of the periodogram at frequency f can be obtained by squaring the magnitude of
the filter output atN − 1. Such filters inherently exist for all the frequencies where the periodogram
is evaluated, and they all have the same bandwidth. Thus, the periodogram may be viewed as a bank
of FIR filters with equal bandwidths.

Capon proposed a spectrum estimator for processing large seismic arrays which, like the peri-
odogram, can be interpreted as a bank of filters [5]. The width of these filters, however, is data
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dependent and optimized to minimize their response to components outside the band of interest. If
the impulse response of the filter centered at f0 is h(f0), then it is desired to minimize

ρ =
∫ 1

0
|H(f )|2P(f )df (14.65)

subject to the constraint
H(f0) = 1 (14.66)

where H(f ) is the DTFT of h(f0). This is a constrained minimization problem, and the solution
provides the optimal impulse response. When the solutions are used to determine the PSD of the
observed data, we obtain the minimum variance (MV) spectrum estimator

P̂MV(f ) = N

eH (f )R̂−1e(f )
(14.67)

where R̂−1 is the inverse matrix of the N ×N autocorrelation matrix R̂ defined by

R̂ =




r̂[0] r̂[−1] r̂[−2] · · · r̂[−N + 1]
r̂[1] r̂[0] r̂[−1] · · · r̂[−N + 2]
...

...
...

...
...

r̂[N − 1] r̂[N − 2] r̂[N − 3] · · · r̂[0]


 . (14.68)

The length of the FIR filter does not have to be N , especially if we want to avoid the use of the
unreliable estimates of r[k]. If the length of the filter’s response is p < N , then the vector e(f ), the
autocorrelation matrix R̂, and the spectrum estimate P̂MV(f ) are defined by Eqs. (14.64), (14.68),
and (14.67), respectively, with N replaced by p [12].

The MV estimator has better resolution than the periodogram and the Blackman-Tukey estimator.
The resolution and the variance of the MV estimator depend on the choice of the filter length p. If p
is large, the bandwidth of the filter is small, which allows for better resolution. A larger p, however,
requires more autocorrelation lags in the autocorrelation matrix R̂, which increases the variance of
the estimated spectrum. Again, we have a trade-off between resolution and variance.

14.4.6 Multiwindow Spectrum Estimator

Many efforts have been made to improve the performance of the periodogram by multiplying the
data with a nonrectangular window. The introduction of such windows has been more or less
ad hoc, although they have been constructed to have narrow mainlobes and low sidelobes. By
contrast, Thomson has proposed a spectrum estimation method that also involves use of windows
but is derived from fundamental principles. The method is based on the approximate solution of
a Fredholm equation using an eigenexpansion [21]. The method amounts to applying multiple
windows to the data, where the windows are discrete prolate spheroidal (Slepian) sequences. These
sequences are orthogonal and their Fourier transforms have the maximum energy concentration in
a given bandwidthW .

The multiwindow (MW) spectrum estimator is given by [21]

P̂MW(f ) = 1

m

m−1∑
i=0

P̂i(f ) (14.69)

where the P̂i(f ) is the i-th eigenspectrum defined by

P̂i(f ) = 1

λi

∣∣∣∣∣
N−1∑
n=0

x[n]wi[n]e−j2πf n

∣∣∣∣∣
2

(14.70)
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with wi[n] being the i-th Slepian sequence, λi the i-th Slepian eigenvalue, and W the analysis
bandwidth. The steps for obtaining P̂MW(f ) are [22]

1. Selection of the analysis bandwidthW whose typical values are between 1.5/N and 20/N .
The number of windows m depends on the selected W , and is given by b2NWc, where
b xc denotes the largest integer less than or equal to x. The spectrum estimator has a
resolution equal toW .

2. Evaluation of the m eigenspectra according to Eq. (14.70), where the Slepian sequences
and eigenvalues satisfy

Cwi = λiwi . (14.71)

with the elements of the matrix C being given by

cmn = sin(2πW(m− n))

π(m− n)
, m, n = 1,2, · · · , N . (14.72)

In the evaluation of the eigenspectra, only the Slepian sequences that correspond to the
m largest eigenvalues of C are used.

3. Computation of the average spectrum according to Eq. (14.69). If the spectrum is mixed,
that is, the observed data contain harmonics, the MW method uses a likelihood ratio test
to determine if harmonics are present. If the test shows that there is a harmonic around the
frequency f0, the spectrum is reshaped by adding an impulse at f0 followed by correction
of the “local” spectrum for the inclusion of the impulse. For details, see [9, 21].

The MW method is consistent, and its variance for fixedW tends to zero as 1/N when N → ∞.
The variance, however, as well as the bias and the resolution, depend on the bandwidthW .

14.5 Parametric Spectrum Estimation

A philosophically different approach to spectrum estimation of a random process is the parametric
one, which is based on the assumption that the process can be described by a parametric model. Based
on the model, the spectrum of the process can then be expressed in terms of the parameters of the
model. The approach thus consists of three steps: (1) selection of an appropriate parametric model
(usually based on a priori knowledge about the process), (2) estimation of the model parameters, and
(3) computation of the spectrum using the so-obtained parameters. In the literature the parametric
spectrum estimation methods are known as high-resolution methods because they can achieve better
resolution than the nonparametric methods.

The most frequently used models in the literature are the autoregressive (AR), the moving average
(MA), the autoregressive moving average (ARMA), and the sum of harmonics (complex sinusoids)
embedded in noise. With the AR model we assume that the observed data have been generated by a
system whose input-output difference equation is given by

x[n] = −
p∑
k=1

akx[n− k] + e[n] (14.73)

where x[n] is the observed output of the system, e[n] is the unobserved input of the system, and the
ak ’s are its coefficients. The input e[n] is a zero mean white noise process with unknown variance
σ 2, and p is the order of the system. This model is usually abbreviated as AR(p). The MA model is
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given by

x[n] =
q∑
k=0

bke[n− k] (14.74)

where the bk ’s denote the MA parameters, e[n] is a zero mean white noise process with unknown
variance σ 2, and q is the order of the model. The first MA coefficient b0 is set usually to be b0 = 1,
and the model is denoted by MA(q). The ARMA model combines the AR and MA models and is
described by

x[n] = −
p∑
k=1

akx[n− k] +
q∑
k=0

bke[n− k] . (14.75)

Since the AR and MA orders arep and q, respectively, the model in Eq. (14.75) is referred to as ARMA
(p, q). Finally, the model of complex sinusoids in noise is

x[n] =
m∑
i=1

Aie
j2πfin + e[n], n = 0,1, · · · , N − 1 (14.76)

where m is the number of complex sinusoids, Ai and fi are the complex amplitude and frequency
of the i-th complex sinusoid, respectively, and e[n] is a sample of a noise process, which is not
necessarily white. Frequently, we assume that the samples e[n] are generated by a certain parametric
probability distribution whose parameters are unknown, or e[n] itself is modeled as an AR, MA, or
ARMA process.

14.5.1 Spectrum Estimation Based on Autoregressive Models

When the model of x[n] is AR(p), the PSD of the process is given by

PAR(f ) = σ 2

|1 + ∑p

k=1 ake
−j2πf k|2 . (14.77)

Thus, to find PAR(f ) we need the estimates of the AR coefficients ak and the noise variance σ 2.
If we multiply the two sides of Eq. (14.73) by x∗[n − k], k ≥ 0, and take their expectations, we

obtain

E(x[n]x∗[n− k]) = −
p∑
l=1

alE(x[n− l]x∗[n− k])+ E(e[n]x∗[n− k]) (14.78)

or

r[k] =
{ − ∑p

l=1 alr[k − l], k > 0

− ∑p

l=1 alr[k − l] + σ 2, k = 0
. (14.79)

The expressions in Eq. (14.79) are known as the Yule-Walker equations. To estimate the p unknown
ARcoefficients fromEq. (14.79), weneedat leastp equations aswell as the estimatesof the appropriate
autocorrelations. The set of equations that requires the estimation of the minimum number of
correlation lags is

R̂a = −r̂ (14.80)

where R̂ is the p × p matrix

R̂ =




r̂[0] r̂[−1] r̂[−2] · · · r̂[−p + 1]
r̂[1] r̂[0] r̂[−1] · · · r̂[−p + 2]
...

...
...

...
...

r̂[p − 1] r̂[p − 2] r̂[p − 3] · · · r̂[0]


 (14.81)
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and
r̂ = [r̂[1] r̂[2] · · · r̂[p]]T . (14.82)

The parameters a are estimated by
â = −R̂−1r̂ (14.83)

and the noise variance is found from

σ̂ 2 = r̂[0] +
p∑
k=1

akr̂
∗[k]. (14.84)

The PSD estimate is obtained when â and σ̂ 2 are substituted in Eq. (14.77). This approach for
estimating the AR parameters is known in the literature as the autocorrelation method.

Many other AR estimation procedures have been proposed including the maximum likelihood
method, the covariance method, and the Burg method [12]. Burg’s work in the late sixties has a
special place in the history of spectrum estimation because it kindled the interest in this field. Burg
showed that the AR model provides an extrapolation of a known autocorrelation sequence r[k],
|k| ≤ p, for |k| beyond p so that the spectrum corresponding to the extrapolated sequence is the
flattest of all spectra consistent with the 2p + 1 known autocorrelations [4].

An important issue in finding the AR PSD is the order of the assumed AR model. There exist several
model order selection procedures, but the most widely used are the Information Criterion A (AIC)
due to Akaike [2] and the Information Criterion B (BIC), also known as the Minimum Description
Length (MDL) principle, of Rissanen [16] and Schwarz [20]. According to the AIC criterion, the best
model is the one that minimizes the function AIC(k) over k defined by

AIC(k) = N log σ̂ 2
k + 2k (14.85)

where k is the model order, and σ̂ 2
k is the estimated noise variance of that model. Similarly, the MDL

criterion chooses the order which minimizes the functionMDL(k) defined by

MDL(k) = N log σ̂ 2
k + k logN (14.86)

where N is the number of observed data samples. It is important to emphasize that the MDL rule
can be derived if, as a criterion for model selection, we use the maximum a posteriori principle. It has
been found that the AIC is an inconsistent criterion whereas the MDL rule is consistent. Consistency
here means that the probability of choosing the correct model order tends to one asN → ∞.

The AR-based spectrum estimation methods show very good performance if the processes are
narrowband and have sharp peaks in their spectra. Also, many good results have been reported when
they are applied to short data records.

14.5.2 Spectrum Estimation Based on Moving Average Models

The PSD of a moving average process is given by

PMA(f ) = σ 2|1 +
q∑
k=1

bke
−j2πf k|2 . (14.87)

It is not difficult to show that the r[k]’s for |k| > q of an MA(q) process are identically equal to zero,
and that Eq. (14.87) can be expressed also as

PMA(f ) =
q∑

k=−q
r[k]e−j2πf k . (14.88)
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Thus, to find P̂MA(f ) it would be sufficient to estimate the autocorrelations r[k] and use the found
estimates in Eq. (14.88). Obviously, this estimate would be identical to P̂BT(f ) when the applied
window is rectangular and of length 2q + 1.

A different approach is to find the estimates of the unknown MA coefficients and σ 2 and use
them in Eq. (14.87). The equations of the MA coefficients are nonlinear, which makes their esti-
mation difficult. Durbin has proposed an approximate procedure that is based on a high order AR
approximation of the MA process. First the data are modeled by an AR model of order L, where
L >> q. Its coefficients are estimated from Eq. (14.83) and σ̂ 2 according to Eq. (14.84). Then the
sequence 1, â1, â2, · · ·, âL is fitted with an AR(q) model, whose parameters are also estimated using
the autocorrelation method. The estimated coefficients b̂1, b̂2, · · ·, b̂q are subsequently substituted
in Eq. (14.87) together with σ̂ 2.

Good results with MA models are obtained when the PSD of the process is characterized by broad
peaks and sharp nulls. The MA models should not be used for processes with narrowband features.

14.5.3 Spectrum Estimation Based on Autoregressive Moving Average Models

The PSD of a process that is represented by the ARMA model is given by

PARMA(f ) = σ 2 |1 + ∑q

k=1 bke
−j2πf k|2

|1 + ∑p

k=1 ake
−j2πf k|2 . (14.89)

The ML estimates of the ARMA coefficients are difficult to obtain, so we usually resort to methods
that yield suboptimal estimates. For example, we can first estimate the AR coefficients based on the
equation,


r̂[q] r̂[q − 1] · · · r̂[q − p + 1]
r̂[q + 1] r̂[q] · · · r̂[q − p + 2]
...

...
...

...

r̂[M − 1] r̂[M − 2] · · · r̂[M − p]






a1
a2
...

ap


 +



εq+1
εq+2
...

εM


 = −



r̂[q + 1]
r̂[q + 2]
...

r̂[M]




(14.90)
or

R̂a + ε = −r̂ (14.91)

where εi is a term that models the errors in the Yule-Walker equations due to the estimation errors of
the autocorrelation lags, andM ≥ p + q. From Eq. (14.91), we can find the least squares estimates
of a by

â = −
(
R̂H R̂

)−1
R̂H r̂ . (14.92)

This procedure is known as the least-squares modified Yule-Walker equation method. Once the AR
coefficients are estimated, we can filter the observed data

y[n] = x[n] +
p∑
k=1

âkx[n− k] (14.93)

and obtain a sequence that is approximately modeled by an MA(q) model. From the data y[n] we
can estimate the MA PSD by Eq. (14.88) and obtain the PSD estimate of the data x[n]

P̂ARMA(f ) = P̂MA(f )

|1 + ∑p

k=1 âke
−j2πf k|2 (14.94)
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or estimate the parameters b1, b2, ..., bq and σ 2 by Durbin’s method, for example, and then use

P̂ARMA(f ) = σ̂ 2 |1 + ∑q

k=1 b̂ke
−j2πf k|2

|1 + ∑p

k=1 âke
−j2πf k|2 . (14.95)

The ARMA model has an advantage over the AR and MA models because it can better fit spectra
with nulls and peaks. Its disadvantage is that it is more difficult to estimate its parameters than the
parameters of the AR and MA models.

14.5.4 Pisarenko Harmonic Decomposition Method

Let the observed data representm complex sinusoids in noise, i.e.,

x[n] =
m∑
i=1

Aie
j2πfin + e[n], n = 0,1, · · · , N − 1 (14.96)

where fi is the frequency of the i-th complex sinusoid, Ai is the complex amplitude of the i-th
sinusoid,

Ai = |Ai |ejφi (14.97)

with φi being a random phase of the i-th complex sinusoid, and e[n] is a sample of a zero mean white
noise. The PSD of the process is a sum of the continuous spectrum of the noise and a set of impulses
with area |Ai |2 at the frequencies fi , or

P(f ) =
m∑
i=1

|Ai |2δ(f − fi)+ Pe(f ) (14.98)

where Pe(f ) is the PSD of the noise process.
Pisarenko studied the model in Eq. (14.96) and found that the frequencies of the sinusoids can

be obtained from the eigenvector corresponding to the smallest eigenvalue of the autocorrelation
matrix. His method, known as Pisarenko harmonic decomposition (PHD), led to important insights
and stimulated further work which resulted in many new procedures known today as “signal and
noise subspace” methods.

When the noise {ẽ[n]} is zero mean white with variance σ 2, the autocorrelation of {x̃[n]} can be
written as

r[k] =
m∑
i=1

|Ai |2ej2πfik + σ 2δ[k] (14.99)

or the autocorrelation matrix can be represented by

R =
m∑
i=1

|Ai |2eie
H
i + σ 2I (14.100)

where

ei =
[
1 ej2πfi ej4πfi ej2π(N−1)fi

]T
(14.101)

and I is the identity matrix. It is seen that the autocorrelation matrix R is composed of the sum of
signal and noise autocorrelation matrices

R = Rs + σ 2I (14.102)
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where
Rs = EPEH (14.103)

for
E = [e1 e2 · · · em] (14.104)

and P a diagonal matrix

P = diag
{
|A1|2, |A2|2, · · · , |Am|2

}
. (14.105)

If the matrix Rs isM ×M , whereM ≥ m, its rank will be equal to the number of complex sinusoids
m. Another important representation of the autocorrelation matrix R is via its eigenvalues and
eigenvectors, i.e.,

R =
m∑
i=1

(λi + σ 2)viv
H
i +

M∑
i=m+1

σ 2viv
H
i (14.106)

where theλi ’s, i = 1,2, · · · , m,are thenonzeroeigenvaluesofRs . Let theeigenvaluesofR bearranged
in decreasing order so that λ1 ≥ λ2 ≥ · · · ≥ λM , and let vi be the eigenvector corresponding to
λi . The space spanned by the eigenvectors vi , i = 1,2, · · · , m, is called the signal subspace, and the
space spanned by vi , i = m+ 1, m+ 2, · · · ,M , the noise subspace. Since the set of eigenvectors are
orthonormal, that is

vHi vl =
{

1, i = l

0, i 6= l
(14.107)

the two subspaces are orthogonal. In other words if s is in the signal subspace, and z is in the noise
subspace, then sH z = 0.

Now suppose that the matrix R is (m+ 1)× (m+ 1). Pisarenko observed that the noise variance
corresponds to the smallest eigenvalue of R and that the frequencies of the complex sinusoids can be
estimated by using the orthogonality of the signal and noise subspaces, that is,

eHi vm+1 = 0, i = 1,2, · · · , m . (14.108)

We can estimate the fi ’s by forming the pseudospectrum

P̂PHD(f ) = 1

|eH (f )vm+1|2 (14.109)

which should theoretically be infinite at the frequencies fi . In practice, however, the pseudospectrum
does not exhibit peaks exactly at these frequencies because R is not known and, instead, is estimated
from finite data records.

The PSD estimate in Eq. (14.109) does not include information about the power of the noise and the
complex sinusoids. The powers, however, can easily be obtained by using Eq. (14.98). First note that
Pe(f ) = σ 2, and σ̂ 2 = λm+1. Second, the frequencies fi are determined from the pseudospectrum
Eq. (14.109), so it remains to find the powers of the complex sinusoids Pi = |Ai |2. This can readily
be accomplished by using the set ofm linear equations


|êH1 v1|2 |êH2 v1|2 · · · |êHm v1|2
|êH1 v2|2 |êH2 v2|2 · · · |êHm v2|2
...

...
...

...

|êH1 vm|2 |êH2 vm|2 · · · |êHm vm|2






P1
P2
...

Pm


 =



λ1 − σ̂ 2

λ2 − σ̂ 2

...

λm − σ̂ 2


 (14.110)

where

êi =
[
1 ej2πf̂i ej4πf̂i · · · ej2π(N−1)f̂i

]T
. (14.111)

In summary, Pisarenko’s method consists of four steps:
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1. Estimate the (m+ 1)× (m+ 1) autocorrelation matrix R (provided it is known that the
number of complex sinusoids is m).

2. Evaluate the minimum eigenvalue λm+1 and the eigenvectors of R̂.

3. Set thewhitenoisepower to σ̂ 2 = λm+1, estimate the frequencies of the complex sinusoids
from the peak locations of P̂PHD(f ) in Eq. (14.109), and compute their powers from
Eq. (14.110).

4. Substitute the estimated parameters in Eq. (14.98).

Pisarenko’s method is not used frequently in practice because its performance is much poorer than
the performance of some other signal and noise subspace based methods developed later.

14.5.5 Multiple Signal Classification (MUSIC)

A procedure very similar to Pisarenko’s is the MUltiple SIgnal Classification (MUSIC) method, which
was proposed in the late 1970’s by Schmidt [18]. Suppose again that the process {x̃[n]} is described
by m complex sinusoids in white noise. If we form an M × M autocorrelation matrix R, find its
eigenvalues and eigenvectors and rank them as before, then as mentioned in the previous subsection,
its m eigenvectors corresponding to the m largest eigenvalues span the signal subspace, and the
remaining eigenvectors, the noise subspace. According to MUSIC, we estimate the noise variance
from theM −m smallest eigenvalues of R̂

σ̂ 2 = 1

M −m

M∑
i=m+1

λi (14.112)

and the frequencies from the peak locations of the pseudospectrum

P̂MU(f ) = 1∑M
i=m+1 |e(f )H vi |2

. (14.113)

It should be noted that there are other ways of estimating the fi ’s. Finally the powers of the com-
plex sinusoids are determined from Eq. (14.110), and all the estimated parameters substituted in
Eq. (14.98).

MUSIC has better performance than Pisarenko’s method because of the introduced averaging via
the extra noise eigenvectors. The averaging reduces the statistical fluctuations present in Pisarenko’s
pseudospectrum, which arise due to the errors in estimating the autocorrelation matrix. These
fluctuations can further be reduced by applying the Eigenvector method [11], which is a modification
of MUSIC and whose pseudospectrum is given by

P̂EV(f ) = 1∑M
i=m+1 | 1

λi
e(f )H vi |2

. (14.114)

Pisarenko’s method, MUSIC, and its variants exploit the noise subspace to estimate the unknown
parameters of the random process. There are, however, approaches that estimate the unknown
parameters from vectors that lie in the signal subspace. The main idea there is to form a reduced rank
autocorrelation matrix which is an estimate of the signal autocorrelation matrix. Since this estimate
is formed from the m principal eigenvectors and eigenvalues, the methods based on them are called
principal component spectrum estimation methods [8, 12]. Once the signal autocorrelation matrix is
obtained, the frequencies of the complex sinusoids are found, followed by estimation of the remaining
unknown parameters of the model.
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14.6 Recent Developments

Spectrum estimation continues to attract the attention of many researchers. The answers to many
interesting questions are still unknown, and many problems still need better solutions. The field
of spectrum estimation is constantly enriched with new theoretical findings and a wide range of
results obtained from examinations of various physical processes. In addition, new concepts are
being introduced that provide tools for improved processing of the observed signals and that allow
for a better understanding. Many new developments are driven by the need to solve specific problems
that arise in applications, such as in sonar and communications.

Recently, for example, the notion of canonical autoregressive decomposition has been intro-
duced [14]. It is a parametric approach for estimation of mixed spectra where the continuous part
of the spectrum is modeled by an AR model. Another development is related to Bayesian spectrum
estimation. Jaynes has introduced it in [10] and some interesting results for spectra of harmonics in
white Gaussian noise have been reported in [7]. A Bayesian spectrum estimate is based on

P̂BA(f ) =
∫
Θ
P(f, θ)f (θ |{x[n]}N−1

0 )dθ (14.115)

where P(f, θ) is the theoretical parametric spectrum, θ denotes the parameters of the process, Θ

is the parameter space, and f (θ | {x[n]}N−1
0 ) is the a posteriori probability density function of the

process parameters. Therefore, the Bayesian spectrum estimate is defined as the expected value of
the theoretical spectrum over the joint posterior density function of the model parameters.

The processes that we have addressed here are wide-sense stationary. The stationarity assumption,
however, is often a mathematical abstraction and only an approximation in practice. Many physical
processes are actually nonstationary and their spectra change with time. In biomedicine, speech
analysis, and sonar, for example, it is typical to observe signals whose power during some time
intervals is concentrated at high frequencies and, shortly thereafter, at low or middle frequencies.
In such cases it is desirable to describe the PSD of the process at every instant of time, which is
possible if we assume that the spectrum of the process changes smoothly over time. Such description
requires a combination of the time- and frequency-domain concepts of signal processing into a single
framework [6]. So there is an important distinction between the PSD estimation methods discussed
here and the time-frequency representation approaches. The former provide the PSD of the process
for all times, whereas the latter yield the local PSD’s at every instant of time. This areaof research iswell
developed but still far from complete. Although many theories have been proposed and developed,
including evolutionary spectra [15], the Wigner-Wille method [13], and the kernel choice approach
[1], time-varying spectrum analysis has remained a challenging and fascinating area of research.
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15.1 Introduction

Estimation is one of four modeling problems. The other three are representation (how something
should be modeled), measurement (which physical quantities should be measured and how they
should be measured), and validation (demonstrating confidence in the model). Estimation, which
fits in between the problems of measurement and validation, deals with the determination of those
physical quantities that cannot be measured from those that can be measured. We shall cover a wide
range of estimation techniques including weighted least squares, best linear unbiased, maximum-
likelihood, mean-squared, and maximum-a posteriori. These techniques are for parameter or state
estimation or a combination of the two, as applied to either linear or nonlinear models.

Thediscrete-timeviewpoint is emphasized in this chapterbecause: (1)much real data is collected in
a digitized manner, so it is in a form ready to be processed by discrete-time estimation algorithms; and
(2) the mathematics associated with discrete-time estimation theory is simpler than with continuous-
time estimation theory. We view (discrete-time) estimation theory as the extension of classical signal
processing to the design of discrete-time (digital) filters that process uncertain data in a optimal
manner. Estimation theory can, therefore, be viewed as a natural adjunct to digital signal processing
theory. Mendel [12] is the primary reference for all the material in this chapter.
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Estimation algorithms process data and, as such, must be implemented on a digital computer.
Our computation philosophy is, whenever possible, leave it to the experts. Many of our chapter’s
algorithms can be used with MATLABTM and appropriate toolboxes (MATLAB is a registered trade-
mark of The MathWorks, Inc.). See [12] for specific connections between MATLABTM and toolbox
M-files and the algorithms of this chapter.

The main model that we shall direct our attention to is linear in the unknown parameters, namely

Z(k) = H(k)θ + V(k) . (15.1)

In this model, which we refer to as a “generic linear model,” Z(k) = col (z(k), z(k − 1), . . . , z(k −
N + 1)), which is N × 1, is called the measurement vector. Its elements are z(j) = h′(j)θ + v(j);
θ which is n × 1, is called the parameter vector, and contains the unknown deterministic or random
parameters that will be estimated using one or more of this chapter’s techniques; H(k), which isN×n,
is called the observation matrix; and, V(k), which is N × 1, is called the measurement noise vector.
By convention, the argument “k” of Z(k), H(k), and V(k) denotes the fact that the last measurement
used to construct (15.1) is the kth.

Examples of problems that can be cast into the form of the generic linear model are: identifying
the impulse response coefficients in the convolutional summation model for a linear time-invariant
system from noisy output measurements; identifying the coefficients of a linear time-invariant finite-
difference equation model for a dynamical system from noisy output measurements; function ap-
proximation; state estimation; estimating parameters of a nonlinear model using a linearized version
of that model; deconvolution; and identifying the coefficients in a discretized Volterra series repre-
sentation of a nonlinear system.

The following estimation notation is used throughout this chapter: θ̂ (k) denotes an estimate of θ

and θ̃ (k)denotes the error in estimation, i.e., θ̃ (k) = θ−θ̂ (k). The generic linear model is the starting
point for the derivation of many classical parameter estimation techniques, and the estimation model
for Z(k) is Ẑ(k) = H(k)θ̂(k). In the rest of this chapter we develop specific structures for θ̂ (k). These
structures are referred to as estimators. Estimates are obtained whenever data are processed by an
estimator.

15.2 Least-Squares Estimation

The method of least squares dates back to Karl Gauss around 1795 and is the cornerstone for most
estimation theory. The weighted least-squares estimator (WLSE), θ̂WLS(k), is obtained by minimizing
the objective function J [θ̂ (k)] = Z̃′(k)W(k)Z̃(k), where [using (15.1)] Z̃(k) = Z(k) − Ẑ(k) =
H(k)θ̃(k)+V(k), andweightingmatrixW(k)mustbe symmetric andpositivedefinite. Thisweighting
matrix can be used to weight recent measurements more (or less) heavily than past measurements.
If W(k) = cI, so that all measurements are weighted the same, then weighted least-squares reduces
to least squares, in which case, we obtain θ̂LS(k). Setting dJ [θ̂ (k)]/dθ̂(k) = 0, we find that:

θ̂WLS(k) = [
H′(k)W(k)H(k)

]−1
H′(k)W(k)Z(k) (15.2)

and, consequently,

θ̂LS(k) = [
H′(k)H(k)

]−1
H′(k)Z(k) (15.3)

Note, also, that J [θ̂WLS(k)] = Z′(k)W(k)Z(k) − θ̂ ′
WLS(k)H′(k)W(k)H(k)θ̂WLS(k).

Matrix H′(k)W(k)H(k) must be nonsingular for its inverse in (15.2) to exist. This is true if W(k)

is positive definite, as assumed, and H(k) is of maximum rank. We know that θ̂WLS(k) minimizes
J [θ̂WLS(k)] because d2J [θ̂ (k)]/dθ̂2(k) = 2H′(k)W(k)H(k) > 0, since H′(k)W(k)H(k) is invert-
ible. Estimator θ̂WLS(k) processes the measurements Z(k) linearly; hence, it is referred to as a linear
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estimator. In practice, we do not compute θ̂WLS(k) using (15.2), because computing the inverse
of H′(k)W(k)H(k) is fraught with numerical difficulties. Instead, the so-called normal equations
[H′(k)W(k)H(k)]θ̂WLS(k) = H′(k)W(k)Z(k) are solved using stable algorithms from numerical lin-
ear algebra (e.g., [3] indicating that one approach to solving the normal equations is to convert the
original least squares problem into an equivalent, easy-to-solve problem using orthogonal transfor-
mations such as Householder or Givens transformations). Note, also, that (15.2) and (15.3) apply to
the estimation of either deterministic or random parameters, because nowhere in the derivation of
θ̂WLS(k) did we have to assume that θ was or was not random. Finally, note that WLSEs may not be
invariant under changes of scale. One way to circumvent this difficulty is to use normalized data.

Least-squares estimates can also be computed using the singular-value decomposition (SVD) of
matrix H(k). This computation is valid for both the overdetermined (N < n) and underdetermined
(N > n) situations and for the situation when H(k) may or may not be of full rank. The SV D of
K × M matrix A is:

U′AV =
[

6 0
0 0

]
(15.4)

where U and V are unitary matrices,
∑ = diag (σ1, σ2, . . . , σr ), and σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The

σi ’s are the singular values of A, and r is the rank of A. Let the SVD of H(k) be given by (15.4). Even
if H(k) is not of maximum rank, then

θ̂LS(k) = V

[
6−1 0

0 0

]
U′Z(k) (15.5)

where
∑−1 = diag (σ−1

1 σ−1
2 , . . . , σ−1

r ) and r is the rank of H(k). Additionally, in the overdeter-
mined case,

θ̂LS(k) =
r∑

i=1

vi (k)

σ 2
i (k)

v′
i (k)H′(k)Z(k) (15.6)

Similar formulas exist for computing θ̂WLS(k).
Equations (15.2) and (15.3) are batch equations, because they process all of the measurements

at one time. These formulas can be made recursive in time by using simple vector and matrix
partitioning techniques. The information form of the recursive WLSE is:

θ̂WLS(k + 1) = θ̂WLS(k) + Kw(k + 1)[z(k + 1) − h′(k + 1)θ̂WLS(k)] (15.7)

Kw(k + 1) = P(k + 1)h(k + 1)w(k + 1) (15.8)

P−1(k + 1) = P−1(k) + h(k + 1)w(k + 1)h′(k + 1) (15.9)

Equations (15.8) and (15.9) require the inversion of n × n matrix P. If n is large, then this will
be a costly computation. Applying a matrix inversion lemma to (15.9), one obtains the following
alternative covariance form of the recursive WLSE: Equation (15.7), and

Kw(k + 1) = P(k)h(k + 1)

[
h′(k + 1)P(k)h(k + 1) + 1

w(k + 1)

]−1

(15.10)

P(k + 1) = [
I − Kw(k + 1)h′(k + 1)

]
P(k) (15.11)

Equations (15.7)–(15.9) or (15.7), (15.10), and (15.11), are initialized by θ̂WLS(n) and P−1(n), where
P(n) = [H′(n)W(n)H(n)]−1, and are used for k = n, n + 1, . . . , N − 1.

Equation (15.7) can be expressed as

θ̂WLS(k + 1) = [
I − Kw(k + 1)h′(k + 1)

]
θ̂WLS(k) + Kw(k + 1)z(k + 1) (15.12)
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which demonstrates that the recursive WLSE is a time-varying digital filter that is excited by random
inputs (i.e., the measurements), one whose plant matrix [I − Kw(k + 1)h′(k + 1)] may itself be
random because Kw(k + 1) and h(k + 1) may be random, depending upon the specific application.
The random natures of these matrices make the analysis of this filter exceedingly difficult.

Two recursions are present in the recursive WLSEs. The first is the vector recursion for θ̂WLS given
by (15.7). Clearly, θ̂WLS(k+1) cannot be computed from this expression until measurement z(k+1)

is available. The second is the matrix recursion for either P−1 given by (15.9) or P given by (15.11).
Observe that values for these matrices can be precomputed before measurements are made. A digital
computer implementation of (15.7)–(15.9) is P−1(k+1) → P(k+1) → Kw(k+1) → θ̂WLS(k+1),
whereas for (15.7), (15.10), and (15.11), it is P(k) → Kw(k + 1) → θ̂WLS(k + 1) → P(k + 1).
Finally, the recursive WLSEs can even be used for k = 0, 1, . . . , N − 1. Often z(0) = 0, or there
is no measurement made at k = 0, so that we can set z(0) = 0. In this case we can set w(0) = 0,
and the recursive WLSEs can be initialized by setting θ̂WLS(0) = 0 and P(0) to a diagonal matrix of
very large numbers. This is very commonly done in practice. Fast fixed-order recursive least-squares
algorithms that are based on the Givens rotation [3] and can be implemented using systolic arrays
are described in [5] and the references therein.

15.3 Properties of Estimators

How do we know whether or not the results obtained from the WLSE, or for that matter any estimator,
are good? To answer this question, we must make use of the fact that all estimators represent
transformations of random data; hence, θ̂ (k) is itself random, so that its properties must be studied
from a statistical viewpoint. This fact, and its consequences, which seem so obvious to us today, are
due to the eminent statistician R.A. Fischer.

It is common to distinguish between small-sample and large-sample properties of estimators. The
term “sample” refers to the number of measurements used to obtain θ̂ , i.e., the dimension of Z.
The phrase “small sample” means any number of measurements (e.g., 1, 2, 100, 104, or even an
infinite number), whereas the phrase “large sample” means “an infinite number of measurements.”
Large-sample properties are also referred to as asymptotic properties. If an estimator possesses as
small-sample property, it also possesses the associated large-sample property; but the converse is not
always true. Although large sample means an infinite number of measurements, estimators begin
to enjoy large-sample properties for much fewer than an infinite number of measurements. How
few usually depends on the dimension of θ, n, the memory of the estimators, and in general on the
underlying, albeit unknown, probability density function.

A thorough study into θ̂ would mean determining its probability density function p(θ̂). Usually,
it is too difficult to obtain p(θ̂) for most estimators (unless θ̂ is multivariate Gaussian); thus, it is
customary to emphasize the first-and second-order statistics of θ̂ (or its associated error θ̃ = θ − θ̂),
the mean and the covariance.

Small-sample properties of an estimator are unbiasedness and efficiency. An estimator is unbiased
if its mean value is tracking the unknown parameter at every value of time, i.e., the mean value of
the estimation error is zero at every value of time. Dispersion about the mean is measured by error
variance. Efficiency is related to how small the error variance will be. Associated with efficiency is the
very famous Cramer-Rao inequality (Fisher information matrix, in the case of a vector of parameters)
which places a lower bound on the error variance, a bound that does not depend on a particular
estimator.

Large-sample properties of an estimator are asymptotic unbiasedness, consistency, asymptotic
normality, and asymptotic efficiency. Asymptotic unbiasedness and efficiency are limiting forms of
their small sample counterparts, unbiasedness and efficiency. The importance of an estimator being
asymptotically normal (Gaussian) is that its entire probabilistic description is then known, and it
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can be entirely characterized just by its asymptotic first- and second-order statistics. Consistency is
a form of convergence of θ̂ (k) to θ ; it is synonymous with convergence in probability. One of the
reasons for the importance of consistency in estimation theory is that any continuous function of a
consistent estimator is itself a consistent estimator, i.e., “consistency carries over.” It is also possible
to examine other types of stochastic convergence for estimators, such as mean-squared convergence
and convergence with probability 1. A general carry-over property does not exist for these two types
of convergence; it must be established case-by case (e.g., [11]).

Generally speaking, it is very difficult to establish small sample or large sample properties for least-
squares estimators, except in the very special case when H(k) and V(k) are statistically independent.
While this condition is satisfied in the application of identifying an impulse response, it is violated
in the important application of identifying the coefficients in a finite difference equation, as well
as in many other important engineering applications. Many large sample properties of LSEs are
determined by establishing that the LSE is equivalent to another estimator for which it is known that
the large sample property holds true. We pursue this below.

Least-squares estimators require no assumptions about the statistical nature of the generic model.
Consequently, the formula for the WLSE is easy to derive. The price paid for not making assumptions
about the statistical nature of the generic linear model is great difficulty in establishing small or large
sample properties of the resulting estimator.

15.4 Best Linear Unbiased Estimation

Our second estimator is both unbiased and efficient by design, and is a linear function of measure-
ments Z(k). It is called a best linear unbiased estimator (BLUE), θ̂BLU(k). As in the derivation of
the WLSE, we begin with our generic linear model; but, now we make two assumptions about this
model, namely: (1) H(k) must be deterministic, and (2) V(k) must be zero mean with positive
definite known covariance matrix R(k). The derivation of the BLUE is more complicated than the
derivation of the WLSE because of the design constraints; however, its performance analysis is much
easier because we build good performance into its design.

We begin by assuming the following linear structure for θ̂BLU(k), θ̂BLU(k) = F(k)Z(k). Matrix
F(k) is designed such that: (1) θ̂BLU(k) is an unbiased estimator of θ , and (2) the error variance for
each of the n parameters is minimized. In this way, θ̂BLU(k) will be unbiased and efficient (within
the class of linear estimators) by design. The resulting BLUE estimator is:

θ̂BLU(k) = [H′(k)R−1(k)H(k)]H′(k)R−1(k)Z(k) (15.13)

A very remarkable connection exists between the BLUE and WLSE, namely, the BLUE of θ is the
special case of the WLSE of θ when W(k) = R−1(k). Consequently, all results obtained in our
section above for θ̂WLS(k) can be applied to θ̂BLU(k) by setting W(k) = R−1(k). Matrix R−1(k)

weights the contributions of precise measurements heavily and deemphasizes the contributions of
imprecise measurements. The best linear unbiased estimation design technique has led to a weighting
matrix that is quite sensible.

If H(k) is deterministic and R(k) = σ 2
ν I, then θ̂BLU(k) = θ̂LS(k). This result, known as the

Gauss-Markov theorem, is important because we have connected two seemingly different estimators,
one of which, θ̂BLU(k), has the properties of unbiasedness and minimum variance by design; hence,
in this case θ̂LS(k) inherits these properties.

In a recursive WLSE, matrix P(k) has no special meaning. In a recursive BLUE [which is obtained
by substituting W(k) = R−1(k) into (15.7)–(15.9), or (15.7), (15.10) and (15.11)], matrix P(k) is
the covariance matrix for the error between θ and θ̂BLU(k), i.e., P(k) = [H′(k)R−1(k)H(k)]−1 =
cov [θ̃BLU(k)]. Hence, every time P(k) is calculated in the recursive BLUE, we obtain a quantitative
measure of how well we are estimating θ .
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Recall that we stated that WLSEs may change in numerical value under changes in scale. BLUEs
are invariant under changes in scale. This is accomplished automatically by setting W(k) = R−1(k)

in the WLSE.
The fact that H(k) must be deterministic severely limits the applicability of BLUEs in engineering

applications.

15.5 Maximum-Likelihood Estimation

Probability is associated with a forward experiment in which the probability model, p(Z(k)|θ), is
specified, including values for the parameters, θ , in that model (e.g., mean and variance in a Gaussian
density function), and data (i.e., realizations) are generated using this model. Likelihood, l(θ |Z(k)),
is proportional to probability. In likelihood, the data is given as well as the nature of the probability
model;but the parameters of the probability model are not specified. They must be determined from
the given data. Likelihood is, therefore, associated with an inverse experiment.

The maximum-likelihood method is based on the relatively simple idea that different (statistical)
populations generate different samples and that any given sample (i.e., set of data) is more likely to
have come from some populations than from others.

Inorder todetermine themaximum-likelihoodestimate (MLE)ofdeterministic θ, θ̂ML, weneed to
determine a formula for the likelihood function and then maximize that function. Because likelihood
is proportional to probability, we need to know the entire joint probability density function of the
measurements in order to determine a formula for the likelihood function. This, of course, is much
more information about Z(k) than was required in the derivation of the BLUE. In fact, it is the most
information that we can ever expect to know about the measurements. The price we pay for knowing
so much information about Z(k) is complexity in maximizing the likelihood function. Generally,
mathematical programming must be used in order to determine θ̂ML.

Maximum-likelihood estimates are very popular and widely used because they enjoy very good
large sample properties. They are consistent, asymptotically Gaussian with mean θ and covariance
matrix 1

N
J−1, in which J is the Fisher information matrix, and are asymptotically efficient. Functions

of maximum-likelihood estimates are themselves maximum-likelihood estimates, i.e., if g(θ) is a
vector function mapping θ into an interval in r-dimensional Euclidean space, then g(θ̂ML) is a MLE
of g(θ). This “invariance” property is usually not enjoyed by WLSEs or BLUEs.

In one special case it is very easy to compute θ̂ML, i.e., for our generic linear model in which H(k)

is deterministic and V(k) is Gaussian. In this case θ̂ML = θ̂BLU. These estimators are: unbiased,
because θ̂BLU is unbiased; efficient (within the class of linear estimators), because θ̂BLU is efficient;
consistent, because θ̂ML is consistent; and, Gaussian, because they depend linearly on Z(k), which is
Gaussian. If, in addition, R(k) = σ 2

ν I, then θ̂ML(k) = θ̂BLU(k) = θ̂LS(k), and these estimators are
unbiased, efficient (within the class of linear estimators), consistent, and Gaussian.

The method of maximum-likelihood is limited to deterministic parameters. In the case of random
parameters, we can still use the WLSE or the BLUE, or, if additional information is available, we can
use either a mean-squared or maximum-a posteriori estimator, as described below. The former does
not use statistical information about the random parameters, whereas the latter does.

15.6 Mean-Squared Estimation of Random Parameters

Givenmeasurementsz(1), z(2), . . . , z(k), themean-squaredestimator (MSE)of random θ, θ̂MS(k) =
φ[z(i), i = 1, 2, . . . , k], minimizes the mean-squared error J [θ̃MS(k)] = E{θ̃ ′

MS(k)θ̃MS(k)} [where

θ̃MS(k) = θ − θ̂MS(k)]. The function φ[z(i), i = 1, 2, . . . , k] may be nonlinear or linear. Its exact
structure is determined by minimizing J [θ̃MS(k)].
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The solution to this mean-squared estimation problem, which is known as the fundamental the-
orem of estimation theory is:

θ̂MS(k) = E {θ |Z(k)} (15.14)

As it stands, (15.14) is not terribly useful for computing θ̂MS(k). In general, we must first compute
p[θ |Z(k)] and then perform the requisite number of integrations of θp[θ |Z(k)] to obtain θ̂MS(k).
It is useful to separate this computation into two major cases; (1) θ and Z(k) are jointly Gaussian —
the Gaussian case, and (2) θ and Z(k) are not jointly Gaussian — the non-Gaussian case.

When θ and Z(k) are jointly Gaussian, the estimator that minimizes the mean-squared error is

θ̂MS(k) = mθ + Pθz(k)P−1
z (k)

[
Z(k) − mz(k)

]
(15.15)

where mθ is the mean of θ, mz(k) is the mean of Z(k), Pz(k) is the covariance matrix of Z(k), and
Pθz(k) is the cross-covariance between θ and Z(k). Of course, to compute θ̂MS(k) using (15.15), we
must somehow know all of these statistics, and we must be sure that θ and Z(k) are jointly Gaussian.
For the generic linear model, Z(k) = H(k)θ +V(k), in which H(k) is deterministic, V(k) is Gaussian
noise with known invertible covariance matrix R(k), θ is Gaussian with mean mθ and covariance
matrix Pθ , and, θ and V(k) are statistically independent, then θ and Z(k) are jointly Gaussian,
and, (15.15) becomes

θ̂MS(k) = mθ + PθH′(k)
[
H(k)PθH′(k) + R(k)

]−1
[Z(k) − H(k)mθ ] (15.16)

where error-covariance matrix PMS(k), which is associated with θ̂MS(k), is

PMS(k) = Pθ − PθH′(k)
[
H(k)PθH′(k) + R(k)

]−1
H(k)Pθ

=
[
P−1

θ + H′(k)R−1(k)H(k)
]−1

. (15.17)

Using (15.17) in (15.16), θ̂MS(k) can be reexpressed as

θ̂MS(k) = mθ + PMS(k)H′(k)R−1(k) [Z(k) − H(k)mθ ] (15.18)

Suppose θ and Z(k) are not jointly Gaussian and that we know mθ , mz(k), Pz(k), and Pθz(k). In
this case, the estimator that is constrained to be an affine transformation of Z(k) and that minimizes
the mean-squared error is also given by (15.15).

We now know the answer to the following important question: When is the linear (affine) mean-
squared estimator the same as the mean-squared estimator? The answer is when θ and Z(k) are jointly
Gaussian. If θ and Z(k) are not jointly Gaussian, then θ̂MS(k) = E{θ |Z(k)}, which, in general, is a
nonlinear function of measurements Z(k), i.e., it is a nonlinear estimator.

Associated with mean-squared estimation theory is the orthogonality principle: Suppose f [Z(k)]
is any function of the data Z(k); then the error in the mean-squared estimator is orthogonal to f [Z(k)]
in the sense that E{[θ − θ̂MS(k)]f ′[Z(k)]} = 0. A frequently encountered special case of this occurs
when f [Z(k)] = θ̂MS(k), in which case E{θ̃MS(k)θ̃ ′

MS(k)} = 0.

When θ and Z(k) are jointly Gaussian, θ̂MS(k) in (15.15) has the following properties: (1) it is
unbiased; (2) each of its components has the smallest error variance; (3) it is a “linear” (affine)
estimator; (4) it is unique; and, (5) both θ̂MS(k) and θ̃MS(k) are multivariate Gaussian, which
means that these quantities are completely characterized by their first- and second-order statistics.
Tremendous simplifications occur when θ and Z(k) are jointly Gaussian!

Many of the results presented in this section are applicable to objective functions other than the
mean-squared objective function. See the supplementary material at the end of Lesson 13 in [12] for
discussions on a wide number of objective functions that lead to E{θ |Z(k)} as the optimal estimator
of θ , as well as discussions on a full-blown nonlinear estimator of θ .
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There is a connection between the BLUE and the MSE. The connection requires a slightly different
BLUE, one that incorporates the a priori statistical information about random θ . To do this, we treat
mθ as an additional measurement that is augmented to Z(k). The additional measurement equation
is obtained by adding and subtracting θ in the identity mθ = mθ , i.e., mθ = θ + (mθ − θ). Quantity
(mθ − θ) is now treated as zero-mean measurement noise with covariance Pθ . The augmented linear
model is (

Z(k)

mθ

)
=

(
H(k)

I

)
θ +

(
V(k)

mθ − θ

)
(15.19)

Let the BLUE estimator for this augmented model be denoted θ̂ a
BLU(k). Then it is always true that

θ̂MS(k) = θ̂ a
BLU(k). Note that the weighted least-squares objective function that is associated with

θ̂ a
BLU(k) is Ja[θ̂ a(k)] = [mθ − θ̂ a(k)]′P−1

θ [mθ − θ̂ a(k)] + Z̃′(k)R−1(k)Z̃(k).

15.7 Maximum A Posteriori Estimation of Random Parameters

Maximum a posteriori (MAP) estimation is also known as Bayesian estimation. Recall Bayes’s rule:
p(θ |Z(k)) = p(Z(k)|θ)p(θ)/p(Z(k)) in which density function p(θ |Z(k)) is known as the a posteri-
ori (or posterior) conditional density function, and p(θ) is the prior density function for θ . Observe
that p(θ |Z(k)) is related to likelihood function l{θ |Z(k)}, because l{θ |Z(k)} ∝ p(Z(k)|θ). Addi-
tionally, because p(Z(k)) does not depend on θ, p(θ |Z(k)) ∝ p(Z(k)|θ)p(θ). In MAP estimation,
values of θ are found that maximize p(Z(k)|θ)p(θ). Obtaining a MAP estimate involves specifying
both p(Z(k)|θ) and p(θ) and finding the value of θ that maximizes p(θ |Z(k)). It is the knowledge
of the a priori probability model for θ , p(θ), that distinguishes the problem formulation for MAP
estimation from MS estimation.

If θ1, θ2, . . . , θn are uniformly distributed, then p(θ |Z(k)) ∝ p(Z(k)|θ), and the MAP estimator
of θ equals the ML estimator of θ . Generally, MAP estimates are quite different from ML estimates.
For example, the invariance property of MLEs usually does not carry over to MAP estimates. One
reason for this can be seen from the formula p(θ |Z(k)) ∝ p(Z(k)|θ)p(θ). Suppose, for example,
that φ = g(θ) and we want to determine φ̂MAP by first computing θ̂MAP. Because p(θ) depends
on the Jacobian matrix of g−1(φ), φ̂MAP 6= g(θ̂MAP). Usually θ̂MAP and θ̂ML(k) are asymptotically
identical to one another since in the large sample case the knowledge of the observations tends to
swamp the knowledge of the prior distribution [10].

Generally speaking, optimization must be used to compute θ̂MAP(k). In the special but important
case, when Z(k) and θ are jointly Gaussian, then θ̂MAP(k) = θ̂MS(k). This result is true regardless of
the nature of the model relating θ to Z(k). Of course, in order to use it, we must first establish that
Z(k) and θ are jointly Gaussian. Except for the generic linear model, this is very difficult to do.

When H(k) is deterministic, V(k) is white Gaussian noise with known covariance matrix R(k),
and θ is multivariate Gaussian with known mean mθ and covariance Pθ , θ̂MAP(k) = θ̂ a

BLU(k); hence,
for the generic linear Gaussian model, MS, MAP, and BLUE estimates of θ are all the same, i.e.,
θ̂MS(k) = θ̂ a

BLU(k) = θ̂MAP(k).

15.8 The Basic State-Variable Model

In the rest of this chapter we shall describe a variety of mean-squared state estimators for a linear,
(possibly) time-varying, discrete-time, dynamical system, which we refer to as the basic state-variable
model. This system is characterized by n × 1 state vector x(k) and m × 1 measurement vector z(k),
and is:

x(k + 1) = 8(k + 1, k)x(k) + 0(k + 1, k)w(k) + 9(k + 1, k)u(k) (15.20)
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z(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (15.21)

where k = 0, 1, . . .. In this model w(k) and v(k) are p×1and m×1mutually uncorrelated (possibly
nonstationary) jointly Gaussian white noise sequences; i.e., E{w(i)w′(j)} = Q(i)δij , E{v(i)v′(j)} =
R(i)δij , and E{w(i)v′(j)} = S = 0, for all i and j . Covariance matrix Q(i) is positive semidefinite
and R(i) is positive definite [so that R−1(i) exists]. Additionally, u(k) is an l × 1 vector of known
system inputs, and initial state vector x(0) is multivariate Gaussian, with mean mx(0) and covariance
Px(0), and x(0) is not correlated with w(k) and v(k). The dimensions of matrices 8, 0, 9, H, Q,
and R are n × n, n × p, n × l, m × n, p × p, and m × m, respectively. The double arguments in
matrices 8, 0, and 9 may not always be necessary, in which case we replace (k + 1, k) by k.

Disturbancew(k) is oftenused tomodel disturbance forces actingon the system, errors inmodeling
the system, or errors due to actuators in the translation of the known input, u(k), into physical
signals. Vector v(k) is often used to model errors in measurements made by sensing instruments, or
unavoidable disturbances that act directly on the sensors.

Not all systems are described by this basic model. In general, w(k) and v(k) may be correlated,
some measurements may be made so accurate that, for all practical purposes, they are “perfect” (i.e.,
no measurement noise is associated with them), and either w(k) or v(k), or both, may be nonzero
mean or colored noise processes. How to handle these situations is described in Lesson 22 of [12].

When x(0) and {w(k), k = 0, 1, . . .} are jointly Gaussian, then {x(k), k = 0, 1, . . .} is a Gauss-
Markov sequence. Note that if x(0) and w(k) are individually Gaussian and statistically independent,
they will be jointly Gaussian. Consequently, the mean and covariance of the state vector completely
characterize it. Let mx(k) denote the mean of x(k). For our basic state-variable model, mx(k) can
be computed from the vector recursive equation

mx(k + 1) = 8(k + 1, k)mx(k) + 9(k + 1, k)u(k) (15.22)

where k = 0, 1, . . ., and mx(0) initializes (15.22). Let Px(k) denote the covariance matrix of x(k).
For our basic state-variable model, Px(k) can be computed from the matrix recursive equation

Px(k + 1) = 8(k + 1, k)Px(k)8′(k + 1, k) + 0(k + 1, k)Q(k)0′(k + 1, k) (15.23)

where k = 0, 1, . . . , and Px(0) initializes (15.23). Equations (15.22) and (15.23) are easily pro-
grammed for a digital computer.

For our basic state-variable model, when x(0), w(k), and v(k) are jointly Gaussian, then {z(k), k =
1, 2, . . .} is Gaussian, and

mz(k + 1) = H(k + 1)mx(k + 1) (15.24)

and

Pz(k + 1) = H(k + 1)Px(k + 1)H′(k + 1) + R(k + 1) (15.25)

where mx(k + 1) and Px(k + 1) are computed from (15.22) and (15.23), respectively.
For our basic state-variable model to be stationary, it must be time-invariant, and the probability

density functions of w(k) and v(k) must be the same for all values of time. Because w(k) and v(k)

are zero-mean and Gaussian, this means that Q(k) must equal the constant matrix Q and R(k) must
equal the constant matrix R. Additionally, either x(0) = 0 or 8(k, 0)x(0) ≈ 0 when k > k0; in both
cases x(k) will be in its steady-state regime, so stationarity is possible.

If the basic state-variable model is time-invariant and stationary and if 8 is associated with an
asymptotically stable system (i.e., one whose poles all lie within the unit circle), then [1] matrix
Px(k) reaches a limiting (steady-state) solution P̄x and P̄x is the solution of the following steady-state
version of (15.23): P̄x = 8P̄x8

′ +0Q0′. This equation is called a discrete-time Lyapunov equation.
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15.9 State Estimation for the Basic State-Variable Model

Prediction, filtering, and smoothing are three types of mean-squared state estimation that have
been developed since 1959. A predicted estimate of a state vector x(k) uses measurements which
occur earlier than tk and a model to make the transition from the last time point, say tj , at which a
measurement is available, to tk . The success of prediction depends on the quality of the model. In
state estimation we use the state equation model. Without a model, prediction is dubious at best.

A recursive mean-squared state filter is called a Kalman filter, because it was developed by Kalman
around 1959 [9]. Although it was originally developed within a community of control theorists, and
is regarded as the most widely used result of so-called “modern control theory,” it is no longer viewed
as a control theory result. It is a result within estimation theory; consequently, we now prefer to view
it as a signal processing result. A filtered estimate of state vector x(k) uses all of the measurements
up to and including the one made at time tk .

A smoothed estimate of state vector x(k) not only uses measurements which occur earlier than tk
plus the one at tk , but also uses measurements to the right of tk . Consequently, smoothing can never
be carried out in real time, because we have to collect “future” measurements before we can compute
a smoothed estimate. If we don’t look too far into the future, then smoothing can be performed
subject to a delay of LT seconds, where T is our data sampling time and L is a fixed positive integer
that describes how many sample points to the right of tk are to be used in smoothing.

Depending upon how many future measurements are used and how they are used, it is possible to
create three types of smoother: (1) the fixed-interval smoother, x̂(k|N), k = 0, 1, . . . , N − 1, where
N is a fixed positive integer; (2) the fixed-point smoother, x̂(k|j), j = k + 1, k + 2, . . ., where k is
a fixed positive integer; and (3) the fixed-lag smoother, x̂(k|k + L), k = 0, 1, . . ., where L is a fixed
positive integer.

15.9.1 Prediction

A single-stage predicted estimate of x(k) is denoted x̂(k|k − 1). It is the mean-squared estimate
of x(k) that uses all the measurements up to and including the one made at time tk−1; hence,
a single-stage predicted estimate looks exactly one time point into the future. This estimate is
needed by the Kalman filter. From the fundamental theorem of estimation theory, we know that
x̂(k|k − 1) = E{x(k)|Z(k − 1)} where Z(k − 1) = col (z(1), z(2), . . . , z(k − 1)), from which it
follows that

x̂(k|k − 1) = 8(k, k − 1)x̂(k − 1|k − 1) + 9(k, k − 1)u(k − 1) (15.26)

where k = 1, 2, . . .. Observe that x̂(k|k − 1) depends on the filtered estimate x̂(k − 1|k − 1) of the
preceding state vector x(k − 1). Therefore, Equation (15.26) cannot be used until we provide the
Kalman filter.

Let P(k|k − 1) denote the error-covariance matrix that is associated with x̂(k|k − 1), i.e.,

P(k|k − 1) = E
{[

x̃(k|k − 1) − mx̃(k|k − 1)
] [

x̃(k|k − 1) − mx̃(k|k − 1)
]′}

,

where x̃(k|k − 1) = x(k) − x̂(k|k − 1). Additionally, let P(k − 1|k − 1) denote the error-covariance
matrix that is associated with x̂(k − 1|k − 1), i.e.,

P(k −1|k −1) = E
{[

x̃(k − 1|k − 1) − mx̃(k − 1|k − 1)
] [

x̃(k − 1|k − 1) − mx̃(k − 1|k − 1)
]′}

,

where x̃(k − 1|k − 1) = x(k − 1) − x̂(k − 1|k − 1). Then

P(k|k − 1) = 8(k, k − 1)P(k − 1|k − 1)8′(k, k − 1) + 0(k, k − 1)Q(k − 1)0′(k, k − 1) (15.27)
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where k = 1, 2, . . ..
Observe, from (15.26) and (15.27), that x̂(0|0) and P(0|0) initialize the single-stage predictor and

its error covariance, where x̂(0|0) = mx(0) and P(0|0) = P(0).
A more general state predictor is possible, one that looks further than just one step. See ([12]

Lesson 16) for its details.
The single-stage predicted estimate of z(k+1), ẑ(k+1|k), is given by ẑ(k+1|k) = H(k+1)x̂(k+

1|k). The error between z(k + 1) and ẑ(k + 1|k), is z̃(k + 1|k); z̃(k + 1|k) is called the innovations
process (or, prediction error process, or, measurement residual process), and this process plays a
very important role in mean-squared filtering and smoothing. The following representations of the
innovations process z̃(k + 1|k) are equivalent:

z̃(k + 1|k) = z(k + 1) − ẑ(k + 1|k) = z(k + 1) − H(k + 1)x̂(k + 1|k)

= H(k + 1)x̃(k + 1|k) + v(k + 1) (15.28)

The innovations is a zero-mean Gaussian white noise sequence, with

E
{
z̃(k + 1|k)z̃′(k + 1|k)

} = H(k + 1)P(k + 1|k)H′(k + 1) + R(k + 1) (15.29)

The paper by Kailath [7] gives an excellent historical perspective of estimation theory and includes
a very good historical account of the innovations process.

15.9.2 Filtering (the Kalman Filter)

The Kalman filter (KF) and its later extensions to nonlinear problems represent the most widely
applied by-product of modern control theory. We begin by presenting the KF, which is the mean-
squared filtered estimator of x(k + 1), x̂(k + 1|k + 1), in predictor-corrector format:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)z̃(k + 1|k) (15.30)

for k = 0, 1, . . ., where x̂(0|0) = mx(0) and z̃(k + 1|k) is the innovations sequence in (15.28) (use
the second equality to implement the KF). Kalman gain matrix K(k + 1) is n × m, and is specified
by the set of relations:

K(k + 1) = P(k + 1|k)H′(k + 1)
[
H(k + 1)P(k + 1|k)H′(k + 1) + R(k + 1)

]−1
(15.31)

P(k + 1|k) = 8(k + 1, k)P(k|k)8′(k + 1, k) + 0(k + 1, k)Q(k)0′(k + 1, k) (15.32)

and
P(k + 1|k + 1) = [I − K(k + 1)H(k + 1)] P(k + 1|k) (15.33)

for k = 0, 1, . . ., where I is the n × n identity matrix, and P(0|0) = Px(0).
The KF involves feedback and contains within its structure a model of the plant. The feedback

nature of the KF manifests itself in two different ways: in the calculation of x̂(k + 1|k + 1) and
also in the calculation of the matrix of gains, K(k + 1). Observe, also, from (15.26) and (15.32),
that the predictor equations, which compute x̂(k + 1|k) and P(k + 1|k), use information only from
the state equation, whereas the corrector equations, which compute K(k + 1), x̂(k + 1|k + 1), and
P(k + 1|k + 1), use information only from the measurement equation. Once the gain is computed,
then (15.30) represents a time-varying recursive digital filter. This is seen more clearly when (15.26)
and (15.28) are substituted into (15.30). The resulting equation can be rewritten as

x̂(k + 1|k + 1) = [I − K(k + 1)H(k + 1)] 8(k + 1, k)x̂(k|k) + K(k + 1)z(k + 1)

+ [I − K(k + 1)H(k + 1)] 9(k + 1, k)u(k) (15.34)
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for k = 0, 1, . . .. This is a state equation for state vector x̂, whose time-varying plant matrix is
[I − K(k + 1)H(k + 1)]8(k + 1, k). Equation (15.34) is time-varying even if our basic state-variable
model is time-invariant and stationary, because gain matrix K(k + 1) is still time-varying in that
case. It is possible, however, for K(k + 1) to reach a limiting value (i.e., steady-state value, K), in
which case (15.34) reduces to a recursive constant coefficient filter. Equation (15.34) is in recursive
filter form, in that it relates the filtered estimate of x(k + 1), x̂(k + 1|k + 1), to the filtered estimate
of x(k), x̂(k|k). Using substitutions similar to those in the derivation of (15.34), we can also obtain
the following recursive predictor form of the KF:

x̂(k + 1|k) = 8(k + 1, k) [I − K(k)H(k)] x̂(k|k − 1)

+ 8(k + 1, k)K(k)z(k) + 9(k + 1, k)u(k) (15.35)

Observe that in (15.35) the predicted estimate of x(k + 1), x̂(k + 1|k), is related to the predicted
estimate of x(k), x̂(k|k − 1), and that the time-varying plant matrix in (15.35) is different from the
time-varying plant matrix in (15.34).

Embedded within the recursive KF is another set of recursive equations, (15.31) to (15.33). Because
P(0|0) initializes these calculations, these equations must be ordered as follows: P(k|k) → P(k +
1|k) → K(k + 1) → P(k + 1|k + 1) →, etc. By combining these equations, it is possible to get a
matrix equation for P(k + 1|k) as a function of P(k|k − 1) or a similar equation for P(k + 1|k + 1)

as a function of P(k|k). These equations are nonlinear and are known as matrix Riccati equations.
A measure of recursive predictor performance is provided by matrix P(k + 1|k), and a measure of

recursive filter performance is provided by matrix P(k+1|k+1). These covariances can be calculated
prior to any processing of real data, using (15.31) to (15.33). These calculations are often referred
to as a performance analysis, and P(k + 1|k + 1) 6= P(k + 1|k). It is indeed interesting that the KF
utilizes a measure of its mean-squared error during its real-time operation.

Because of the equivalence between mean-squared, BLUE, and WLS filtered estimates of our state
vector x(k) in the Gaussian case, we must realize that the KF equations are just a recursive solution to a
system of normal equations. Other implementations of the KF that solve the normal equations using
stablealgorithms fromnumerical linearalgebra (see, e.g., [2])and involveorthogonal transformations
have better numerical properties than (15.30) to (15.33) (see, e.g., [4]).

A recursive BLUE of a random parameter vector θ can be obtained from the KF equations by setting
x(k) = θ, 8(k+1, k) = I, 0(k+1, k) = 0, 9(k+1, k) = 0 and Q(k) = 0. Under these conditions
we see that w(k) = 0 for all k, and x(k + 1) = x(k), which means, of course, that x(k) is a vector of
constants, θ . The KF equations reduce to: θ̂ (k + 1|k + 1) = θ̂ (k|k) + K(k + 1)[z(k + 1) − H(k +
1)θ̂(k|k)], P(k+1|k) = P(k|k), K(k+1) = P(k|k)H′(k+1)[H(k+1)P(k|k)H′(k+1)+R(k+1)]−1,
and P(k+1|k+1) = [I−K(k+1)H(k+1)]P(k|k). Note that it is no longer necessary to distinguish
between filtered and predicted quantities, because θ̂ (k + 1|k) = θ̂ (k|k) and P(k + 1|k) = P(k|k);
hence, the notation θ̂ (k|k) can be simplified to θ̂ (k), for example, which is consistent with our earlier
notation for the estimate of a vector of constant parameters.

A divergence phenomenon may occur when either the process noise or measurement noise or both
are too small. In these cases the Kalman filter may lock onto wrong values for the state, but believes
them to the true values; i.e., it “learns” the wrong state too well. A number of different remedies
have been proposed for controlling divergence effects, including: (1) adding fictitious process noise,
(2) finite-memory filtering, and (3) fading memory filtering. Fading memory filtering seems to be
the most successful and popular way to control divergence effects. See [6] or [12] for discussions
about these remedies.

For time-invariant and stationary systems, if limk→∞ P(k+1|k) = Pp exists, then limk→∞ K(k) =
K̄ and the Kalman filter becomes a constant coefficient filter. Because P(k + 1|k) and P(k|k) are
intimately related, then if Pp exists, limk→∞ P(k|k) = Pf also exists. If the basic state-variable model
is time-invariant, stationary, and asymptotically stable, then: (a) for any nonnegative symmetric
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initial condition P(0| − 1), we have limk→∞ P(k + 1|k) = Pp with Pp independent of P(0| − 1) and
satisfying the following steady-state algebraic matrix Riccati equation,

Pp = 8Pp

[
I − H′ (HPpH′ + R

)−1
HPp

]
8′ + 0Q0′ . (15.36)

(b) The eigenvalues of the steady-state KF, λ[8− K̄H8], all lie within the unit circle, so that the filter
is asymptotically stable, i.e., |λ[8 − K̄H8]| < 1. If the basic state-variable model is time-invariant
and stationary, but is not necessarily asymptotically stable (e.g., it may have a pole on the unit circle),
the points (a) and (b) still hold as long as the basic state-variable model is completely stabilizable and
detectable (e.g., [8]). To design a steady-state KF: (1) Given (8, 0, 9, H, Q, R), compute Pp , the
positive definite solution of (15.36); (2) compute K̄, as K̄ = PpH′(HPpH′ + R)−1; and (3) use K̄ in

x̂(k + 1|k + 1) = 8x̂(k|k) + 9u(k) + K̄z̃(k + 1|k)

= (
I − K̄H

)
8x̂(k|k) + K̄z(k + 1) + (

I − K̄H
)
9u(k) (15.37)

Equation (15.37) is a steady-state filter state equation. The main advantage of the steady-state filter
is a drastic reduction in on-line computations.

15.9.3 Smoothing

Although there are three types of smoothers, the most useful one for digital signal processing is the
fixed-interval smoother, hence, we only discuss it here. The fixed-interval smoother is x̂(k|N), k =
0, 1, . . . , N − 1, where N is a fixed positive integer. The situation here is as follows: with an
experiment completed, we have measurements available over the fixed interval 1 ≤ k ≤ N . For each
time point within this interval we wish to obtain the optimal estimate of the state vector x(k), which
is based on all the available measurement data {z(j), j = 1, 2, . . . , N}. Fixed-interval smoothing is
very useful in signal processing situations, where the processing is done after all the data are collected.
It cannot be carried out on-line during an experiment like filtering can. Because all the available
data are used, we cannot hope to do better (by other forms of smoothing) than by fixed-interval
smoothing.

A mean-squared fixed-interval smoothed estimate of x(k), x̂(k|N), is

x̂(k|N) = x̂(k|k − 1) + P(k|k − 1)r(k|N) (15.38)

where k = N − 1, N − 2, . . . , 1, and n × 1 vector r satisfies the backward-recursive equation

r(j |N) = 8′
p(j + 1, j)r(j + 1|N) + H′(j)

[
H(j)P(j |j − 1)H′(j) + R(j)

]−1
z̃(j |j − 1) (15.39)

where 8p(k + 1, k) = 8(k + 1, k)[I − K(k)H(k)] and j = N, N − 1, . . . , 1, and, r(N + 1|N) = 0.
The smoothing error-covariance matrix P(k|N), is

P(k|N) = P(k|k − 1) − P(k|k − 1)S(k|N)P(k|k − 1) (15.40)

where k = N −1, N −2, . . . , 1, and n×n matrix S(j |N), which is the covariance matrix of r(j |N),
satisfies the backward-recursive equation

S(j |N) = 8′
p(j + 1, j)S(j + 1|N)8p(j + 1, j)

+ H′(j)
[
H(j)P(j |j − 1)H′(j) + R(j)

]−1
H(j) (15.41)

where j = N, N −1, . . . , 1, and S(N +1|N) = 0. Observe that fixed-interval smoothing involves a
forward pass over the data, using a KF, and then a backward pass over the innovations, using (15.39).
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The smoothing error-covariance matrix, P(k|N), can be precomputed; but, it is not used during the
computation of x̂(k|N). This is quite different than the active use of the filtering error-covariance
matrix in the KF.

An important application forfixed-interval smoothing is deconvolution. Consider the single-input
single-output system

z(k) =
k∑

i=1

µ(i)h(k − i) + ν(k) k = 1, 2, . . . , N (15.42)

where µ(j) is the system’s input, which is assumed to be white, and not necessarily Gaussian, and
h(j) is the system’s impulse response. Deconvolution is the signal-processing procedure for removing
the effects of h(j) and ν(j) from the measurements so that we are left with an estimate of µ(j). In
order to obtain a fixed-interval smoothed estimate of µ(j), we must first convert (15.42) into an
equivalent state-variable model. The single-channel state-variable model x(k+1) = 8x(k)+γµ(k)

and z(k) = h′x(k) + ν(k) is equivalent to (15.42) when x(0) = 0, µ(0) = 0, h(0) = 0, and h(l) =
h′8l−iγ (l = 1, 2, . . .). A two-pass fixed-interval smoother for µ(k) is µ̂(k|N) = q(k)γ ′r(k+1|N)

wherek = N−1, N−2, . . . , 1. The smoothing error variance, σ 2
µ(k|N), isσ 2

µ(k|N) = q(k)−q(k)γ ′
S(k + 1|N)γ q(k). In these formulas r(k|N) and S(k|N) are computed using (15.39) and (15.41),
respectively, and E{µ2(k)} = q(k).

15.10 Digital Wiener Filtering

The steady-state KF is a recursive digital filter with filter coefficients equal to hf (j), j = 0, 1, . . ..
Quite often hf (j) ≈ 0 for j ≥ J , so that the transfer function of this filter, Hf (z), can be truncated,
i.e., Hf (z) ≈ hf (0) + hf (1)z−1 + . . . + hf (J )z−J . The truncated steady-state, KF can then be
implemented as a finite-impulse response (FIR) digital filter. There is, however, a more direct way
for designing a FIR minimum mean-squared error filter, i.e., a digital Wiener filter (WF).

Consider the scalar measurement case, in which measurement z(k) is to be processed by a digital
filter F(z), whose coefficients, f (0), f (1), . . . , f (η), are obtained by minimizing the mean-squared
error I (f) = E{[d(k) − y(k)]2} = E{e2(k)}, where y(k) = f (k) ∗ z(k) = ∑n

i=0 f (i)z(k − i)

and d(k) is a desired filter output signal. Using calculus, it is straightforward to show that the filter
coefficients that minimize I (f) satisfy the following discrete-time Wiener-Hopf equations:

η∑
i=0

f (i)φzz(i − j) = φzd(j) j = 0, 1, . . . , η (15.43)

where φzd(i) = E{d(k)z(k − i)} and φzz(i − m) = E{z(k − i)z(k − m)}. Observe that (15.43)
are a system of normal equations and can be solved in many different ways, including the Levinson
algorithm. The minimum mean-squared error, I ∗(f), in general, approaches a nonzero limiting
value which is often reached for modest values of filter length η.

To relate this FIR WF to the truncated steady-state KF, we must first assume a signal-plus-noise
model for z(k), because a KF uses a system model, i.e., z(k) = s(k) + ν(k) = h(k) ∗ w(k) + ν(k),
where h(k) is the IR of a linear time-invariant system and, as in our basic state-variable model,
w(k) and ν(k) are mutually uncorrelated (stationary) white noise sequences with variances q and r ,
respectively. We must also specify an explicit form for “desired signal” d(k). We shall require that
d(k) = s(k) = h(k) ∗ w(k), which means that we want the output of the FIR digital WF to be as
close as possible to signal s(k). The resulting Wiener-Hopf equations are

η∑
i=0

f (i)
[q

r
φhh(j − i) + δ(j − i)

]
= q

r
φhh(j), j = 0, 1, . . . , η (15.44)
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where φhh(i) = ∑∞
l=0 h(l)h(l + i). The truncated steady-state KF is a FIR digital WF. For a detailed

comparison of Kalman and Wiener filters, see ([12] Lesson 19).
To obtain a digital Wiener deconvolution filter, we assume that filter F(z) is an infinite impulse

response (IIR) filter, with coefficients {f (j), j = 0, ±1, ±2, . . .}; d(k) = µ(k) where µ(k) is a white
noise sequence and µ(k) and ν(k) are stationary and uncorrelated. In this case, (15.43) becomes

∞∑
i=−∞

f (i)φzz(i − j) = φzµ(j) = qh(−j) j = 0, ±1, ±2 . . . (15.45)

This system of equations cannot be solved as a linear system of equations, because there are a
doubly infinite number of them. Instead, we take the discrete-time Fourier transform of (15.45), i.e.,
F(ω)8zz(ω) = qH ∗(ω), but, from (15.42), 8zz(ω) = q|H(ω)|2 + r ; hence,

F(ω) = qH ∗(ω)

q|H(ω)|2 + r
(15.46)

The inverse Fourier transform of (15.46), or spectral factorization, gives {f (j), j = 0, ±1, ±2, . . .}.

15.11 Linear Prediction in DSP, and Kalman Filtering

A well-studied problem in digital signal processing (e.g., [5]), is the linear prediction problem, in
which the structure of the predictor is fixed ahead of time to be a linear transformation of the data.
The “forward” linear prediction problem is to predict a future value of stationary discrete-time
random sequence {y(k), k = 1, 2, . . .} using a set of past samples of the sequence. Let ŷ(k) denote
the predicted value of y(k) that uses M past measurements; i.e.,

ŷ(k) =
M∑
i=1

aM,iy(k − i) (15.47)

The forward prediction error filter (PEF) coefficients, aM,1, . . . , aM,M , are chosen so that either
the mean-squared or least-squared forward prediction error (FPE), fM(k), is minimized, where
fM(k) = y(k) − ŷ(k). Note that in this filter design problem the length of the filter, M , is treated
as a design variable, which is why the PEF coefficients are argumented by M . Note, also, that the
PEF coefficients do not depend on tk ; i.e., the PEF is a constant coefficient predictor, whereas our
mean-squared state-predictor and filter are time-varying digital filters.

Predictor ŷ(k) uses a finite window of past measurements: y(k − 1), y(k − 2), . . . , y(k − M).
This window of measurements is different for different values of tk . This use of measurements is
quite different than our use of the measurements in state prediction, filtering, and smoothing. The
latter are based on an expanding memory, whereas the former is based on a fixed memory.

Digital signal-processing specialists have invented a related type of linear prediction named back-
ward linear prediction in which the objective is to predict a past value of a stationary discrete-time
random sequence using a set of future values of the sequence. Of course, backward linear prediction
is not prediction at all; it is smoothing. But the term backward linear prediction is firmly entrenched
in the DSP literature. Both forward and backward PEFs have a filter architecture associated with
them that is known as a tapped delay line. Remarkably, when the two filter design problems are
considered simultaneously, their solutions can be shown to be coupled, and the resulting architecture
is called a lattice. The lattice filter is doubly recursive in both time, k, and filter order, M . The tapped
delay line is only recursive in time. Changing its filter length leads to a completely new set of filter
coefficients. Adding another stage to the lattice filter does not affect the earlier filter coefficients.
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Consequently, the lattice filter is a very powerful architecture. No such lattice architecture is known
for mean-squared state estimators.

In a second approach to the design of the FPE coefficients, the constraint that the FPE coefficients
are constant is transformed into the state equations:

aM,1(k + 1) = aM,1(k), aM,2(k + 1) = aM,2(k), . . . , aM,M(k + 1) = aM,M(k)

Equation (15.47) then plays the role of the observation equation in our basic state-variable model,
and is one in which the observation matrix is time-varying. The resulting mean-squared error design
is then referred to as the Kalman filter solution for the PEF coefficients. Of course, we saw above that
this solution is a very special case of the KF, the BLUE. In yet a third approach, the PEF coefficients
are modeled as:

aM,1(k + 1) = aM,1(k) + w1(k), aM,2(k + 1)

= aM,2(k) + w2(k), . . . , aM,M(k + 1) = aM,M(k) + wM(k)

where wi(k) are white noises with variances qi . Equation (15.47) again plays the role of the mea-
surement equation in our basic state-variable model and is one in which the observation matrix is
time-varying. The resulting mean-squared error design is now a full-blown KF.

15.12 Iterated Least Squares

Iterated least squares (ILS) is a procedure for estimating parameters in a nonlinear model. Because
it can be viewed as the basis for the extended KF, which is described in the next section, we describe
ILS briefly here. To keep things simple, we describe ILS for the scalar parameter model z(k) =
f (θ, k) + ν(k) where k = 1, 2, . . . , N . ILS is basically a four-step procedure: (1) Linearize f (θ, k)

about a nominal value of θ, θ∗. Doing this, we obtain the perturbation measurement equation

δz(k) = Fθ(k; θ∗)δθ + ν(k) k = 1, 2, . . . , N (15.48)

where δz(k) = z(k) − z∗(k) = z(k) − f (θ∗, k), δθ = θ − θ∗, and Fθ(k; θ∗) = ∂f (θ, k)/∂θ |θ=θ∗ ;
(2) Concatenate (15.48) for the N values of k and compute δ̂θWLS(N) using (15.2); (3) Solve the
equation δ̂θWLS(N) = θ̂WLS(N) − θ∗ for θ̂WLS(N), i.e., θ̂WLS(N) = θ∗ + δ̂θWLS(N); (4) Replace θ∗
with θ̂WLS(N) and return to step 1. Iterate through these steps until convergence occurs. Let θ̂ i

WLS(N)

and θ̂ i+1
WLS(N) denote estimates of θ obtained at iterations i and i+1, respectively. Convergence of the

ILS method occurs when |θ̂ i+1
WLS(N)− θ̂ i

WLS(N)| < ε where ε is a prespecified small positive number.
Observe fromthis four-stepprocedure that ILSuses theestimateobtained fromthe linearizedmodel

to generate the nominal value of θ about which the nonlinear model is relinearized. Additionally,
in each complete cycle of this procedure, we use both the nonlinear and linearized models. The
nonlinear model is used to compute z∗(k) and subsequently δz(k). The notions of relinearizing
about a filter output and using both the nonlinear and linearized models are also at the very heart of
the extended KF.

15.13 Extended Kalman Filter

Many real-world systems are continuous-time in nature and are also nonlinear. The extended Kalman
filter (EKF) is the heuristic, but very widely used, application of the KF to estimation of the state
vector for the following nonlinear dynamical system:

ẋ(t) = f [x(t), u(t), t ] + G(t)w(t) (15.49)

z(t) = h [x(t), u(t), t ] + v(t) t = ti , i = 1, 2, . . . (15.50)
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In this model measurement equation (15.50) is treated as a discrete-time equation, whereas state
equation (15.49) is treated as a continuous-time equation; ẋ(t) is short for dx(t)/dt ; both f and
h are continuous and continuously differentiable with respect to all elements of x and u; w(t) is
a zero-mean continuous-time white noise process, with E{w(t)w′(τ )} = Q(t)δ(t − τ); v(ti) is a
discrete-time zero-mean white noise sequence, with E{v(ti)v′(tj )} = R(ti)δij ; and, w(t) and v(ti)

are mutually uncorrelated at all t = ti , i.e., E{w(t)v′(ti)} = 0 for t = ti , i = 1, 2, . . ..
In order to apply the KF to (15.49) and (15.50) we must linearize and discretize these equations.

Linearization is done about a nominal input u∗(t) and nominal trajectory x∗(t), whose choices we
discuss below. If we are given a nominal input u∗(t), then x∗(t) satisfies the nonlinear differential
equation.

ẋ∗(t) = f
[
x∗(t), u∗(t), t

]
(15.51)

and associated with x∗(t) and u∗(t) is the following nominal measurement, z∗(t), where

z∗(t) = h
[
x∗(t), u∗(t), t

]
t = ti , i = 1, 2, . . . (15.52)

Equations (15.51) and (15.52) are referred to as the nominal system model. Letting δx(t) = x(t) −
x∗(t), δu(t) = u(t) − u∗(t), and δz(t) = z(t) − z∗(t), we have the following linear perturbation
state-variable model:

δẋ(t) = Fx
[
x∗(t), u∗(t), t

]
δx(t) + Fu

[
x∗(t), u∗(t), t

]
δu(t) + G(t)w(t) (15.53)

δz(t) = Hx
[
x∗(t), u∗(t), t

]
δx(t) + Hu

[
x∗(t), u∗(t), t

]
δu(t) + v(t),

t = ti , i = 1, 2, . . . (15.54)

Where Fx[x∗(t), u∗(t), t], for example, is the following time-varying Jacobian matrix,

Fx
[
x∗(t), u∗(t), t

] =



∂f1/∂x∗
1 · · · ∂f1/∂x∗

n
...

. . .
...

∂fn/∂x∗
1 · · · ∂fn/∂x∗

n


 (15.55)

in which ∂fi/∂x∗
j = ∂fi[x(t), u(t), t]/∂xj (t)|x(t)=x∗(t),u(t)=u∗(t).

Starting with (15.53) and (15.54), we obtain the following discretized perturbation state variable
model:

δx(k + 1) = 8
(
k + 1, k;∗ )

δx(k) + 9
(
k + 1, k;∗ )

δu(k) + wd(k) (15.56)

δz(k + 1) = Hx
(
k + 1;∗ )

δx(k + 1) + Hu
(
k + 1;∗ )

δu(k + 1) + v(k + 1) (15.57)

where the notation 8(k + 1, k;∗ ), for example, denotes the fact that this matrix depends on x∗(t)
and u∗(t). In (15.56), 8(k + 1, k;∗ ) = 8(tk+1, tk;∗ ), where

8̇
(
t, τ ;∗ ) = Fx

[
x∗(t), u∗(t), t

]
8

(
t, τ ;∗ )

, 8
(
t, t;∗ ) = I (15.58)

Additionally,

9
(
k + 1, k;∗ ) =

∫ tk+1

tk

8
(
tk+1, τ ;∗ )

Fu
[
x∗(τ ), u∗(τ ), τ

]
dτ (15.59)

andwd(k) is a zero-meannoise sequence that is statistically equivalent to
∫ tk+1
tk

8(tk+1, τ )G(τ )w(τ )dτ ;
hence, its covariance matrix, Qd(k + 1, k), is

E
{
wd(k)w′

d(k)
} = Qd(k + 1, k) =

∫ tk+1

tk

8 (tk+1, τ ) G(τ )Q(τ )G′(τ )8′ (tk+1, τ ) dτ (15.60)

c©1999 by CRC Press LLC



Great simplifications of the calculations in (15.58), (15.59), and (15.60) occur if F(t), B(t), G(t),
and Q(t) are approximately constant during the time interval t ∈ [tk, tk+1], i.e., if F(t) ≈ Fk, B(t) ≈
Bk, G(t) ≈ Gk , and Q(t) ≈ Qk for t ∈ [tk, tk+1]. In this case: 8(k + 1, k) = eFkT , 9(k + 1, k) ≈
BkT = 9(k), and Qd(k + 1, k) ≈ GkQkG′

kT = Qd(k) where T = tk+1 − tk .
Suppose x∗(t) is given a priori; then we can compute predicted, filtered, or smoothed estimates of

δx(k) by applying all of our previously derived state estimators to the discretized perturbation state-
variable model in (15.56) and (15.57). We can precompute x∗(t) by solving the nominal differential
equation (15.51). The KF associated with using a precomputed x∗(t) is known as a relinearized KF.
A relinearized KF usually gives poor results, because it relies on an openloop strategy for choosing
x∗(t). When x∗(t) is precomputed, there is no way of forcing x∗(t) to remain close to x(t), and this
must be done or else the perturbation state-variable model is invalid.

The relinearized KF is based only on the discretized perturbation state-variable model. It does not
use thenonlinearnatureof theoriginal system inanactivemanner. TheEKFrelinearizes thenonlinear
system about each new estimate as it becomes available, i.e., at k = 0, the system is linearized about
x̂(0|0). Once z(1) is processed by the EKF so that x̂(1|1) is obtained, the system is linearized about
x̂(1|1). By “linearize about x̂(1|1),” we mean x̂(1|1) is used to calculate all the quantities needed to
make the transition from x̂(1|1) to x̂(2|1) and subsequently x̂(2|2). The purpose of relinearizing
about the filter’s output is to use a better reference trajectory for x∗(t). Doing this, δx = x − x̂ will
be held as small as possible, so that our linearization assumptions are less likely to be violated than
in the case of the relinearized KF.

The EKF is available only in predictor-corrector format [6]. Its prediction equation is obtained
by integrating the nominal differential equation for x∗(t) from tk to tk+1. Its correction equation is
obtained by applying the KF to the discretized perturbation state-variable model. The equations for
the EKF are:

x̂(k + 1|k) = x̂(k|k) +
∫ tk+1

tk

f
[
x̂ (t |tk) , u∗(t), t

]
dt , (15.61)

whichmustbeevaluatedbynumerical integration formulas thatare initializedby f [x̂(tk|tk), u∗(tk), tk],

x̂(k + 1|k + 1) = x̂(k + 1|k) + K
(
k + 1;∗ )

{
z(k + 1) − h

[
x̂(k + 1|k), u∗(k + 1), k + 1

]
− Hu

(
k + 1;∗ )

δu(k + 1)
}

(15.62)

K
(
k + 1;∗ ) = P

(
k + 1|k;∗ )

Hx
′ (k + 1;∗ )

[
Hx

(
k + 1;∗ )

P
(
k + 1|k;∗ )

Hx
′ (k + 1;∗ ) + R(k + 1)

]−1
(15.63)

P
(
k + 1|k;∗ ) = 8

(
k + 1, k;∗ )

P
(
k|k;∗ )

8′ (k + 1, k;∗ ) + Qd

(
k + 1, k;∗ )

(15.64)

P
(
k + 1|k + 1;∗ ) = [

I − K
(
k + 1;∗ )

Hx
(
k + 1;∗ )]

P
(
k + 1|k;∗ )

(15.65)

In these equations, K(k + 1;∗ ), P(k + 1|k;∗ ), and P(k + 1|k + 1;∗ ) depend on the nominal x∗(t)
that results from prediction, x̂(k +1|k). For a complete flowchart of the EKF, see Figure 24-2 in [12].

The EKF is very widely used; however, it does not provide an optimal estimate of x(k). The optimal
mean-squared estimate of x(k) is still E{x(k)|Z(k)}, regardless of the linear or nonlinear nature of
the system’s model. The EKF is a first-order approximation of E{x(k)|Z(k)} that sometimes works
quite well, but cannot be guaranteed to always work well. No convergence results are known for the
EKF; hence, the EKF must be viewed as an ad hoc filter. Alternatives to the EKF, which are based on
nonlinear filtering, are quite complicated and are rarely used.

The EKF is designed to work well as long as δx(k) is “small.” The iterated EKF [6] is designed
to keep δx(k) as small as possible. The iterated EKF differs from the EKF in that it iterates the
correction equation L times until ‖x̂L(k + 1|k + 1) − x̂L−1(k + 1|k + 1)‖ ≤ ε. Corrector 1
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computes K(k + 1;∗ ), P(k + 1|k;∗ ), and P(k + 1|k + 1;∗ ) using x∗ = x̂(k + 1|k); corrector 2
computes these quantities using x∗ = x̂1(k + 1|k + 1); corrector 3 computes these quantities using
x∗ = x̂2(k + 1|k + 1); etc. Often, just adding one additional corrector (i.e., L = 2) leads to
substantially better results for x̂(k + 1|k + 1) than are obtained using the EKF.
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Further Information

Recent articles about estimation theory appear in many journals, including the following engineering
journals: AIAA J., Automatica, IEEE Trans. on Aerospace and Electronic Systems, IEEE Trans. on
Automatic Control, IEEE Trans. on Information Theory, IEEE Trans. on Signal Processing, Int.
J. Adaptive Control and Signal Processing, Int. J. Control, and Signal Processing. Nonengineering
journals that also publish articles about estimation theory include: Annals Inst. Statistical Math.,
Ann. Math Statistics, Ann. Statistics, Bull. Inst. Internat. Stat., and Sankhya.

Some engineering conferences that continue to have sessions devoted to aspects of estimation theory,
include: American Automatic Control Conference, IEEE Conference on Decision and Control, IEEE
International Conference on Acoustics, Speech and Signal Processing, IFAC International Congress,
and, some IFAC Workshops.
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MATLAB toolboxes that implement some of the algorithms described in this chapter are: Control
Systems, Optimization, andSystem Identification.See [12], at the end of each lesson, for descriptions
of which M-files in these toolboxes are appropriate. Additionally, [12] lists six estimation algorithm
M-files that do not appear in any MathWorks toolboxes or in MATLAB. They are rwlse — a recursive
least-squares algorithm; kf — a recursive KF; kp — a recursive Kalman predictor; sof — a recursive
suboptimal filter in which the gain matrix must be prespecified; sop — a recursive suboptimal
predictor in which the gain matrix must be prespecified; and, fis — a fixed-interval smoother.
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16.1 Introduction

Linear parametric models of stationary random processes, whether signal or noise, have been found
to be useful in a wide variety of signal processing tasks such as signal detection, estimation, filtering,
and classification, and in a wide variety of applications such as digital communications, automatic
control, radar and sonar, and other engineering disciplines and sciences. A general representation of
a linear discrete-time stationary signal x(t) is given by

x(t) =
∞∑
i=0

h(i)ε(t − i) (16.1)

where {ε(t)} is a zero-mean, i.i.d. (independent and identically distributed) random sequence
with finite variance, and {h(i), i ≥ 0} is the impulse response of the linear system such that∑∞

i=−∞ h2(i) < ∞. Much effort has been expended on developing approaches to linear model
fitting given a single measurement record of the signal (or noisy signal). Parsimonious parametric
models such as AR (autoregressive), MA (moving average), ARMA or state-space, as opposed to
impulse response modeling, have been popular together with the assumption of Gaussianity of the
data.

Define

H(q) =
∞∑
i=0

h(i)q−i (16.2)

where q−1 is the backward shift operator (i.e., q−1x(t) = x(t − 1), etc.). If q is replaced with the
complex variable z, then H(z) is the Z-transform of {h(i)}, i.e., it is the system transfer function.
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Using (16.2), (16.1) may be rewritten as

x(t) = H(q)ε(t). (16.3)

Fitting linear models to the measurement record requires estimation ofH(q), or equivalently of {h(i)}
(without observing {ε(t)} ). Typically H(q) is parameterized by a finite number of parameters, say
by the parameter vector θ(M) of dimension M . For instance, an AR model representation of order
M means that

HAR(q; θ(M)) = 1

1 + ∑M
i=1 aiq−i

, θ (M) = (a1, a2, · · · , aM)T . (16.4)

This reduces the number of estimated parameters from a “large” number to M .

In this section several aspects of fitting models such as (16.1) to (16.3) to the given measurement
record are considered. These aspects are (see also Fig. 16.1):

• Is the model of the type (16.1) appropriate to the given record? This requires testing for
linearity and stationarity of the data.

• Linear Gaussian models have long been dominant both for signals as well as for noise pro-
cesses. Assumption of Gaussianity allows implementation of statistically efficient param-
eter estimators such as maximum likelihood estimators. A Gaussian process is completely
characterized by its second-order statistics (autocorrelation function or, equivalently, its
power spectral density). Since the power spectrum of {x(t)} of (16.1) is given by

Sxx(ω) = σ 2
ε |H(ejω)|2, σ 2

ε = E{ε2(t)}, (16.5)

one cannot determine the phase of H(ejω) independent of |H(ejω)|. Determination
of the true phase characteristic is crucial in several applications such as blind equaliza-
tion of digital communications channels. Use of higher-order statistics allows one to
uniquely identify nonminimum-phase parametric models. Higher-order cumulants of
Gaussian processes vanish, hence, if the data are stationary Gaussian, a minimum-phase
(or maximum-phase) model is the “best” that one can estimate. Therefore, another aspect
considered in this section is testing for non-Gaussianity of the given record.

• If the data are Gaussian, one may fit models based solely upon the second-order statistics
of the data — else use of higher-order statistics in addition to or in lieu of the second-order
statistics is indicated, particularly if the phase of the linear system is crucial. In either case,
one typically fits a model H(q; θ(M)) by estimating the M unknown parameters through
optimization of some cost function. In practice, (the model order) M is unknown and its
choice has a significant impact on the quality of the fitted model. In this section another
aspect of the model-fitting problem considered is that of order selection.

• Havingfitted amodelH(q; θ(M)), onewould also like toknowhowgoodare the estimated
parameters? Typically this is expressed in terms of error bounds or confidence intervals
on the fitted parameters and on the corresponding model transfer function.

• Having fitted a model, a final step is that of model falsification. Is the fitted model an
appropriate representation of the underlying system? This is referred to variously as
model validation, model verification, or model diagnostics.

• Finally, variousmodels ofunivariatenoisepdf (probability density function) arediscussed
to complete the discussion of model fitting.
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FIGURE 16.1: Section outline (SOS — second-order statistics; HOS — higher-order statistics).

16.2 Gaussianity, Linearity, and Stationarity Tests

Given a zero-mean, stationary random sequence {x(t)}, its third-order cumulant function Cxxx(i, k)

is given by [12]
Cxxx(i, k) := E{x(t + i)x(t + k)x(t)}. (16.6)

Its bispectrum Bxxx(ω1, ω2) is defined as [12]

Bxxx(ω1, ω2) =
∞∑

i=−∞

∞∑
k=−∞

Cxxx(i, k)e−j (ω1i+ω2k). (16.7)

Similarly, its fourth-order cumulant function Cxxxx(i, k, l) is given by [12]

Cxxxx(i, k, l) := E{x(t)x(t + i)x(t + k)x(t + l)}
− E{x(t)x(t + i)}E{x(t + k)x(t + l)}
− E{x(t)x(t + k)}E{x(t + l)x(t + i)}
− E{x(t)x(t + l)}E{x(t + k)x(t + i)}. (16.8)

Its trispectrum is defined as [12]

Txxxx(ω1, ω2, ω3) :=
∞∑

i=−∞

∞∑
k=−∞

∞∑
l=−∞

Cxxxx(i, k, l)e−j (ω1i+ω2k+ω3l). (16.9)
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If {x(t)} obeys (16.1), then [12]

Bxxx(ω1, ω2) = γ3εH(ejω1)H(ejω2)H ∗(ej (ω1+ω2)) (16.10)

and
Txxxx(ω1, ω2, ω3) = γ4εH(ejω1)H(ejω2)H(ejω3)H ∗(ej (ω1+ω2+ω3)) (16.11)

where
γ3ε = Cεεε(0, 0, 0) and γ4ε = Cεεεε(0, 0, 0, 0). (16.12)

For Gaussian processes, Bxxx(ω1, ω2) ≡ 0 and Txxxx(ω1, ω2, ω3) ≡ 0; equivalently, Cxxx(i, k) ≡
0 and Cxxxx(i, k, l) ≡ 0. This forms a basis for testing Gaussianity of a given measurement record.
When {x(t)} is linear (i.e., it obeys (16.1)), then using (16.5) and (16.10),

|Bxxx(ω1, ω2)|2
Sxx(ω1)Sxx(ω1)Sxx(ω1 + ω2)

= γ3ε

σ 6
ε

= constant ∀ ω1, ω2, (16.13)

and using (16.5) and (16.11),

|Txxxx(ω1, ω2, ω3)|2
Sxx(ω1)Sxx(ω1)Sxx(ω3)Sxx(ω1 + ω2 + ω3)

= γ4ε

σ 8
ε

= constant ∀ ω1, ω2, ω3. (16.14)

The above two relations form a basis for testing linearity of a given measurement record. How
the tests are implemented depends upon the statistics of the estimators of the higher-order cumulant
spectra as well as that of the power spectra of the given record.

16.2.1 Gaussianity Tests

Suppose that the given zero-mean measurement record is of length N denoted by {x(t), t =
1, 2, · · · , N}. Suppose that the given sample sequence of length N is divided into K nonover-
lapping segments each of size NB samples so that N = KNB . Let X(i)(ω) denote the discrete Fourier
transform (DFT) of the ith block {x(t + (i − 1)NB), 1 ≤ t ≤ NB} (i = 1, 2, · · · , K) given by

X(i)(ωm) =
NB−1∑
l=0

x(l + 1 + (i − 1)NB)exp(−jωml) (16.15)

where

ωm = 2π

NB

m, m = 0, 1, · · · , NB − 1. (16.16)

Denote the estimate of the bispectrum Bxxx(ωm, ωn) at bifrequency (ωm = 2π
NB

m, ωn = 2π
NB

n) as

B̂xxx(m, n), given by averaging over K blocks

B̂xxx(m, n) = 1

K

K∑
i=1

{
1

NB

X(i)(ωm)X(i)(ωn)
[
X(i)(ωm + ωn)

]∗ }
, (16.17)

where X∗ denotes the complex conjugate of X. A principal domain of B̂xxx(m, n) is the triangular
grid

D =
{
(m, n) | 0 ≤ m ≤ NB

2
, 0 ≤ n ≤ m, 2m + n ≤ NB

}
. (16.18)

Values of B̂xxx(m, n) outside D can be inferred from that in D.
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FIGURE 16.2: Coarse and fine grids in the principal domain.

Select a coarse frequency grid (m, n) in the principal domain D as follows. Let d denote the
distance between two adjacent coarse frequency pairs such that d = 2r + 1 with r a positive integer.

Set n0 = 2 + r and n = n0, n0 + d, · · · , n0 + (Ln − 1)d where Ln = b b NB
3 c−1
d

c. For a given

n, set m0,n = bNB−n
2 c − r , m = mn = m0,n, m0,n − d, · · · , m0,n − (Lm,n − 1)d where Lm,n =

bm0,n−(n+r+1)

d
c + 1. Let P denote the number of points on the coarse frequency grid as defined

above so that P =
∑Ln

n=1 Lm,n. Suppose that (m, n) is a coarse point, then select a fine grid (m, nnk)

and (mmi, nnk) consisting of

mmi = m + i, |i| ≤ r, nnk = n + k, |k| ≤ r, (16.19)

for some integer r > 0 such that (2r+1)2 > P ; see also Fig. 16.2. Order the L (= (2r+1)2) estimates
B̂xxx(mmi, nnk) on the fine grid around the bifrequency pair (m, n) into an L-vector, which after
relabeling, may be denoted as νml, l = 1, 2, · · · , L, m = 1, 2, · · · , P , where m indexes the coarse
grid and l indexes the fine grid. Define P -vectors

9i = (ν1i , ν2i , · · · , νP i)
T (i = 1, 2, · · · , L). (16.20)

Consider the estimates

M = 1

L

L∑
i=1

9i and 6 = 1

L

L∑
i=1

(
9i − M) (

9i − M)H
. (16.21)

Define

FG = 2(L − P)

2P
MH

6
−1M. (16.22)

If {x(t)} is Gaussian, then FG is distributed as a central F (Fisher) with (2P, 2(L − P)) degrees of
freedom. Astatistical test for testingGaussianityof {x(t)} is todeclare it tobeanon-Gaussian sequence
if FG > Tα where Tα is selected to achieve a fixed probability of false alarm α (= Pr{FG > Tα}
with FG distributed as a central F with (2P, 2(L − P)) degrees of freedom). If FG ≤ Tα , then
either {x(t)} is Gaussian or it has zero bispectrum.

The above test is patterned after [3]. It treats the bispectral estimates on the “fine” bifrequency
grid as a “data set” from a multivariable Gaussian distribution with unknown covariance matrix.
Hinich [4] has simplified the test of [3] by using the known asymptotic expression for the covariance
matrix involved, and his test is based upon χ2 distributions. Notice that FG ≤ Tα does not
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necessarily imply that {x(t)} is Gaussian; it may result from that fact that {x(t)} is non-Gaussian
with zero bispectrum. Therefore, a next logical step would be to test for vanishing trispectrum of the
record. This has been done in [14] using the approach of [4]; extensions of [3] are too complicated.
Computationally simpler tests using “integrated polyspectrum” of the data have been proposed in [6].
The integrated polyspectrum (bispectrum or trispectrum) is computed as cross-power spectrum and
it is zero for Gaussian processes. Alternatively, one may test if Cxxx(i, k) ≡ 0 and Cxxxx(i, k, l) ≡ 0.
This has been done in [8].

Other tests that do not rely on higher-order cumulant spectra of the record may be found in [13].

16.2.2 Linearity Tests

Denote the estimate of the power spectral density Sxx(ωm) of {x(t)} at frequency ωm = 2π
NB

m as

Ŝxx(m) given by

Ŝxx(m) = 1

K

K∑
i=1

{
1

NB

X(i)(ωm)
[
X(i)(ωm)

]∗ }
. (16.23)

Consider

γ̂x(m, n) = |B̂xxx(m, n)|2
Ŝxx(m)Ŝxx(n)Ŝxx(m + n)

. (16.24)

It turns out that γ̂x(m, n) is a consistent estimator of the left side of (16.13), and it is asymptotically
distributed as a Gaussian random variable, independent at distinct bifrequencies in the interior of
D. These properties have been used by Subba Rao and Gabr [3] to design a test of linearity.

Construct a coarse grid and a fine grid of bifrequencies in D as before. Order the L estimates
γ̂x(mmi, nnk) on the fine grid around the bifrequency pair (m, n) into an L-vector, which after
relabeling, may be denoted as βml, l = 1, 2, · · · , L, m = 1, 2, · · · , P , where m indexes the coarse
grid and l indexes the fine grid. Define P -vectors

9i = (β1i , β2i , · · · , βP i)
T , (i = 1, 2, · · · , L). (16.25)

Consider the estimates

M = 1

L

L∑
i=1

9i and 6 = 1

L

L∑
i=1

(9i − M)(9i − M)T . (16.26)

Define a (P −1)×P matrix B whose ij th element Bij is given by Bij = 1 if i = j ; = −1 if j = i +1;
= 0 otherwise. Define

FL = L − P + 1

P − 1
(BM)T

(
B6BT

)−1
BM. (16.27)

If {x(t)} is linear, then FL is distributed as a central F with (P −1, L−P +1) degrees of freedom. A
statistical test for testing linearity of {x(t)} is to declare it to be a nonlinear sequence if FL > Tα where
Tα is selected to achieve a fixed probability of false alarm α (= Pr{FL > Tα} with FL distributed as
a central F with (P − 1, L − P + 1) degrees of freedom). If FL ≤ Tα , then either {x(t)} is linear
or it has zero bispectrum.

The above test is patterned after [3]. Hinich [4] has “simplified” the test of [3]. Notice that
FL ≤ Tα does not necessarily imply that {x(t)} is nonlinear; it may result from that fact that {x(t)}
is non-Gaussian with zero bispectrum. Therefore, a next logical step would be to test if (16.14) holds
true. This has been done in [14] using the approach of [4]; extensions of [3] are too complicated. The
approaches of [3] and [4] will fail if the data are noisy. A modification to [3] is presented in [7] when
additive Gaussian noise is present. Finally, other tests that do not rely on higher-order cumulant
spectra of the record may be found in [13].
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16.2.3 Stationarity Tests

Various methods exist for testing whether a given measurement record may be regarded as a sample
sequence of a stationary random sequence. A crude yet effective way to test for stationarity is to
divide the record into several (at least two) nonoverlapping segments and then test for equivalency
(or compatibility) of certain statistical properties (mean, mean-square value, power spectrum, etc.)
computed from these segments. More sophisticated tests that do not require a priori segmentation
of the record are also available.

Consider a record of length N divided into two nonoverlapping segments each of length N/2. Let

KNB = N/2 and use the estimators such as (16.23) to obtain the estimator Ŝ
(l)
xx (m) of the power

spectrum S
(l)
xx (ωm) of the l−th segment (l = 1, 2), where ωm is given by (16.16). Consider the test

statistic

Y = 2

NB − 2

√
K

2

NB
2 −1∑
m=1

[
ln Ŝ(1)

xx (m) − ln Ŝ(2)
xx (m)

]
. (16.28)

Then, asymptotically Y is distributed as zero-mean, unit variance Gaussian if {x(t)} is stationary.
Therefore, if |Y | > Tα , then {x(t)} is declared to be nonstationary where the threshold Tα is chosen
to achieve a false-alarm probability of α (= Pr{|Y | > Tα} with Y distributed as zero-mean, unit
variance Gaussian). If |Y | ≤ Tα , then {x(t)} is declared to be stationary. Notice that similar tests
based upon higher-order cumulant spectra can also be devised.

The above test is patterned after [10]. More sophisticated tests involving two model comparisons
as above but without prior segmentation of the record are available in [11] and references therein. A
test utilizing evolutionary power spectrum may be found in [9].

16.3 Order Selection, Model Validation, and Confidence
Intervals

As noted earlier, one typically fits a model H(q; θ(M)) to the given data by estimating the M unknown
parameters through optimization of some cost function. A fundamental difficulty here is the choice
of M . There are two basic philosophical approaches to this problem: one consists of an iterative
process of model fitting and diagnostic checking (model validation), and the other utilizes a more
“objective” approach of optimizing a cost w.r.t. M (in addition to θ(M) ).

16.3.1 Order Selection

Let fθ(M)(X) denote the probability density function of X = [x(1), x(2), · · · , x(N)]T parameterized
by the parameter vector θ(M) of dimension M . A popular approach to model order selection in the
context of linear Gaussian models is to compute the Akaike information criterion (AIC)

AIC(M) = −2 ln fθ̂(M)(X) + 2M (16.29)

where θ̂ (M) maximizes fθ(M)(X) given the measurement record X. Let M denote an upper bound
on the true model order. Then the minimum AIC estimate (MAICE), the selected model order, is
given by the minimizer of AIC(M) over M = 1, 2, · · · , M . Clearly one needs to solve the problem
of maximization of ln fθ(M)(X) w.r.t. θ(M) for each value of M = 1, 2, · · · ,M . The second term on
the right side of (16.29) penalizes overparametrization.

Rissanen’s minimum description length (MDL) criterion is given by

MDL(M) = −2 ln fθ̂(M)(X) + M ln N. (16.30)
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It is known that if {x(t)} is a Gaussian AR model, then AIC is an inconsistent estimator of the model
order whereas MDL is consistent, i.e., MDL picks the correct model order with probability one as the
data length tends to infinity, whereas there is a nonzero probability that AIC will not. Several other
variations of these criteria exist [15].

Although the derivation of these order selection criteria is based upon Gaussian distribution, they
have frequently been used for non-Gaussian processes with success provided attention is confined
to the use of second-order statistics of the data. They may fail if one fits models using higher-order
statistics.

16.3.2 Model Validation

Model validation involves testing to see if the fitted model is an appropriate representation of the
underlying (true) system. It involves devising appropriate statistical tools to test the validity of the
assumptions made in obtaining the fitted model. It is also known as model falsification, model
verification, or diagnostic checking. It can also be used as a tool for model order selection. It is an
essential part of any model fitting methodology.

Suppose that {x(t)} obeys (16.1). Suppose that the fitted model corresponding to the estimated
parameter θ̂ (M) is H(q; θ̂ (M)). Assuming that the true model H(q) is invertible, in the ideal case one
should get ε(t) = H−1(q)x(t) where {ε(t)} is zero-mean, i.i.d. (or at least white when using second-
order statistics). Hence, if the fitted model H(q; θ̂ (M)) is a valid description of the underlying true
system, one expects ε′(t) = H−1(q; θ̂ (M))x(t) to be zero-mean, i.i.d. One of the diagnostic checks
then is to test for whiteness or independence of the inverse filtered data (or the residuals or linear
innovations, in case second-order statistics are used). If the fitted model is unable to “adequately”
capture the underlying true system, one expects {ε′(t)} to deviate from i.i.d. distribution. This is
one of the most widely used and useful diagnostic checks for model validation.

A test for second-order whiteness of {ε′(t)} is as follows [15]. Construct the estimates of the
covariance function as

r̂ε(τ ) = N−1
N−τ∑
t=1

ε′(t + τ)ε′(t) (τ ≥ 0). (16.31)

Consider the test statistic

R = N

r̂2
ε (0)

m∑
i=1

r̂2
ε (i) (16.32)

where m is some a priori choice of the maximum lag for whiteness testing. If {ε′(t)} is zero-mean
white, then R is distributed as χ2(m) (χ2 with m degrees of freedom). A statistical test for testing
whiteness of {ε′(t)} is to declare it to be a nonwhite sequence (hence invalidate the model) if R > Tα

where Tα is selected to achieve a fixed probability of false alarm α (= Pr{R > Tα} with R distributed
as χ2(m)). If R ≤ Tα , then {ε′(t)} is second-order white, hence the model is validated.

The above procedure only tests for second-order whiteness. In order to test for higher-order
whiteness, one needs to examine either the higher-order cumulant functions or the higher-order
cumulant spectra (or the integrated polyspectra) of the inverse-filtered data. A statistical test using
bispectrum is available in [5]. It is particularly useful if the model fitting is carried out using higher-
order statistics. If {ε′(t)} is third-order white, then its bispectrum is a constant for all bifrequencies.
Let B̂ε′ε′ε′(m, n)denote the estimateof thebispectrumBε′ε′ε′(ωm, ωn)mimicking (16.17). Construct
a coarse grid and a fine grid of bifrequencies in D as before. Order the L estimates B̂ε′ε′ε′(mmi, nnk)

on the fine grid around the bifrequency pair (m, n) into an L-vector, which after relabeling may be
denoted as µml, l = 1, 2, · · · , L, m = 1, 2, · · · , P , where m indexes the coarse grid and l indexes
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the fine grid. Define P -vectors

9̃i = (µ1i , µ2i , · · · , µP i)
T , (i = 1, 2, · · · , L). (16.33)

Consider the estimates

M̃ = 1

L

L∑
i=1

9̃i and 6̃ = 1

L

L∑
i=1

(
9̃i − M̃) (

9̃i − M̃)H
. (16.34)

Define a (P −1)×P matrix B whose ij th element Bij is given by Bij = 1 if i = j ; = −1 if j = i +1;
= 0 otherwise. Define

FW = 2(L − P + 1)

2P − 2

(
BM̃)H (

B6̃BT
)−1

BM̃. (16.35)

If {ε′(t)} is third-order white, then FW is distributed as a central F with (2P − 2, 2(L − P + 1))

degrees of freedom. A statistical test for testing third-order whiteness of {ε′(t)} is to declare it to be
a nonwhite sequence if FW > Tα where Tα is selected to achieve a fixed probability of false alarm
α (= Pr{FW > Tα} with FW distributed as a central F with (2P − 2, 2(L − P + 1)) degrees of
freedom). If FW ≤ Tα , then either {ε′(t)} is third-order white or it has zero bispectrum.

The above model validation test can be used for model order selection. Fix an upper bound on
the model orders. For every admissible model order, fit a linear model and test its validity. From
among the validated models, select the “smallest” order as the correct order. It is easy to see that this
procedure will work only so long as the various candidate orders are nested. Further details may be
found in [5] and [15].

16.3.3 Confidence Intervals

Having settled upon a model order estimate M , let θ̂
(M)
N be the parameter estimator obtained by

minimizing a cost function VN(θ(M)), given a record of length N , such that V∞(θ) := limN→∞VN(θ)

exists. For instance, using the notation of the section on order selection, one may take VN(θ(M)) =
−N−1ln fθ(M)(X). How reliable are these estimates? An assessment of this is provided by confidence
intervals.

Under some general technical conditions, it usually follows that asymptotically (i.e., for large N),√
N

(
θ̂

(M)
N − θ0

)
is distributed as a Gaussian random vector with zero-mean and covariance matrix

P where θ0 denotes the true value of θ(M). A general expression for P is given by [15]

P = [
V ′′∞(θ0)

]−1
P∞

[
V ′′∞(θ0)

]−1
(16.36)

where
P∞ = limN→∞E

{
NV ′ T

N (θ0)V
′
N(θ0)

}
(16.37)

and V ′ (a row vector) and V ′′ (a square matrix) denote the gradient and the Hessian, respectively, of
V .

The above result can be used to evaluate the reliability of the parameter estimator. It follows from
the above results that

ηN = N
(
θ̂

(M)
N − θ0

)T P−1
(
θ̂

(M)
N − θ0

)
(16.38)

is asymptotically χ2(M). Define χ2
α(M) via Pr{y > χ2

α(M)} = α where y is distributed as χ2(M).
For instance, χ2

0.05 = 9.49 so that Pr{ηN > 9.49} = 0.05. The ellipsoid ηN ≤ χ2
α(M) then defines
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the 95% confidence ellipsoid for the estimate θ̂
(M)
N . It implies that θ0 will lie with probability 0.95 in

this ellipsoid around θ̂
(M)
N .

In practice obtaining expression for P is not easy; it requires knowledge of θ0. Typically, one

replaces θ0 with θ̂
(M)
N . If a closed-form expression for P is not available, it may be approximated by

a sample average [16].

16.4 Noise Modeling

As for signal models, Gaussian modeling of noise processes has long been dominant. Typically
the central limit theorem is invoked to justify this assumption; thermal noise is indeed Gaussian.
Another reason is analytical tractability when the Gaussian assumption is made. Nevertheless, non-
Gaussian noise occurs often in practice. For instance, underwater acoustic noise, low-frequency
atmospheric noise, radar clutter noise, and urban and man-made radio-frequency noise all are
highly non-Gaussian [17]. All these types of noise are impulsive in character, i.e., the noise produces
large-magnitude observations more often than predicted by a Gaussian model. This fact has led to
development of several models of univariate non-Gaussian noise probability density functions (pdf),
all of which have their tails decay at rates lower than the rate of decay of the Gaussian pdf tails. Also,
the proposed models are parameterized in such a way as to include Gaussian pdf as a special case.

16.4.1 Generalized Gaussian Noise

A generalized Gaussian pdf is characterized by two constants, variance σ 2, and an exponential decay-
rate parameter k > 0. It is symmetric and unimodal, given by [17]

fk(x) = k

2A(k)0(1/k)
e−[|x|/A(k)]k (16.39)

where

A(k) =
[
σ 20(1/k)

0(3/k)

]1/2

(16.40)

and 0 is the gamma function

0(α) :=
∫ ∞

o

xα−1e−xdx. (16.41)

When k = 2, (16.39) reduces to a Gaussian pdf. For k < 2, the tails of fk decay at a lower rate than
for the Gaussian case f2. The value k = 1 leads to the Laplace density (two-sided exponential). It is
known that generalized Gaussian density with k around 0.5 can be used to model certain impulsive
atmospheric noise [17].

16.4.2 Middleton Class A Noise

Unlike most of the other noise models, the Middleton class A mode is based upon physical modeling
considerations rather than an empirical fit to observed data. It is a canonical model based upon the
assumption that the noise bandwidth is comparable to, or less than, that of the receiver. The observed
noise process is assumed to have two independent components:

X(t) = XG(t) + XP (t) (16.42)
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where XG(t) is a stationary background Gaussian noise component and XP (t) is the impulsive
component. The component XP (t) is represented by

XP (t) =
∑

i

Ui(t, θ) (16.43)

where Ui denotes the ith waveform from an interfering source and θ represents a set of random
parameters that describe the scale and structure of the waveform. The arrival time of these indepen-
dent impulsive events at the receiver is assumed to be Poisson distributed. Under these and some
additional assumptions, the class A pdf for the normalized instantaneous amplitude of noise is given
by

fA(x) = e−A
∞∑

m=0

Am

m!√2πσ 2
m

e−x2/(2σ2
m) (16.44)

where

σ 2
m = (m/A) + 0′

1 + 0′ . (16.45)

The parameter A, called the impulsive index, determines how impulsive noise is: a small value of
A implies highly impulsive interference (although A = 0 degenerates into purely Gaussian X(t)).
The parameter 0′ is the ratio of power in the Gaussian component of the noise to the power in
the Poisson mechanism interference. The term in (16.44) corresponding to m = 0 represents the
background component of the noise with no impulsive waveform present, whereas the higher-order
terms represent the occurrence of m impulsive events overlapping simultaneously at the receiver
input.

The class A model has been found to provide very good fits to a variety of noise and interference
measurements [17].

16.4.3 Stable Noise Distribution

This is another useful noise distribution model which has a drawback that its variance may not be
finite. It is most conveniently described by its characteristic function. A stable univariate probability
distribution function (PDF) has characteristic function ϕ(t) of the form [18]

ϕ(t) = exp
{
jat − γ |t |α [

1 + jβsgn(t)ω(t, α)
]}

(16.46)

where

ω(t, α) =
{

tan(απ/2) for α 6= 1
(2/π) log(|t |) for α = 1

(16.47)

sgn(t) =



1 for t > 0
0 for t = 0
−1 for t < 0

(16.48)

and
− ∞ < a < ∞, γ > 0, 0 < α ≤ 2, −1 ≤ β ≤ 1. (16.49)

A stable distribution is completely determined by four parameters: location parameter a, the scale
parameter γ , the index of skewness β, and the characteristic exponent α. A stable distribution with
characteristic exponent α is called alpha− stable.

The characteristic exponent α is a shape parameter and it measures the “thickness” of the tails of
the pdf. A small value of α implies longer tails. When α = 2, the corresponding stable distribution
is Gaussian. When α = 1 and β = 0, then the corresponding stable distribution is Cauchy.
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Inverse Fourier transform of ϕ(t) yields the PDF and, therefore, the pdf of noise. No closed-form
solution exists in general for the two; however, power series expansion of the pdf is available — details
may be found in [18] and references therein.

16.5 Concluding Remarks

In this chapter several fundamental aspects of fitting linear time-invariant parametric (rational trans-
fer function) models to a given measurement record were considered. Before a linear model is fitted,
one needs to test for stationarity, linearity, and Gaussianity of the given data. Statistical test for these
properties were discussed in the second section. After a model is fitted, one needs to validate the
model and assess the reliability of the fitted model parameters. This aspect was discussed in the third
section. A cautionary note is appropriate at this point. All of the tests and procedures discussed in
this chapter are based upon asymptotic considerations (as record length tends to ∞). In practice,
this implies that sufficiently long record length should be available, particularly when higher-order
statistics are exploited.
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17.1 Introduction

Processes encountered in statistical signal processing, communications, and time series analysis
applications are often assumed stationary. The plethora of available algorithms testifies to the need
for processing and spectral analysis of stationary signals (see, e.g., [42]). Due to the varying nature
of physical phenomena and certain man-made operations, however, time-invariance and the related
notion of stationarity are often violated in practice. Hence, study of time-varying systems and
nonstationary processes is well motivated.

Research in nonstationary signals and time-varying systems has led both to the development of
adaptive algorithms and to several elegant tools, including short-time (or running) Fourier trans-
forms, time-frequency representations such as the Wigner-Ville (a member of Cohen’s class of dis-
tributions), Loeve’s and Karhunen’s expansions (leading to the notion of evolutionary spectra), and
time-scale representations based on wavelet expansions (see [37, 45] and references therein). Adap-
tive algorithms derived from stationary models assume slow variations in the underlying system.
On the other hand, time-frequency and time-scale representations promise applicability to general
nonstationarities and provide useful visual cues for preprocessing. When it comes to nonstationary
signal analysis and estimation in the presence of noise, however, they assume availability of multiple
independent realizations.

In fact, it is impossible to perform spectral analysis, detection, and estimation tasks on signals
involving generally unknown nonstationarities, when only a single data record is available. For
instance, consider extracting a deterministic signal s(n) observed in stationary noise v(n), using
regression techniques based on nonstationary data x(n) = s(n)+v(n), n = 0, 1, . . . , N−1. Unless
s(n) is finitely parameterized by a dθs × 1 vector θ s (with dθs < N), the problem is ill-posed because
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adding a new datum, say x(n0), adds a new unknown, s(n0), to be determined. Thus, only structured
nonstationarities can be handled when rapid variations are present; and only for classes of finitely
parameterized nonstationary processes can reliable statistical descriptors be computed using a single
time series. One such class is that of (wide-sense) cyclostationary processes which are characterized
by the periodicity they exhibit in their mean, correlation, or spectral descriptors.

An overview of cyclostationary signal analysis and applications are the main goals of this sec-
tion. Periodicity is omnipresent in physical as well as manmade processes, and cyclostationary
signals occur in various real life problems entailing phenomena and operations of repetitive nature:
communications [15], geophysical and atmospheric sciences (hydrology [66], oceanography [14],
meteorology [35], and climatology [4]), rotating machinery [43], econometrics [50], and biological
systems [48].

In 1961 Gladysev [34] introduced key representations of cyclostationary time series, while in 1969
Hurd’s thesis [38] offered an excellent introduction to continuous time cyclostationary processes.
Since 1975 [22], Gardner and co-workers have contributed to the theory of continuous-time cyclo-
stationary signals, and especially their applications to communications engineering. Gardner [15]
adopts a “non-probabilistic” viewpoint of cyclostationarity (see [19] for an overview and also [36]
and [18] for comments on this approach). Responding to a recent interest in digital periodically
varying systems and cyclostationary time series, the exposition here is probabilistic and focuses on
discrete-time signals and systems, with emphasis on their second-order statistical characterization
and their applications to signal processing and communications.

The material in the remaining sections is organized as follows: Section 17.2 provides definitions,
properties, and representations of cyclostationary processes, along with their relations with stationary
and general classes of nonstationary processes. Testing a time series for cyclostationarity and retrieval
of possibly hidden cycles along with single record estimation of cyclic statistics are the subjects
of Section 17.3. Typical signal classes and operations inducing cyclostationarity are delineated in
Section 17.4 to motivate the key uses and selected applications described in Section 17.5. Finally,
Section 17.6 concludes and presents trade-offs, topics not covered, and future directions.

17.2 Definitions, Properties, Representations

Let x(n) be a discrete-index random process (i.e., a time series) with mean µx(n) := E{x(n)}, and
covariance cxx(n; τ) := E{[x(n) − µx(n)][x(n + τ) − µx(n + τ)]}. For x(n) complex valued, let
also c̄xx(n; τ) := cxx∗(n; τ), where ∗ denotes complex conjugation, and n, τ are in the set of integers
Z .

DEFINITION 17.1 Process x(n) is (wide-sense) cyclostationary (CS) iff there exists an integer P

such that µx(n) = µx(n + lP ), cxx(n; τ) = cxx(n + lP ; τ), or, c̄xx(n; τ) = c̄xx(n + lP ; τ),
∀n, l ∈ Z . The smallest of all such P s is called the period. Being periodic, they all accept Fourier
Series expansions over complex harmonic cycles with the set of cycles defined as: Ac

xx := {αk =
2πk/P , k = 0, . . . , P − 1}; e.g., cxx(n; τ) and its Fourier coefficients called cyclic correlations are
related by:

cxx(n; τ) =
P−1∑
k=0

Cxx

(
2π

P
k; τ

)
ej 2π

P
kn FS←→ Cxx

(
2π

P
k; τ

)
= 1

P

P−1∑
n=0

cxx(n; τ)e−j 2π
P

kn .

(17.1)

Strict sense cyclostationarity, or, periodic (non-) stationarity, can also be defined in terms of
probability distributions or density functions when these functions vary periodically (in n). But
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the focus in engineering is on periodically and almost periodically correlated1 time series, since real
data are often zero-mean, correlated, and with unknown distributions. Almost periodicity is very
common in discrete-time because sampling a continuous-time periodic process will rarely yield a
discrete-time periodic signal; e.g., sampling cos(ωct + θ) every Ts seconds results in cos(ωcnTs + θ)

for which an integer period exists only if ωcTs = 2π/P . Because 2π/(ωcTs) is “almost an integer”
period, such signals accept generalized (or limiting) Fourier expansions (see also Eq. (17.2) and [9]
for rigorous definitions of almost periodic functions).

DEFINITION 17.2 Process x(n) is (wide-sense) almost cyclostationary (ACS) iff its mean and
correlation(s) are almost periodic sequences. For x(n) zero-mean and real, the time-varying and
cyclic correlations are defined as the generalized Fourier Series pair:

cxx(n; τ) =
∑

αk∈Ac
xx

Cxx(αk; τ)ejαkn FS←→

Cxx(αk; τ) = lim
N→∞

1

N

N−1∑
n=0

cxx(n; τ)e−jαkn . (17.2)

The set of cycles, Ac
xx(τ ) := {αk : Cxx(αk; τ) 6= 0 , −π < αk ≤ π}, must be countable and the

limit is assumed to exist at least in the mean-square sense [9, Thm. 1.15].

Definition 17.2 and Eq. (17.2) for ACS, subsume CS Definition 17.1 and Eq. (17.1). Note that
the latter require integer period and a finite set of cycles. In the α-domain, ACS signals exhibit lines
but not necessarily at harmonically related cycles. The following example will illustrate the cyclic
quantities defined thus far:

EXAMPLE 17.1: Harmonic in multiplicative and additive noise

Let
x(n) = s(n) cos(ω0n)+ v(n) , (17.3)

where s(n), v(n) are assumed real, stationary, and mutually independent. Such signals appear when
communicating through flat-fading channels, and with weather radar or sonar returns when, in
addition to sensor noise v(n), backscattering, target scintillation, or fluctuating propagation media
give rise to random amplitude variations modeled by s(n) [33]. We will consider two cases:
Case 1: µs 6= 0. The mean in (17.3) is µx(n) = µs cos(ω0n)+ µv , and the cyclic mean:

Cx(α) := lim
N→∞

1

N

N−1∑
n=0

µx(n)e−jαn = µs

2
[δ(α − ω0)+ δ(α + ω0)] + µvδ(α) , (17.4)

where in (17.4) we used the definition of Kronecker’s delta

lim
N→∞

1

N

N−1∑
n=0

ejαn = δ(α) :=
{

1 α = 0
0 else

. (17.5)

1The term cyclostationarity is due to Bennet [3]. Cyclostationary processes in economics and atmospheric sciences are
also referred to as seasonal time series [50].
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Signal x(n) in (17.3) is thus (first-order) cyclostationary with set of cycles Ac
x = {±ω0, 0}. If

XN(ω) := ∑N−1
n=0 x(n) exp(−jωn), then from (17.4) we find Cx(α) = limN→∞N−1 E{XN(α)};

thus, the cyclic mean can be interpreted as an averaged DFT and ω0 can be retrieved by picking the
peak of |XN(ω)| for ω 6= 0.
Case 2: µs = 0. From (17.3) we find the correlation cxx(n; τ) = css(τ )[cos(2ω0n + ω0τ) +
cos(ω0τ)]/2 + cvv(τ ). Because cxx(n; τ) is periodic in n, x(n) is (second-order) CS with cyclic
correlation [c.f. (17.2) and (17.5)]

Cxx(α; τ) = css(τ )

4

[
δ(α + 2ω0)e

jω0τ + δ(α − 2ω0)e
−jω0τ

]
+

[
css(τ )

2
cos(ω0τ)+ cvv(τ )

]
δ(α) . (17.6)

The set of cycles is Ac
xx(τ ) = {±2ω0, 0} provided that css(τ ) 6= 0 and cvv(τ ) 6= 0. The set Ac

xx(τ )

is lag-dependent in the sense that some cycles may disappear while others may appear for different
τ s. To illustrate the τ -dependence, let s(n) be an MA process of order q. Clearly, css(τ ) = 0 for
|τ | > q, and thus Ac

xx(τ ) = {0} for |τ | > q.
The CS process in (17.3) is just one example of signals involving products and sums of stationary

processes such as s(n) with (almost) periodic deterministic sequences d(n), or, CS processes x(n).
For such signals, the following properties are useful:

Property 1 Finite sums and products of ACS signals are ACS. If xi(n) is CS with period Pi , then for λi

constants, y1(n) := ∑I1
i=1 λixi(n) and y2(n) := ∏I2

i=1 λixi(n) are also CS. Unless cycle cancellations
occur among xi(n) components, the period of y1(n) and y2(n) equals the least common multiple of
the Pis. Similarly, finite sums and products of stationary processes with deterministic (almost) periodic
signals are also ACS processes.

As examples of random–deterministic mixtures, consider

x1(n) = s(n)+ d(n) and x2(n) = s(n)d(n) , (17.7)

where s(n) is zero-mean, stationary, and d(n) is deterministic (almost) periodic with Fourier Series
coefficients D(α). Time-varying correlations are, respectively,

cx1x1(n; τ) = css(τ )+ d(n)d(n+ τ) and cx2x2(n; τ) = css(τ )d(n)d(n+ τ) . (17.8)

Both are (almost) periodic in n, with cyclic correlations

Cx1x1(α; τ) = css(τ )δ(α)+D2(α; τ) and Cx2x2(α; τ) = css(τ )D2(α; τ) , (17.9)

where D2(α; τ) = ∑
β D(β)D(α − β) exp[j (α − β)τ ], since the Fourier Series coefficients of

the product d(n)d(n + τ) are given by the convolution of each component’s coefficients in the
α-domain. To reiterate the dependence on τ , notice that if d(n) is a periodic ±1 sequence, then
cx2x2(n;0) = css(0)d2(n) = css(0), and hence periodicity disappears at τ = 0.

ACS signals appear often in nature with the underlying periodicity hidden, unknown, or inacces-
sible. In contrast, CS signals are often man-made and arise as a result of, e.g., oversampling (by a
known integer factor P ) digital communication signals, or by sampling a spatial waveform with P

antennas (see also Section 17.4).
Both CS and ACS definitions could also be given in terms of the Fourier Transforms (τ → ω)

of cxx(n; τ) and Cxx(α; τ), namely the time-varying and the cyclic spectra which we denote by
Sxx(n;ω) and Sxx(α;ω). Suppose cxx(n; τ) and Cxx(α; τ) are absolutely summable w.r.t. τ for all
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n in Z and αk in Ac
xx(τ ). We can then define and relate time-varying and cyclic spectra as follows:

Sxx(n;ω) :=
∞∑

τ=−∞
cxx(n; τ)e−jωτ =

∑
αk∈As

xx

Sxx(αk;ω)ejαkn (17.10)

Sxx(αk;ω) :=
∞∑

τ=−∞
Cxx(αk; τ)e−jωτ = lim

N→∞
1

N

N−1∑
n=0

Sxx(n;ω)e−jαkn . (17.11)

Absolute summability w.r.t. τ implies vanishing memory as the lag separation increases, and many
real life signals satisfy these so called mixing conditions [5, Ch. 2]. Power signals are not absolutely
summable, but it is possible to define cyclic spectra equivalently [for real-valued x(n)] as

Sxx(αk;ω) := lim
N→∞

1

N
E{XN(ω)XN(αk − ω)} , XN(ω) :=

N−1∑
n=0

x(n)e−jωn . (17.12)

If x(n) is complex ACS, then one also needs S̄xx(αk;ω) := limN→∞N−1E{X∗N(−ω) XN(αk−ω)}.
Both Sxx and S̄xx reveal presence of spectral correlation. This must be contrasted to stationary
processes whose spectral components, XN(ω1), XN(ω2) are known to be asymptotically uncorrelated
unless |ω1± ω2| = 0 (mod 2π) [5, Ch. 4]. Specifically, we have from (17.12) that:

Property 2 If x(n) is ACS or CS, the N-point Fourier transform XN(ω1) is correlated with XN(ω2) for
|ω1± ω2| = αk (mod 2π), and αk ∈ As

xx .

Before dwelling further on spectral characterization of ACS processes, it is useful to note the diver-
sity of tools available for processing. Stationary signals are analyzed with time-invariant correlations
(lag-domain analysis), or with power spectral densities (frequency-domain analysis). However, CS,
ACS, and generally nonstationary signals entail four variables: (n, τ, α, ω) :=(time, lag, cycle, fre-
quency). Grouping two variables at a time, four domains of analysis become available and their
relationship is summarized in Fig. 17.1. Note that pairs (n; τ)↔ (α; τ), or, (n;ω)↔ (α;ω), have
τ or ω fixed and are Fourier Series pairs; whereas (n; τ) ↔ (n;ω), or, (α; τ) ↔ (α;ω), have n or
α fixed and are related by Fourier Transforms. Further insight on the links between stationary and

FIGURE 17.1: Four domains for analyzing cyclostationary signals.

cyclostationary processes is gained through the uniform shift (or phase) randomization concept. Let
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x(n) be CS with period P , and define y(n) := x(n+ θ), where θ is uniformly distributed in [0, P )

and independent of x(n). With cyy(n; τ) := Eθ {Ex[x(n+ θ)x(n+ τ + θ)]}, we find:

cyy(n; τ) = 1

P

P−1∑
p=0

cxx(p; τ) := Cxx(0; τ) := cyy(τ ) , (17.13)

where the first equality follows because θ is uniform and the second uses the CS definition in (17.1).
Noting that cyy is not a function of n, we have established (see also [15, 38]):
Property 3 A CS process x(n) can be mapped to a stationary process y(n) using a shift θ , uniformly
distributed over its period, and the transformation y(n) := x(n+ θ).

Such a mapping is often used with harmonic signals; e.g., x(n) = A exp[j (2πn/P + θ)]+ v(n) is
according to Property 2 a CS signal, but can be stationarized by uniform phase randomization. An
alternative trick for stationarizing signals which involve complex harmonics is conjugation. Indeed,
cxx∗(n; τ) = A2 exp(−j2πτ/P ) + cvv(τ ) is not a function of n — but why deal with CS or ACS
processes if conjugation or phase randomization can render them stationary?

Revisiting Case 2 of Example 17.1 offers a partial answer when the goal is to estimate the frequency
ω0. Phase randomization of x(n) in (17.3) leads to a stationary y(n) with correlation found by
substituting α = 0 in (17.6). This leads to cyy(τ ) = (1/2)css(τ ) cos(ω0τ)+ cvv(τ ), and shows that
if s(n) has multiple spectral peaks, or if s(n) is broadband, then multiple peaks or smearing of the
spectral peak hamper estimation of ω0 (in fact, it is impossible to estimate ω0 from the spectrum of
y(n) if s(n) is white). In contrast, picking the peak of Cxx(α; τ) in (17.6) yields ω0, provided that
ω0 ∈ (0, π) so that spectral folding is prevented [33]. Equation (17.13) provides a more general
answer. Phase randomization restricts a CS process only to one cycle, namely α = 0. In other words,
the cyclic correlation Cxx(α; τ) contains the “stationarized correlation” Cxx(0; τ) and additional
information in cycles α 6= 0.

Since CS and ACS processes form a superset of stationary ones, it is useful to know how a stationary
process can be viewed as a CS process. Note that if x(n) is stationary, then cxx(n; τ) = cxx(τ ) and
on using (17.2) and (17.5) we find:

Cxx(α; τ) = cxx(τ )

[
lim

N→∞
1

N

N−1∑
n=0

e−jαn

]
= cxx(τ )δ(α) . (17.14)

Intuitively, (17.14) is justified if we think that stationarity reflects “zero time-variation” in the corre-
lation cxx(τ ). Formally, (17.14) implies:

Property 4 Stationary processes can be viewed as ACS or CS with cyclic correlation Cxx(α; τ) =
cxx(τ )δ(α).

Separation of information bearing ACS signals from stationary ones (e.g., noise) is desired in many
applications and can be achieved based on Property 4 by excluding the cycle α = 0.

Next, it is of interest to view CS signals as special cases of general nonstationary processes
with 2-D correlation rxx(n1, n2) := E{x(n1)x(n2)}, and 2-D spectral densities Sxx(ω1, ω2) :=
FT [rxx(n1, n2)] that are assumed to exist.2 Two questions arise: What are the implications of pe-
riodicity in the (ω1, ω2) plane? and how does the cyclic spectra in (17.10) through (17.12) relate
to Sxx(ω1, ω2)? The answers are summarized in Fig. 17.2, which illustrates that the support of CS
processes in the (ω1, ω2) plane consists of 2P − 1 parallel lines (with unity slope) intersecting the
axes at equidistant points 2π/P far apart from each other. More specifically, we have [34]:

2Nonstationary processes with Fourier transformable 2-D correlations are called harmonizable processes.
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FIGURE 17.2: Support of 2-D spectrum Sxx(ω1, ω2) for CS processes.

Property 5 A CS process with period P is a special case of a nonstationary (harmonizable) process with
2-D spectral density given by

Sxx(ω1, ω2) =
P−1∑

k=−(P−1)

Sxx(
2π

P
k;ω1) δD(ω2− ω1+ 2π

P
k) , (17.15)

where δD denotes the delta of Dirac.

For stationary processes, only the k = 0 term survives in (17.15) and we obtain Sxx(ω1, ω2) =
Sxx(0;ω1)δD(ω2 −ω1); i.e., the spectral mass is concentrated on the diagonal of Fig. 17.2. The
well-structured spectral support for CS processes will be used to test for presence of cyclostationarity
and estimate the period P . Furthermore, the superposition of lines parallel to the diagonal hints
towards representing CS processes as a superposition of stationary processes. Next we will examine
two such representations introduced by Gladysev [34] (see also [22, 38, 49], and [56]).

We can uniquely write n0 = nP + i and express x(n0) = x(nP + i), where the remainder i takes
values 0, 1, . . . , P−1. For each i, define the subprocess xi(n) := x(nP+i). In multirate processing,
the P × 1 vector x(n) := [x0(n) . . . xP−1(n)]′ constitutes the so-called polyphase decomposition of
x(n) [51, Ch. 12]. As shown in Fig. 17.3, each xi(n) is formed by downsampling an advanced copy
of x(n). On the other hand, combining upsampled and delayed xi(n)s, we can synthesize the CS
process as:

x(n) =
P−1∑
i=0

∑
l

xi(l)δ(n− i − lP ) . (17.16)

We maintain that subprocesses {xi(n)}P−1
i=0 are (jointly) stationary, and thus x(n) is vector stationary.

Suppose for simplicity thatE{x(n)} = 0, and start with E{xi1(n)xi2(n+τ)} = E{x(nP+i1)x(nP+
τP + i2)} := cxx(i1 + nP ; i2 − i1 + τP ). Because x(n) is CS, we can drop nP and cxx becomes
independent of n establishing that xi1(n), xi2(n) are (jointly) stationary with correlation:

cxi1xi2
(τ ) = cxx(i1; i2− i1+ τP ) , i1, i2 ∈ [0, P − 1] . (17.17)
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FIGURE 17.3: Representation 1: (a) analysis, (b) synthesis.

Using (17.17), it can be shown that auto- and cross-spectra of xi1(n), xi2(n) can be expressed in terms
of the cyclic spectra of x(n) as [56],

Sxi1xi2
(ω) = 1

P

P−1∑
k1=0

P−1∑
k2=0

Sxx

(
2π

P
k1; ω − 2πk2

P

)
ej [( ω−2πk2

P
)(i2−i1)+ 2π

P
k1i1] . (17.18)

To invert (17.18), we Fourier transform (17.16) and use (17.12) to obtain [for x(n) real]

Sxx(
2π

P
k;ω) =

P−1∑
i1=0

P−1∑
i2=0

Sxi1xi2
(ω)ejω(i2−i1)e−j 2π

P
ki2 . (17.19)

Based on (17.16) through (17.19), we infer that cyclostationary signals with period P can be analyzed
as stationary P × 1 multichannel processes and vice versa. In summary, we have:

Representation 1 (Decimated Components) CS process x(n) can be represented as a P -variate sta-
tionary multichannel process x(n) with components xi(n) = x(nP + i), i = 0, 1, . . . , P − 1. Cyclic
spectra and stationary auto- and cross-spectra are related as in (17.18) and (17.19).

An alternative means of decomposing a CS process into stationary components is by splitting the
(−π, π] spectral support of XN(ω) into bands each of width 2π/P [22]. As shown in Fig. 17.4, this
can be accomplished by passing modulated copies of x(n) through an ideal low-pass filter H0(ω) with
spectral support (−π/P, π/P ]. The resulting subprocesses x̄m(n) can be shifted up in frequency
and recombined to synthesize the CS process as: x(n) = ∑P−1

m=0 x̄m(n) exp(−j2πmn/P ). Within
each band, frequencies are separated by less than 2π/P and according to Property 2, there is no
correlation between spectral components X̄m,N(ω1) and X̄m,N(ω2); hence, x̄m(n) components are
stationary with auto- and cross-spectra having nonzero support over−π/P < ω < π/P . They are
related with the cyclic spectra as follows:

Sx̄m1 x̄m2
(ω) = Sxx

(
2π

P
(m1−m2);ω + 2π

P
m1

)
, |ω| < π

P
. (17.20)

Equation (17.20) suggests that cyclostationary signal analysis is linked with stationary subband pro-
cessing.

Representation 2 (Subband Components) CS process x(n) can be represented as a superposition of P
stationary narrowband subprocesses according to: x(n) =∑P−1

m=0 x̄m(n) exp(−j2πmn/P ). Auto- and
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FIGURE 17.4: Representation 2: (a) analysis, (b) synthesis.

cross-spectra of x̄m(n) can be found from the cyclic spectra of x(n) as in (17.20).

Because ideal low-pass filters cannot be designed, the subband decomposition seems less practical.
However, using Representation 1 and exploiting results from uniform DFT filter banks, it is possible
using FIR low-pass filters to obtain stationary subband components (see e.g., [51, Ch. 12]). We will
not pursue this approach further, but Representation 1 will be used next for estimating time-varying
correlations of CS processes based on a single data record.

17.3 Estimation, Time-Frequency Links, Testing

The time-varying and cyclic quantities introduced in (17.1), (17.2), and (17.10) through (17.12),
entail ideal expectations (i.e., ensemble averages) and unless reliable estimators can be devised from
finite (and often noisy) data records, their usefulness in practice is questionable. For stationary
processes with (at least asymptotically) vanishing memory,3 sample correlations and spectral density
estimators converge to their ensembles as the record length N → ∞. Constructing reliable (i.e.,
consistent) estimators for nonstationary processes, however, is challenging and generally impossible.
Indeed, capturing time-variations calls for short observation windows, whereas variance reduction
demands long records for sample averages to converge to their ensembles.

Fortunately, ACS and CS signals belong to the class of processes with “well-structured” time-
variations that under suitable mixing conditions allow consistent single record estimators. The key
is to note that although cxx(n; τ) and Sxx(n;ω) are time-varying, they are expressed in terms of
cyclic quantities, Cxx(αk; τ) and Sxx(αk;ω), which are time-invariant. Indeed, in (17.2) and (17.10)
time-variation is assigned to the Fourier basis.

3Well-separated samples of such processes are asymptotically independent. Sufficient (so-called mixing) conditions
include absolute summability of cumulants and are satisfied by many real life signals (see [5, 12, Ch. 2]).
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17.3.1 Estimating Cyclic Statistics

Firstwewill considerACSprocesseswithknowncyclesαk . Simpler estimators forCSprocesses andcy-
cle estimationmethodswill bediscussed later in the section. Ifx(n)hasnonzeromean, weestimate the
cyclic mean as in Example 17.1 using the normalized DFT: Ĉxx(αk) = N−1 ∑N−1

n=0 x(n) exp(−jαkn).

If the set of cycles is finite, we estimate the time-varying mean as: ĉxx(n) =∑
αk

Ĉxx(αk) exp(jαkn).
Similarly, for zero-mean ACS processes we estimate first cyclic and then time-varying correlations
using:

Ĉxx(αk; τ) = 1

N

N−1∑
n=0

x(n)x(n+ τ)e−jαkn ,

ĉxx(n; τ) =
∑

αk∈Ac
xx(τ )

Ĉxx(αk; τ)ejαkn . (17.21)

Note that Ĉxx can be computed efficiently using the FFT of the product x(n)x(n+ τ).
For cyclic spectral estimation, two options are available: (1) smoothed cyclic periodograms and

(2) smoothed cyclic correlograms. The first is motivated by (17.12) and smooths the cyclic peri-
odogram, Ixx(α;ω) := N−1XN(ω)XN(α − ω), using a frequency-domain window W(ω). The
second follows (17.2) and Fourier transforms Ĉxx(α; τ) after smoothing it by a lag-window w(τ)

with support τ ∈ [−M, M]. Either one of the resulting estimates:

Ŝ(i)
xx (α;ω) = 1

N

N−1∑
n=0

W

(
ω − 2π

N
n

)
Ixx

(
α; 2π

N
n

)
,

Ŝ(ii)
xx (α;ω) =

M∑
τ=−M

w(τ)Ĉxx(α; τ)e−jωτ , (17.22)

can be used to obtain time-varying spectral estimates; e.g., using Ŝ
(i)
xx (α;ω), we estimate Sxx(n;ω)

as:
Ŝ(i)

xx (n;ω) =
∑

αk∈As
xx

Ŝ(i)
xx (αk;ω)ejαkn . (17.23)

Estimates (17.21) through (17.23) apply to ACS (and hence CS) processes with a finite number of
known cycles, and rely on the following steps: (1) estimate the time-invariant (or “stationary”)
quantities by dropping limits and expectations from the corresponding cyclic definitions, and (2) use
the cyclic estimates to obtain time-varying estimates relying on the Fourier synthesis Eqs. (17.2)
and (17.10). Selection of the windows in (17.22), variance expressions, consistency, and asymptotic
normality of the estimators in (17.21) through (17.23) under mixing conditions can be found in [11,
12, 24, 39] and references therein.

When x(n) is CS with known integer period P , estimation of time-varying correlations and spectra
becomes easier. Recall that thanks to Representations 1 and 2, not only cxx(n; τ) and Sxx(n;ω), but
the process x(n) itself can be analyzed into P stationary components. Starting with (17.16), it can
be shown that cxx(i; τ) = cxixi+τ

(0), where i = 0, 1, . . . , P − 1 and subscript i + τ is understood
mod(P ). Because the subprocesses xi(n) and xi+τ (n) are stationary, their cross-covariances can be
estimated consistently using sample averaging; hence, the time-varying correlation can be estimated
as:

ĉxx(i; τ) = ĉxixi+τ
(0) = 1

[N/P ]
[N/P ]−1∑

n=0

x(nP + i)x(nP + i + τ) , (17.24)
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where the integer part [N/P ] denotes the number of samples per subprocess xi(n), and the last equal-
ity follows from the definition of xi(n) in Representation 1. Similarly, the time-varying periodogram
can be estimated using: Ixx(n;ω) = P−1 ∑P−1

k=0 XP (ω)XP (2πk/P − ω) exp(−j2πkn/P ), and
then smoothed to obtain a consistent estimate of Sxx(n;ω).

17.3.2 Links with Time-Frequency Representations

Consistency (and hence reliability) of single record estimates is a notable difference between cyclo-
stationary and time-frequency signal analyses. Short-time Fourier transforms, the Wigner-Ville,
and derivative representations are valuable exploratory (and especially graphical) tools for analyz-
ing nonstationary signals. They promise applicability on general nonstationarities, but unless slow
variations are present and multiple independent data records are available, their usefulness in es-
timation tasks is rather limited. In contrast, ACS analysis deals with a specific type of structured
variation, namely (almost) periodicity, but allows for rapid variations and consistent single record
sample estimates. Intuitively speaking, cyclostationarity provides within a single record, multiple
periods that can be viewed as “multiple realizations.” Interestingly, for ACS processes there is a close
relationship between the normalized asymmetric ambiguity function A(α; τ) [37], and the sample
cyclic correlation in (17.21):

NĈxx(α; τ) = A(α; τ) :=
N−1∑
n=0

x(n)x(n+ τ)e−jαn . (17.25)

Similarly, one may associate the Wigner-Ville with the time-varying periodogram Ixx(n;ω) =∑N−1
τ=−(N−1) x(n) x(n+τ) exp(−jωτ). In fact, the aforementioned equivalences and the consistency

results of [12] establish that ambiguity and Wigner-Ville processing of ACS signals is reliable even
when only a single data record is available. The following example uses a chirp signal to stress this
point and shows how some of our sample estimates can be extended to complex processes.

EXAMPLE 17.2: Chirp in multiplicative and additive noise

Consider x(n) = s(n) exp(jω0n
2) + v(n), where s(n), v(n), are zero mean, stationary, and

mutually independent; cxx(n; τ) is nonperiodic for almost every ω0, and hence x(n) is not (second-
order)ACS.EvenwhenE{s(n)} 6= 0,E{x(n)} is alsononperiodic, implying thatx(n) isnotfirst-order
ACS either. However,

c̃xx∗(n; τ) := cxx∗(n+ τ ;−2τ) := E{x(n+ τ)x∗(n− τ)}
= css(2τ) exp(j4ω0τn)+ cvv∗(2τ) , (17.26)

exhibits (almost) periodicity and its cyclic correlation is given by: C̃xx∗(α; τ)= css(τ )δ(α−4ω0τ)+
cvv∗(2τ)δ(α). Assuming css(τ ) 6= 0, the latter allows evaluation of ω0 by picking the peak of the
sample cyclic correlation magnitude evaluated at, e.g., τ = 1, as follows:

ω̂0 = −1

4
arg maxα 6=0 | ˆ̃Cxx∗(α;1)| ,

ˆ̃
Cxx∗(α; τ) = 1

N

N−1∑
n=0

x(n+ τ)x∗(n− τ)e−jαn . (17.27)

The ˆ̃Cxx∗(α; τ) estimate in (17.27) is nothing but the symmetric ambiguity function. Because x(n)

is ACS, ˆ̃Cxx∗ can be shown to be consistent. This provides yet one more reason for the success of
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time-frequency representations with chirp signals. Interestingly, (17.27) shows that exploitation of
cyclostationarity allows not only for additive noise tolerance [by avoiding the α = 0 cycle in (17.27)],
but also permits parameter estimation of chirps modulated by stationary multiplicative noise s(n).

17.3.3 Testing for Cyclostationarity

In certain applications involving man-made (e.g., communication) signals, presence of cyclostation-
arity and knowledge of the cycles is assured by design (e.g., baud rates or oversampling factors). In
other cases, however, only a time series {x(n)}N−1

n=0 is given and two questions arise: How does one
detect cyclostationarity, and if x(n) is confirmed to be CS of a certain order, how does one estimate
the cycles present? The former is addressed by testing hypotheses of nonzero Ĉx(αk), Ĉxx(αk; τ) or
Ŝxx(αk;ω) over a fine cycle-frequency grid obtained by sufficient zero-padding prior to taking the
FFT.

Specifically, to test whether x(n) exhibits cyclostationarity in {Ĉxx(α; τl)}Ll=1 for at least one lag,

we form the (2L+ 1)× 1 vector ĉxx(α) := [ĈR
xx(α; τ1) . . . ĈR

xx(α; τL); ĈI
xx(α; τ1) . . . ĈI

xx(α; τL)]′
where superscript R(I) denotes real (imaginary) part. Similarly, we define the ensemble vector
cxx(α) and the error exx(α) := ĉxx(α) − cxx(α). For N large, it is known that

√
N exx(α) is

Gaussian with pdf N (0, 6c). An estimate 6̂c of the asymptotic covariance can be computed from
the data [12]. If α is not a cycle for all {τl}Ll=1, then cxx(α) ≡ 0, exx(α) = ĉxx(α) will have zero

mean, and D̂2c(α) := ĉ′xx(α)6̂
†
c (α)ĉxx(α) will be central chi-square. For a given false-alarm rate,

we find from χ2 tables a threshold 0 and test [10]

H0 : D̂c
xx(α) ≥ 0 ⇒ α ∈ Ac

xx vs. H1 : D̂c
xx(α) < 0 ⇒ α /∈ Ac

xx . (17.28)

Alternate 2D contour plots revealing presence of spectral correlation rely on (17.15) and more
specifically on its normalized version (coherence or correlation coefficient) estimated as [40]

ρxx(ω1, ω2) :=
1
M

∑M−1
m=0 | XN(ω1+ 2πm

M
)X∗N(ω2+ 2πm

M
) |2

1
M

∑M−1
m=0 | XN(ω1+ 2πm

M
) |2 1

M

∑M−1
m=0 | XN(ω2+ 2πm

M
) |2 . (17.29)

Plots of ρxx(ω1, ω2) with the empirical thresholds discussed in [40] are valuable tools not only for
cycle detection and estimation of CS signals but even for general nonstationary processes exhibiting
partial (e.g., “transient” lag- or frequency-dependent) cyclostationarity.

EXAMPLE 17.3: Cyclostationarity test

Consider x(n) = s1(n) cos(πn/8) + s2(n) cos(πn/4) with s1(n), s2(n), and v(n) zero-mean,
Gaussian, and mutually independent. To test for cyclostationarity and retrieve the possible periods
present, N = 2, 048samples were generated; s1(n) and s2(n) were simulated as AR(1) with variances
σ 2

s1
= σ 2

s2
= 2, while v(n) was white with variance σ 2

v = 0.1. Figure 17.5a shows |Ĉxx(α;0)|
peaking at α = ±2(π/8),±2(π/4), 0 as expected, while Fig. 17.5b depicts ρxx(ω1, ω2) computed as
in (17.29) with M = 64. The parallel lines in Fig. 17.5b are seen at |ω1−ω2| = 0, π/8, π/4 revealing
the periods present. One can easily verify from (17.11) that Cxx(α;0) = (2π)−1

∫ π

−π
Sxx(α;ω)dω.

It also follows from (17.15) that Sxx(α;ω) = Sxx(ω1 = ω, ω2 = ω − α); thus, Cxx(α;0) =
(2π)−1

∫ π

−π
Sxx(ω, ω−α)dω, and for each α, we can view Fig. 17.5a as the (normalized) integral (or

projection) of Fig. 17.5b along each parallel line [40]. Although |Ĉxx(α;0)| is simpler to compute
using the FFT of x2(n), ρxx(ω1, ω2) is generally more informative.

Because cyclostationarity is lag-dependent, as an alternative to ρxx(ω1, ω2) one can also plot
|Ĉxx(α; τ)| or |Ŝxx(α;ω)| for all τ or ω. Figures 17.6 and 17.7 show perspective and contour plots
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FIGURE 17.5: (a) Cyclic cross-correlationCxx(α;0), and (b) coherence ρxx(ω1, ω2) (Example 17.3).

of |Ĉxx(α; τ)| for τ ∈ [−31, 31] and |Ŝxx(α;ω)| for ω ∈ (−π, π], respectively. Both sets exhibit
planes (lines) parallel to the τ -axis and ω-axis, respectively, at cycles α = ±2(π/8),±2(π/4), 0, as
expected.

FIGURE 17.6: Cycle detection and estimation (Example 17.3): 3D and contour plots of Ĉxx(α; τ).

17.4 CS Signals and CS-Inducing Operations

We have already seen in Examples 17.1 and 17.2 that amplitude or index transformations of repetitive
nature give rise to one class of CS signals. A second category consists of outputs of repetitive (e.g.,
periodically varying) systems excited by CS or even stationary inputs. Finally, it is possible to have
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FIGURE 17.7: Cycle detection and estimation (Example 17.3): 3D and contour plots of Ŝxx(α;ω).

cyclostationarity emerging in the output due to the data acquisition process (e.g., multiple sensors
or fractional sampling).

17.4.1 Amplitude Modulation

General examples in this class include signals x1(n) and x2(n) of (17.7) or their combinations as
described by Property 1. More specifically, we will focus on communication signals where random
(often i.i.d.) information data w(n) are D/A converted with symbol period T0, to obtain the process:
wc(t) = ∑

l w(l)δD(t − lT0), which is CS in the continuous variable t . The continuous-time

signal wc(t) is subsequently pulse shaped by the transmit filter h
(tr)
c (t), modulated with the carrier

exp(jωct), and transmitted over the linear time-invariant (LTI) channel h(ch)
c (t). On reception, the

carrier is removed and the data are passed through the receive filter h
(rec)
c (t) to suppress stationary

additive noise. Defining the composite channel hc(t) := h
(tr)
c ?h

(ch)
c ?h

(rec)
c (t), the continuous time

received signal at the baseband is:

rc(t) = ejωect
∑

l

w(l)hc(t − lT0 − ε)+ vc(t) , (17.30)

where ε ∈ (0, T0) is the propagation delay, ωec denotes the frequency error between transmit-receive
carriers, and vc(t) is AWGN. Signal rc(t) is CS due to: (1) the periodic carrier offset ejωect , and (2) the
cyclostationarity of wc(t). However, (2) disappears in discrete-time if one samples at the symbol rate
because r(n) := rc(nT0) becomes

r(n) = ejωenx(n)+ v(n) , x(n) :=
∑

l

w(l)h(n− l) , n ∈ [0, N − 1] , (17.31)

with ωe := ωecT0, h(n) := hc(nT0 − ε), and v(n) := vc(nT0).
If ωe = 0, x(n) (and thus v(n)) is stationary, whereas ωe 6= 0 renders r(n) similar to the ACS

signal in Example 17.1. When w(n) is zero-mean, i.i.d., complex symmetric, we have: E{w(n)} ≡ 0,
and E{w(n)w(n + τ)} ≡ 0; thus, the cyclic mean and correlations cannot be used to retrieve ωe.
However, peak-picking the cyclic fourth-order correlation [Fourier coefficients of r4(n)] yields 4ωe
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uniquely, provided ωe < π/4. If E{w4(n)} ≡ 0, higher powers can be used to estimate and recover
ωe.

Having estimated ωe, we form exp(−jωen) r(n) in order to demodulate the signal in (17.31).
Traditionally, cyclostationarity is removed from the discrete-time information signal, although it
may be useful for other purposes (e.g., blind channel estimation) to retain cyclostationarity at the
baseband signal x(n). This can be accomplished by multiplying w(n) with a P -periodic sequence
p(n) prior to pulse shaping. The noise-free signal in this case is x(n) = ∑

l p(l)w(l)h(n − l), and
has correlation, c̄xx(n; τ) = σ 2

w

∑
l |p(n− l)|2h(l)h∗(l+τ), which is periodic with period P . Cyclic

correlations and spectra are given by [28]

C̄xx(α; τ) = σ 2
wP2(α)

∑
l

h(l)h∗(l + τ)e−jαl ,

S̄xx(α;ω) = σ 2
wP2(α)H ∗(−ω)H(α − ω) , (17.32)

where P2(α) := P−1 ∑P−1
m=0 |p(m)|2 exp(−jαm) and H(ω) := ∑L

l=0 h(l) exp(−jωl). As we will
see later in this section, cyclostationarity can also be introduced at the transmitter using multirate
operations, or at the receiver by fractional sampling. With a CS input, the channel h(n) can be
identifiedusingnoisyoutput samplesonly [28,64,65]—animportant step towardsblindequalization
of (e.g., multipath) communication channels.

If p(n) = 1 for n ∈ [0, P1) (mod P) and p(n)=0 for n ∈ [P1, P ), the CS signal x(n) =
p(n)s(n)+v(n) canbeused tomodel systematicallymissingobservations. Periodically, the stationary
signal s(n) is observed in noise v(n) for P1 samples and disappears for the next P − P1 data. Using
Cxx(α; τ) = P2(α; τ)css(τ ), the period P [and thus P2(α; τ)] can be determined. Subsequently,
css(τ ) can be retrieved and used for parametric or nonparametric spectral analysis of s(n); see [32]
and references therein.

17.4.2 Time Index Modulation

Suppose that a random CS signal s(n) is delayed by D samples and received in zero-mean stationary
noise v(n) as: x(n) = s(n − D) + v(n). With s(n) independent of v(n), the cyclic correlation is
Cxx(α; τ) = Css(α; τ) exp(jαD)+δ(α)cvv(τ ) and the delay manifests itself as a phase of a complex
exponential. But even when s(n) models a narrowband deterministic signal, the delay appears in the
exponent since s(n−D(n)) ≈ s(n) exp(jD(n)) [53]. Time-delay estimation of CS signals appears
frequently in sonar and radar for range estimation where D(n) = νn and ν denotes velocity of
propagation. D(n) is also used to model Doppler effects that appear when relative motion is present.
Note that with time-varying (e.g., accelerating) motion we have D(n) = γ n2 and cyclostationarity
appears in the complex correlation as explained in Example 17.2.

Polynomial delays are one form of time scale transformations. Another one is d(n) = λn+ p(n),
where λ is a constant and p(n) is periodic with period P (e.g., [38]). For stationary s(n), signal
x(n) = s[d(n)] is CS because cxx(n+ lP ; τ) = css[d(n+ lP + τ)−d(n+ lP )] = css[λτ +p(n)−
p(n+ τ)] = cxx(n; τ). A special case is the familiar FM model with d(n) = ωcn+h sin(ω0n) where
h here denotes the modulation index. The signal and its periodically varying correlation are given
by:

x(n) = A cos[ω0n+ h sin(ω0n)+ φ] ,
cxx(n; τ) = A2

2
cos[ω0τ + h sin(ω0(n+ τ))− h sin(ω0n)] . (17.33)

In addition to communications, frequencymodulated signals appear in sonar and radarwhen rotating
and vibrating objects (e.g., propellers or helicopter blades) induce periodic variations in the phase of
incident narrowband waveforms [2, 67].
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Delays and scale modulations also appear in 2-D signals. Consider an image frame at time n with
the scene displaced relative to time n = 0 by [dx(n), dy(n)]; in spatial and Fourier coordinates we
have [8]

f (x, y; n) = f0(x − dx(n), y − dy(n)),

F (ωx, ωy; n) = F0(ωx, ωy)e
−jωxdx(n)e−jωydy(n) . (17.34)

Images of moving objects having time-varying velocities can be modeled using polynomial displace-
ments, whereas trigonometric [dx(n), dy(n)] can be adopted when the motion is circular, or when
the imaging sensor (e.g., camera) is vibrating. In either case, F(ωx, ωy; n) is CS and thus cyclic
statistics can be used for motion estimation and compensation [8].

17.4.3 Fractional Sampling and Multivariate/Multirate Processing

Let ωe = 0 and suppose we oversample (i.e., fractionally sample) (17.30) by a factor P . With
x(n) := rc(nT0/P ), we obtain (see also Fig. 17.8)

x(n) =
∑

l

w(l)h(n− lP )+ v(n) , (17.35)

where now h(n) := hc(nT0/P − ε), and v(n) := vc(nT0/P ). Figure 17.8 shows the continuous-

FIGURE 17.8: (a) Fractionally sampled communications model and (b) multirate equivalent.

time model and the multirate discrete time equivalent of (17.35). With P = 1, (17.35) reduces
to the stationary part of r(n) in (17.31) but with P > 1, x(n) in (17.35) is CS with correlation
cxx(n; τ) = σ 2

w

∑
l h(n− lP )h∗(n+ τ − lP )+ σ 2

v δ(τ ), which can be verified to be periodic with
period equal to the oversampling factor P [26, 30, 61]. Cyclic correlations and cyclic spectra are
given, respectively, by:

C̄xx

(
2π

P
k; τ

)
= σ 2

w

P

∑
l

h(l)h∗(l + τ)e−j 2π
P

kl + σ 2
v δ(k)δ(τ ) (17.36)

S̄xx

(
2π

P
k;ω

)
= σ 2

w

P
H ∗(−ω)H

(
2π

P
k − ω

)
+ σ 2

v δ(k) . (17.37)
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Although similar, the order of the FIR channel h in (17.35) is, due to oversampling, P times larger than
that of (17.31). Cyclic spectra in (17.32) and (17.37) carry phase information about the underlying
H , which is not the case with spectra of stationary processes (P = 1). Interestingly, (17.35) can
be used also to model spread spectrum and direct sequence code-division multiple access data if
h(n) includes also the code [63, 64]. Relying on S̄xx in (17.37), it is possible to identify h(n) based
only on output data — a task traditionally accomplished using higher than second order statistics
(see e.g., [52]). By avoiding k = 0 in (17.36) or (17.37), the resulting cyclic statistics offer a high
SNR domain for blind processing in the presence of stationary additive noise of arbitrary color and
distribution (c.f., Property 4).

Oversampling by P > 1 also allows for estimating the synchronization parameters ωl and ε

in (17.31) [25, 54]. Finally, fractional sampling induces cyclostationarity in two-dimensional, linear
system outputs [29], as well as in outputs of Volterra-type nonlinear systems [31]. In all these cases,
relying on Representation 1 we can view the CS output x(n) as a P×1vector output of a multichannel
system. Let us focus on 1-D linear channels and evaluate (17.35) at nP + i to obtain the multivariate
model

x(nP + i) := xi(n) =
∑

l

w(l)hi(n− l)+ vi(n) , i = 0, 1, . . . , P − 1 , (17.38)

where hi(n) := h(nP + i) denotes the polyphase decomposition (decimated components) of the
channel h(n). Figure 17.9 shows how the single-input single output multirate model of Fig. 17.8
can be thought of as a single-input P -output multichannel system. The converse interpretation is
equally interesting because it illustrates another CS-inducing operation.

Suppose P sensors (e.g., antennas or cameras) are deployed to receive data from a singe source
w(n) propagating through P channels {hi(n)}P−1

i=0 . Using (17.16) we can combine the corresponding

sensor data {xi(n)}P−1
i=0 given by (17.38), in order to create a single channel CS process x(n), identical

to the one in (17.35). There is a common feature between fractional sampling and multisensor (i.e.,
spatial) sampling: they both introduce strict cyclostationarity with known period P .

Strict cyclostationarity is also induced by multirate operators such as upsamplers in synthesis
filterbanks, one branch of which corresponds to the multirate diagram of Fig. 17.8(b). We infer that
outputs of synthesis filter banks are, in general, CS processes (see also [57]). Analysis filter banks, on
theotherhand, produceCSoutputswhen their inputs are alsoCS, butnot if their inputs are stationary.
Indeed, downsampling does not affect stationarity, and in contrast to upsamplers, downsamplers do
not induce cyclostationarity. Downsamplers can remove cyclostationarity (as verified by Fig. 17.3)
and from this point of view, analysis banks can undo CS effects induced by synthesis banks.

17.4.4 Periodically Varying Systems

Thus far we have dealt with CS signals passing through time-invariant (TI) systems. Here we will
focus on (almost) periodically varying (APTV) systems and input-output relationships such as:
x(n) =∑

l h(n; l)w(n− l). Because h(n; l) is APTV, following Definition 2 it accepts a (generalized)
Fourier Series expansion h(n; l) =∑

β H(β; l) exp(jβn). Coefficients H(β; l) are TI, and together
with their Fourier Transform are given by

H(β; l) := FS[h(n; l)] = lim
N→∞

1

N

N−1∑
n=0

h(n; l)e−jβn ,

H(β;ω) := FT[H(β; l)] =
∑

l

H(β; l)e−jωl . (17.39)

In practice, h(n; l) has finite bandwidth and the set of system cycles is finite; i.e., β ∈ {β1, . . . , βQ}.
Such a finite parametrization could appear, for example, with FIR multipath channels entailing path
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FIGURE 17.9: Multichannel stationary equivalent model of a scalar CS process.

variations due to Doppler effects present with mobile communicators [62]. Note that when the cycles
β are available, knowledge of h(n; l) is equivalent to knowing H(β; l) or H(β;ω) in (17.39).

The output correlation of a linear time-varying system is given by

c̄xx(n; τ) =
∑
l1,l2

h(n; l1) h∗(n+ τ ; l2) c̄ww(n− l1; τ + l1− l2) . (17.40)

Equation (17.40) shows that if w(n) is ACS, then x(n) is also ACS, regardless of whether h is APTV
or TI. More important, if h is APTV, then x(n) is ACS even when w(n) is stationary; i.e., APTV
systems are cyclostationarity inducing operators. Similar observations apply to the input-output
cross-correlation c̄xw(n; τ) := E{x(n)w∗(n+ τ)}, which is given by

c̄xw(n; τ) =
∑

l

h(n; l) c̄xw(n− l; l + τ) . (17.41)

If the n-dependence is dropped from (17.40) and (17.41), one recovers the well-known auto- and
cross-correlation expressions of stationary processes passing through linear TI systems. Relying on
definitions (17.2), (17.11), and (17.37), the auto- and cross-cyclic correlations and cyclic spectra can
be found as

C̄xx(α; τ)=
∑
l1,l2

∑
β1,β2

H(β1; l1)H ∗(β2; l2)e−j (α−β1+β2)l1e−jβ2τ

× C̄ww(α − β1+ β2; τ + l1− l2) , (17.42)

C̄xw(α; τ)=
∑
β

∑
l

H(β; l)e−j (α−β)lC̄ww(α − β; l + τ) , (17.43)

S̄xx(α;ω)=
∑
β1,β2

H(β1;α + β2− β1− ω)H ∗(β2;−ω)S̄ww(α − β1+ β2;ω) , (17.44)

S̄xw(α;ω)=
∑
β

H(β;α − β − ω) S̄ww(α − β;ω) . (17.45)

Simpler expressions are obtained as special cases of (17.42) through (17.45) when w(n) is stationary;
e.g., cyclic auto- and cross-spectra reduce to:

S̄xx(α;ω) = S̄ww(ω)
∑
β

H(β;−ω)H ∗(α − β;−ω),
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S̄xw(α;ω) = S̄ww(ω) H(α;−ω) . (17.46)

If w(n) is i.i.d. with variance σ 2
w , then H(α;ω) can be easily found from (17.46) as S̄xw(α;−ω)/σ 2

w .
APTV systems and the four domains of characterizing them, namely h(n; l), H(β; l), H(β;ω),

H(n;ω), offer diversity similar to that exhibited by ACS statistics. Furthermore, with finite cycles

{βq}Qq=1, the input-output relation can be rewritten as

x(n) =
Q∑

q=1

xq(n) =
Q∑

q=1

[
∑

l

H(βq; l) w(n− l)]ejβqn . (17.47)

Figure 17.10 depicts (17.47) and illustrates that periodically varying systems can be modeled as a

superposition of TI systems weighted by the bases. If separation of the {xq(n)}Qq=1 components is
possible, identification and equalization of APTV channels can be accomplished using approaches
for multichannel TI systems. In [44], separation is achieved based on fractional sampling or multiple
antennas.

FIGURE 17.10: Multichannel model of a periodically varying system.

17.5 Application Areas

CS signals appear in various applications, but here we will deal with problems where cyclostationarity
is exploited for signal extraction, modeling, and system identification. The tools common to all appli-
cations are cyclic (cross-)correlations, cyclic (cross-)spectra, or multivariate stationary correlations
and spectra which result from the multichannel equivalent stationary processes (recall Representa-
tions 1 and 2, and Section 17.4.3). Because these tools are time-invariant, the resulting approaches
follow the lines of similar methods developed for applications involving stationary signals.

As a general rule for problems entailing CS signals, one can either map the scalar CS signal model to
a multichannel stationary process, or work in the time-invariant domain of cyclic statistics and follow
techniques similar to those developed for stationary signals and time-invariant systems. CS signal
analysis exploits two extra features not available with scalar stationary signal processing, namely:
(1) ability to separate signals on the basis of their cycles and (2) diversity offered by means of cycles.
Of course, the cycles must be known or estimated as we discussed in Section 17.3.

Suppose x(n) = s(n)+ v(n), where s(n), v(n) are generally CS, and let α be a cycle which is not
in Ac

ss(τ ) ∩ Ac
vv(τ ) . It then follows for their cyclic correlations and spectra that:

Cxx(α; τ) =
{

Css(α; τ) if α ∈ Ac
ss(τ )

Cvv(α; τ) if α ∈ Ac
vv(τ )

,
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Sxx(α;ω) =
{

Sss(α;ω) if α ∈ As
ss(ω)

Svv(α;ω) if α ∈ As
vv(ω)

. (17.48)

In words, (17.48) says that signals s(n) and v(n) can be separated in the cyclic correlation or the
cyclic spectral domains provided that they possess at least one noncommon cycle. This important
property applies to more than two components and is not available with stationary signals because
they all have only one cycle, namely α = 0, which they share.

More significantly, if s(n) models a CS information bearing signal and v(n) denotes stationary
noise, then working in cyclic domains allows for theoretical elimination of the noise, provided that
the α = 0 cycle is avoided (see also Property 4); i.e.,

Cxx(α; τ) = Css(α; τ) , and Sxx(α;ω) = Sss(α;ω) , for α 6= 0 . (17.49)

In practice, noise affects the estimators’ variance so that (17.48) and (17.49) hold approximately for
sufficiently long data records. Notwithstanding, (17.48), (17.49) and SNR improvement in cyclic
domains hold true irrespective of the color and distribution of the CS signals or the stationary noise
involved.

EXAMPLE 17.4: Separation based on cycles

Consider the mixture of two modulated signals in noise: x(n) = s1(n) exp[j (ω1n + ϕ1)] +
s2(n) exp[j (ω2n + ϕ2)] + v(n), where s1(n), s2(n), v(n) are Gaussian zero-mean stationary and
mutually uncorrelated. Let s1(n) be MA(3) with parameters [1, 0.2, 0.3, 0.5] and variance
σ 2

1 = 1.38, s2(n) be AR(1) with parameters [1, −0.5] and variance σ 2
2 = 2, and noise v(n) be

MA(1) (i.e., colored) with parameters [1, 0.5] and variance σ 2
v = 1.25. Frequencies and phases

are (ω1, ϕ1) = (−0.5, 0.6), (ω2, ϕ2) = (1, 1.8), and N = 2, 048 samples are used to compute
the correlogram estimates Ŝs1s1(ω), Ŝs2s2(ω), Ŝvv(ω) shown in Figs. 17.11a through c; Ĉxx(α;0)

is plotted in Fig. 17.11d and Ŝxx(α;ω) is depicted in Fig. 17.12. The cyclic correlation and cyclic
spectrum of x(n) are, respectively:

Cxx(α; τ)= cs1s1(τ )ej (ω1τ+ϕ1)δ(α − 2ω1)

+ cs2s2(τ )ej (ω2τ+ϕ2)δ(α − 2ω2)+ cvv(τ )δ(α) , (17.50)

Sxx(α;ω)=Ss1s1(ω − ω1)e
j2ϕ1δ(α − 2ω1)

+ Ss2s2(ω − ω2)e
j2ϕ2δ(α − 2ω2)+ Svv(ω)δ(α) . (17.51)

As predicted by (17.50), |Cxx(α;0)| = σ 2
s1

δ(α − 2ω1) + σ 2
s2

δ(α − 2ω2) + σ 2
v δ(α), which explains

the two peaks emerging in Fig. 17.11d at twice the modulating frequencies (2ω1, 2ω2) = (−1, 2).
The third peak at α = 0 is due to the stationary noise which can be thought of as being “modulated”
by exp(jω3n) with ω3 = 0. Clearly, 2ω̂1, 2ω̂2, σ̂ 2

s1
, σ̂ 2

s2
, and σ̂ 2

v can be found from Fig. 17.11d, while

the phases at the peaks of Ĉxx(α;0) will yield ϕ̂i = σ−2
si

arg[Ĉxx(2ω̂i;0)]/2, i = 1, 2. In addition,

the correlations of si(n) can be retrieved as ĉsi si (τ ) = exp[−j (ω̂iτ + 2ϕ̂i )]Ĉxx(2ω̂i; τ), i = 1, 2.
Separation based on cycles is illustrated in Fig. 17.12, where three distinct slices emerge along

the α-axis, each positioned at {αi = 2ωi}3i=1, representing the profiles of Ŝs1s1(ω), Ŝs2s2(ω), Ŝvv(ω)

shown also in Figs. 17.11a through c.
In the ensuing example we will demonstrate how the diversity offered by fractional sampling

or by multiple sensors can be exploited for identification of FIR systems when the input is not
available. Such a blind scenario appears when estimation and equalization of, e.g., communication
channels is to be accomplished without training inputs. Bandwidth efficiency and ability to cope
with changing multipath environments provide the motivating reasons for blind processing, while
fractional samplingormultipleantennas justify theuseof cyclic statistics asdiscussed inSection17.4.3.
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FIGURE 17.11: Spectral densities and cyclic correlation signals in Example 17.4.

FIGURE 17.12: Cyclic spectrum of x(n) in Example 17.4.

EXAMPLE 17.5: Diversity for channel estimation

Suppose we sample the output of the receiver’s filter every T0/2 seconds, to obtain x(n) samples
obeying (17.35) with P = 2 (see also Fig. 17.8). In the absence of noise, the spectrum of x(n) will
be XN(ω) = H(ω)WN(2ω). We wish to obtain H(ω) based only on XN(ω) (blind scenario). Note
that WN(2ω) = WN [2(ω − 2πk/2)] for any integer k. Considering k = 1, we can eliminate the
input spectrum WN(2ω) from XN(ω) and XN(ω − π), and arrive at [26]

H(ω) XN(ω − π) = H(ω − π) XN(ω) . (17.52)

With H(ω) being FIR, the cross-relation (17.52) has turned the output-only identification problem
into an input-output problem. The input is XN(ω − π) = FT[(−1)nx(n)], the output is XN(ω),
and the pole-zero system is H(ω)/H(ω − π). If the Z-transform H(z) has no zeros on a circle,
separated by π , there is no pole-zero cancellation and H(ω) can be identified uniquely [61], using
standard realization (e.g., Padé) methods [42].
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Alternatively, with P = 2 we can map (17.52) to its one-input two-output time-invariant equiv-
alent model obeying (17.38) with P = 2. In the absence of noise, the output spectra are Xi(ω) =
Hi(ω) W(ω), i = 0, 1, from which W(ω) can be eliminated to arrive at a similar cross-relation [69]

H0(ω) X1(ω) = H1(ω) X0(ω) . (17.53)

When oversampling by P = 2, x0(n) [h0(n)] correspond to the even samples of x(n) [h(n)], whereas
x1[n] [h1(n)] to the odd ones. Once again, H0(ω) and H1(ω) can be uniquely recovered using input-
output realization methods, provided that they have no common zeros so that cancellations do not
occur in (17.53). The desired channel h(n) can be recovered by interleaving h0(n) with h1(n).

As explained in Section 17.4.3, oversampling is not the only means of diversity. Even with symbol
rate sampling, if multiple (here two) antennas receive a common source through different channels,
then Xi(ω) = Hi(ω) W(ω), i = 0, 1, and thus (17.53) is still applicable.

Interestingly, both (17.52) and (17.53) neither restrict the input to be white (or even random)
nor do they assume the channel to be minimum phase as univariate stationary spectral factorization
approaches require for blind estimation [52]. The diversity (or overdeterminacy) offered by (17.35)
or (17.38) guarantees identifiability provided that no cancellations occur in (17.52) or (17.53) and
W(ω) is nonzero for asmany frequencies as thenumberof channel taps tobe estimated [69]. Subspace
and least-squares methods are also possible for blind channel estimation and useful when noise is
present [26, 47, 60, 69].

In the sequel, we will show how cycle-based separation and diversity can be exploited in selected
applications.

17.5.1 CS Signal Extraction

In our first application, a mixture of CS sources with distinct cycles will be recovered using samples
collected by an array of sensors.

Application 1: Array Processing

Suppose Ns CS source signals {sl(n)}Ns

l=1 are received by Nx sensors {xm(n)}Nx

m=1 in the presence

of undesired sources of interference {im(n)}Nx

m=1 and stationary noise {vm(n)}Nx

m=1 . The mth sensor

samples are: xm(n) =∑Ns

l=1 ρlsl(n−Dlm)+ im(n)+vm(n), where ρl denotes complex gain and Dlm

the delay experienced by the lth source arriving at the mth sensor relative to the first sensor which is
taken as the reference. For uniformly spaced linear arrays Dlm = (m−1)d sinθl/ν, where d stands
for the sensor spacing, ν is the propagation velocity, and θl denotes the angle of arrival of the lth
source. Assuming that the sl(n)s have a nonzero cycle α not shared by the undesired interferences,
we wish to estimate θ := [θ1 · · · θNs ] and subsequently use it to design beamformers that null out
the interferences and suppress noise.

Formutuallyuncorrelated {sl(n), im(n), vm(n)}, the time-delayproperty inSection17.4.2yields [68]

C̄xmxm(α; τ) =
Ns∑
l=1

C̄slsl (α; τ)e−jαDlm + C̄imim(α; τ) + C̄ww(τ)δ(α) . (17.54)

Choosing a nonzero α not in the interference set of cycles Ac
imim

(τ ) and collecting {C̄xmxm}Nx

m=1 in
an Nx × 1 vector, we arrive at c̄xm(α; τ) = A(α; θ)css(α; τ), where the Nx ×Ns matrix A(θ) is the
so-called array manifold containing the propagation parameters. In [68], Nτ lags are used to form
the Nx ×Nτ cyclic correlation matrix

C̄xx(α) := [c̄xx(α; τ1) · · · c̄xx(α; τNτ )]′ = A(α; θ)C̄ss(α) ,

C̄ss(α) := [c̄ss(α; τ1) · · · c̄ss(α; τNτ )]′ . (17.55)
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Standard subspace methods can be employed to recover θ from (17.55). It is worth noting that
cycle-based separation of desired from undesired signals and noise is possible for both narrowband
and broadband sources [68] (see also [16] for the narrowband case).

With thepropagationparameters available, spatio-temporalfilteringbasedon C̄xx(αl; τ) is capable
of isolating the source sl(n) ifαl ∈ Ac

slsl
(τ ) andαl 6∈ Ac

sksk
for k 6= l. Thus, in addition to interference

and noise suppression, cyclic beamformers increase resolution by exploiting known separating cycles.
In fact, even sources arriving from the same direction can be separated provided that not all of their
cycles are common (see [1, 6, 58] and [16] for detailed algorithms).

In our next application, the desired CS d(n) we wish to extract from noisy data x(n) is known, or
at least its (cross-) correlation with x(n) is available.

Application 2: Cyclic Wiener filtering
In a number of real life problems CS data x(n) carry information about a desired CS signal

d(n) which may not be available, but the cross-correlation c̄dx(n; τ) is known or can be estimated
otherwise. With reference to Fig. 17.13 we seek a linear (generally time-varying) filter f (n; k) whose
output, d̂(n) = ∑

k f (n; k) x(n − k), will come close to the desired d(n) in terms of minimizing

σ 2
e (n) = E{|e(n)|2} := E{|d(n) − d̂(n)|2}. Because both x(n) and d(n) are CS with period P , for

d̂(n) to also be CS, filter f (n; k) must be periodically varying with period P ; i.e., f (n; k) is equivalent
to P time-invariant filters {f (n; k)}P−1

n=0 and accepts a Fourier Series expansion with coefficients
F(α; k) defined as in (17.39). Note that e(n) is also CS and E{|e(n)|2} should be minimized for
n = 0, 1, · · · , P − 1.

FIGURE 17.13: Cyclic Wiener filtering.

Solving the minimization problem for each n, we arrive at time-varying normal equations

∑
k

f (n; k) c̄xx(n− k; k − τ) = c̄dx(n;−τ) , n = 0, 1, . . . , P − 1 , (17.56)

where c̄xx can be estimated consistently from the data as discussed in Section 17.3, and similarly for
c̄dx if d(n) is available. Note that with sample estimates, (17.56) could have been reached as a result of

minimizing the least-squares error [c.f. (17.24)]: σ̂ 2
e (n) = [P/N ]∑[N/P ]−1

i=0 |e(iP + n)|2. For each
n ∈ [0, P −1], FIR filters of order Kn can be obtained by concatenating equations such as (17.56) for
more than Kn lags τ . As with time-invariant Wiener filters, noncausal and IIR designs are possible
for each n in the frequency-domain, F(n;ω), using nonparametric estimates of the time-varying
(cross-)spectra. Depending on d(n), APTV (FIR or IIR) filters can thus be constructed for filtering,
prediction, and interpolation or smoothing of CS processes.

InSection17.4.4, weviewed theperiodicallyvarying scalarf (n; k)asa time-invariantmultichannel
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FIGURE 17.14: Multichannel-multirate equivalent of cyclic Wiener filtering.

filter. Consider the polyphase stationary components di(n), ei(n), and

d̂i (n) := d(nP + i) =
∑

k

f (nP + i; k) x(nP + i − k) =
∑

k

f (i; k)x(nP + i − k) . (17.57)

Equation (17.57) allows us to cast the scalar processing in Fig. 17.13 as the filterbank of Fig. 17.14.
Because σ 2

ei
= E|e(i)|2, for i = 0, 1, · · · , P − 1, and di(n), d̂i (n), ei(n) are stationary, solv-

ing for the periodic Wiener filter f (n; k) is equivalent to solving for the P time-invariant Wiener
filters f (i; k) in Fig. 17.14. Using the multirate (Noble) identity (e.g., [51, Ch. 12]), one can
move the downsamplers before the Wiener filters which now have transfer functions G(i;ω) =
F(i;ω/P ). Such an interchange corresponds to feeding a time-invariant P × 1 vector Wiener
filter g(k) := [g(0; k) · · · g(P − 1; k)]′, with input the P × 1 polyphase component vector
x(n) := [x(nP )x(nP + 1) . . . x(nP + P − 1)]′.

An alternative multichannel interpretation is obtained based on the Fourier Series expansion
f (n; k) = ∑

α F (α; k) exp(jαn). The resulting Wiener processing allows also for APTV filters,

which is particularly useful when d(n), x(n), and thus d̂(n), e(n) are ACS processes. Substituting
the expansion in the filter output and multiplying by exp(iαk) exp(−iαk) = 1, we find [22]

d̂(n) =
∑
α

∑
k

[
F(α; k)ejαk

] [
x(n− k)ejα(n−k)

]
=

∑
α

{∑
k

F̃ (α; k) x̃(n− k)

}
, (17.58)

where F̃ (x̃) are the modulated versions of F(x) shown in the square brackets. For CS processes with
period P , the sum over α in (17.58) has finite terms {αi = 2πi/P }P−1

i=0 and shows that scalar cyclic
Wiener filtering is equivalent to a superposition of P time-invariant Wiener filters with inputs x̃i (n)

formed by modulating x(n) with the Fourier bases {expj (αin)}P−1
i=1 (see also Fig. 17.15 ).

17.5.2 Identification and Modeling

The need to identify TI and APTV systems (or their inverses for equalization) appears in many
applications where input-output or output-only CS data are available. Our first problem in this
class deals with identifying pure delay TI systems, h(n) = δ(n−D), given CS input-output signals
observed in correlated noise.

Application 3: Time-delay estimation
We wish to estimate the relative delay D of a CS signal s(n) given data from a pair of sensors

x(n) = s(n) + vx(n) , y(n) = s(n−D) + vy(n) . (17.59)
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FIGURE 17.15: Multichannel-modulation equivalent of cyclic Wiener filtering.

Signal s(n) is assumed uncorrelated with vx(n), vy(n), but the noises at both sensors are allowed to
be colored and correlated with unknown (cross-)spectral characteristics. The time-varying cross-
correlation yields the delay (see also [7] and [70] for additional methods relying on cyclic spectra). In
addition to suppressing stationary correlated noise, cyclic statistics can also cope with interferences
present at both sensors as we show in the following example.

EXAMPLE 17.6: Time-delay estimation

Considerx(n) = w(n) exp[j (−0.5(n)+0.6)] + i(n) exp[j (n+1.8)]+vx(n), andy(n) = w(n−
D) exp[j (−0.5(n−D)+ 0.6)] + i(n−D) exp[j (n−D + 1.8)] + vy(n), with D = 20, vx(n)

white, vy(n) = vx ? h(n), h(0) = h(10) = 0.8 and h(n) = 0 for n 6= 0, 10.

The magnitude of Ĉxy(α; τ) is computed as in (17.21) with N = 2, 048samples and is depicted in
Fig. 17.16 (3-D and contour plots). It peaks at the correct delay D = 20at cycles α = 2(−0.5) = −1
(due to the signal) and α = 2(+1) = 2 (due to the interference). The additional peak at delay 10
occurs at cycle α = 0 and reveals the memory introduced in the correlation of vy(n) due to h(n).

FIGURE 17.16: Cyclic cross-correlation for time-delay estimation.
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Relying on (17.46), input-output cyclic statistics allow for identification of TI systems, but in
certain applications estimation of h(n) or its inverse [call it g(n)] is sought based on output data
only. In Application 2 we outlined two approaches capable of estimating FIR channels blindly in the
absence of noise, even when the input w(n) is not white. If w(n) is white, it follows easily from (17.36)
that C̄xx for two cycles k1, k2 satisfies [26]

L∑
l=0

[ C̄xx

(
2π

P
k1; τ + l

)
− ej 2π

P
(k2−k1)l C̄xx

(
2π

P
k2; τ + l

)
] h(l) = 0 ,

k1 6= k2 6= 0 . (17.60)

The matrix equation that results from (17.60) for different τ s can be solved to obtain {h(l)}Ll=0 within
a scale (assuming that the matrix involved is full rank), even when stationary colored noise is present.
To fix the scale, we either set h(0) = 1, or,

∑L
l=0 |h(l)|2 = 1. Having estimated h(l), one could find

the cross-correlation c̄xw(n; τ) via (17.35) and use it in (17.56) to obtain FIR minimum mean-square
error (MMSE, i.e., Wiener) equalizers for recovering the desired input d(n) = w(n). However, as we
will see next, it is possible to construct blind equalizers directly from the data bypassing the channel
estimation step.

FIGURE 17.17: Cyclic (or multirate) channel-equalizer model.

Application 4: Blind channel equalization
Our setup is described in Fig. 17.8 and the available data satisfy (17.35) with h(n) causal of order L.

With reference to Fig. 17.17, we seek a Kth order equalizer, {g(d)(n)}Kn=0, parameterized by the delay

d , such that E{|w(n−d)− ŵ(n)|2} is minimized. Expressing ŵ(n) as ŵ(n) =∑
k g(d)(k)x(nP−k),

and using the whiteness of w(n) and the independence between w(n) and v(n), we arrive at:

K∑
k=0

g(d)(k) c̄xx(−k; k −m) = σ 2
w h∗(dP −m)

= 0 , for d = 0 , m > 0 . (17.61)

Equation (17.61) can be solved for the equalizer coefficients in batch or adaptive forms using recursive
least-squares (RLS) or the computationally simpler LMS algorithm suitably modified to compute the
cyclic correlation statistics [30]. It turns out that using {g(0)(k)}Kk=0 one can find {g(d)(k)}Kk=0 for
d ∈ [1, L+K], which is important because, in practice, nonzero delay equalizers often achieve lower
MSE [30].

Another interesting feature of the overall system in Fig. 17.17 is that in the absence of noise
(v(n) ≡ 0), the FIR equalizer {g(d)(n)}Kk=0 can equalize the FIR channel h(n) perfectly in the zero-

forcing (ZF) sense:
∑K

k=0 g(d)(k) h(nP − k) = δ(n− d), provided that: (1) the channel H(z) has
no equispaced zeros on a circle with each zero separated from the next by 2π/P , and (2) the equalizer
has order satisfying: K ≥ L/(P − 1) − 1. Such a ZF equalizer can be found from the solution
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of (17.61) provided that conditions (1) and (2) are satisfied. The equalizer obtained is unique when
(2) is satisfied as equality, or, when the minimum norm solution is adopted [30]. Recall that with
symbol rate sampling (P = 1), FIR-ZF equalizers are impossible because the inverse of an FIR H(z)

is always the IIR G(z) := 1/H(z). Further with P = 1, FIR-MMSE (i.e., Wiener) equalizers cannot
be ZF. In [30], it is also shown that under conditions (1) and (2), it is possible to have FIR hybrid
MMSE-ZF equalizers.

FIGURE 17.18: Multivariate channel-equalizer model.

The FIR channel – FIR equalizer feature can be seen also from the multichannel viewpoint which
applies after theCSdatax(n)aremapped to the stationarycomponents {xi(n)}P−1

i=0 , orwhenP sensors
collect symbol rate samples as in (17.38). With reference to Fig. 17.18, the channel-equalizer transfer

functions satisfy, in the absence of noise, the so-called Bezout’s identity:
∑P−1

i=0 Hi(z) G
(d)
i (z) =

z−d , which is analogous to the condition encountered with perfect reconstruction filterbanks. Given
the Lth-order FIR analysis bank (Hi), existence and uniqueness of the Kth-order FIR synthesis filters
(Gi) is guaranteed when: (1) {Hi(z)}P−1

i=0 have no common zeros, and (2) K ≥ L/(P − 1) − 1.
Next, we illustrate how the blind MMSE equalizer of (17.61) can be used to mitigate intersymbol
interference (ISI) introduced by a two-ray multipath channel.

EXAMPLE 17.7: Direct blind equalization

We generated 16-QAM symbols and passed them through a 7th order FIR channel obtained by
sampling at a rate T0/2 the continuous-time channel hc(t) = exp(−j2π0.15)ρc(t−0.25T0, 0.35)+
0.8 exp(−j2π0.6)ρc(t − T0, 0.35), where ρc(t, 0.35) denotes the raised cosine pulse with roll-off
factor 0.35[53, p. 546]. We estimated the time-varying correlations as in (17.24) and solved (17.61)
for the equalizer of order K = 6 and d = 0. At SNR= 25 dB, Fig. 17.19, shows the received and
equalized constellations illustrating the ability of the blind equalizer to remove ISI.

In our final application we will be concerned with parameter estimation of APTV systems.

Application 5: Parametric APTV modeling

Seasonal (e.g., atmospheric) time series are often modeled as the CS output of a linear (almost)
periodically time varying system h(n; l) with i.i.d. input w(n). Suppose that x(n) obeys an autore-
gressive [AR(pn)] model with coefficients a(n; l) which are periodic in n with period Pl . The time
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FIGURE 17.19: Before and after equalization (Example 17.7).

series x(n) and its correlation cxx(n; τ) obey the following periodically varying AR recursions:

x(n) +
pn∑
l=1

a(n; l)x(n− l) = w(n) ,

cxx(n; τ) +
pn∑
l=1

a(n; l)cxx(n− l; l − τ) = σ 2
w(n)δ(τ ) . (17.62)

The “periodicnormal equations” in (17.62) canbe solved for eachn to estimate thea(n; l)parameters.
Relying on Representation 1, [49] showed how PTV-AR modeling algorithms can be used to estimate
multivariate AR coefficient matrices. Usage of single channel cyclic (instead of multivariate) statistics
forparametricmodelingofmultichannel stationary time serieswasmotivatedon thebasis of potential
computational savings; see [49] for details and also [55] for cyclic lattice structures. Maximum
likelihood estimation of Periodic ARMA models is reported in [66]. PARMA modeling is important
for seasonal time series encountered in meteorology, climatology [41], and stratospheric ozone data
analysis [4]. Linear methods for estimating periodic MA coefficients along with important TV-MA
parameter identifiability issues can be found in [13] using higher than second-order cyclic statistics.

When both input and output CS data are available, it is possible to identify linear periodically
time-varying systems h(n; l), even in the presence of correlated stationary input and output noise.
Taking advantage of nonzero cycles present in the input and/or the system, one employs auto- and
cross-cyclic spectra to identify H(β;ω), the cyclic spectrum of h(n; l), relying on (17.45) or (17.46),
when w(n) is stationary.

If the underlying system is time invariant (e.g., a frequency selective communications channel,
or a dispersive delay medium), a closed form solution is possible in the frequency domain. With
β = 0, (17.45) yields: H(ω) = S̄xw(α;ω)/S̄ww(α;ω), where α ∈ Ac

ww (see also [17]). For Lth-
order FIR system identification a parametric approach in the lag-domain may be preferred because it
avoids the trade-offs involved in choosing windows for nonparametric cyclic spectral estimates. One
simply solves the following system of linear equations formed by cyclic (cross-) correlations [27]

L∑
l=0

h(l) C̄ww(α; τ − l) = C̄xw(α; τ) , (17.63)
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using batch or adaptive algorithms. If desired, pole-zero models can then be fit in the estimated ĥ(n)

using Padé or Hankel methods. Estimation of TI systems with correlated input-output disturbances
is important not only for open loop identification but also when feedback is present. Therefore,
cyclic approaches are also of interest for identification of closed loop systems [27].

17.6 Concluding Remarks

Cyclostationary processes constitute the most common class of nonstationary signals encountered in
engineering and time series applications. Cyclostationarity appears in signals and systems exhibiting
repetitive variations and allows for separation of components on the basis of their cycles. The
diversity offered by such a structured variation can be exploited for suppression of stationary noise
with unknown spectral characteristics and for blind parameter estimation using a single data record.
Variance of finite sample estimates is affected by noise and increases when the cycles are unknown
and have to be estimated prior to applying cyclic signal processing algorithms.

Although our discussion focused on linear systems and second-order statistical descriptors, cy-
clostationarity appears also with nonlinear systems and certain signals exhibit periodicity in their
higher than second-order statistics. The latter are especially useful because in both cases the under-
lying processes are non-Gaussian and second-order analysis cannot characterize them completely.
Cyclostationarity in nonlinear time series of the Volterra type is exploited in [21, 31, 46], whereas
sample estimation issues and motivating applications of higher-order cyclostationarity can be found
in [11, 12, 23, 59] and references therein.

Topics of current interest and future trends include algorithms for nonlinear signal processing,
theoretical performance evaluation, and analysis of cyclostationary point processes. As far as appli-
cations, exploitation of cyclostationarity is expected to further improve algorithms in manufacturing
problems involving vibrating and rotating components, and will continue to contribute in the design
of single- and multi-user digital communication systems especially in the presence of fading and
time-varying multipath environments.
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A FILTER IS, IN ITS MOST BASIC SENSE, a device that enhances and/or rejects certain
components of a signal. To adapt is to change one’s characteristics according to some
knowledge about one’s environment. Taken together, these two terms suggest the goal of an

adaptive filter: to alter its selectivity based on the specific characteristics of the signals that are being
processed.

In digital signal processing, the term adaptive filters refers to a particular set of computational
structures and methods for processing digital signals. While many of the most popular techniques
used in adaptive filters have been developed and refined within the past forty years, the field of
adaptive filters is part of the larger field of optimization theory that has a history dating back to the
scientific work of both Galileo and Gauss in the 18th and 19th centuries. Modern developments in
adaptive filters began in the 1930s and 1940s with the efforts of Kolmogorov, Wiener, and Levinson
to formulate and solve linear estimation tasks. For those who desire an overview of many of the
structures, algorithms, analyses, and applications of adaptive filters, the seven chapters in this section
provide an excellent introduction to several prominent topics in the field.

Chapter 18 presents an overview of adaptive filters, describing many of the applications for which
these systems are used today. This chapter considers basic adaptive filtering concepts while providing
an introduction to the popular least-mean-square (LMS) adaptive filter that is often used in these
applications.

Chapters 19 and 20 focus on the design of the LMS adaptive filter from two different viewpoints. In
the former chapter, the behavior of the LMS adaptive filter is analyzed within a statistical framework
that has proven to be quite useful for establishing initial choices of the parameter values of this system.
The latter chapter studies the behavior of the LMS adaptive filter from a deterministic viewpoint,
showing why this system behaves robustly even when modeling errors and finite-precision calculation
errors continually perturb the state of this adaptive filter.

Chapter 21 presents the techniques used in another popular class of adaptive systems collectively
known as recursive least-squares (RLS) adaptive filters. Focusing on the numerical methods that are
typically employed in the implementations of these systems, the chapter provides a detailed summary
of both conventional and “fast” computational methods for these high-performance systems.

Transform domain adaptive filtering is discussed in Chapter 22. Using the frequency-domain and
fast convolution techniques described in this chapter, it is possible both to reduce the computational
complexity and to increase the performance of LMS adaptive filters when implemented in block form.

The first five chapters of this section focus almost exclusively on adaptive structures of a finite-
impulse response (FIR) form. In Chapter 23, the subtle performance issues surrounding methods
for adaptive infinite-impulse-response (IIR) filters are carefully described. The most recent technical
results concerning the convergence behavior and stability of each major adaptive IIR algorithm class
is provided in an easy-to-follow format.

Finally, Chapter 24 presents an important emerging application area for adaptive filters: blind
equalization. This section indicates how an adaptive filter can be adjusted to produce a desirable
input/output characteristic without having an example desired output signal on which to be trained.

While adaptive filters have had a long history, new adaptive filter structures and algorithms are
continually being developed. In fact, the range of adaptive filtering algorithms and applications is so
great that no one paper, chapter, section, or even book can fully cover the field. Those who desire
more information on the topics presented in this section should consult works within the extensive
reference lists that appear at the end of each chapter.
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18.1 What is an Adaptive Filter?

An adaptive filter is a computational device that attempts to model the relationship between two
signals in real time in an iterative manner. Adaptive filters are often realized either as a set of program
instructions running on an arithmetical processing device such as a microprocessor or DSP chip, or
as a set of logic operations implemented in a field-programmable gate array (FPGA) or in a semi-
custom or custom VLSI integrated circuit. However, ignoring any errors introduced by numerical
precision effects in these implementations, the fundamental operation of an adaptive filter can be
characterized independently of the specific physical realization that it takes. For this reason, we
shall focus on the mathematical forms of adaptive filters as opposed to their specific realizations
in software or hardware. Descriptions of adaptive filters as implemented on DSP chips and on a
dedicated integrated circuit can be found in [1, 2, 3], and [4], respectively.

An adaptive filter is defined by four aspects:

1. the signals being processed by the filter

2. the structure that defines how the output signal of the filter is computed from its input
signal

3. the parameters within this structure that can be iteratively changed to alter the filter’s
input-output relationship

4. the adaptive algorithm that describes how the parameters are adjusted from one time
instant to the next
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By choosing a particular adaptive filter structure, one specifies the number and type of parameters
that can be adjusted. The adaptive algorithm used to update the parameter values of the system can
take on a myriad of forms and is often derived as a form of optimization procedure that minimizes an
error criterion that is useful for the task at hand.

In this section, we present the general adaptive filtering problem and introduce the mathematical
notation for representing the form and operation of the adaptive filter. We then discuss several
different structures that have been proven to be useful in practical applications. We provide an
overview of the many and varied applications in which adaptive filters have been successfully used.
Finally, we give a simple derivation of the least-mean-square (LMS) algorithm, which is perhaps the
most popular method for adjusting the coefficients of an adaptive filter, and we discuss some of this
algorithm’s properties.

As for the mathematical notation used throughout this section, all quantities are assumed to be
real-valued. Scalar and vector quantities shall be indicated by lowercase (e.g., x) and uppercase-bold
(e.g., X) letters, respectively. We represent scalar and vector sequences or signals as x(n) and X(n),
respectively, where n denotes the discrete time or discrete spatial index, depending on the application.
Matrices and indices of vector and matrix elements shall be understood through the context of the
discussion.

18.2 The Adaptive Filtering Problem

Figure 18.1 shows a block diagram in which a sample from a digital input signal x(n) is fed into a
device, called an adaptive filter, that computes a corresponding output signal sample y(n) at time
n. For the moment, the structure of the adaptive filter is not important, except for the fact that
it contains adjustable parameters whose values affect how y(n) is computed. The output signal is
compared to a second signal d(n), called the desired response signal, by subtracting the two samples
at time n. This difference signal, given by

e(n) = d(n) − y(n) , (18.1)

is known as the error signal. The error signal is fed into a procedure which alters or adapts the
parameters of the filter from time n to time (n + 1) in a well-defined manner. This process of
adaptation is represented by the oblique arrow that pierces the adaptive filter block in the figure. As
the time index n is incremented, it is hoped that the output of the adaptive filter becomes a better and
better match to the desired response signal through this adaptation process, such that the magnitude
of e(n) decreases over time. In this context, what is meant by “better” is specified by the form of the
adaptive algorithm used to adjust the parameters of the adaptive filter.

In the adaptive filtering task, adaptation refers to the method by which the parameters of the system
are changed from time index n to time index (n + 1). The number and types of parameters within
this system depend on the computational structure chosen for the system. We now discuss different
filter structures that have been proven useful for adaptive filtering tasks.

18.3 Filter Structures

In general, any system with a finite number of parameters that affect how y(n) is computed from
x(n) could be used for the adaptive filter in Fig. 18.1. Define the parameter or coefficient vector W(n)

as

W(n) = [w0(n) w1(n) · · · wL−1(n)]T (18.2)
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FIGURE 18.1: The general adaptive filtering problem.

where {wi(n)}, 0 ≤ i ≤ L − 1 are the L parameters of the system at time n. With this definition, we
could define a general input-output relationship for the adaptive filter as

y(n) = f (W(n), y(n−1), y(n−2), . . . , y(n−N), x(n), x(n−1), . . . , x(n−M +1)), (18.3)

wheref (·) represents anywell-defined linearornonlinear functionandM andN arepositive integers.
Implicit in this definition is the fact that the filter is causal, such that future values of x(n) are not
needed to compute y(n). While noncausal filters can be handled in practice by suitably buffering or
storing the input signal samples, we do not consider this possibility.

Although (18.3) is the most general description of an adaptive filter structure, we are interested
in determining the best linear relationship between the input and desired response signals for many
problems. This relationship typically takes the form of a finite-impulse-response (FIR) or infinite-
impulse-response (IIR) filter. Figure 18.2 shows the structure of a direct-form FIR filter, also known
as a tapped-delay-line or transversal filter, where z−1 denotes the unit delay element and each wi(n)

is a multiplicative gain within the system. In this case, the parameters in W(n) correspond to the
impulse response values of the filter at time n. We can write the output signal y(n) as

y(n) =
L−1∑
i=0

wi(n)x(n − i) (18.4)

= WT (n)X(n), (18.5)

where X(n) = [x(n) x(n − 1) · · · x(n − L + 1)]T denotes the input signal vector and ·T denotes
vector transpose. Note that this system requires L multiplies and L − 1 adds to implement, and
these computations are easily performed by a processor or circuit so long as L is not too large and
the sampling period for the signals is not too short. It also requires a total of 2L memory locations
to store the L input signal samples and the L coefficient values, respectively.

FIGURE 18.2: Structure of an FIR filter.

The structure of a direct-form IIR filter is shown in Fig. 18.3. In this case, the output of the system
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can be represented mathematically as

y(n) =
N∑

i=1

ai(n)y(n − i) +
N∑

j=0

bj (n)x(n − j) , (18.6)

although the block diagram does not explicitly represent this system in such a fashion.1 We could
easily write (18.6) using vector notation as

y(n) = WT (n)U(n) , (18.7)

where the (2N + 1)-dimensional vectors W(n) and U(n) are defined as

W(n) = [a1(n) a2(n) · · · aN(n) b0(n) b1(n) · · · bN(n)]T (18.8)

U(n) = [y(n − 1) y(n − 2) · · · y(n − N) x(n) x(n − 1) · · · x(n − N)]T , (18.9)

respectively. Thus, for purposes of computing the output signal y(n), the IIR structure involves a
fixed number of multiplies, adds, and memory locations not unlike the direct-form FIR structure.

FIGURE 18.3: Structure of an IIR filter.

A third structure that has proven useful for adaptive filtering tasks is the lattice filter. A lattice filter
is an FIR structure that employs L − 1 stages of preprocessing to compute a set of auxiliary signals
{bi(n)}, 0 ≤ i ≤ L − 1 known as backward prediction errors. These signals have the special property
that they are uncorrelated, and they represent the elements of X(n) through a linear transformation.
Thus, the backward prediction errors can be used in place of the delayed input signals in a structure
similar to that in Fig. 18.2, and the uncorrelated nature of the prediction errors can provide improved
convergence performance of the adaptive filter coefficients with the proper choice of algorithm.
Details of the lattice structure and its capabilities are discussed in [6].

1Thedifferencebetween thedirect formIIor canonical form structure shown inFig. 18.3and thedirect formI implementation
of this system as described by (18.6) is discussed in [5].
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A critical issue in the choice of an adaptive filter’s structure is its computational complexity. Since
the operation of the adaptive filter typically occurs in real time, all of the calculations for the system
must occur during one sample time. The structures described above are all useful because y(n) can
be computed in a finite amount of time using simple arithmetical operations and finite amounts of
memory.

In addition to the linear structures above, one could consider nonlinear systems for which the
principle of superposition does not hold when the parameter values are fixed. Such systems are useful
when the relationship between d(n) and x(n) is not linear in nature. Two such classes of systems are
the Volterra and bilinear filter classes that compute y(n) based on polynomial representations of the
input and past output signals. Algorithms for adapting the coefficients of these types of filters are
discussed in [7]. In addition, many of the nonlinear models developed in the field of neural networks,
such as the multilayer perceptron, fit the general form of (18.3), and many of the algorithms used
for adjusting the parameters of neural networks are related to the algorithms used for FIR and IIR
adaptive filters. For a discussion of neural networks in an engineering context, the reader is referred
to [8].

18.4 The Task of an Adaptive Filter

When considering the adaptive filter problem as illustrated in Fig. 18.1 for the first time, a reader is
likely to ask, “If we already have the desired response signal, what is the point of trying to match it
using an adaptive filter?” In fact, the concept of “matching” y(n) to d(n) with some system obscures
the subtlety of the adaptive filtering task. Consider the following issues that pertain to many adaptive
filtering problems:

• In practice, the quantity of interest is not always d(n). Our desire may be to represent
in y(n) a certain component of d(n) that is contained in x(n), or it may be to isolate a
component of d(n) within the error e(n) that is not contained in x(n). Alternatively, we
may be solely interested in the values of the parameters in W(n) and have no concern
about x(n), y(n), or d(n) themselves. Practical examples of each of these scenarios are
provided later in this chapter.

• There are situations in whichd(n) is not available at all times. In such situations, adaptation
typically occurs only when d(n) is available. When d(n) is unavailable, we typically use
ourmost-recentparameter estimates to computey(n) in anattempt to estimate thedesired
response signal d(n).

• There are real-world situations in which d(n) is never available. In such cases, one can
use additional information about the characteristics of a “hypothetical” d(n), such as its
predicted statistical behavior or amplitude characteristics, to form suitable estimates of
d(n) from the signals available to the adaptive filter. Such methods are collectively called
blind adaptation algorithms. The fact that such schemes even work is a tribute both to
the ingenuity of the developers of the algorithms and to the technological maturity of the
adaptive filtering field.

It should also be recognized that the relationship between x(n) and d(n) can vary with time. In
such situations, the adaptive filter attempts to alter its parameter values to follow the changes in this
relationship as “encoded” by the two sequences x(n) and d(n). This behavior is commonly referred
to as tracking.
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18.5 Applications of Adaptive Filters

Perhaps the most important driving forces behind the developments in adaptive filters throughout
their history have been the wide range of applications in which such systems can be used. We now
discuss the forms of these applications in terms of more-general problem classes that describe the
assumed relationship between d(n) and x(n). Our discussion illustrates the key issues in selecting
an adaptive filter for a particular task. Extensive details concerning the specific issues and problems
associated with each problem genre can be found in the references at the end of this chapter.

18.5.1 System Identification

Consider Fig. 18.4, which shows the general problem of system identification. In this diagram, the
system enclosed by dashed lines is a “black box,” meaning that the quantities inside are not observable
from the outside. Inside this box is (1) an unknown system which represents a general input-
output relationship and (2) the signal η(n), called the observation noise signal because it corrupts the
observations of the signal at the output of the unknown system.

FIGURE 18.4: System identification.

Let d̂(n) represent the output of the unknown system with x(n) as its input. Then, the desired
response signal in this model is

d(n) = d̂(n) + η(n) . (18.10)

Here, the task of the adaptive filter is to accurately represent the signal d̂(n) at its output. If y(n) =
d̂(n), then the adaptive filter has accurately modeled or identified the portion of the unknown system
that is driven by x(n).

Since the model typically chosen for the adaptive filter is a linear filter, the practical goal of the
adaptive filter is to determine the best linear model that describes the input-output relationship of
the unknown system. Such a procedure makes the most sense when the unknown system is also a
linear model of the same structure as the adaptive filter, as it is possible that y(n) = d̂(n) for some
set of adaptive filter parameters. For ease of discussion, let the unknown system and the adaptive
filter both be FIR filters, such that

d(n) = WT
opt (n)X(n) + η(n) , (18.11)

where Wopt (n) is an optimum set of filter coefficients for the unknown system at time n. In this
problem formulation, the ideal adaptation procedure would adjust W(n) such that W(n) = Wopt (n)
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as n → ∞. In practice, the adaptive filter can only adjust W(n) such that y(n) closely approximates
d̂(n) over time.

The system identification task is at the heart of numerous adaptive filtering applications. We list
several of these applications here.

Channel Identification

In communication systems, useful information is transmitted from one point to another across
a medium such as an electrical wire, an optical fiber, or a wireless radio link. Nonidealities of the
transmissionmediumor channeldistort thefidelityof the transmitted signals, making thedeciphering
of the received information difficult. In cases where the effects of the distortion can be modeled as a
linear filter, the resulting “smearing” of the transmitted symbols is known as inter-symbol interference
(ISI). In such cases, an adaptive filter can be used to model the effects of the channel ISI for purposes of
deciphering the received information in an optimal manner. In this problem scenario, the transmitter
sends to the receiver a sample sequence x(n) that is known to both the transmitter and receiver. The
receiver then attempts to model the received signal d(n) using an adaptive filter whose input is
the known transmitted sequence x(n). After a suitable period of adaptation, the parameters of the
adaptive filter in W(n) are fixed and then used in a procedure to decode future signals transmitted
across the channel.

Channel identification is typically employed when the fidelity of the transmitted channel is severely
compromised or when simpler techniques for sequence detection cannot be used. Techniques for
detecting digital signals in communication systems can be found in [9].

Plant Identification

In many control tasks, knowledge of the transfer function of a linear plant is required by the
physical controller so that a suitable control signal can be calculated and applied. In such cases, we
can characterize the transfer function of the plant by exciting it with a known signal x(n) and then
attempting to match the output of the plant d(n) with a linear adaptive filter. After a suitable period
of adaptation, the system has been adequately modeled, and the resulting adaptive filter coefficients
in W(n) can be used in a control scheme to enable the overall closed-loop system to behave in the
desired manner.

In certain scenarios, continuous updates of the plant transfer function estimate provided by W(n)

are needed to allow the controller to function properly. A discussion of these adaptive control schemes
and the subtle issues in their use is given in [10, 11].

Echo Cancellation for Long-Distance Transmission

In voice communication across telephone networks, the existence of junction boxes called
hybrids near either end of the network link hampers the ability of the system to cleanly transmit
voice signals. Each hybrid allows voices that are transmitted via separate lines or channels across a
long-distance network to be carried locally on a single telephone line, thus lowering the wiring costs
of the local network. However, when small impedance mismatches between the long distance lines
and the hybrid junctions occur, these hybrids can reflect the transmitted signals back to their sources,
and the long transmission times of the long-distance network—about 0.3 s for a trans-oceanic call
via a satellite link—turn these reflections into a noticeable echo that makes the understanding of
conversation difficult for both callers. The traditional solution to this problem prior to the advent
of the adaptive filtering solution was to introduce significant loss into the long-distance network
so that echoes would decay to an acceptable level before they became perceptible to the callers.
Unfortunately, this solution also reduces the transmission quality of the telephone link and makes
the task of connecting long distance calls more difficult.

An adaptive filter can be used to cancel the echoes caused by the hybrids in this situation. Adaptive
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filters are employed at each of the two hybrids within the network. The input x(n) to each adaptive
filter is the speech signal being received prior to the hybrid junction, and the desired response signal
d(n) is the signal being sent out from the hybrid across the long-distance connection. The adaptive
filter attempts to model the transmission characteristics of the hybrid junction as well as any echoes
that appear across the long-distance portion of the network. When the system is properly designed,
the error signal e(n) consists almost totally of the local talker’s speech signal, which is then transmitted
over the network. Such systems were first proposed in the mid-1960s [12] and are commonly used
today. For more details on this application, see [13, 14].

Acoustic Echo Cancellation

A related problem to echo cancellation for telephone transmission systems is that of acoustic
echo cancellation for conference-style speakerphones. When using a speakerphone, a caller would
like to turn up the amplifier gains of both the microphone and the audio loudspeaker in order to
transmit and hear the voice signals more clearly. However, the feedback path from the device’s
loudspeaker to its input microphone causes a distinctive howling sound if these gains are too high.
In this case, the culprit is the room’s response to the voice signal being broadcast by the speaker; in
effect, the room acts as an extremely poor hybrid junction, in analogy with the echo cancellation task
discussed previously. A simple solution to this problem is to only allow one person to speak at a time,
a form of operation called half-duplex transmission. However, studies have indicated that half-duplex
transmission causes problems with normal conversations, as people typically overlap their phrases
with others when conversing.

To maintain full-duplex transmission, an acoustic echo canceller is employed in the speakerphone
to model the acoustic transmission path from the speaker to the microphone. The input signal x(n)

to the acoustic echo canceller is the signal being sent to the speaker, and the desired response signal
d(n) is measured at the microphone on the device. Adaptation of the system occurs continually
throughout a telephone call to model any physical changes in the room acoustics. Such devices are
readily available in the marketplace today. In addition, similar technology can and is used to remove
the echo that occurs through the combined radio/room/telephone transmission path when one places
a call to a radio or television talk show. Details of the acoustic echo cancellation problem can be
found in [14].

Adaptive Noise Cancelling

When collecting measurements of certain signals or processes, physical constraints often limit
our ability to cleanly measure the quantities of interest. Typically, a signal of interest is linearly mixed
with other extraneous noises in the measurement process, and these extraneous noises introduce
unacceptable errors in the measurements. However, if a linearly related reference version of any one
of the extraneous noises can be cleanly sensed at some other physical location in the system, an
adaptive filter can be used to determine the relationship between the noise reference x(n) and the
component of this noise that is contained in the measured signal d(n). After adaptively subtracting
out this component, what remains in e(n) is the signal of interest. If several extraneous noises corrupt
the measurement of interest, several adaptive filters can be used in parallel as long as suitable noise
reference signals are available within the system.

Adaptive noise cancelling has been used for several applications. One of the first was a medical
application that enabled the electroencephalogram (EEG) of the fetal heartbeat of an unborn child
to be cleanly extracted from the much-stronger interfering EEG of the maternal heartbeat signal.
Details of this application as well as several others are described in the seminal paper by Widrow and
his colleagues [15].
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18.5.2 Inverse Modeling

We now consider the general problem of inverse modeling, as shown in Fig. 18.5. In this diagram, a
source signal s(n) is fed into an unknown system that produces the input signal x(n) for the adaptive
filter. The output of the adaptive filter is subtracted from a desired response signal that is a delayed
version of the source signal, such that

d(n) = s(n − 1) , (18.12)

where 1 is a positive integer value. The goal of the adaptive filter is to adjust its characteristics such
that the output signal is an accurate representation of the delayed source signal.

FIGURE 18.5: Inverse modeling.

The inverse modeling task characterizes several adaptive filtering applications, two of which are
now described.

Channel Equalization

Channel equalization is an alternative to the technique of channel identification described
previously for the decoding of transmitted signals across nonideal communication channels. In
both cases, the transmitter sends a sequence s(n) that is known to both the transmitter and receiver.
However, in equalization, the received signal is used as the input signal x(n) to an adaptive filter,
which adjusts its characteristics so that its output closely matches a delayed version s(n − 1) of the
known transmitted signal. After a suitable adaptation period, the coefficients of the system either
are fixed and used to decode future transmitted messages or are adapted using a crude estimate of
the desired response signal that is computed from y(n). This latter mode of operation is known as
decision-directed adaptation.

Channel equalization was one of the first applications of adaptive filters and is described in the
pioneering work of Lucky [16]. Today, it remains as one of the most popular uses of an adaptive
filter. Practically every computer telephone modem transmitting at rates of 9600 baud (bits per
second) or greater contains an adaptive equalizer. Adaptive equalization is also useful for wireless
communicationsystems. Qureshi [17]providesa tutorialonadaptiveequalization. Arelatedproblem
to equalization is deconvolution, a problem that appears in the context of geophysical exploration [18].
Equalization is closely related to linear prediction, a topic that we shall discuss shortly.

Inverse Plant Modeling

In many control tasks, the frequency and phase characteristics of the plant hamper the conver-
gence behavior and stability of the control system. We can use a system of the form in Fig. 18.5 to
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compensate for the nonideal characteristics of the plant and as a method for adaptive control. In this
case, the signal s(n) is sent at the output of the controller, and the signal x(n) is the signal measured at
the output of the plant. The coefficients of the adaptive filter are then adjusted so that the cascade of
the plant and adaptive filter can be nearly represented by the pure delay z−1. Details of the adaptive
algorithms as applied to control tasks in this fashion can be found in [11].

18.5.3 Linear Prediction

A third type of adaptive filtering task is shown in Fig. 18.6. In this system, the input signal x(n) is
derived from the desired response signal as

x(n) = d(n − 1) , (18.13)

where 1 is an integer value of delay. In effect, the input signal serves as the desired response signal,
and for this reason it is always available. In such cases, the linear adaptive filter attempts to predict
future values of the input signal using past samples, giving rise to the name linear prediction for this
task.

FIGURE 18.6: Linear prediction.

If an estimate of the signal x(n + 1) at time n is desired, a copy of the adaptive filter whose input
is the current sample x(n) can be employed to compute this quantity. However, linear prediction
has a number of uses besides the obvious application of forecasting future events, as described in the
following two applications.

Linear Predictive Coding

When transmitting digitized versions of real-world signals such as speech or images, the tem-
poral correlation of the signals is a form of redundancy that can be exploited to code the waveform
in a smaller number of bits than are needed for its original representation. In these cases, a linear
predictor can be used to model the signal correlations for a short block of data in such a way as to
reduce the number of bits needed to represent the signal waveform. Then, essential information
about the signal model is transmitted along with the coefficients of the adaptive filter for the given
data block. Once received, the signal is synthesized using the filter coefficients and the additional
signal information provided for the given block of data.

When applied to speech signals, this method of signal encoding enables the transmission of under-
standable speech at only 2.4 kb/s, although the reconstructed speech has a distinctly synthetic quality.
Predictive coding can be combined with a quantizer to enable higher-quality speech encoding at
higher data rates using an adaptive differential pulse-code modulation (ADPCM) scheme. In both
of these methods, the lattice filter structure plays an important role because of the way in which it
parameterizes the physical nature of the vocal tract. Details about the role of the lattice filter in the
linear prediction task can be found in [19].
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Adaptive Line Enhancement

In some situations, the desired response signal d(n) consists of a sum of a broadband signal
and a nearly periodic signal, and it is desired to separate these two signals without specific knowledge
about the signals (such as the fundamental frequency of the periodic component).

In these situations, an adaptive filter configured as in Fig. 18.6 can be used. For this application,
the delay 1 is chosen to be large enough such that the broadband component in x(n) is uncorrelated
with the broadband component in x(n − 1). In this case, the broadband signal cannot be removed
by the adaptive filter through its operation, and it remains in the error signal e(n) after a suitable
period of adaptation. The adaptive filter’s output y(n) converges to the narrowband component,
which is easily predicted given past samples. The name line enhancement arises because periodic
signals are characterized by lines in their frequency spectra, and these spectral lines are enhanced at
the output of the adaptive filter.

For a discussion of the adaptive line enhancement task using LMS adaptive filters, the reader is
referred to [20].

18.5.4 Feedforward Control

Anotherproblemarea combines elements of both the inversemodeling and system identification tasks
and typifies the types of problems encountered in the area of adaptive control known as feedforward
control. Figure 18.7 shows the block diagram for this system, in which the output of the adaptive filter
passes through a plant before it is subtracted from the desired response to form the error signal. The
plant hampers the operation of the adaptive filter by changing the amplitude and phase characteristics
of the adaptive filter’s output signal as represented in e(n). Thus, knowledge of the plant is generally
required in order to adapt the parameters of the filter properly.

An application that fits this particular problem formulation is active noise control, in which un-
wanted sound energy propagates in air or a fluid into a physical region in space. In such cases, an
electroacoustic system employing microphones, speakers, and one or more adaptive filters can be
used to create a secondary sound field that interferes with the unwanted sound, reducing its level in
the region via destructive interference. Similar techniques can be used to reduce vibrations in solid
media. Details of useful algorithms for the active noise and vibration control tasks can be found
in [21, 22].

FIGURE 18.7: Feedforward control.
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18.6 Gradient-Based Adaptive Algorithms

An adaptive algorithm is a procedure for adjusting the parameters of an adaptive filter to minimize
a cost function chosen for the task at hand. In this section, we describe the general form of many
adaptive FIR filtering algorithms and present a simple derivation of the LMS adaptive algorithm. In
our discussion, we only consider an adaptive FIR filter structure, such that the output signal y(n) is
given by (18.5). Such systems are currently more popular than adaptive IIR filters because (1) the
input-output stability of the FIR filter structure is guaranteed for any set of fixed coefficients, and
(2) the algorithms for adjusting the coefficients of FIR filters are more simple in general than those
for adjusting the coefficients of IIR filters.

18.6.1 General Form of Adaptive FIR Algorithms

The general form of an adaptive FIR filtering algorithm is

W(n + 1) = W(n) + µ(n)G(e(n), X(n), 8(n)), (18.14)

where G(·) is a particular vector-valued nonlinear function, µ(n) is a step size parameter, e(n) and
X(n) are the error signal and input signal vector, respectively, and 8(n) is a vector of states that store
pertinent information about the characteristics of the input and error signals and/or the coefficients
at previous time instants. In the simplest algorithms, 8(n) is not used, and the only information
needed to adjust the coefficients at time n are the error signal, input signal vector, and step size.

The step size is so called because it determines the magnitude of the change or “step” that is taken
by the algorithm in iteratively determining a useful coefficient vector. Much research effort has been
spent characterizing the role that µ(n) plays in the performance of adaptive filters in terms of the
statistical or frequency characteristics of the input and desired response signals. Often, success or
failure of an adaptive filtering application depends on how the value of µ(n) is chosen or calculated
to obtain the best performance from the adaptive filter. The issue of choosing µ(n) for both stable
and accurate convergence of the LMS adaptive filter is addressed in Chapter 19 of this Handbook.

18.6.2 The Mean-Squared Error Cost Function

The form of G(·) in (18.14) depends on the cost function chosen for the given adaptive filtering task.
We now consider one particular cost function that yields a popular adaptive algorithm.

Define the mean-squared error (MSE) cost function as

JMSE(n) = 1

2

∫ ∞

−∞
e2(n)pn(e(n))de(n) (18.15)

= 1

2
E{e2(n)} , (18.16)

where pn(e) represents the probability density function of the error at time n and E{·} is shorthand
for the expectation integral on the right-hand side of (18.15). The MSE cost function is useful for
adaptive FIR filters because

• JMSE(n) has a well-defined minimum with respect to the parameters in W(n);

• the coefficient values obtained at this minimum are the ones that minimize the power in
the error signal e(n), indicating that y(n) has approached d(n); and

c©1999 by CRC Press LLC



• JMSE(n) is a smooth function of each of the parameters in W(n), such that it is differen-
tiable with respect to each of the parameters in W(n).

The third point is important in that it enables us to determine both the optimum coefficient values
given knowledge of the statistics of d(n) and x(n) as well as a simple iterative procedure for adjusting
the parameters of an FIR filter.

18.6.3 The Wiener Solution

For the FIR filter structure, the coefficient values in W(n) that minimize JMSE(n) are well-defined if
the statistics of the input and desired response signals are known. The formulation of this problem
for continuous-time signals and the resulting solution was first derived by Wiener [23]. Hence, this
optimum coefficient vector WMSE(n) is often called the Wiener solution to the adaptive filtering
problem. The extension of Wiener’s analysis to the discrete-time case is attributed to Levinson [24].

To determine WMSE(n), we note that the function JMSE(n) in (18.16) is quadratic in the param-
eters {wi(n)}, and the function is also differentiable. Thus, we can use a result from optimization
theory that states that the derivatives of a smooth cost function with respect to each of the parameters
is zero at a minimizing point on the cost function error surface. Thus, WMSE(n) can be found from
the solution to the system of equations

∂JMSE(n)

∂wi(n)
= 0, 0 ≤ i ≤ L − 1. (18.17)

Taking derivatives of JMSE(n) in (18.16) and noting that e(n) and y(n) are given by (18.1) and (18.5),
respectively, we obtain

∂JMSE(n)

∂wi(n)
= E

{
e(n)

∂e(n)

∂wi(n)

}
(18.18)

= −E

{
e(n)

∂y(n)

∂wi(n)

}
(18.19)

= −E{e(n)x(n − i)} (18.20)

= −

E{d(n)x(n − i)} −

L−1∑
j=0

E{x(n − i)x(n − j)}wj(n)


 . (18.21)

where we have used the definitions of e(n) and of y(n) for the FIR filter structure in (18.1) and (18.5),
respectively, to expand the last result in (18.21).

By defining the matrix RXX(n) and vector PdX(n) as

RXX = E{X(n)XT (n)} and PdX(n) = E{d(n)X(n)} , (18.22)

respectively, we can combine (18.17) and (18.21) to obtain the system of equations in vector form as

RXX(n)WMSE(n) − PdX(n) = 0 , (18.23)

where 0 is the zero vector. Thus, so long as the matrix RXX(n) is invertible, the optimum Wiener
solution vector for this problem is

WMSE(n) = R−1
XX (n)PdX(n) . (18.24)
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18.6.4 The Method of Steepest Descent

The method of steepest descent is a celebrated optimization procedure for minimizing the value of a
cost function J (n) with respect to a set of adjustable parameters W(n). This procedure adjusts each
parameter of the system according to

wi(n + 1) = wi(n) − µ(n)
∂J (n)

∂wi(n)
. (18.25)

In other words, the ith parameter of the system is altered according to the derivative of the cost
function with respect to the ith parameter. Collecting these equations in vector form, we have

W(n + 1) = W(n) − µ(n)
∂J (n)

∂W(n)
, (18.26)

where ∂J (n)/∂W(n) is a vector of derivatives ∂J (n)/∂wi(n).
For an FIR adaptive filter that minimizes the MSE cost function, we can use the result in (18.21) to

explicitly give the form of the steepest descent procedure in this problem. Substituting these results
into (18.25) yields the update equation for W(n) as

W(n + 1) = W(n) + µ(n)(PdX(n) − RXX(n)W(n)) . (18.27)

However, this steepest descent procedure depends on the statistical quantities E{d(n)x(n − i)}
and E{x(n − i)x(n − j)} contained in PdX(n) and RXX(n), respectively. In practice, we only have
measurements of both d(n) and x(n) to be used within the adaptation procedure. While suitable
estimates of the statistical quantities needed for (18.27) could be determined from the signals x(n)

and d(n), we instead develop an approximate version of the method of steepest descent that depends
on the signal values themselves. This procedure is known as the LMS algorithm.

18.6.5 The LMS Algorithm

The cost function J (n) chosen for the steepest descent algorithm of (18.25) determines the coefficient
solution obtained by the adaptive filter. If the MSE cost function in (18.16) is chosen, the resulting
algorithm depends on the statistics of x(n) and d(n) because of the expectation operation that defines
this cost function. Since we typically only have measurements of d(n) and of x(n) available to us,
we substitute an alternative cost function that depends only on these measurements. One such cost
function is the least-squares cost function given by

JLS(n) =
n∑

k=0

α(k)(d(k) − WT (n)X(k))2 . (18.28)

where α(n) is a suitable weighting sequence for the terms within the summation. This cost function,
however, is complicated by the fact that it requires numerous computations to calculate its value
as well as its derivatives with respect to each wi(n), although efficient recursive methods for its
minimization can be developed. See Chapter 21 for more details on these methods.

Alternatively, we can propose the simplified cost function JLMS(n) given by

JLMS(n) = 1

2
e2(n) . (18.29)

This cost function can be thought of as an instantaneous estimate of the MSE cost function, as
JMSE(n) = E{JLMS(n)}. Although it might not appear to be useful, the resulting algorithm
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obtained when JLMS(n) is used for J (n) in (18.25) is extremely useful for practical applications.
Taking derivatives of JLMS(n) with respect to the elements of W(n) and substituting the result
into (18.25), we obtain the LMS adaptive algorithm given by

W(n + 1) = W(n) + µ(n)e(n)X(n) . (18.30)

Note that this algorithm is of the general form in (18.14). It also requires only multiplications and
additions to implement. In fact, the number and type of operations needed for the LMS algorithm
is nearly the same as that of the FIR filter structure with fixed coefficient values, which is one of the
reasons for the algorithm’s popularity.

The behavior of the LMS algorithm has been widely studied, and numerous results concerning its
adaptation characteristics under different situations have been developed. For discussions of some
of these results, the reader is referred to Chapters 19 and 20 in this Handbook. For now, we indicate
its useful behavior by noting that the solution obtained by the LMS algorithm near its convergent
point is related to the Wiener solution. In fact, analyses of the LMS algorithm under certain statistical
assumptions about the input and desired response signals show that

lim
n→∞ E{W(n)} = WMSE , (18.31)

when the Wiener solution WMSE(n) is a fixed vector. Moreover, the average behavior of the LMS
algorithm is quite similar to that of the steepest descent algorithm in (18.27) that depends explicitly
on the statistics of the input and desired response signals. In effect, the iterative nature of the LMS
coefficient updates is a form of time-averaging that smooths the errors in the instantaneous gradient
calculations to obtain a more reasonable estimate of the true gradient.

18.6.6 Other Stochastic Gradient Algorithms

The LMS algorithm is but one of an entire family of algorithms that are based on instantaneous
approximations to steepest descent procedures. Such algorithms are known as stochastic gradient
algorithms because they use a stochastic version of the gradient of a particular cost function’s error
surface to adjust the parameters of the filter. As an example, we consider the cost function

JSA(n) = |e(n)| , (18.32)

where | · | denotes absolute value. Like JLMS(n), this cost function also has a unique minimum at
e(n) = 0, and it is differentiable everywhere except at e(n) = 0. Moreover, it is the instantaneous
value of the mean absolute error cost function JMAE(n) = E{JSA(n)}. Taking derivatives of JSA(n)

with respect to the coefficients {wi(n)} and substituting the results into (18.25) yields the sign-error
algorithm as2

W(n + 1) = W(n) + µ(n)sgn(e(n))X(n) , (18.33)

where

sgn(e) =



1 if e > 0
0 if e = 0

−1 if e < 0
. (18.34)

This algorithm is also of the general form in (18.14).
The sign error algorithm is auseful adaptivefilteringprocedurebecause the terms sgn(e(n))x(n−i)

can be computed easily in dedicated digital hardware. Its convergence properties differ from those
of the LMS algorithm, however. Discussions of this and other algorithms based on non-MSE criteria
can be found in [25].

2Here, we have specified ∂|e|/∂e = 0 for e = 0, although the derivative of this function does not exist at this point.
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18.6.7 Finite-Precision Effects and Other Implementation Issues

In all digital hardware and software implementations of the LMS algorithm in (18.30), the quantities
e(n), d(n), and {x(n − i)} are represented by finite-precision quantities with a certain number of
bits. Small numerical errors are introduced in each of the calculations within the coefficient updates
in these situations. The effects of these numerical errors are usually less severe in systems that
employ floating-point arithmetic, in which all numerical values are represented by both a mantissa
and exponent, as compared to systems that employ fixed-point arithmetic, in which a mantissa-only
numerical representation is used. The effects of the numerical errors introduced in these cases can
be characterized; see [26] for a discussion of these issues.

While knowledge of the numerical effects of finite-precision arithmetic are necessary for obtaining
the best performance from the LMS adaptive filter, it can be generally stated that the LMS adaptive
filter performs robustly in the presence of these numerical errors. In fact, the apparent robustness of
the LMS adaptive filter has led to the development of approximate implementations of (18.30) that
are more easily implemented in dedicated hardware. The general form of these implementations is

wi(n + 1) = wi(n) + µ(n)g1(e(n))g2(x(n − i)) , (18.35)

where g1(·) and g2(·) are odd-symmetric nonlinearities that are chosen to simplify the implemen-
tation of the system. Some of the algorithms described by (18.35) include the sign-data {g1(e) = e,
g2(x) = sgn(x)}, sign-sign or zero-forcing {g1(e) = sgn(e), g2(x) = sgn(x)}, and power-of-two
quantized algorithms, as well as the sign error algorithm introduced previously. A presentation and
comparative analysis of the performance of many of these algorithms can be found in [27].

18.6.8 System Identification Example

We now illustrate the actual behavior of the LMS adaptive filter through a system identification
example in which the impulse response of a small audio loudspeaker in a room is estimated. A
Gaussian-distributed signal with a flat frequency spectrum over the usable frequency range of the
loudspeaker is generated and sent through an audio amplifier to the loudspeaker. This same Gaussian
signal is sent to a 16-bit analog-to-digital (A/D) converter which samples it at an 8 kHz rate. The
sound produced by the loudspeaker propagates to a microphone located several feet away from the
loudspeaker, where it is collected and digitized by a second A/D converter also sampling at an 8 kHz
rate. Both signals are stored to a computer file for subsequent processing and analysis. The goal of
the analysis is to determine the combined impulse response of the loudspeaker/room/microphone
sound propagation path. Such information is useful if the loudspeaker and microphone are to be
used in the active noise control task described previously, and the general task also resembles that of
acoustic echo cancellation for speakerphones.

We process these signals using a computer program that implements the LMS adaptive filter within
the MATLAB3 signal manipulation environment. In this case, we have normalized the powers of
both the Gaussian input signal and desired response signal collected at the microphone to unity,
and we have highpass-filtered the microphone signal using a filter with transfer function H(z) =
(1 − z−1)/(1 − 0.95z−1) to remove any DC offset in this signal. For this task, we have chosen an
L = 100-coefficient FIR filter adapted using the LMS algorithm in (18.30) with a fixed step size of
µ = 0.0005to obtain an accurate estimate of the impulse response of the loudspeaker and room.
Figure 18.8 shows the convergence of the error signal in this situation. After about 4000 samples
(0.5 s), the error signal has been reduced to a power that is about 1/15 (-12 dB) below that of the

3MATLAB is a registered trademark of The MathWorks, Newton, MA.
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FIGURE 18.8: Convergence of the error signal in the loudspeaker identification experiment.

FIGURE 18.9: The adaptive filter coefficients obtained in the loudspeaker identification experiment.
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microphone signal, indicating that the filter has converged. Figure 18.9 shows the coefficients of the
adaptive filter at iteration n = 10000. The impulse response of the loudspeaker/room/microphone
path consists of a large pulse corresponding to the direct sound propagation path as well as numerous
smaller pulses caused by reflections of sounds off walls and other surfaces in the room.

18.7 Conclusions

In this section, we have presented an overview of adaptive filters, emphasizing the applications and
basic algorithms that have already proven themselves to be useful in practice. Despite the many
contributions in the field, research efforts in adaptive filters continue at a strong pace, and it is likely
that new applications for adaptive filters will be developed in the future. To keep abreast of these
advances, the reader is urged to consult journals such as the IEEE Transactions on Signal Processing
as well as the proceedings of yearly conferences and workshops in the signal processing and related
fields.
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19.1 Introduction

In adaptive filtering, the least-mean-square (LMS) adaptive filter [1] is the most popular and widely
used adaptive system, appearing in numerous commercial and scientific applications. The LMS
adaptive filter is described by the equations

W(n + 1) = W(n) + µ(n)e(n)X(n) (19.1)

e(n) = d(n) − WT (n)X(n) , (19.2)

where W(n) = [w0(n) w1(n) · · · wL−1(n)]T is the coefficient vector, X(n) = [x(n) x(n −
1) · · · x(n − L + 1)]T is the input signal vector, d(n) is the desired signal, e(n) is the error signal,
and µ(n) is the step size.

There are three main reasons why the LMS adaptive filter is so popular. First, it is relatively easy to
implement in software and hardware due to its computational simplicity and efficient use of memory.
Second, it performs robustly in the presence of numerical errors caused by finite-precision arithmetic.
Third, its behavior has been analytically characterized to the point where a user can easily set up the
system to obtain adequate performance with only limited knowledge about the input and desired
response signals.
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Our goal in this chapter is to provide a detailed performance analysis of the LMS adaptive filter so
that the user of this system understands how the choice of the step size µ(n) and filter length L affect
the performance of the system through the natures of the input and desired response signals x(n)

and d(n), respectively. The organization of this chapter is as follows. We first discuss why analytically
characterizing the behavior of the LMS adaptive filter is important from a practical point of view.
We then present particular signal models and assumptions that make such analyses tractable. We
summarize the analytical results that can be obtained from these models and assumptions, and we
discuss the implications of these results for different practical situations. Finally, to overcome some
of the limitations of the LMS adaptive filter’s behavior, we describe simple extensions of this system
that are suggested by the analytical results. In all of our discussions, we assume that the reader is
familiar with the adaptive filtering task and the LMS adaptive filter as described in Chapter 18 of this
Handbook.

19.2 Characterizing the Performance of Adaptive Filters

There are two practical methods for characterizing the behavior of an adaptive filter. The simplest
method of all to understand is simulation. In simulation, a set of input and desired response signals
are either collected from a physical environment or are generated from a mathematical or statistical
model of the physical environment. These signals are then processed by a software program that
implements the particular adaptive filter under evaluation. By trial-and-error, important design
parameters, such as the step size µ(n) and filter length L, are selected based on the observed behavior
of the system when operating on these example signals. Once these parameters are selected, they are
used in an adaptive filter implementation to process additional signals as they are obtained from the
physical environment. In the case of a real-time adaptive filter implementation, the design parameters
obtained from simulation are encoded within the real-time system to allow it to process signals as
they are continuously collected.

While straightforward, simulation has two drawbacks that make it a poor sole choice for charac-
terizing the behavior of an adaptive filter:

• Selecting design parameters via simulation alone is an iterative and time-consuming process.
Without any other knowledge of the adaptive filter’s behavior, the number of trials needed
to select the best combination of design parameters is daunting, even for systems as simple
as the LMS adaptive filter.

• The amount of data needed to accurately characterize the behavior of the adaptive filter for
all cases of interest may be large. If real-world signal measurements are used, it may be
difficult or costly to collect and store the large amounts of data needed for simulation
characterizations. Moreover, once this data is collected or generated, it must be processed
by the softwareprogramthat implements theadaptivefilter, whichcanbe time-consuming
as well.

For these reasons, we are motivated to develop an analysis of the adaptive filter under study. In such an
analysis, the input and desired response signals x(n) and d(n) are characterized by certain properties
that govern the forms of these signals for the application of interest. Often, these properties are
statistical in nature, such as the means of the signals or the correlation between two signals at different
time instants. An analytical description of the adaptive filter’s behavior is then developed that is based
on these signal properties. Once this analytical description is obtained, the design parameters are
selected to obtain the best performance of the system as predicted by the analysis. What is considered
“best performance” for the adaptive filter can often be specified directly within the analysis, without
the need for iterative calculations or extensive simulations.

Usually, both analysis and simulation are employed to select design parameters for adaptive filters,
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as the simulation results provide a check on the accuracy of the signal models and assumptions that
are used within the analysis procedure.

19.3 Analytical Models, Assumptions, and Definitions

The type of analysis that we employ has a long-standing history in the field of adaptive filters [2]– [6].
Our analysis uses statistical models for the input and desired response signals, such that any collection
of samples from the signals x(n) and d(n) have well-defined joint probability density functions
(p.d.f.s). With this model, we can study the average behavior of functions of the coefficients W(n)

at each time instant, where “average” implies taking a statistical expectation over the ensemble of
possible coefficient values. For example, the mean value of the ith coefficient wi(n) is defined as

E{wi(n)} =
∫ ∞

−∞
w pwi

(w, n)dw , (19.3)

where pwi
(w, n) is the probability distribution of the ith coefficient at time n. The mean value of

the coefficient vector at time n is defined as E{W(n)} = [E{w0(n)} E{w1(n)} · · · E{wL−1(n)}]T .
While it is usually difficult to evaluate expectations such as (19.3) directly, we can employ several

simplifying assumptions and approximations that enable the formation of evolution equations that
describe the behavior of quantities such as E{W(n)} from one time instant to the next. In this way,
we can predict the evolutionary behavior of the LMS adaptive filter on average. More importantly,
we can study certain characteristics of this behavior, such as the stability of the coefficient updates,
the speed of convergence of the system, and the estimation accuracy of the filter in steady-state.
Because of their role in the analyses that follow, we now describe these simplifying assumptions and
approximations.

19.3.1 System Identification Model for the Desired Response Signal

For our analysis, we assume that the desired response signal is generated from the input signal as

d(n) = WT
optX(n) + η(n) , (19.4)

where Wopt = [w0,opt w1,opt · · · wL−1,opt ]T is a vector of optimum FIR filter coefficients and
η(n) is a noise signal that is independent of the input signal. Such a model for d(n) is realistic for
several important adaptive filtering tasks. For example, in echo cancellation for telephone networks,
the optimum coefficient vector Wopt contains the impulse response of the echo path caused by the
impedance mismatches at hybrid junctions within the network, and the noise η(n) is the near-end
source signal [7]. The model is also appropriate in system identification and modeling tasks such as
plant identification for adaptive control [8] and channel modeling for communication systems [9].
Moreover, most of the results obtained from this model are independent of the specific impulse
response values within Wopt , so that general conclusions can be readily drawn.

19.3.2 Statistical Models for the Input Signal

Given the desired response signal model in (19.4), we now consider useful and appropriate statistical
models for the input signal x(n). Here, we are motivated by two typically conflicting concerns:
(1) the need for signal models that are realistic for several practical situations and (2) the tractability
of the analyses that the models allow. We consider two input signal models that have proven useful
for predicting the behavior of the LMS adaptive filter.
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Independent and Identically Distributed (I.I.D.) Random Processes

In digital communication tasks, an adaptive filter can be used to identify the dispersive charac-
teristics of the unknown channel for purposes of decoding future transmitted sequences [9]. In this
application, the transmitted signal is a bit sequence that is usually zero mean with a small number
of amplitude levels. For example, a non-return-to-zero (NRZ) binary signal takes on the values
of ±1 with equal probability at each time instant. Moreover, due to the nature of the encoding
of the transmitted signal in many cases, any set of L samples of the signal can be assumed to be
independent and identically distributed (i.i.d.). For an i.i.d. random process, the p.d.f. of the samples
{x(n1), x(n2), . . . , x(nL)} for any choices of ni such that ni 6= nj is

pX (x(n1), x(n2), . . . , x(nL)) = px(x(n1)) px(x(n2)) · · ·px(x(nL)) , (19.5)

where px(·) and pX(·) are the univariate and L-variate probability densities of the associated random
variables, respectively.

Zero-mean and statistically independent random variables are also uncorrelated, such that

E{x(ni)x(nj )} = 0 (19.6)

for ni 6= nj , although uncorrelated random variables are not necessarily statistically independent.
The input signal model in (19.5) is useful for analyzing the behavior of the LMS adaptive filter, as it
allows a particularly simple analysis of this system.

Spherically Invariant Random Processes (SIRPs)

In acoustic echo cancellation for speakerphones, an adaptive filter can be used to electronically
isolate the speaker and microphone so that the amplifier gains within the system can be increased [10].
In this application, the input signal to the adaptive filter consists of samples of bandlimited speech.
It has been shown in experiments that samples of a bandlimited speech signal taken over a short time
period (e.g., 5 ms) have so-called “spherically invariant” statistical properties. Spherically invariant
random processes (SIRPs) are characterized by multivariate p.d.f.s that depend on a quadratic form
of their arguments, given by XT (n)R−1

XX X(n), where

RXX = E{X(n)XT (n)} (19.7)

is the L-dimensional input signal autocorrelation matrix of the stationary signal x(n). The best-
known representative of this class of stationary stochastic processes is the jointly Gaussian random
process for which the joint p.d.f. of the elements of X(n) is

pX(x(n), . . . , x(n − L + 1)) =
(
(2π)L det (RXX)

)−1/2
exp

(
−1

2
XT (n)R−1

XX X(n)

)
, (19.8)

where det(RXX) is the determinant of the matrix RXX. More generally, SIRPs can be described by a
weighted mixture of Gaussian processes as

pX(x(n), . . . , x(n − L + 1) =
∫ ∞

0

(
(2π |u|)Ldet

(
RXX

))−1/2

× pσ (u) exp

(
− 1

2u2
XT (n)R

−1
XX X(n)

)
du , (19.9)

where RXX is the autocorrelation matrix of a zero-mean, unit-variance jointly Gaussian random
process. In (19.9), the p.d.f. pσ (u) is a weighting function for the value of u that scales the standard
deviation of this process. In other words, any single realization of a SIRP is a Gaussian random process
with an autocorrelation matrix u2RXX. Each realization, however, will have a different variance u2.
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As described, the above SIRP model does not accurately depict the statistical nature of a speech
signal. The variance of a speech signal varies widely from phoneme (vowel) to fricative (consonant)
utterances, and this burst-like behavior is uncharacteristic of Gaussian signals. The statistics of such
behavior can be accurately modeled if a slowly varying value for the random variable u in (19.9)
is allowed. Figure 19.1 depicts the differences between a nearly SIRP and an SIRP. In this system,
either the random variable u or a sample from the slowly varying random process u(n) is created and
used to scale the magnitude of a sample from an uncorrelated Gaussian random process. Depending
on the position of the switch, either an SIRP (upper position) or a nearly SIRP (lower position) is
created. The linear filter F(z) is then used to produce the desired autocorrelation function of the
SIRP. So long as the value of u(n) changes slowly over time, RXX for the signal x(n) as produced from
this system is approximately the same as would be obtained if the value of u(n) were fixed, except for
the amplitude scaling provided by the value of u(n).

FIGURE 19.1: Generation of SIRPs and nearly SIRPs.

The random process u(n) can be generated by filtering a zero-mean uncorrelated Gaussian process
with a narrow-bandwidth lowpass filter. With this choice, the system generates samples from the
so-called K0 p.d.f., also known as the MacDonald function or degenerated Bessel function of the
second kind [11]. This density is a reasonable match to that of typical speech sequences, although it
does not necessarily generate sequences that sound like speech. Given a short-length speech sequence
from a particular speaker, one can also determine the proper pσ (u) needed to generate u(n) as well
as the form of the filter F(z) from estimates of the amplitude and correlation statistics of the speech
sequence, respectively.

In addition to adaptive filtering, SIRPs are also useful for characterizing the performance of vector
quantizers for speech coding. Details about the properties of SIRPs can be found in [12].

19.3.3 The Independence Assumptions

In the LMS adaptive filter, the coefficient vector W(n) is a complex function of the current and past
samples of the input and desired response signals. This fact would appear to foil any attempts to
develop equations that describe the evolutionary behavior of the filter coefficients from one time
instant to the next. One way to resolve this problem is to make further statistical assumptions about
the nature of the input and the desired response signals. We now describe a set of assumptions that
have proven to be useful for predicting the behaviors of many types of adaptive filters.
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The Independence Assumptions: Elements of the vector X(n) are statistically independent of the
elements of the vector X(m) if m 6= n. In addition, samples from the noise signal η(n) are i.i.d. and
independent of the input vector sequence X(k) for all k and n.

A careful study of the structure of the input signal vector indicates that the independence assump-
tions are never true, as the vector X(n) shares elements with X(n − m) if |m| < L and thus cannot
be independent of X(n − m) in this case. Moreover, η(n) is not guaranteed to be independent from
sample to sample. Even so, numerous analyses and simulations have indicated that these assumptions
lead to a reasonably accurate characterization of the behavior of the LMS and other adaptive filter
algorithms for small step size values, even in situations where the assumptions are grossly violated.
In addition, analyses using the independence assumptions enable a simple characterization of the
LMS adaptive filter’s behavior and provide reasonable guidelines for selecting the filter length L and
step size µ(n) to obtain good performance from the system.

It has been shown that the independence assumptions lead to a first-order-in-µ(n) approximation
to a more accurate description of the LMS adaptive filter’s behavior [13]. For this reason, the
analytical results obtained from these assumptions are not particularly accurate when the step size
is near the stability limits for adaptation. It is possible to derive an exact statistical analysis of the
LMS adaptive filter that does not use the independence assumptions [14], although the exact analysis
is quite complex for adaptive filters with more than a few coefficients. From the results in [14], it
appears that the analysis obtained from the independence assumptions is most inaccurate for large
step sizes and for input signals that exhibit a high degree of statistical correlation.

19.3.4 Useful Definitions

In our analysis, we define the minimum mean-squared error (MSE) solution as the coefficient vector
W(n) that minimizes the mean-squared error criterion given by

ξ(n) = E{e2(n)} . (19.10)

Since ξ(n) is a function of W(n), it can be viewed as an error surface with a minimum that occurs at
the minimum MSE solution. It can be shown for the desired response signal model in (19.4) that the
minimum MSE solution is Wopt and can be equivalently defined as

Wopt = R−1
XX PdX , (19.11)

where RXX is as defined in (19.7) and PdX = E{d(n)X(n)} is the cross-correlation of d(n) and X(n).
When W(n) = Wopt , the value of the minimum MSE is given by

ξmin = σ 2
η , (19.12)

where σ 2
η is the power of the signal η(n).
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We define the coefficient error vector V(n) = [v0(n) · · · vL−1(n)]T as

V(n) = W(n) − Wopt , (19.13)

such that V(n) represents the errors in the estimates of the optimum coefficients at time n. Our
study of the LMS algorithm focuses on the statistical characteristics of the coefficient error vector. In
particular, we can characterize the approximate evolution of the coefficient error correlation matrix
K(n), defined as

K(n) = E{V(n)VT (n)} . (19.14)

Another quantity that characterizes the performance of the LMS adaptive filter is the excess mean-
squared error (excess MSE), defined as

ξex(n) = ξ(n) − ξmin

= ξ(n) − σ 2
η , (19.15)

where ξ(n) is as defined in (19.10). The excess MSE is the power of the additional error in the
filter output due to the errors in the filter coefficients. An equivalent measure of the excess MSE in
steady-state is the misadjustment, defined as

M = lim
n→∞

ξex(n)

σ 2
η

, (19.16)

such that the quantity (1 + M)σ 2
η denotes the total MSE in steady-state.

Under the independence assumptions, it can be shown that the excess MSE at any time instant is
related to K(n) as

ξex(n) = tr[RXXK(n)] , (19.17)

where the trace tr[·] of a matrix is the sum of its diagonal values.

19.4 Analysis of the LMS Adaptive Filter

We now analyze the behavior of the LMS adaptive filter using the assumptions and definitions that
we have provided. For the first portion of our analysis, we characterize the mean behavior of the filter
coefficients of the LMS algorithm in (19.1) and (19.2). Then, we provide a mean-square analysis of
the system that characterizes the natures of K(n), ξex(n), and M in (19.14), (19.15), and (19.16),
respectively.

19.4.1 Mean Analysis

By substituting the definition of d(n) from the desired response signal model in (19.4) into the
coefficient updates in (19.1) and (19.2), we can express the LMS algorithm in terms of the coefficient
error vector in (19.13) as

V(n + 1) = V(n) − µ(n)X(n)XT (n)V(n) + µ(n)η(n)X(n) . (19.18)

We take expectations of both sides of (19.18), which yields

E{V(n + 1)} = E{V(n)} − µ(n)E{X(n)XT (n)V(n)} + µ(n)E{η(n)X(n)} , (19.19)

in which we have assumed that µ(n) does not depend on X(n), d(n), or W(n).
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In many practical cases of interest, either the input signal x(n) and/or the noise signal η(n) is zero-
mean, such that the last term in (19.19) is zero. Moreover, under the independence assumptions, it
can be shown that V(n) is approximately independent of X(n), and thus the second expectation on
the right-hand side of (19.19) is approximately given by

E{X(n)XT (n)V(n)} ≈ E{X(n)XT (n)}E{V(n)}
= RXXE{V(n)} . (19.20)

Combining these results with (19.19), we obtain

E{V(n + 1)} = (I − µ(n)RXX) E{V(n)} . (19.21)

The simple expression in (19.21) describes the evolutionary behavior of the mean values of the
errors in the LMS adaptive filter coefficients. Moreover, if the step size µ(n) is constant, then we can
write (19.21) as

E{V(n)} = (I − µRXX)
nE{V(0)} , (19.22)

To further simplify this matrix equation, note that RXX can be described by its eigenvalue decom-
position as

RXX = Q3QT , (19.23)

where Q is a matrix of the eigenvectors of RXX and 3 is a diagonal matrix of the eigenvalues
{λ0, λ1, . . . , λL−1} of RXX, which are all real valued because of the symmetry of RXX. Through
some simple manipulations of (19.22), we can express the (i + 1)th element of E{W(n)} as

E{wi(n)} = wi,opt +
L−1∑
j=0

qij (1 − µλj )
nE{̃vj (0)} , (19.24)

where qij is the (i + 1, j + 1)th element of the eigenvector matrix Q and ṽj (n) is the (j + 1)th
element of the rotated coefficient error vector defined as

Ṽ(n) = QT V(n) . (19.25)

From (19.21) and (19.24), we can state several results concerning the mean behaviors of the LMS
adaptive filter coefficients:

• The mean behavior of the LMS adaptive filter as predicted by (19.21) is identical to that of
the method of steepest descent for this adaptive filtering task. Discussed in Chapter 18 of
this Handbook, the method of steepest descent is an iterative optimization procedure that
requires precise knowledge of the statistics of x(n) and d(n) to operate. That the LMS
adaptive filter’s average behavior is similar to that of steepest descent was recognized in
one of the earliest publications of the LMS adaptive filter [1].

• The mean value of any LMS adaptive filter coefficient at any time instant consists of the
sum of the optimal coefficient value and a weighted sum of exponentially converging and/or
diverging terms. These error terms depend on the elements of the eigenvector matrix Q,
the eigenvalues of RXX, and the mean E{V(0)} of the initial coefficient error vector.

• If all of the eigenvalues {λj } of RXX are strictly positive and

0 < µ <
2

λj

(19.26)

for all 0 < j < L − 1, then the means of the filter coefficients converge exponentially to
their optimum values. This result can be found directly from (19.24) by noting that the
quantity (1 − µλj )

n → 0 as n → ∞ if |1 − µλj | < 1.
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• The speeds of convergence of the means of the coefficient values depend on the eigenvalues
λi and the step size µ. In particular, we can define the time constant τj of the j th term
within the summation on the right hand side of (19.24) as the approximate number of
iterations it takes for this term to reach (1/e)th its initial value. For step sizes in the range
0 < µ � 1/λmax where λmax is the maximum eigenvalue of RXX, this time constant is

τj = − 1

ln(1 − µλj )
≈ 1

µλj

. (19.27)

Thus, faster convergence is obtained as the step size is increased. However, for step size
values greater than 1/λmax , the speeds of convergence can actually decrease. Moreover,
the convergence of the system is limited by its mean-squared behavior, as we shall indicate
shortly.

An Example

Consider the behavior of an L = 2-coefficient LMS adaptive filter in which x(n) and d(n) are
generated as

x(n) = 0.5x(n − 1) +
√

3

2
z(n) (19.28)

d(n) = x(n) + 0.5x(n − 1) + η(n) , (19.29)

where z(n) and η(n) are zero-mean uncorrelated jointly Gaussian signals with variances of one and
0.01, respectively. It is straightforward to show for these signal statistics that

Wopt =
[

1
0.5

]
and RXX =

[
1 0.5

0.5 1

]
. (19.30)

Figure19.2(a)depicts thebehaviorof themeananalysis equation in(19.24) for these signal statistics,
where µ(n) = 0.08 and W(0) = [4 − 0.5]T . Each circle on this plot corresponds to the value of
E{W(n)} for a particular time instant. Shown on this {w0, w1} plot are the coefficient error axes
{v0, v1}, the rotated coefficient error axes {̃v0, ṽ1}, and the contours of the excess MSE error surface
ξex as a function of w0 and w1 for values in the set {0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. Starting from
the initial coefficient vector W(0), E{W(n)} converge toward Wopt by reducing the components of
the mean coefficient error vector E{V(n)} along the rotated coefficient error axes {̃v0, ṽ1} according
to the exponential weighting factors (1 − µλ0)

n and (1 − µλ1)
n in (19.24).

For comparison, Fig. 19.2(b) shows five different simulation runs of an LMS adaptive filter op-
erating on Gaussian signals generated according to (19.28) and (19.29), where µ(n) = 0.08 and
W(0) = [4 − 0.5]T in each case. Although any single simulation run of the adaptive filter shows
a considerably more erratic convergence path than that predicted by (19.24), one observes that the
average of these coefficient trajectories roughly follows the same path as that of the analysis.
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FIGURE 19.2: Comparison of the predicted and actual performances of the LMS adaptive filter in
the two-coefficient example: (a) the behavior predicted by the mean analysis, and (b) the actual LMS
adaptive filter behavior for five different simulation runs.
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19.4.2 Mean-Square Analysis

Although (19.24) characterizes the mean behavior of the LMS adaptive filter, it does not indicate
the nature of the fluctuations of the filter coefficients about their mean values, as indicated by the
actual behavior of the LMS adaptive filter in Fig. 19.2(b). The magnitudes of these fluctuations can
be accurately characterized through a mean-square analysis of the LMS adaptive filter. Because the
coefficient error correlationmatrixK(n)asdefined in (19.14) is thebasis forourmean-square analysis,
we outline methods for determining an evolution equation for this matrix. Then, we derive the forms
of this evolution equation for both the i.i.d. and SIRP input signal models described previously, and
we summarize the resulting expressions for the steady-state values of the misadjustment and excess
MSE in (19.16) and (19.17), respectively, for these different signal types. Finally, several conclusions
regarding the mean-square behavior of the LMS adaptive filter are drawn.

Evolution of the Coefficient Error Correlation Matrix

To derive an evolution equation for K(n), we post-multiply both sides of (19.18) by their
respective transposes, which gives

V(n + 1)VT (n + 1) =
(
I − µ(n)X(n)XT (n)

)
V(n)VT (n)

(
I − µ(n)X(n)XT (n)

)
+ µ2(n)η2(n)X(n)XT (n)

+ µ(n)η(n)
(
I − µ(n)X(n)XT (n)

)
V(n)XT (n)

+ µ(n)η(n)X(n)VT (n)
(
I − µ(n)X(n)XT (n)

)
. (19.31)

Taking expectations of both sides of (19.31), we note that η(n) is zero mean and independent of both
X(n) and V(n) from our models and assumptions, and thus the expectations of the third and fourth
terms on the right hand side of (19.31) are zero. Moreover, by using the independence assumptions,
it can be shown that

E{X(n)XT (n)V(n)VT (n)} ≈ E{X(n)XT (n)}E{V(n)VT (n)}
= RXXK(n) . (19.32)

Thus, we obtain from (19.31) the expression

K(n + 1) = K(n) − µ(n) (RXXK(n) + K(n)RXX)

+ µ2(n)E{X(n)XT (n)K(n)X(n)XT (n)} + µ2(n)σ 2
η RXX , (19.33)

where σ 2
η is as defined in (19.12).

At this point, the analysis can be simplified depending on how the third term on the right hand
side of (19.33) is evaluated according to the signal models and assumptions.

Analysis for SIRP Input Signals: In this case, the value of E{X(n)XT (n)K(n)X(n)XT (n)} can be
expressed as

E{X(n)XT (n)K(n)X(n)XT (n)} = m(2,2)
z [2RXXK(n)RXX + RXXtr {RXXK(n)}] , (19.34)

where the moment term m
(2,2)
z is given by

m(2,2)
z = E{z2

i (n)z2
j (n)} (19.35)

for any 0 ≤ i 6= j ≤ (L − 1) and

zi(n) = λ
1/2
i

L−1∑
l=0

qlix(n − l) . (19.36)
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If x(n) is a Gaussian random process, then m
(2,2)
z = 1, and it can be shown that m

(2,2)
z ≥ 1 for SIRPs

in general. For more details on these results, see [15].
Analysis for I.I.D. Input Signals: In this case, we can express the (i, j)th element of the matrix

E{X(n)XT (n)K(n)X(n)XT (n)} as

[
E{X(n)XT (n)K(n)X(n)XT (n)}

]
i,j

=


2σ 4

x [K(n)]i,j , if i 6= j

σ 4
x

γ [K(n)]i,i +
L∑

m=1, m6=i

[K(n)]m,m

 , if i = j ,

(19.37)
where [K(n)]i,j is the (i, j)th element of K(n),

σ 2
x = E{x2(n)}, and γ = E{x4(n)}

σ 4
x

, (19.38)

respectively. For details, see [5].
Zeroth-Order Approximation Near Convergence: For small step sizes, it can be shown that the

elements of K(n) are approximately proportional to both the step size and the noise variance σ 2
η in

steady-state. Thus, the magnitudes of the elements in the third term on the right hand side of (19.33)
are about a factor of µ(n) smaller than those of any other terms in this equation at convergence. Such
a result suggests that we could set

µ2(n)E{X(n)XT (n)K(n)X(n)XT (n)} ≈ 0 (19.39)

in the steady-state analysis of (19.33) without perturbing the analytical results too much. If this
approximation is valid, then the form of (19.33) no longer depends on the form of the amplitude
statistics of x(n), as in the case of the mean analysis.

Excess MSE, Mean-Square Stability, and Misadjustment

Given the results in (19.34) through (19.39), we can use the evolution equation for K(n)

in (19.33) to explore the mean-square behavior of the LMS adaptive filter in several ways:

• By studying the structure of (19.33) for different signal types, we can determine conditions
on the step size µ(n) to guarantee the stability of the mean-square analysis equation.

• By setting K(n + 1) = K(n) and fixing the value of µ(n), we can solve for the steady-
state value of K(n) at convergence, thereby obtaining a measure of the fluctuations of the
coefficients about their optimum solutions.

• Given a value for V(0), we can write a computer program to simulate the behavior of this
equation for different signal statistics and step size sequences.

Moreover, once the matrix sequence K(n) is known, we can obtain the values of the excess MSE and
misadjustment from K(n) by employing the relations in (19.16) and (19.17), respectively.

Table 19.1 summarizes many of the analytical results that can be obtained from a careful study
of (19.33). Shown in the table are the conditions on the step size µ(n) = µ to guarantee stability,
sufficient stability conditions on the step size that can be easily calculated, and the misadjustment in
steady-state for the three different methods of evaluating E{X(n)XT (n)K(n)X(n)XT (n)} in (19.34)
through (19.39). In the table, the quantity C is defined as

C =
L−1∑
i=0

λi

1 − µm
(2,2)
z λi

. (19.40)

From these results and others that can be obtained from (19.33), we can infer several facts about
the mean-square performance of the LMS adaptive filter:
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TABLE 19.1 Summary of MSE Analysis Results
Assumption MSE Stability Conditions Sufficient Conditions Misadjustment

I.I.D. input 0 < µ < 2
(L−1+γ )σ2

x
0 < µ < 2

(L−1+γ )σ2
x

M = µσ2
x L

2−µσ2
x (L−1+γ )

SIRP input
0 < µ < 1

m
(2,2)
z λmax

and µm
(2,2)
z C < 2

0 < µ < 2

3Lm
(2,2)
z σ2

x

M = µC

2−µm
(2,2)
z C

Approx. 0 < µ < 1
λmax

0 < µ < 1
Lσ2

x
M = µσ2

x L

2

• The value of the excess MSE at time n consists of the sum of the steady-state excess MSE,
given by Mσ 2

η , and a weighted sum of L exponentially converging and/or diverging terms.
Similar to the mean analysis case, these additional terms depend on the elements of the
eigenvector matrix Q, the eigenvalues of RXX, the eigenvalues of K(0), and the values of

m
(2,2)
z or γ for the SIRP or i.i.d. input signal models, respectively.

• For all input signal types, approximate conditions on the fixed step size value to guarantee
convergence of the evolution equations for K(n) are of the form

0 < µ <
K

Lσ 2
x

, (19.41)

where σ 2
x is the input signal power and where the constant K depends weakly on the nature of

the input signal statistics and not on the magnitude of the input signal. All of the sufficient
stability bounds on µ as shown in Table 19.1 can be put in the form of (19.26). Because
of the inaccuracies within the analysis that are caused by the independence assumptions,
however, the actual step size chosen for stability of the LMS adaptive filter should be
somewhat smaller than these values, and step sizes in the range 0 < µ(n) < 0.1/(Lσ 2

x )

are often chosen in practice.

• The misadjustment of the LMS adaptive filter increases as the filter length L and step size µ

are increased. Thus, a larger step size causes larger fluctuations of the filter coefficients
about their optimum solutions in steady-state.

19.5 Performance Issues

When using the LMS adaptive filter, one must select the filter length L and the step size µ(n) to obtain
the desired performance from the system. In this section, we explore the issues affecting the choices
of these parameters using the analytical results for LMS adaptive filter’s behavior derived in the last
section.

19.5.1 Basic Criteria for Performance

Theperformanceof theLMSadaptivefilter canbecharacterized in three importantways: theadequacy
of the FIR filter model, the speed of convergence of the system, and the misadjustment in steady-state.

Adequacy of the FIR Model

The LMS adaptive filter relies on the linearity of the FIR filter model to accurately characterize
the relationship between the input and desired response signals. When the relationship between x(n)

and d(n) deviates from the linear one given in (19.4), then the performance of the overall system
suffers. In general, it is possible to use a nonlinear model in place of the adaptive FIR filter model
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considered here. Possible nonlinear models include polynomial-based filters such as Volterra and
bilinear filters [16] as well as neural network structures [17].

Another source of model inaccuracy is the finite impulse response length of the adaptive FIR
filter. It is typically necessary to tune both the length of the filter L and the relative delay between
the input and desired response signals so that the input signal values not contained in X(n) are
largely uncorrelated with the desired response signal sample d(n). However, such a situation may be
impossible to achieve when the relationship between x(n) and d(n) is of an infinite-impulse response
(IIR) nature. Adaptive IIR filters can be considered for these situations, although the stability and
performance behaviors of these systems are much more difficult to characterize. Adaptive IIR filters
are discussed in Chapter 23 of this Handbook.

Speed of Convergence

The rate at which the coefficients approach their optimum values is called the speed of con-
vergence. As the analytical results show, there exists no one quantity that characterizes the speed of
convergence, as it depends on the initial coefficient values, the amplitude and correlation statistics
of the signals, the filter length L, and the step size µ(n). However, we can make several qualitative
statements relating the speed of convergence to both the step size and the filter length. All of these
results assume that the desired response signal model in (19.4) is reasonable and that the errors in
the filter coefficients are uniformly distributed across the coefficients on average.

• The speed of convergence increases as the value of the step size is increased, up to step sizes
near one-half the maximum value required for stable operation of the system. This result
can be obtained from a careful analysis of (19.33) for different input signal types and
correlation statistics. Moreover, by simulating the behavior of (19.33) and (19.34) for
typical signal scenarios, it is observed that the speed of convergence of the excess MSE
actually decreases for large enough step size values. For i.i.d. input signals, the fixed step
size providing fastest convergence of the excess MSE is exactly one-half the MSE step size
bound as given in Table 19.1 for this type of input signal.

• The speed of convergence decreases as the length of the filter is increased. The reasons for
this behavior are twofold. First, if the input signal is correlated, the condition number of
RXX, defined as the ratio of the largest and smallest eigenvalues of this matrix, generally
increases as L is increased for typical real-world input signals. A larger condition number
for RXX makes it more difficult to choose a good step size to obtain fast convergence of
all of the elements of either E{V(n)} or K(n). Such an effect can be seen in (19.24),
as a larger condition number leads to a larger disparity in the values of (1 − µλj ) for
different j . Second, in the MSE analysis equation of (19.33), the overall magnitude of
the expectation term E{X(n)XT (n)K(n)X(n)XT (n)} is larger for larger L, due to the fact
that the scalar quantity XT (n)K(n)X(n) within this expectation increases as the size of
the filter is increased. Since this quantity is always positive, it limits the amount that the
excess MSE can be decreased at each iteration, and it reduces the maximum step size that
is allowed for mean-square convergence as L is increased.

• The maximum possible speed of convergence is limited by the largest step size that can be
chosen for stability for moderately correlated input signals. In practice, the actual step size
needed for stability of the LMS adaptive filter is smaller than one-half the maximum
values given in Table 19.1 when the input signal is moderately correlated. This effect
is due to the actual statistical relationships between the current coefficient vector W(n)

and the signals X(n) and d(n), relationships that are neglected via the independence
assumptions. Since the convergence speed increases as µ is increased over this allowable
step size range, the maximum stable step size provides a practical limit on the speed of
convergence of the system.
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• The speed of convergence depends on the desired level of accuracy that is to be obtained by
the adaptive filter. Generally speaking, the speed of convergence of the system decreases
as the desired level of misadjustment is decreased. This result is due to the fact that the
behavior of the system is dominated by the slower-converging modes of the system as the
length of adaptation time is increased. Thus, if the desired level of misadjustment is low,
the speed of convergence is dominated by the slower-converging modes, thus limiting the
overall convergence speed of the system.

Misadjustment

The misadjustment, defined in (19.16), is the additional fraction of MSE in the filter output
above the minimum MSE value σ 2

η caused by a nonzero adaptation speed. We can draw the following
two conclusions regarding this quantity:

• The misadjustment increases as the step size is increased.

• The misadjustment increases as the filter length is increased.

Both results can be proven by direct study of the analytical results for M in Table 19.1.

19.5.2 Identifying Stationary Systems

We now evaluate the basic criteria for performance to provide qualitative guidance as to how to
choose µ and L to identify a stationary system.

Choice of Filter Length

We have seen that as the filter length L is increased, the speed of convergence of the LMS
adaptive filter decreases, and the misadjustment in steady-state increases. Therefore, the filter length
should be chosen as short as possible but long enough to adequately model the unknown system,
as too short a filter model leads to poor modeling performance. In general, there exists an optimal
length L for a given µ that exactly balances the penalty for a finite-length filter model with the
increase in misadjustment caused by a longer filter length, although the calculation of such a model
order requires more information than is typically available in practice. Modeling criteria, such as
Akaike’s Information Criterion [18] and minimum description length (MDL) [19] could be used in
this situation.

Choice of Step Size

We have seen that the speed of convergence increases as the step size is increased, up to values
that are roughly within a factor of 1/2 of the step size stability limits. Thus, if fast convergence is
desired, one should choose a large step size according to the limits in Table 19.1. However, we also
observe that the misadjustment increases as the step size is increased. Therefore, if highly accurate
estimates of the filter coefficients are desired, a small step size should be chosen. This classical tradeoff
in convergence speed vs. the level of error in steady state dominates the issue of step size selection in
many estimation schemes.

If the user knows that the relationship between x(n) and d(n) is linear and time-invariant, then one
possible solution to the above tradeoff is to choose a large step size initially to obtain fast convergence,
and then switch to a smaller step size to obtain a more accurate estimate of Wopt near convergence.
The point to switch to a smaller step size is roughly when the excess MSE becomes a small fraction
(approximately 1/10th) of the minimum MSE of the filter. This method of gearshifting, as it is
commonly known, is part of a larger class of time-varying step size methods that we shall explore
shortly.
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Although we have discussed qualitative criteria by which to choose a fixed step size, it is possible
to define specific performance criteria by which to choose µ. For one study of this problem for i.i.d.
input signals, see [20].

19.5.3 Tracking Time-Varying Systems

Since the LMS adaptive filter continually adjusts its coefficients to approximately minimize the mean-
squared error criterion, it can adjust to changes in the relationship between x(n) and d(n). This
behavior is commonly referred to as tracking. In such situations, it clearly is not desirable to reduce
the step size to an extremely small value in steady-state, as the LMS adaptive filter would not be able
to follow any changes in the relationship between x(n) and d(n).

To illustrate the issues involved, consider the desired response signal model given by

d(n) = WT
opt (n)X(n) + η(n) , (19.42)

where the optimum coefficient vector Wopt (n) varies with time according to

Wopt (n + 1) = Wopt (n) + M(n) , (19.43)

and {M(n)} is a sequence of vectors whose elements are all i.i.d. This nonstationary model is similar
to others used in other tracking analyses of the LMS adaptive filter [4, 21]; it also enables a simple
analysis that is similar to the stationary system identification model discussed earlier.

Applying the independence assumptions, we can analyze the behavior of the LMS adaptive filter
for this desired response signal model. For brevity, we only summarize the results of an approximate
analysis in which terms of the form µ2E{X(n)XT (n)K(n)X(n)XT (n)} are neglected in the MSE
behavioral equations [4]. The misadjustment of the system in steady-state is

Mnon = L

2

(
µσ 2

x + σ 2
m

µσ 2
η

)
, (19.44)

where σ 2
m is the power in any one element of M(n). Details of a more-accurate tracking analysis can

be found in [21].

In this case, the misadjustment is the sum of two terms. The first term is the same as that for the
stationary case and is proportional to µ. The second term is the lag error and is due to the fact that the
LMS coefficients follow or “lag” behind the optimum coefficient values. The lag error is proportional
to the speed of variation of the unknown system through σ 2

m and is inversely proportional to the step
size, such that its value increases as the step size is decreased.

In general, there exists an optimum fixed step size that minimizes the misadjustment in steady-state
for an LMS adaptive filter that is tracking changes in Wopt (n). For the approximate analysis used to
derive (19.44), the resulting step size is

µopt = σm

σησx

. (19.45)

As the value of σ 2
m increases, the level of nonstationarity increases such that a larger step size is

required to accurately track changes in the unknown system. Similar conclusions can be drawn from
other analyses of the LMS adaptive filter in tracking situations [22].
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19.6 Selecting Time-Varying Step Sizes

The analyses of the previous sections enable one to choose a fixed step size µ for the LMS adaptive
filter to meet the system’s performance requirements when the general characteristics of the input and
desired response signals are known. In practice, the exact statistics of x(n) and d(n) are unknown
or vary with time. A time-varying step size µ(n), if properly computed, can provide stable, robust,
and accurate convergence behavior for the LMS adaptive filter in these situations. In this section,
we consider useful on-line procedures for computing µ(n) in the LMS adaptive filter to meet these
performance requirements.

19.6.1 Normalized Step Sizes

For the LMS adaptive filter to be useful, it must operate in a stable manner so that its coefficient
values do not diverge. From the stability results in Table 19.1 and the generalized expression for
these stability bounds in (19.41), the upper bound for the step size is inversely proportional to the
input signal power σ 2

x in general. In practice, the input signal power is unknown or varies with
time. Moreover, if one were to choose a small fixed step size value to satisfy these stability bounds
for the largest anticipated input signal power value, then the convergence speed of the system would
be unnecessarily slow during periods when the input signal power is small.

These concerns can be addressed by calculating a normalized step size µ(n) as

µ(n) = µ

δ + Lσ̂ 2
x (n)

, (19.46)

where σ̂ 2
x (n) is an estimate of the input signal power, µ is a constant somewhat smaller than the

value of K required for system stability in (19.41), and δ is a small constant to avoid a divide-by-zero

should σ̂ 2
x (n) approach zero. To estimate the input signal power, a lowpass filter can be applied to

the sequence x2(n) to track its changing envelope. Typical estimators include

• exponentially weighted estimate:

σ̂ 2
x (n) = (1 − c)σ̂ 2

x (n − 1) + cx2(n) , (19.47)

• sliding-window estimate:

σ̂ 2
x (n) = 1

N

N−1∑
i=0

x2(n − i) , (19.48)

where the parameters c, 0 < c � 1 and N , N ≥ L control the effective memories of the two
estimators, respectively.

The Normalized LMS Adaptive Filter

By choosing a sliding window estimate of length N = L, the LMS adaptive filter with µ(n)

in (19.46) becomes

W(n + 1) = W(n) + µe(n)

p(n)
X(n) (19.49)

p(n) = δ + ||X(n)||2 , (19.50)

where ||X(n)||2 is theL2-normof the input signal vector. Thevalueofp(n) canbeupdated recursively
as

p(n) = p(n − 1) + x2(n) − x2(n − L) , (19.51)
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where p(0) = δ and x(n) = 0 for n ≤ 0. The adaptive filter in (19.49) is known as the normalized
LMS (NLMS) adaptive filter. It has two special properties that make it useful for adaptive filtering
tasks:

• The NLMS adaptive filter is guaranteed to converge for any value of µ in the range

0 < µ < 2 , (19.52)

regardless of the statistics of the input signal. Thus, selecting the value of µ for stable
behavior of this system is much easier than selecting µ for the LMS adaptive filter.

• With the proper choice of µ, the NLMS adaptive filter can often converge faster than the LMS
adaptive filter. In fact, for noiseless system identification tasks in which η(n) in (19.4) is
zero, one can obtain Wopt (n) = Wopt after L iterations of (19.49) for µ = 1. Moreover,
for SIRP input signals, the NLMS adaptive filter provides more uniform convergence of
the filter coefficients, making the selection of µ an easier proposition than the selection
of µ for the LMS adaptive filter.

A discussion of these and other results on the NLMS adaptive filter can be found in [15, 23]– [25].

19.6.2 Adaptive and Matrix Step Sizes

In addition to stability, the step size controls both the speed of convergence and the misadjustment of
the LMS adaptive filter through the statistics of the input and desired response signals. In situations
where the statistics of x(n) and/or d(n) are changing, the value of µ(n) that provides the best
performance from the system can change as well. In these situations, it is natural to consider µ(n)

as an adaptive parameter to be optimized along with the coefficient vector W(n) within the system.
While it may seem novel, the idea of computing an adaptive step size has a long history in the field of
adaptive filters [2]. Numerous such techniques have been proposed in the scientific literature. One
such method uses a stochastic gradient procedure to adjust the value of µ(n) to iteratively minimize
the MSE within the LMS adaptive filter. A derivation and performance analysis of this algorithm is
given in [26].

In some applications, the task at hand suggests a particular strategy for adjusting the step size
µ(n) to obtain the best performance from an LMS adaptive filter. For example, in echo cancellation
for telephone networks, the signal-to-noise ratio of d(n) falls to extremely low values when the
near-end talker signal is present, making accurate adaptation during these periods difficult. Such
systems typically employ double-talk detectors, in which estimates of the statistical characteristics of
x(n), d(n), and/or e(n) are used to raise and lower the value of µ(n) in an appropriate manner. A
discussion of this problem and a method for its solution are given in [27].

While our discussion of the LMS adaptive filter has assumed a single step size value for each of
the filter coefficients, it is possible to select L different step sizes µi(n) for each of the L coefficient
updates within the LMS adaptive filter. To select fixed values for each µi(n) = µi , these matrix step
size methods require prior knowledge about the statistics of x(n) and d(n) and/or the approximate
values of Wopt . It is possible, however, to adapt each µi(n) according to a suitable performance
criterion to obtain improved convergence behavior from the overall system. A particularly simple
adaptive method for calculating matrix step sizes is provided in [28].

19.6.3 Other Time-Varying Step Size Methods

In situations where the statistics of x(n) and d(n) do not change with time, choosing a variable step
size sequence µ(n) is still desirable, as one can decrease the misadjustment over time to obtain an
accurate estimate of the optimum coefficient vector Wopt . Such methods have been derived and
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characterized in a branch of statistical analysis known as stochastic approximation [29]. Using this
formalism, it is possible to prove under certain assumptions on x(n) and d(n) that the value of W(n)

for the LMS adaptive filter converges to Wopt as n → ∞ if µ(n) satisfies

∞∑
n=0

|µ(n)| → ∞ and
∞∑

n=0

µ2(n) < ∞ , (19.53)

respectively. One step size function satisfying these constraints is

µ(n) = µ(0)

n + 1
, (19.54)

where µ(0) is an initial step size parameter. The gearshifting method described in Section 19.5.2 can
be seen as a simple heuristic approximation to (19.54). Moreover, one can derive an optimum step
size sequence µopt (n) that minimizes the excess MSE at each iteration under certain situations, and
the limiting form of the resulting step size values for stationary signals are directly related to (19.54)
as well [24].

19.7 Other Analyses of the LMS Adaptive Filter

While the analytical techniques employed in this section are useful for selecting design parameters
for the LMS adaptive filter, they are but one method for characterizing the behavior of this system.
Other forms of analyses can be used to determine other characteristics of this system, such as the
p.d.f.s of the adaptive filter coefficients [30] and the probability of large excursions in the adaptive
filter coefficients for different types of input signals [31]. In addition, much research effort has fo-
cused on characterizing the stability of the system without extensive assumptions about the signals
being processed. One example of such an analysis is given in [32]. Other methods for analyz-
ing the LMS adaptive filter include the method of ordinary differential equations (ODE) [33], the
stochastic approximation methods described previously [29], computer-assisted symbolic derivation
methods [14], and averaging techniques that are particularly useful for deterministic signals [34].

19.8 Analysis of Other Adaptive Filters

Because of the difficulties in performing multiplications in the first digital hardware implementations
of adaptive filters, many of these systems employed nonlinearities in the coefficient update terms to
simplify their hardware requirements. An example of one such algorithm is the sign-error adaptive
filter, in which the coefficient update is

W(n + 1) = W(n) + µ(n)sgn(e(n))X(n) , (19.55)

where the value of sgn(e(n)) is either 1 or −1 depending on whether e(n) is positive or negative,
respectively. If µ(n) is chosen as a power-of-two, this algorithm only requires a comparison and bit
shift per coefficient to implement in hardware. Other algorithms employing nonlinearities of the
input signal vector X(n) in the updates are also useful [35].

Many of the analysis techniques developed for the LMS adaptive filter can be applied to algorithms
with nonlinearities in the coefficient updates, although such methods require additional assumptions
to obtain accurate results. For presentations of two such analyses, see [36, 37]. It should be noted
that the performance characteristics and stability properties of these nonlinearly modified versions
of the LMS adaptive filter can be quite different from those of the LMS adaptive filter. For example,
the sign-error adaptive filter in (19.55) is guaranteed to converge for any fixed positive step size value
under fairly loose assumptions on x(n) and d(n) [38].
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19.9 Conclusions

In summary, we have described a statistical analysis of the LMS adaptive filter, and through this
analysis, suggestions for selecting the design parameters for this system have been provided. While
useful, analytical studies of the LMS adaptive filter are but one part of the system design process. As in
all design problems, sound engineering judgment, careful analytical studies, computer simulations,
and extensive real-world evaluations and testing should be combined when developing an adaptive
filtering solution to any particular task.
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Adaptive filters are systems that adjust themselves to a changing environment. They are designed
to meet certain performance specifications and are expected to perform reasonably well under the
operating conditions for which they have been designed. In practice, however, factors that may have
been ignored or overlooked in the design phase of the system can affect the performance of the
adaptive scheme that has been chosen for the system. Such factors include unmodeled dynamics,
modeling errors, measurement noise, and quantization errors, among others, and their effect on
the performance of an adaptive filter could be critical to the proposed application. Moreover, tech-
nological advancements in digital circuit and VLSI design have spurred an increase in the range of
new adaptive filtering applications in fields ranging from biomedical engineering to wireless com-
munications. For these new areas, it is increasingly important to design adaptive schemes that are
tolerant to unknown or nontraditional factors and effects. The aim of this chapter is to explore and
determine the robustness properties of some classical adaptive schemes. Our presentation is meant
as an introduction to these issues, and many of the relevant details of specific topics discussed in this
section, and alternative points of view, can be found in the references at the end of the chapter.

20.1 Motivation and Example

A classical application of adaptive filtering is that of system identification. The basic problem for-
mulation is depicted in Fig. 20.1, where z−1 denotes the unit-time delay operator. The diagram
contains two system blocks: one representing the unknown plant or system and the other containing
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FIGURE 20.1: A system identification example.

a time-variant tapped-delay-line or finite-impulse-response (FIR) filter structure. The unknown
plant represents an arbitrary relationship between its input and output. This block might implement
a pole-zero transfer function, an all-pole or autoregressive transfer function, a fixed or time-varying
FIR system, a nonlinear mapping, or some other complex system. In any case, it is desired to de-
termine an FIR model for the unknown system of a predetermined impulse response length M , and
whose coefficients at time i − 1 are denoted by {w1,i−1, w2,i−1, . . . , wM,i−1}. The unknown system
and the FIR filter are excited by the same input sequence {u(i)}, where the time origin is at i = 0.

Ifwecollect theFIRcoefficients intoacolumnvector, saywi−1 = col{w1,i−1, w2,i−1, . . . , wM,i−1},
and define the state vector of the FIR model at time i as ui = col{u(i), u(i − 1), . . . , u(i − M + 1)},
then the output of the FIR filter at time i is the inner product uT

i wi−1. In principle, this inner product
should be compared with the output y(i) of the unknown plant in order to determine whether or not
the FIR output is a good enough approximation for the output of the plant and, therefore, whether
or not the current coefficient vector wi−1 should be updated.

In general, however, we do not have direct access to the uncorrupted output y(i) of the plant but
rather to a noisy measurement of it, say d(i) = y(i) + v(i). The purpose of an adaptive scheme
is to employ the output error sequence {e(i) = d(i) − uT

i wi−1}, which measures how far d(i) is
from uT

i wi−1, in order to update the entries of wi−1 and provide a better model, say wi , for the
unknown system. That is, the purpose of the adaptive filter is to employ the available data at time
i, {d(i), wi−1, ui}, in order to update the coefficient vector wi−1 into a presumably better estimate
vector wi .

In this sense, we may regard the adaptive filter as a recursive estimator that tries to come up
with a coefficient vector w that “best” matches the observed data {d(i)} in the sense that, for all i,
d(i) ≈ uT

i w + v(i) to good accuracy. The successive wi provide estimates for the unknown and
desired w.

20.2 Adaptive Filter Structure

We may reformulate the above adaptive problem in mathematical terms as follows. Let {ui} be a
sequence of regression vectors and let w be an unknown column vector to be estimated or identified.
Given noisy measurements {d(i)} that are assumed to be related to uT

i w via an additive noise model
of the form

d(i) = uT
i w + v(i) , (20.1)
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we wish to employ the given data {d(i), ui} in order to provide recursive estimates for w at successive
time instants, say {w0, w1, w2, . . .}. We refer to these estimates as weight estimates since they provide
estimates for the coefficients or weights of the tapped-delay model.

Most adaptive schemes perform this task in a recursive manner that fits into the following general
description: starting with an initial guess for w, say w−1, iterate according to the learning rule(

new weight
estimate

)
=
(

old weight
estimate

)
+
(

correction
term

)
,

where the correction term is usually a function of {d(i), ui , old weight estimate}. More compactly,
we may write wi = wi−1 + f [d(i), ui , wi−1], where wi denotes an estimate for w at time i and f

denotes a function of the data {d(i), ui , wi−1} or of previous values of the data, as in the case where
only a filtered version of the error signal d(i) − uT

i wi−1 is available. In this context, the well-known
least-mean-square (LMS) algorithm has the form

wi = wi−1 + µ · ui · [d(i) − uT
i · wi−1] , (20.2)

where µ is known as the step-size parameter.

20.3 Performance and Robustness Issues

The performance of an adaptive scheme can be studied from many different points of view. One
distinctive methodology that has attracted considerable attention in the adaptive filtering literature
is based on stochastic considerations that have become known as the independence assumptions. In
this context, certain statistical assumptions are made on the natures of the noise signal {v(i)} and
of the regression vectors {ui}, and conclusions are derived regarding the steady-state behavior of the
adaptive filter.

The discussion in this chapter avoids statistical considerations and develops the analysis in a purely
deterministic framework that is convenient when prior statistical information is unavailable or when
the independence assumptions are unreasonable. The conclusions discussed herein highlight certain
features of the adaptive algorithms that hold regardless of any statistical considerations in an adaptive
filtering task.

Returning to the data model in (20.1), we see that it assumes the existence of an unknown weight
vector w that describes, along with the regression vectors {ui}, the uncorrupted data {y(i)}. This
assumption may or may not hold.

For example, if the unknown plant in the system identification scenario of Fig. 20.1 is itself an
FIR system of length M , then there exists an unknown weight vector w that satisfies (20.1). In this
case, the successive estimates provided by the adaptive filter attempt to identify the unknown weight
vector of the plant.

If, on the other hand, the unknown plant of Fig. 20.1 is an autoregressive model of the simple form

1

1 − cz−1
= 1 + cz−1 + c2z−2 + c3z−3 + . . .

where |c| < 1, then an infinitely long tapped-delay line is necessary to justify a model of the
form (20.1). In this case, the first term in the linear regression model (20.1) for a finite order
M cannot describe the uncorrupted data {y(i)} exactly, and thus modeling errors are inevitable.
Such modeling errors can naturally be included in the noise term v(i). Thus, we shall use the term
v(i) in (20.1) to account not only for measurement noise but also for modeling errors, unmodeled
dynamics, quantization effects, and other kind of disturbances within the system. In many cases,

c©1999 by CRC Press LLC



the performance of the adaptive filter depends on how these unknown disturbances affect the weight
estimates.

A second source of error in the adaptive system is due to the initial guess w−1 for the weight vector.
Due to the iterative nature of our chosen adaptive scheme, it is expected that this initial weight vector
plays less of a role in the steady-state performance of the adaptive filter. However, for a finite number
of iterations of the adaptive algorithm, both the noise term v(i) and the initial weight error vector
(w − w−1) are disturbances that affect the performance of the adaptive scheme, particularly since
the system designer often has little control over them.

The purpose of a robust adaptive filter design, then, is to develop a recursive estimator that
minimizes in some well-defined sense the effect of any unknown disturbances on the performance
of the filter. For this purpose, we first need to quantify or measure the effect of the disturbances. We
address this concern in the following sections.

20.4 Error and Energy Measures

Assuming that the model (20.1) is reasonable, two error quantities come to mind. The first one
measures how far the weight estimate wi−1 provided by the adaptive filter is from the true weight
vector w that we are trying to identify. We refer to this quantity as the weight error at time (i−1), and
we denote it by w̃i−1 = w − wi−1. The second type of error measures how far the estimate uT

i wi−1

is from the uncorrupted output term uT
i w. We shall call this the a priori estimation error, and we

denote it by ea(i) = uT
i w̃i−1. Similarly, we define an a posteriori estimation error as ep(i) = uT

i w̃i .

Comparing with the definition of the a priori error, the a posteriori error employs the most recent
weight error vector.

Ideally, one would like to make the estimation errors {w̃i , ea(i)} or {w̃i , ep(i)} as small as possible.
This objective is hindered by the presence of the disturbances {w̃−1, v(i)}. For this reason, an adaptive
filter is said to be robust if the effects of the disturbances {w̃−1, v(i)} on the resulting estimation errors
{w̃i , ea(i)} or {w̃i , ep(i)} is small in a well-defined sense. To this end, we can employ one of several
measures to denote how “small” these effects are. For our discussion, a quantity known as the energy
of a signal will be used to quantify these effects. The energy of a sequence x(i) of length N is measured
by Ex = ∑N−1

i=0 |x(i)|2. A finite energy sequence is one for which Ex < ∞ as N → ∞. Likewise, a
finite power sequence is one for which

Px = lim
N→∞

(
1

N

N−1∑
i=0

|x(i)|2
)

< ∞ .

20.5 Robust Adaptive Filtering

We can now quantify what we mean by robustness in the adaptive filtering context. Let A denote any
adaptive filter that operates causally on the input data {d(i), ui}. A causal adaptive scheme produces
a weight vector estimate at time i that depends only on the data available up to and including time i.
This adaptive scheme receives as input the data {d(i), ui} and provides as output the weight vector
estimates {wi}. Based on these estimates, we introduce one or more estimation error quantities such
as the pair {w̃i−1, ea(i)} defined above. Even though these quantities are not explicitly available
because w is unknown, they are of interest to us as their magnitudes determine how well or how
poorly a candidate adaptive filtering scheme might perform.

Figure 20.2 indicates the relationship between {d(i), ui} to {w̃i−1, ea(i)} in block diagram form.
This schematic representation indicates that an adaptive filter A operates on {d(i), ui} and that
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FIGURE 20.2: Input-output map of a generic adaptive scheme.

its performance relies on the sizes of the error quantities {w̃i−1, ea(i)}, which could be replaced
by the error quantities {w̃i , ep(i)} if desired. This representation explicitly denotes the quantities
{w̃−1, v(i)} as disturbances to the adaptive scheme.

In order to measure the effect of the disturbances on the performance of an adaptive scheme, it will
be helpful to determine the explicit relationship between the disturbances and the estimation errors
that is provided by the adaptive filter. For example, we would like to know what effect the noise terms
and the initial weight error guess {w̃−1, v(i)} would have on the resulting a priori estimation errors
and the final weight error, {ea(i), w̃N }, for a given adaptive scheme. Knowing such a relationship,
we can then quantify the robustness of the adaptive scheme by determining the degree to which
disturbances affect the size of the estimation errors.

We now illustrate how this disturbances-to-estimation-errors relationship can be determined by
considering the LMS algorithm in (20.2). Since d(i) − uT

i wi−1 = ea(i) + v(i), we can subtract w
from both sides of (20.2) to obtain the weight-error update equation

w̃i = w̃i−1 − µ · ui · [ea(i) + v(i)] . (20.3)

Assume that we run N steps of the LMS recursion starting with an initial guess w̃−1. This op-
eration generates the weight error estimates {w̃0, w̃1, . . . , w̃N } and the a priori estimation errors
{ea(0), . . . , ea(N)}.

Define the following two column vectors:

dist = col

{
1√
µ

w̃−1, v(0), v(1), . . . , v(N)

}
, error = col

{
ea(0), ea(1), . . . , ea(N),

1√
µ

w̃N

}
.

The vector dist contains the disturbances that affect the performance of the adaptive filter. The initial
weight error vector is scaled by µ−1/2 for convenience. Likewise, the vector error contains the a priori
estimation errors and the final weight error vector which has also been scaled by µ−1/2. The weight
error update relation in (20.3) allows us to relate the entries of both vectors in a straightforward
manner. For example,

ea(0) = uT
0 w̃−1 =

(√
µ uT

0

)( 1√
µ

w̃−1

)
,

which shows how the first entry of error relates to the first entry of dist. Similarly, for ea(1) = uT
1 w̃0

we obtain

ea(1) =
(√

µuT
1 [I − µu0uT

0 ]
) 1√

µ
w̃−1 −

(
µuT

1 u0

)
v(0) ,
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which relates ea(1) to the first two entries of the vector dist. Continuing in this manner, we can relate
ea(2) to the first three entries of dist, ea(3) to the first four entries of dist, and so on.

In general, we can compactly express this relationship as




ea(0)

ea(1)
...

ea(N)
1√
µ

w̃N




︸ ︷︷ ︸
error

=




×
× × O

...
. . .

× × × × × ×




︸ ︷︷ ︸
T




1√
µ

w̃−1

v(0)

v(1)
...

v(N)




︸ ︷︷ ︸
dist

where the symbol × is used to denote the entries of the lower triangular mapping T relating dist to
error. The specific values of the entries of T are not of interest for now, although we have indicated
how the expressions for these × terms can be found. However, the causal nature of the adaptive
algorithm requires that T be of lower triangular form.

Given the above relationship, our objective is to quantify the effect of the disturbances on the
estimation errors. Let Ed and Ee denote the energies of the vectors dist and error, respectively, such
that

Ee = 1

µ
‖w̃N‖2 +

N∑
i=0

|ea(i)|2 and Ed = 1

µ
‖w̃−1‖2 +

N∑
i=0

|v(i)|2 ,

where ‖ · ‖ denotes the Euclidean norm of a vector. We shall say that the LMS adaptive algorithm is
robust with level γ if a relation of the form

Ee

Ed

≤ γ 2 , (20.4)

holds for some positive γ and for any nonzero, finite-energy disturbance vector dist. In other words,
no matter what the disturbances {w̃−1, v(i)} are, the energy of the resulting estimation errors will
never exceed γ 2 times the energy of the associated disturbances.

The form of the mapping T affects the value of γ in (20.4) for any particular algorithm. To see
this result, recall that for any finite-dimensional matrix A, its maximum singular value, denoted
by σ̄ (A), is defined by σ̄ (A) = maxx 6=0

‖Ax‖
‖x‖ . Hence, the square of the maximum singular value,

σ̄ 2(A), measures the maximum energy gain from the vector x to the resulting vector Ax. Therefore,
if a relation of the form (20.4) should hold for any nonzero disturbance vector dist, then it means
that

max
dist 6=0

‖ T dist ‖
‖ dist ‖ ≤ γ .

Consequently, the maximum singular value of T must be bounded by γ . This imposes a condition
on the allowable values for γ ; its smallest value cannot be smaller than the maximum singular value
of the resulting T .

Ideally, we would like the value of γ in (20.4) to be as small as possible. In particular, an algorithm
for which the value of γ is 1 would guarantee that the estimation error energy will never exceed the
disturbance energy, no matter what the natures of the disturbances are! Such an algorithm would
possess a good degree of robustness since it would guarantee that the disturbance energy will never
be unnecessarily magnified.

Before continuing our study, we ask and answer the obvious questions that arise at this point:
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• What is the smallest possible value for γ for the LMS algorithm? It turns out for the LMS
algorithm that, under certain conditions on the step-size parameter, the smallest possible
value for γ is 1. Thus, Ee ≤ Ed for the LMS algorithm.

• Does there exist any other causal adaptive algorithm that would result in a value for γ

in (20.4) that is smaller than one? It can be argued that no such algorithm exists for the
model (20.1) and criterion (20.4).

In other words, the LMS algorithm is in fact the most robust adaptive algorithm in the sense defined
by (20.4). This result provides a rigorous basis for the excellent robustness properties that the LMS
algorithm, and several of its variants, have shown in practical situations. The references at the end
of the chapter provide an overview of the published works that have established these conclusions.
Here, we only motivate them from first principles. In so doing, we shall also discuss other results
(and tools) that can be used in order to impose certain robustness and convergence properties on
other classes of adaptive schemes.

20.6 Energy Bounds and Passivity Relations

Consider the LMS recursion in (20.2), with a time-varying step-size µ(i) for purposes of generality,
as given by

wi = wi−1 + µ(i) · ui · [d(i) − uT
i · wi−1] . (20.5)

Subtracting the optimal coefficient vector w from both sides and squaring the resulting expressions,
we obtain

‖w̃i‖2 = ‖ w̃i−1 − µ(i) · ui · [ea(i) + v(i)] ‖2 .

Expanding the right-hand side of this relationship and rearranging terms leads to the equality

‖w̃i‖2 − ‖w̃i−1‖2 + µ(i) · |ea(i)|2 − µ(i) · |v(i)|2 = µ(i) · |ea(i) + v(i)|2 · [µ(i) · ‖ui‖2 − 1] .

The right-hand side in the above equality is the product of three terms. Two of these terms, µ(i) and
|ea(i)+v(i)|2, are nonnegative, whereas the term (µ(i) · ‖ui‖2 −1) can be positive, negative, or zero
depending on the relative magnitudes of µ(i) and ‖ui‖2. If we define µ̄(i) as (assuming nonzero
regression vectors):

µ̄(i) = ‖ui‖−2 , (20.6)

then the following relations hold:

‖w̃i‖2 + µ(i) |ea(i)|2
‖w̃i−1‖2 + µ(i) |v(i)|2




≤ 1 for 0 < µ(i) < µ̄(i)

= 1 for µ(i) = µ̄(i)

≥ 1 for µ(i) > µ̄(i)

The result for 0 < µ(i) ≤ µ̄(i) has a nice interpretation. It states that, no matter what the value of
v(i) is and no matter how far wi−1 is from w, the sum of the two energies ‖w̃i‖2 +µ(i) · |ea(i)|2 will
always be smaller than or equal to the sum of the two disturbance energies ‖w̃i−1‖2 + µ(i) · |v(i)|2.
This relationship is a statement of the passivity of the algorithm locally in time, as it holds for every
time instant. Similar relationships can be developed in terms of the a posteriori estimation error.

Since this relationship holds for each time instant i, it also holds over an interval of time such that

‖w̃N‖2 + ∑N
i=0 |ēa(i)|2

‖w̃−1‖2 +∑N
i=0 |v̄(i)|2 ≤ 1 , (20.7)

where we have introduced the normalized a priori residuals and noise signals

ēa(i) = √
µ(i) ea(i) and v̄(i) = √

µ(i) v(i) ,

c©1999 by CRC Press LLC



respectively. Equation (20.7) states that the lower-triangular matrix that maps the normalized noise
signals {v̄(i)}Ni=0 and the initial uncertainty w̃−1 to the normalized a priori residuals {ēa(i)}Ni=0 and
the final weight error w̃N has a maximum singular value that is less than one. Thus, it is a contraction
mapping for 0 < µ(i) ≤ µ̄(i). For the special case of a constant step-size µ, this is the same mapping
T that we introduced earlier (20.4).

In the above derivation, we have assumed for simplicity of presentation that the denominators of all
expressions are nonzero. We can avoid this restriction by working with differences rather than ratios.
Let 1N(w−1, v(·)) denote the difference between the numerator and the denominator of (20.7), such
that

1N(w−1, v(·)) =
{

‖w̃N‖2 +
N∑

i=0

|ēa(i)|2
}

−
{

‖w̃−1‖2 +
N∑

i=0

|v̄(i)|2
}

. (20.8)

Then, a similar argument that produced (20.7) can be used to show that for any {w−1, v(·)},
1N(w−1, v(·)) ≤ 0 . (20.9)

20.7 Min-Max Optimality of Adaptive Gradient Algorithms

The property in (20.7) or (20.9) is valid for any initial guess w−1 and for any noise sequence v(·), so
long as the µ(i) are properly bounded by µ̄(i). One might then wonder whether the bound in (20.7)
is tight or not. In other words, are there choices {w−1, v(·)} for which the ratio in (20.7) can be made
arbitrarily close to one or 1N in (20.9) arbitrarily close to zero? We now show that there are. We can
rewrite the gradient recursion of (20.5) in the equivalent form

wi = wi−1 + µ(i) · ui · [ea(i) + v(i)] . (20.10)

Envision a noise sequence v(i) that satisfies v(i) = −ea(i) at each time instant i. Such a sequence
may seem unrealistic but is entirely within the realm of our unrestricted model of the unknown
disturbances. In this case, the above gradient recursion trivializes to wi = wi−1 for all i, thus leading
to wN = w−1. Thus, 1N in (20.8) will be zero for this particular experiment. Therefore,

max
{w−1,v(·)}

{1N(w−1, v(·))} = 0 .

We now consider the following question: how does the gradient recursion in (20.5) compare with
other possible causal recursive algorithms for the update of the weight estimate? Let A denote any
given causal algorithm. Suppose that we initialize algorithm A with w−1 = w, and suppose the noise
sequence is given by v(i) = −ea(i) for 0 ≤ i ≤ N . Then, we have

N∑
i=0

|v̄(i)|2 =
N∑

i=0

|ēa(i)|2 ≤ ‖w̃N‖2 +
N∑

i=0

|ēa(i)|2 ,

no matter what the value of w̃N is. This particular choice of initial guess (w−1 = w) and noise
sequence {v(·)} will always result in a nonnegative value of 1N in (20.8), implying for any causal
algorithm A that

max
{w−1,v(·)}

{1N(w−1, v(·))} ≥ 0 .

For the gradient recursion in (20.5), the maximum has to be exactly zero because the global prop-
erty (20.9) provided us with an inequality in the other direction. Therefore, the algorithm in (20.5)
solves the following optimization problem:

min
Algorithm

{
max

{w−1,v(·)}
1N(w−1, v(·))

}
,
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FIGURE 20.3: Singular value plot.

and the optimal value is equal to zero. More details and justification can be found in the references
at the end of this chapter, especially connections with so-called H∞ estimation theory.

As explained before, 1N measures the difference between the output energy and the input energy
of the algorithm mapping T . The gradient algorithm in (20.5) minimizes the maximum possible
difference between these two energies over all disturbances with finite energy. In other words, it
minimizes the effect that the worst-possible input disturbances can have on the resulting estimation-
error energy.

20.8 Comparison of LMS and RLS Algorithms

To illustrate the ideas in our discussion, we compare the robustness performance of two classical
algorithms: the LMS algorithm (20.2) and the recursive least-squares (RLS) algorithm. More details
on the example given below can be found in the reference section at the end of the chapter.

Consider the data model in (20.1) where ui is a scalar that randomly assumes the values +1and −1
with equal probability. Let w = 0.25, and let v(i) be an uncorrelated Gaussian noise sequence with
unit variance. We first employ the LMS recursion in (20.2) and compute the initial 150 estimates wi ,
starting with w−1 = 0 and using µ = 0.97. Note that µ satisfies the requirement µ ≤ 1/‖ui‖2 = 1
for all i. We then evaluate the entries of the resulting mapping T , now denoted by Tlms , that we
defined in (20.4). We then compute the corresponding Trls for the recursive-least-squares (RLS)
algorithm for these signals, which for this special data model can be expressed as

wi+1 = wi + piui

1 + pi

[d(i) − uT
i wi−1] , pi+1 = pi

1 + pi

.

The initial condition chosen for pi is p0 = µ = 0.97.
Figure 20.3 shows a plot of the 150 singular values of the resulting mappings Tlms and Trls . As

predicted from our analysis, the singular values of Tlms , indicated by an almost horizontal line at
unity, are all bounded by one, whereas the maximum singular value of Trls is approximately 1.65.
This result indicates that the LMS algorithm is indeed more robust than the RLS algorithm, as is
predicted by the earlier analysis.

Observe, however, that most of the singular values of Trls are considerably smaller than one,
whereas the singular values of Tlms are clustered around one. This has an interesting interpretation
that we explain as follows. An N ×N-dimensional matrix A has N singular values {σi} that are equal
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to the positive square-roots of the eigenvalues of AAT . For each σi , there exists a unit-norm vector
xi such that the energy gain from xi to Axi is equal to σ 2

i , i.e., σi = ‖Axi‖/‖xi‖. The vector xi can
be chosen as the ith right singular vector of A. Now, recall that Tlms and Trls are finite-dimensional
matrices that map a disturbance vector dist to the estimation-errors vector error. Considering the
plot of the singular values of Trls , we see that if the disturbance vector dist happens to lie in the range
space of the right singular vectors associated with the smaller singular values in this plot, then its effect
will be significantly attenuated. This fact indicates that while the performance of the LMS algorithm
guards against worst-case disturbances, the RLS algorithm is likely to have a better performance than
the LMS algorithm on average, as is well-known.

20.9 Time-Domain Feedback Analysis

Robust adaptive filters are designed to induce contractive mappings between sequences of numbers.
This fact also has important implications on the convergence performance of a robust adaptive
scheme. In the remaining sections of this chapter, we discuss the combined issues of robustness and
convergence from a deterministic standpoint. In particular, the following issues are discussed:

• We show that each step of the update equation of the gradient algorithm in (20.5) can be
described in terms of an elementary section that possesses a useful feedback structure.

• The feedback structure provides insights into the robust and convergence performance
of the adaptive scheme. This is achieved by studying the energy flow through a cascade
of elementary sections and by invoking a useful tool from system theory known as the
small gain theorem.

• The feedback analysis extends to more general update relations. The example considered
here is filtered-error LMS algorithm, although the methodology can be extended to other
structures such as perceptrons. Details can be found in the references at the end of this
chapter.

20.9.1 Time-Domain Analysis

From the update equation in (20.5), w̃i satisfies

w̃i = w̃i−1 − µ(i) · ui · [ea(i) + v(i)] . (20.11)

If we multiply both sides of (20.11) by uT
i from the left, we obtain the following relation among

{ep(i), ea(i), v(i)}:
ep(i) =

(
1 − µ(i)

µ̄(i)

)
ea(i) − µ(i)

µ̄(i)
v(i) , (20.12)

where µ̄(i) is given by (20.6). Using (20.12), (20.5) can be rewritten in the equivalent form

wi = wi−1 + µ̄(i) · ui · [ea(i) − ep(i)] ,

= wi−1 + µ̄(i) · ui · [ea(i) + r(i)] , (20.13)

where we have defined the signal r(i) = −ep(i) for convenience. The expression (20.13) shows that
(20.5) can be rewritten in terms of a new step-size µ̄(i) and a modified “noise” term r(i).

Therefore, if we follow arguments similar to those prior to (20.6), we readily conclude that for
algorithm (20.5) the following equality holds for all {µ(i), v(i)}:

‖w̃i‖2 + µ̄(i) |ea(i)|2
‖w̃i−1‖2 + µ̄(i) |r(i)|2 = 1 . (20.14)
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This relation establishes a lossless map (denoted by T i) from the signals {w̃i−1,
√

µ̄(i) r(i)} to
the signals {w̃i ,

√
µ̄(i) ea(i)}. Correspondingly, using (20.12), the map from the original weighted

disturbance
√

µ̄(i)v(i) to the weighted estimation error signal
√

µ̄(i)ea(i) can be expressed in terms
of the feedback structure shown in Fig. 20.4.

FIGURE 20.4: A time-variant lossless mapping with gain feedback for gradient algorithms. c© IEEE
1996. (Source: Rupp, M. and Sayed, A.H., A time domain feedback analysis of filtered-error adaptive
gradient algorithms, IEEE Trans. Signal Process. 44(6): 1428–1439, June 1996. With permission.)

The feedbackdescriptionprovidesuseful insights into thebehaviorof the adaptive scheme. Because
the map T i in the feedforward path is lossless or energy-preserving, the design and analysis effort
can be concentrated on the terms contained in the feedback path. This feedback block controls:

• How much energy is fed back into the input of each section and whether energy magni-
fication or demagnification may occur (i.e., stability).

• How sensitive the estimation error is to noise and disturbances (i.e., robustness).

• How fast the estimation error energy decays (i.e., convergence rate).

20.9.2 l2−Stability and the Small Gain Condition

We start by reconsidering the robustness issue. Recall that if the step-sizes µ(i) are chosen such that
µ(i) ≤ µ̄(i), then robustness is guaranteed in that the ratio of the energies of the signals in (20.7)
will be bounded by one.

The condition on µ(i) can be relaxed at the expense of guaranteeing energy ratios that are bounded
by some other positive number, say

weighted estimation error energy

weighted disturbance energy
≤ γ 2 , (20.15)

for some constant γ to be determined. This is still a desirable property because it means that the
disturbance energy will be, at most, scaled by a factor of γ . This fact can in turn lead to useful
convergence conclusions, as argued later.

In order to guarantee robustness conditions according to (20.15), for some γ , we rely on the
observation that feedback configurations of the form shown in Fig. 20.4 can be analyzed using a
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tool known in system theory as the small gain theorem. In loose terms, this theorem states that the
stability of a feedback configuration such as that in Fig. 20.4 is guaranteed if the product of the norms
of the feedforward and the feedback mappings are strictly bounded by one. Since the feedforward
mapping T i has a norm (or maximum singular value) of one, the norm of the feedback map needs
to be strictly bounded by one for stability of this system.

To illustrate these concepts more fully, consider the feedback structure in Fig. 20.5 that has a
lossless mapping T in its feedforward path and an arbitrary mapping F in its feedback path. The
input/output signals of interest are denoted by {x, y, r, v, e}. In this system, the signals x, v play the
role of the disturbances.

FIGURE 20.5: A feedback structure.

The losslessness of the feedforward path implies conservation of energy such that

‖y‖2 + ‖e‖2 = ‖x‖2 + ‖r‖2 .

Consequently, ‖e‖ ≤ ‖x‖ + ‖r‖. On the other hand, the triangle inequality of norms implies that

‖r‖ ≤ ‖v‖ + ‖F‖ · ‖e‖ ,

where the notation ‖F‖ denotes the maximum singular value of the mapping F . Provided that the
small gain condition ‖F‖ < 1 is satisfied, we have

‖e‖ ≤ 1

1 − ‖F‖ · [ ‖x‖ + ‖v‖ ] . (20.16)

Thus, a contractive F guarantees a robust map from {x, v} to {e} with a robustness level that is
determined by the factor 1/(1 − ‖F‖). In this case, we shall say that the map from {x, v} to {e} is
l2−stable.

FIGURE 20.6: Plot of the l2−gain.

A plot of the factor 1/(1 − ‖F‖), as a function of ‖F‖, is shown in Fig. 20.6. It can be seen that
the smaller the value of ‖F‖:
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• The smaller the effect of {x, v} on {e}.
• The smaller the upper bound on ‖e‖.

Moreover, we shall argue that smaller values of‖F‖ are associated with faster convergence. Therefore,
controlling the norm of F , is important for both the robustness and convergence performance of an
adaptive algorithm. In most cases, the feedback filter F will depend on several quantities, such as
the step-sizes {µ(i)} and the data vectors {ui} (as in Fig. 20.4). It may also depend on error filters
and on regression filters that appear in more general adaptive schemes.

Referring to Fig. 20.4, define

η(N) = max
0≤i≤N

∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣ and ξ(N) = max
0≤i≤N

µ(i)

µ̄(i)
.

That is, η(N) is the maximum absolute value of the gain of the feedback loop over the interval of
time 0 ≤ i ≤ N , and ξ(N) is the maximum value of the scaling factor µ(i)/µ̄(i) at the input of
the feedback interconnection. In this context, the small gain condition requires that η(N) < 1.
This condition is equivalent to choosing the step-size parameter µ(i) such that 0 < µ(i) < 2µ̄(i).
Under this condition, the general relation (20.16) can be used to deduce either of the following two
relationships:√√√√ N∑

i=0

µ̄(i) |ea(i)|2 ≤ 1

1 − η(N)


 ‖w̃−1‖ + ξ(N)

√√√√ N∑
i=0

µ̄(i)|v(i)|2

 (20.17)

or √√√√ N∑
i=0

µ(i) |ea(i)|2 ≤ ξ1/2(N)

1 − η(N)


 ‖w̃−1‖ + ξ1/2(N)

√√√√ N∑
i=0

µ(i)|v(i)|2

 . (20.18)

Note that in either case the upper bound on µ(i) is now 2µ̄(i) and the robustness level is essentially
determined by

1

1 − η(N)
or

ξ1/2(N)

1 − η(N)
,

depending on how the estimation errors {ea(i)} and the noise terms {v(i)} are normalized [by µ(·)
or µ̄(·)].

20.9.3 Energy Propagation in the Feedback Cascade

By studying the energy flow in the feedback interconnection of Fig. 20.4, we can also obtain some
physical insights into the convergence behavior of the gradient recursion (20.5).

Assume thatµ(i) = µ̄(i), such that the feedback loop of Fig. 20.4 is disconnected. In this situation,
there is no energy flowing back into the lower input of the lossless section from its lower output ea(·).
The losslessness of the feedforward path then implies that

Ew(i) = Ew(i − 1) + Ev(i) − Ee(i),

where we have defined the energy terms

Ee(i) = µ̄(i)|ea(i)|2, Ev(i) = µ̄(i)|v(i)|2, Ew(i) = ‖w̃i‖2 .

In the noiseless case where v(i) = 0, the above expression implies that the weight-error energy is a
nonincreasing function of time, i.e., Ew(i) ≤ Ew(i − 1).
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However, whathappens ifµ(i) 6= µ̄(i)? In this case, the feedbackpath is active and the convergence
speed will be affected because the rate of decrease in the energy of the estimation error will change.
Indeed, for µ(i) 6= µ̄(i) we obtain for Ev(i) = 0

Ew(i) = Ew(i − 1) −
(

1 −
∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣2
)

Ee(i) ,

where, due to the small gain condition, the coefficient multiplying Ee(i) can be seen to be smaller
than 1.

Loosely speaking, this energy argument indicates for v(i) = 0 that the smaller the maximum
singular value of feedback block F , for a generic feedback interconnection of the form shown in
Fig. 20.5, the faster the convergence of the algorithm will be, since less energy is fed back to the input
of each section.

20.9.4 A Deterministic Convergence Analysis

The energy argument can be pursued in order to provide sufficient deterministic conditions for the
convergence of the weight estimates wi to the true weight vector w. The argument follows as a
consequence of the energy relations (or robustness bounds) (20.17) and (20.18), which essentially
establishes that the adaptive gradient algorithm (20.5) maps a finite-energy sequence to another
finite-energy sequence.

To clarify this point, we define the quantities

η = sup
i

∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣ , ξ = sup
i

[
µ(i)

µ̄(i)

]
,

and note that if the step-size parameter µ(i) is chosen such that µ(i)‖ui‖2 is uniformly bounded by
2, then we guarantee ξ < 2 and η < 1. We further note that it follows from the weight-error update
relation (20.11) that w̃i satisfies

w̃i = w̃i−1 − ūT
i [ēa(i) + v̄(i)] , (20.19)

where we have defined ūi = √
µ(i) ui [likewise for ēa(i), v̄(i)]. The following conclusions can now

be established under the stated conditions.

• Finitenoise energy condition. Weassumethat thenormalizedsequence {v̄(·) = √
µ(i) v(i)}

has finite energy, i.e.,
∞∑
i=0

µ(i)|v(i)|2 < ∞ . (20.20)

This in turn implies that v̄(i) → 0 as i → ∞ (but not necessarily v(i) → 0). If the
initial weight-error vector is finite, ‖w̃−1‖ < ∞, then condition (20.20) along with the
energy bound (20.18) [as N → ∞] allows us to conclude that

∑∞
i=0 µ(i)|ea(i)|2 < ∞.

Consequently, lim i→∞ ēa(i) → 0 (but not necessarily ea(i) → 0).

• Persistent excitation condition. We also assume that the normalized vectors {ūi} are per-
sistently exciting. By this we mean that there exists a finite integer L ≥ M such that the
smallest singular value of

col {ūT
i , ūT

i+1, . . . , ūT
i+L}

is uniformly bounded from below by a positive quantity for sufficiently large i. The
persistence of excitation condition can be used to further conclude from ēa(i) → 0 that
lim i→∞ wi = w.
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The above statements can also be used to clarify the behavior of the adaptive algorithm (20.5) in
the presence of finite-power (rather than finite-energy) normalized noise sequences {v̄(·)} , i.e., for
v(·) satisfying

lim
N→∞

1

N

N−1∑
i=0

µ(i)|v(i)|2 = Pv < ∞ .

For this purpose, we divide both sides of (20.18) by
√

N and take the limit as N → ∞ to conclude
that

lim
N→∞

1

N

N−1∑
i=0

µ(i)|ea(i)|2 ≤ ξ2Pv

(1 − η)2
.

In other words, a bounded noise power leads to a bounded estimation error power.

20.10 Filtered-Error Gradient Algorithms

The feedback analysis of the former sections can be extended to gradient algorithms that employ
filtered versions of the error signal d(i) − uT

i wi−1. Such algorithms are useful in applications such
as active noise and vibration control and in adaptive IIR filters, where a filtered error signal is more
easily observed or measured. Figure 20.7 depicts the context of this problem. The symbol F denotes
the filter that operates on e(i). For our discussion, we assume that F is a finite-impulse response

filter of order MF , such that the z-transform of its impulse response is F(z) = ∑MF −1
j=0 fj z

−j .

FIGURE 20.7: Structure of filtered-error gradient algorithms. c© IEEE 1996. (Source: Rupp, M. and
Sayed, A.H., A time domain feedback analysis of filtered-error adaptive gradient algorithms, IEEE
Trans. Signal Process. 44(6): 1428–1439, June 1996. With permission.)

For purposes of discussion, we focus on one particular form of adaptive update known as the
filtered-error LMS algorithm:

wi = wi−1 + µ(i) · ui · F [d(i) − uT
i wi−1] . (20.21)

Comparing (20.21) with (20.5), the only difference between the two updates is the filter F that acts
on the error d(i) − uT

i wi−1.
Following the discussion that led to (20.13), it can be verified that (20.21) is equivalent to the

following update:

wi = wi−1 + µ̄(i) · ui · [ea(i) + r(i)] , (20.22)
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where µ̄(i) = 1/‖ui‖2, ea(i) = uT
i w̃i−1, and r(i) is defined as

µ̄(i)r(i) = µ(i)F [v(i)] − µ̄(i)ea(i) + µ(i)F [ea(i)] . (20.23)

Expression (20.22) is of the same form as (20.13), which implies that the following relation also holds:

‖w̃i‖2 + µ̄(i) |ea(i)|2
‖w̃i−1‖2 + µ̄(i) |r(i)|2 = 1 . (20.24)

This establishes that the map T i from the signals {w̃i−1,
√

µ̄(i)r(i)} to the signals {w̃i ,
√

µ̄(i)ea(i)}
is lossless. Moreover, the map from the original disturbance

√
µ̄(·)v(·) to the signal

√
µ̄(·)ea(·) can

be expressed in terms of a feedback structure, as shown in Fig. 20.8. We remark that the notation

1− µ(i)√
µ̄(i)

F [·] 1√
µ̄(i)

should be interpreted as follows. We first divide
√

µ̄(i) ea(i) by
√

µ̄(i) before

filtering it by the filter F and then scaling the result by µ(i)/
√

µ̄(i). Similarly, the term
√

µ̄(i) v(i)

is first divided by
√

µ̄(i), then filtered by F , and is finally scaled by µ(i)/
√

µ̄(i).

FIGURE 20.8: Filtered-error LMS algorithm as a time-variant lossless mapping with dynamic feed-
back. c© IEEE 1996. (Source: Rupp, M. and Sayed, A.H., A time domain feedback analysis of
filtered-error adaptive gradient algorithms, IEEE Trans. Signal Process. 44(6): 1428–1439, June 1996.
With permission.)

The feedback path now contains a dynamic system. The small gain theorem dictates that this
system will be robust if the feedback path is a contractive system. For the special case of the projection
filtered-error LMS algorithm that employs the step-size µ(i) = α µ̄(i), α > 0,

wi = wi−1 + α
ui

‖ui‖2
F [d(i) − uT

i wi−1] , (20.25)

the small-gain condition implies that the following matrix should be strictly contractive:

PN =




1 − αf0 O

−α
√

µ̄(1)√
µ̄(0)

f1 1 − αf0

−α
√

µ̄(2)√
µ̄(0)

f2 −α
√

µ̄(2)√
µ̄(1)

f1 1 − αf0

...
. . .


 .

Here, the {fi} are the coefficients of the FIR filter F . Since, in practice, the length MF of this filter is
usually much smaller than the length of the regression vector ui , the energy of the input sequence ui
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does not change very rapidly over the filter length MF , such that

µ̄(i) ≈ . . . ≈ µ̄(i − MF ) .

In this case, PN becomes
PN ≈ I − αFN , (20.26)

where FN is the lower triangular Toeplitz matrix that describes the convolution of the filter F on an
input sequence. This is generally a banded matrix since MF � M , as shown below for the special
case of MF = 3,

FN =




f0
f1 f0
f2 f1 f0

f2 f1 f0
. . .

. . .
. . .


 .

In this case, the strict contractivity of (I − αFN) can be guaranteed by choosing the step-size
parameter α such that

max
�

∣∣∣1 − αF(ej�)

∣∣∣ < 1 , (20.27)

where F(z) is the transfer function of the error filter. For better convergence performance, we may
choose α by solving the min-max problem

min
α

max
�

∣∣∣1 − αF(ej�)

∣∣∣ . (20.28)

If the resulting minimum is less than one, then the corresponding optimum value of α will result in
faster convergence, and it will also guarantee the robustness of the scheme.

We now illustrate these concepts via a simulation example. The error-path filter for this example
is

F(z) = 1 − 1.2 z−1 + 0.72z−2 .

We use an FIR filter adapted by the algorithm in (20.25), where the input signal to the adaptive filter
consists of a single sinusoid of frequency �0 = 1.2/π . In this case, if we assume that the a priori
error signal is dominated by the frequency component �0, we can solve for the optimum α via the
simpler expression [cf. (20.28)] minα

∣∣1 − αF
(
ej�o

)∣∣. The resulting optimum value of α is

αopt = Real

{
1

F(e−j�0)

}
.

This step size provides the fastest convergence speed. In addition, the stability limits for α can be
shown to be 0 < α < 2αopt using a similar procedure.

Figure20.9 shows threeconvergencecurvesof theaverage squarederrorAv[|e(i)|2] = 1
50

∑50
j=1 |ej (i)|2,

as determined from 50 simulation runs of the projection filtered-error LMS algorithm for the choices
α = 0.085, α = 0.15and α = 0.18, respectively. In this case, we have generated an input sequence
of the form u(i) = sin[1.2i + φ] for each simulation run, where φ is uniformly chosen from the
interval [−π, π] to obtain smoother learning curves after averaging, and the M = 10coefficients of
the unknown system were all set to unity. Moreover, the additive noise v(i) corrupting the signal
d(i) is uncorrelated Gaussian-distributed with a level that is −40dB below that of the input signal
power. The optimal step-size αopt in this case can be calculated to be αopt = 0.085and the stability
bounds for the system are 0 < α < 0.17. As expected, choosing α = 0.085provides the fastest
convergence speed for this situation. We also see that for values of α greater than 2αopt , the error of
the system diverges.
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FIGURE 20.9: Convergence behavior for FELMS algorithm with sinusoidal input sequence and
various step-sizes α = 0.085(a), 0.15 (b), 0.18(c). c© IEEE 1996. (Source: Rupp, M. and Sayed, A.H.,
A time domain feedback analysis of filtered-error adaptive gradient algorithms, IEEE Trans. Signal
Process. 44(6): 1428–1439, June 1996. With permission.)

20.11 References and Concluding Remarks
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1995.
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The small gain analysis is a standard tool in linear and nonlinear system theory. More advanced and
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[11] Khalil, H.K., Nonlinear Systems, 2nd ed., Macmillan, New York, 1996.
[12] Vidyasagar, M., Nonlinear Systems Analysis, 2nd ed., Prentice Hall, Englewood Cliffs, NJ,

1993.
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[13] Hassibi, B., Sayed, A.H., and Kailath, T., H∞ optimality of the LMS algorithm, IEEE Trans.
Signal Processing, 44(2), 267–280, Feb. 1996. See also Proc. CDC, 1, 74–79, 1993.

Also, more details on the example comparing the performance of LMS and RLS can be found in the
above reference. Extensions of the discussion to the backpropagation algorithm for neural network
training, and other related results in adaptive filtering and H∞ estimation and control can be found
in

[14] Hassibi, B., Sayed, A.H., and Kailath, T., LMS and backpropagation are minimax filters, in
Neural Computation and Learning, Roychowdhurys, V., Siu, K.Y., and Orlitsky, A., Eds.,
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21.9 Concluding Remarks
References

The central problem in estimation is to recover, to good accuracy, a set of unobservable parameters
from corrupted data. Several optimization criteria have been used for estimation purposes over the
years, but the most important, at least in the sense of having had the most applications, are criteria
that are based on quadratic cost functions. The most striking among these is the linear least-squares
criterion, which was perhaps first developed by Gauss (ca. 1795) in his work on celestial mechanics.
Since then, it has enjoyed widespread popularity in many diverse areas as a result of its attractive
computational and statistical properties. Among these attractive properties, the most notable are the
facts that least-squares solutions:

• can be explicitly evaluated in closed forms;

• can be recursively updated as more input data is made available, and
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• are maximum likelihood estimators in the presence of Gaussian measurement noise.

The aim of this chapter is to provide an overview of adaptive filtering algorithms that result when
the least-squares criterion is adopted. Over the last several years, a wide variety of algorithms in this
class has been derived. They all basically fall into the following main groups (or variations thereof):
recursive least-squares (RLS) algorithms and the corresponding fast versions (known as FTF and
FAEST), QR and inverse QR algorithms, least-squares lattice (LSL), and QR decomposition-based
least-squares lattice (QRD-LSL) algorithms.

Table 21.1 lists these different variants and classifies them into order-recursive and fixed-order
algorithms. The acronyms and terminology are not important at this stage and will be explained
as the discussion proceeds. Also, the notation O(M) is used to indicate that each iteration of an
algorithm requires of the order of M floating point operations (additions and multiplications). In
this sense, some algorithms are fast (requiring only O(M)), while others are slow (requiring O(M2)).
The value of M is the filter order that will be introduced in due time.

TABLE 21.1 Most Common RLS Adaptive

Schemes
Adaptive Order Fixed Cost per

Algorithm Recursive Order Iteration

RLS x O(M2)

QR and Inverse QR x O(M2)
FTF, FAEST x O(M)

LSL x O(M)
QRD-LSL x O(M)

It is practically impossible to list here all the relevant references and all the major contributors to
the rich field of adaptive RLS filtering. The reader is referred to some of the textbooks listed at the
end of this chapter for more comprehensive treatments and bibliographies.

Here we wish to stress that, apart from introducing the reader to the fundamentals of RLS filtering,
one of our goals in this exposition is to present the different versions of the RLS algorithm in
computationally convenient so-called array forms. In these forms, an algorithm is described as a
sequence of elementary operations on arrays of numbers. Usually, a prearray of numbers has to be
triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of
numbers. The quantities needed to form the next prearray can then be read off from the entries of
the postarray, and the procedure can be repeated. The explicit forms of the rotation matrices are not
needed in most cases.

Such array descriptions are more truly algorithms in the sense that they operate on sets of numbers
and provide other sets of numbers, with no explicit equations involved. The rotations themselves can
be implemented in a variety of well-known ways: as a sequence of elementary circular or hyperbolic
rotations, in square-root- and/or division-free forms, as Householder transformations, etc. These
may differ in computational complexity, numerical behavior, and ease of hardware (VLSI) imple-
mentation. But, if preferred, explicit expressions for the rotation matrices can also be written down,
thus leading to explicit sets of equations in contrast to the array forms.

For this reason, and although the different RLS algorithms that we consider here have already been
derived in many different ways in earlier places in the literature, the derivation and presentation in
this chapter are intended to provide an alternative unifying exposition that we hope will help a reader
get a deeper appreciation of this class of adaptive algorithms.
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Notation

We use small boldface letters to denote column vectors (e.g., w) and capital boldface letters to
denote matrices (e.g., A). The symbol In denotes the identity matrix of size n × n, while 0 denotes
a zero column. The symbol T denotes transposition. This chapter deals with real-valued data. The
case of complex-valued data is essentially identical and is treated in many of the references at the end
of this chapter.

Square-Root Factors

A symmetric positive-definite matrix A is one that satisfies A = AT and xT Ax > 0 for
all nonzero column vectors x. Any such matrix admits a factorization (also known as eigen-
decomposition) of the form A = U6UT , where U is an orthogonal matrix, namely a square matrix
that satisfies UUT = UT U = I, and 6 is a diagonal matrix with real positive entries. In particular,
note that AU = U6, which shows that the columns of U are the right eigenvectors of A and the
entries of 6 are the corresponding eigenvalues.

Note also that we can write A = U61/2(61/2)T UT , where 61/2 is a diagonal matrix whose entries
are (positive) square-roots of the diagonal entries of6. Since61/2 is diagonal, (61/2)T = 61/2. If we
introduce the matrix notation A1/2 = U61/2, then we can alternatively write A = (A1/2)(A1/2)T .

This can be regarded as a square-root factorization of the positive-definite matrix A. Here, the
notation A1/2 is used to denote one such square-root factor, namely the one constructed from the
eigen-decomposition of A.

Note, however, that square-root factors are not unique. For example, we may multiply the diagonal
entries of 61/2 by ±1′s and obtain a new square-root factor for 6 and, consequently, a new square-
root factor for A.

Also, given any square-root factor A1/2, and any orthogonal matrix 2 (satisfying 22T = I) we
can define a new square-root factor for A as A1/22 since

(A1/22)(A1/22)T = A1/2(22T )(A1/2)T = A .

Hence, square factors are highly nonunique. We shall employ the notation A1/2 to denote any such
square-root factor. They can be made unique, e.g., by insisting that the factors be symmetric or that
they be triangular (with positive diagonal elements). In most applications, the triangular form is
preferred. For convenience, we also write(

A1/2
)T = AT/2,

(
A1/2

)−1 = A−1/2,
(
A−1/2

)T = A−T/2 .

Thus, note the expressions A = A1/2AT/2 and A−1 = A−T/2A−1/2.

21.1 Array Algorithms

The array form is so important that it will be worthwhile to explain its generic form here.
An array algorithm is described via rotation operations on a prearray of numbers, chosen to obtain

a certain zero pattern in a postarray. Schematically, we write


x x x x

x x x x

x x x x

x x x x


 2 =




x 0 0 0
x x 0 0
x x x 0
x x x x


 ,

where 2 is any rotation matrix that triangularizes the prearray. In general, 2 is required to be
a J−orthogonal matrix in the sense that it should satisfy the normalization 2J2T = J, where J
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is a given signature matrix with ±1′s on the diagonal and zeros elsewhere. The orthogonal case
corresponds to J = I since then 22T = I.

A rotation 2 that transforms a prearray to triangular form can be achieved in a variety of ways: by
using a sequence of elementary Givens and hyperbolic rotations, Householder transformations, or
square-root-free versions of such rotations. Here we only explain the elementary forms. The other
choices are discussed in some of the references at the end of this chapter.

21.1.1 Elementary Circular Rotations

An elementary 2 × 2 orthogonal rotation 2 (also known as Givens or circular rotation) takes a row
vector

[
a b

]
and rotates it to lie along the basis vector

[
1 0

]
. More precisely, it performs the

transformation [
a b

]
2 =

[
±√|a|2 + |b|2 0

]
. (21.1)

The quantity ±√|a|2 + |b|2 that appears on the right-hand side is consistent with the fact that the

prearray,
[

a b
]
, and the postarray,

[
±√|a|2 + |b|2 0

]
, must have equal Euclidean norms

(since an orthogonal transformation preserves the Euclidean norm of a vector).
An expression for 2 is given by

2 = 1√
1 + ρ2

[
1 −ρ

ρ 1

]
, ρ = b

a
, a 6= 0. (21.2)

In the trivial case a = 0 we simply choose 2 as the permutation matrix,

2 =
[

0 1
1 0

]
.

The orthogonal rotation (21.2) can also be expressed in the alternative form:

2 =
[

c −s

s c

]
,

where the so-called cosine and sine parameters, c and s, respectively, are defined by

c = 1√
1 + ρ2

, s = ρ√
1 + ρ2

.

The name circular rotation for 2 is justified by its effect on a vector; it rotates the vector along the
circle of equation x2 + y2 = |a|2 + |b|2, by an angle θ that is determined by the inverse of the above
cosine and/or sine parameters, θ = tan−1 ρ, in order to align it with the basis vector

[
1 0

]
. The

trivial case a = 0 corresponds to a 90 degrees rotation in an appropriate clockwise (if b ≥ 0) or
counterclockwise (if b < 0) direction.

21.1.2 Elementary Hyperbolic Rotations

An elementary 2 × 2 hyperbolic rotation 2 takes a row vector
[

a b
]

and rotates it to lie either
along the basis vector

[
1 0

]
(if |a| > |b|) or along the basis vector

[
0 1

]
(if |a| < |b|). More

precisely, it performs either of the transformations[
a b

]
2 =

[
±√|a|2 − |b|2 0

]
if |a| > |b| , (21.3)

c©1999 by CRC Press LLC



[
a b

]
2 =

[
0 ±√|b|2 − |a|2

]
if |a| < |b|. (21.4)

The quantity
√±(|a|2 − |b|2) that appears on the right-hand side of the above expressions is con-

sistent with the fact that the prearray,
[

a b
]
, and the postarrays must have equal hyperbolic

“norms.” By the hyperbolic “norm” of a row vector xT we mean the indefinite quantity xT Jx, which
can be positive or negative. Here,

J =
[

1 0
0 −1

]
= (1 ⊕ −1) .

An expression for a hyperbolic rotation 2 that achieves (21.3) or (21.4) is given by

2 = 1√
1 − ρ2

[
1 −ρ

−ρ 1

]
, (21.5)

where

ρ =



b
a

when a 6= 0 and |a| > |b|
a
b

when b 6= 0 and |b| > |a|
The hyperbolic rotation (21.5) can also be expressed in the alternative form:

2 =
[

ch −sh

−sh ch

]
,

where the so-called hyperbolic cosine and sine parameters, ch and sh, respectively, are defined by

ch = 1√
1 − ρ2

, sh = ρ√
1 − ρ2

.

The name hyperbolic rotation for 2 is again justified by its effect on a vector; it rotates the original
vector along the hyperbola of equation x2 −y2 = |a|2 −|b|2, by an angle θ determined by the inverse
of the above hyperbolic cosine and/or sine parameters, θ = tanh−1[ρ], in order to align it with
the appropriate basis vector. Note also that the special case |a| = |b| corresponds to a row vector[

a b
]

with zero hyperbolic norm since |a|2 − |b|2 = 0. It is then easy to see that there does not
exist a hyperbolic rotation that will rotate the vector to lie along the direction of one basis vector or
the other.

21.1.3 Square-Root-Free and Householder Transformations

We remark that the above expressions for the circular and hyperbolic rotations involve square-root
operations. In many situations, it may be desirable to avoid the computation of square-roots because
it is usually expensive. For this and other reasons, square-root- and division-free versions of the
above elementary rotations have been developed and constitute an attractive alternative.

Therefore one could use orthogonal or J−orthogonal Householder reflections (for given J) to
simultaneously annihilate several entries in a row, e.g., to transform

[
x x x x

]
directly to the

form
[

x′ 0 0 0
]
. Combinations of rotations and reflections can also be used.

We omit the details here but the idea is clear. There are many different ways in which a prearray
of numbers can be rotated into a postarray of numbers.
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21.1.4 A Numerical Example

Assume we are given a 2 × 3 prearray A,

A =
[

0.875 0.15 1.0
0.675 0.35 0.5

]
, (21.6)

and wish to triangularize it via a sequence of elementary circular rotations, i.e., reduce A to the form

A2 =
[

x 0 0
x x 0

]
. (21.7)

This can be obtained, among several different possibilities, as follows. We start by annihilating the
(1, 3) entry of the prearray (21.6) by pivoting with its (1, 1) entry. According to expression (21.2),
the orthogonal transformation 21 that achieves this result is given by

21 = 1√
1 + ρ2

1

[
1 −ρ1
ρ1 1

]
=

[
0.6585 −0.7526
0.7526 0.6585

]
, ρ1 = 1

0.875
.

Applying 21 to the prearray (21.6) leads to (recall that we are only operating on the first and third
columns, leaving the second column unchanged):

[
0.875 0.15 1
0.675 0.35 0.5

] 
 0.6585 0 −0.7526

0 1 0
0.7526 0 0.6585


 =

[
1.3288 0.1500 0.0000
0.8208 0.3500 −0.1788

]
. (21.8)

We now annihilate the (1, 2) entry of the resulting matrix in the above equation by pivoting with
its (1, 1) entry. This requires that we choose

22 = 1√
1 + ρ2

2

[
1 −ρ2
ρ2 1

]
=

[
0.9937 −0.1122
0.1122 0.9937

]
, ρ2 = 0.1500

1.3288
. (21.9)

Applying 22 to the matrix on the right-hand side of (21.8) leads to (now we leave the third column
unchanged)

[
1.3288 0.1500 0.0000
0.8208 0.3500 0.1788

] 
 0.9937 −0.1122 0

0.1122 0.9937 0
0 0 1


 =

[
1.3373 0.0000 0.0000
0.8549 0.2557 0.1788

]
.

(21.10)
We finally annihilate the (2, 3) entry of the resulting matrix in (21.10) by pivoting with its (2, 2)

entry. In principle this requires that we choose

23 = 1√
1 + ρ2

3

[
1 −ρ3
ρ3 1

]
=

[
0.8195 0.5731

−0.5731 0.8195

]
, ρ3 = 0.1788

−0.2557
, (21.11)

and apply it to the matrix on the right-hand side of (21.10), which would then lead to

[
1.3373 0.0000 0.0000
0.8549 −0.2557 0.1788

] 
 1 0 0

0 0.8195 0.5731
0 −0.5731 0.8195


 =

[
1.3373 0.0000 0.0000
0.8549 −0.3120 0.0000

]
.

(21.12)
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Alternatively, this last step could have been implemented without explicitly forming 23. We simply
replace the row vector

[ −0.2557 0.1788
]
, which contains the (2, 2) and (2, 3) entries of the

prearray in (21.12), by the row vector
[

±√
(−0.2557)2 + (0.1788)2 0.0000

]
, which is equal to[ ±0.3120 0.0000

]
. We choose the positive sign in order to conform with our earlier convention

that the diagonal entries of triangular square-root factors are taken to be positive. The resulting
postarray is therefore [

1.3373 0.0000 0.0000
0.8549 0.3120 0.0000

]
. (21.13)

We have exhibited a sequence of elementary orthogonal transformations that triangularizes the
prearray of numbers (21.6). The combined effect of the sequence of transformations {21, 22, 23}
corresponds to the orthogonal rotation 2 required in (21.7). However, note that we do not need to
know or to form 2 = 212223.

It will become clear throughout our discussion that the different adaptive RLS schemes can be de-
scribed in array forms, where the necessary operations are elementary rotations as described above.
Such array descriptions lend themselves rather directly to parallelizable and modular implementa-
tions. Indeed, once a rotation matrix is chosen, then all the rows of the prearray undergo the same
rotation transformation and can thus be processed in parallel. Returning to the above example, where
we started with the prearray A, we see that once the first rotation is determined, both rows of A are
then transformed by it, and can thus be processed in parallel, and by the same functional (rotation)
block, to obtain the desired postarray. The same remark holds for prearrays with multiple rows.

21.2 The Least-Squares Problem

Now that we have explained the generic form of an array algorithm, we return to the main topic
of this chapter and formulate the least-squares problem and its regularized version. Once this is
done, we shall then proceed to describe the different variants of the recursive least-squares solution
in compact array forms.

Let w denote a column vector of n unknown parameters that we wish to estimate, and consider a
set of (N +1) noisy measurements {d(i)} that are assumed to be linearly related to w via the additive
noise model

d(j) = uT
j w + v(j) ,

where the {uj } are given column vectors. The (N + 1) measurements can be grouped together into
a single matrix expression: 


d(0)

d(1)
...

d(N)




︸ ︷︷ ︸
d

=




uT
0

uT
1
...

uT
N




︸ ︷︷ ︸
A

w +




v(0)

v(1)
...

v(N)




︸ ︷︷ ︸
v

,

or, more compactly, d = Aw + v. Because of the noise component v, the observed vector d does not
lie in the column space of the matrix A. The objective of the least-squares problem is to determine
the vector in the column space of A that is closest to d in the least-squares sense.

More specifically, any vector in the range space of A can be expressed as a linear combination of
its columns, say Aŵ for some ŵ. It is therefore desired to determine the particular ŵ that minimizes
the distance between d and Aŵ,

min
w

‖d − Aw‖2 . (21.14)
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The resulting ŵ is called the least-squares solution and it provides an estimate for the unknown w.
The term Aŵ is called the linear least-squares estimate (l.l.s.e.) of d.

The solution to (21.14) always exists and it follows from a simple geometric argument. The

orthogonal projection of d onto the column span of A yields a vector d̂ that is the closest to d in

the least-squares sense. This is because the resulting error vector (d − d̂) will be orthogonal to the
column span of A.

In other words, the closest element d̂ to d must satisfy the orthogonality condition

AT (d − d̂) = 0.

That is, and replacing d̂ by Aŵ, the corresponding ŵ must satisfy

AT Aŵ = AT d .

These equations always have a solution ŵ. But while a solution ŵ may or may not be unique

(depending on whether A is or is not full rank), the resulting estimate d̂ = Aŵ is always unique
no matter which solution ŵ we pick. This is obvious from the geometric argument because the
orthogonal projection of d onto the span of A is unique.

If A is assumed to be a full rank matrix then AT A is invertible and we can write

ŵ = (AT A)−1AT d . (21.15)

21.2.1 Geometric Interpretation

The quantity Aŵ provides an estimate for d; it corresponds to the vector in the column span of A
that is closest in Euclidean norm to the given d. In other words,

d̂ = A
(
AT A

)−1
AT · d

1= PA · d ,

where PA denotes the projector onto the range space of A. Figure 21.1 is a schematic representation
of this geometric construction, where R(A) denotes the column span of A.

FIGURE 21.1: Geometric interpretation of the least-squares solution.

21.2.2 Statistical Interpretation

The least-squares solution also admits an important statistical interpretation. For this purpose,
assume that the noise vector v is a realization of a vector-valued random variable that is normally
distributed with zero mean and identity covariance matrix, written v ∼ N [0, I]. In this case, the
observation vector d will be a realization of a vector-valued random variable that is also normally
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distributed with mean Aw and covariance matrix equal to the identity I. This is because the random
vectors are related via the additive model d = Aw + v. The probability density function of the
observation process d is then given by

1√
(2π)(N+1)

· exp

{
−1

2
(d − Aw)T (d − Aw)

}
. (21.16)

It follows, in this case, that the least-squares estimator ŵ is also the maximum likelihood (ML)
estimator because it maximizes the probability density function over w, given an observation vector
d.

21.3 The Regularized Least-Squares Problem

A more general optimization criterion that is often used instead of (21.14) is the following

min
w

[
(w − w̄)T 5−1

0 (w − w̄) + ‖d − Aw‖2
]

. (21.17)

This is still a quadratic cost function in the unknown vector w, but it includes the additional term

(w − w̄)T 5−1
0 (w − w̄) ,

where 50 is a given positive-definite (weighting) matrix and w̄ is also a given vector. Choosing
50 = ∞ · I leads us back to the original expression (21.14).

A motivation for (21.17) is that the freedom in choosing 50 allows us to incorporate additional a
priori knowledge into the statement of the problem. Indeed, different choices for 50 would indicate
how confident we are about the closeness of the unknown w to the given vector w̄.

Assume, for example, that we set 50 = ε · I, where ε is a very small positive number. Then the
first term in the cost function (21.17) becomes dominant. It is then not hard to see that, in this case,
the cost will be minimized if we choose the estimate ŵ close enough to w̄ in order to annihilate the
effect of the first term. In simple words, a “small” 50 reflects a high confidence that w̄ is a good and
close enough guess for w. On the other hand, a “large” 50 indicates a high degree of uncertainty in
the initial guess w̄.

Onewayof solving the regularizedoptimizationproblem(21.17) is to reduce it to the standard least-
squares problem (21.14). This can be achieved by introducing the change of variables w′ = w − w̄
and d′ = d − Aw̄. Then (21.17) becomes

min
w′

[
(w′)T 5−1

0 w′ + ∥∥d′ − Aw′∥∥2
]

,

which can be further rewritten in the equivalent form

min
w′

∥∥∥∥
[

0
d′

]
−

[
5

−1/2
0
A

]
w′

∥∥∥∥2

.

This is now of the same form as our earlier minimization problem (21.14), with the observation
vector d in (21.14) replaced by [

0
d′

]
,

and the matrix A in (21.14) replaced by [
5

−1/2
0
A

]
.
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21.3.1 Geometric Interpretation

The orthogonality condition can now be used, leading to the equation

[
5

−1/2
0
A

]T ([
0
d′

]
−

[
5

−1/2
0
A

]
ŵ′

)
= 0 ,

which can be solved for the optimal estimate ŵ,

ŵ = w̄ +
[
5−1

0 + AT A
]−1

AT
[
d − Aw̄

]
. (21.18)

TABLE 21.2 Linear Least-Squares Estimation
Optimization / Problem Solution

{w, d}
minw ‖d − Aw‖2 ŵ = (AT A)−1AT d
A full rank
{w, d, w̄, 50}
minw

[
(w − w̄)T 5−1

0 (w − w̄) + ‖d − Aw‖2
]

ŵ = w̄ +
[
5−1

0 + AT A
]−1

AT
[
d − Aw̄

]
50 positive-definite Min. value = (d − Aw̄)T [I + A50AT ]−1(d − Aw̄)

Comparing with the earlier expression (21.15), we see that instead of requiring the invertibility

of AT A, we now require the invertibility of the matrix
[
5−1

0 + AT A
]
. This is yet another reason in

favor of the modified criterion (21.17) because it allows us to relax the full rank condition on A.
The solution (21.18) can also be reexpressed as the solution of the following linear system of

equations: [
5−1

0 + AT A
]

︸ ︷︷ ︸
8

(ŵ − w̄) = AT
[
d − Aw̄

]︸ ︷︷ ︸
s

, (21.19)

where we have denoted, for convenience, the coefficient matrix by 8 and the right-hand side by s.
Moreover, it further follows that the value of (21.17) at the minimizing solution (21.18), denoted

by Emin, is given by either of the following two expressions:

Emin = ‖d − Aw̄‖2 − sT (ŵ − w̄) (21.20)

= (d − Aw̄)T
[
I + A50AT

]−1
(d − Aw̄).

Expressions (21.19) and (21.20) are often rewritten into the so-called normal equations:[ ‖d − Aw̄‖2 sT

s 8

] [
1

−(ŵ − w̄)

]
=

[ Emin
0

]
. (21.21)

The results of this section are summarized in Table 21.2.

21.3.2 Statistical Interpretation

A statistical interpretation for the regularized problem can be obtained as follows. Given two vector-
valued zero-mean random variables w and d, the minimum-variance unbiased (MVU) estimator of
w given an observation of d is ŵ = E(w|d), the conditional expectation of w given d. If the random
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variables (w, d) are jointly Gaussian, then the MVU estimator for w given d can be shown to collapse
to

ŵ = (EwdT )
(
EddT

)−1
d. (21.22)

Therefore, if (w, d) are further linearly related, say

d = Aw + v , v ∼ N(0, I) , w ∼ N(0, 50) (21.23)

with a zero-mean noise vector v that is uncorrelated with w (EwvT = 0), then the expressions for
(EwdT ) and (EddT ) can be evaluated as

EwdT = Ew(Aw + v)T = 50AT , EddT = A50AT + I .

This shows that (21.22) evaluates to

ŵ = 50AT (I + A50AT )−1d . (21.24)

By invoking the useful matrix inversion formula (for arbitrary matrices of appropriate dimensions
and invertible E and C):

(E + BCD)−1 = E−1 − E−1B(DE−1B + C−1)−1DE−1 ,

we can rewrite expression (21.24) in the equivalent form

ŵ = (5−1
0 + AT A)−1AT d . (21.25)

This expression coincides with the regularized solution (21.18) for w̄ = 0 (the case w̄ 6= 0 follows
from similar arguments by assuming a nonzero mean random variable w).

Therefore, the regularized least-squares solution is the minimum variance unbiased (MVU) esti-
mate of w given observations d that are corrupted by additive Gaussian noise as in (21.23).

21.4 The Recursive Least-Squares Problem

The recursive least-squares formulation deals with the problem of updating the solution ŵ of a least-
squares problem (regularized or not) when new data are added to the matrix A and to the vector
d. This is in contrast to determining afresh the least-squares solution of the new problem. The
distinction will become clear as we proceed in our discussions. In this section, we formulate the
recursive least-squares problem as it arises in the context of adaptive filtering.

Consider a sequence of (N + 1) scalar data points, {d(j)}Nj=0, also known as reference or desired

signals, and a sequence of (N + 1) row vectors {uT
j }Nj=0, also known as input signals. Each input

vector uT
j is a 1 × M row vector whose individual entries we denote by {uk(j)}Mk=1, viz.,

uT
j = [

u1(j) u2(j) . . . uM(j)
]

. (21.26)

The entries of uj can be regarded as the values of M input channels at time j : channels 1 through
M .

Consider also a known column vector w̄ and a positive-definite weighting matrix50. The objective
is to determine an M × 1 column vector w, also known as the weight vector, so as to minimize the
weighted error sum:

E(N) = (w − w̄)T
[
λ−(N+1)50

]−1
(w − w̄) +

N∑
j=0

λN−j
∣∣∣d(j) − uT

j w
∣∣∣2 , (21.27)
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where λ is a positive scalar that is less than or equal to one (usually 0 � λ ≤ 1). It is often called the
forgetting factor since past data is exponentially weighted less than the more recent data. The special
case λ = 1 is known as the growing memory case, since, as the length N of the data grows, the effect
of past data is not attenuated. In contrast, the exponentially decaying memory case (λ < 1) is more
suitable for time-variant environments.

Also, and in principle, the factor λ−(N+1) that multiplies 50 in the error-sum expression (21.27)
can be incorporated into the weighting matrix 50. But it is left explicit for convenience of exposition.

We further denote the individual entries of the column vector w by {w(j)}Mj=1,

w = col{w(1), w(2), . . . , w(M)} .

A schematic description of the problem is shown in Fig. 21.2. At each time instant j , the inputs of the
M channels are linearly combined via the coefficients of the weight vector and the resulting signal is
compared with the desired signal d(j). This results in a residual error e(j) = d(j)− uT

j w, for every
j , and the objective is to find a weight vector w in order to minimize the (exponentially weighted
and regularized) squared-sum of the residual errors over an interval of time, say from j = 0 up to
j = N .

The linear combiner is said to be of order M since it is determined by M coefficients {w(j)}Mj=1.

FIGURE 21.2: A linear combiner.

21.4.1 Reducing to the Regularized Form

The expression for the weighted error-sum (21.27) is a special case of the regularized cost function
(21.17). To clarify this, we introduce the residual vector eN , the reference vector dN , the data matrix
AN , and a diagonal weighting matrix 3N ,

eN =




d(0)

d(1)

d(2)
...

d(N)




︸ ︷︷ ︸
dN

−




u1(0) u2(0) . . . uM(0)

u1(1) u2(1) . . . uM(1)

u1(2) u2(2) . . . uM(2)
...

...

u1(N) u2(N) . . . uM(N)




︸ ︷︷ ︸
AN

w ,
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3
1/2
N =




[
λ

1
2

]N

[
λ

1
2

]N−1

. . . [
λ

1
2

]2

1




.

We now use a subscript N to indicate that the above quantities are determined by data that is available
up to time N .

With these definitions, we can write E(N) in the equivalent form

E(N) = (w − w̄)T
[
λ−(N+1)50

]−1
(w − w̄) +

∥∥∥3
1/2
N eN

∥∥∥2
,

which is a special case of (21.17) with

3
1/2
N dN and 3

1/2
N AN (21.28)

replacing
dN and AN , (21.29)

respectively, and with λ−(N+1)50 replacing 50.
We therefore conclude from (21.19) that the optimal solution ŵ of (21.27) is given by

(ŵ − w̄) = 8−1
N sN , (21.30)

where we have introduced

8N =
[
λ(N+1)5−1

0 + AT
N3NAN

]
, (21.31)

sN = AT
N3N

[
dN − AN w̄

]
. (21.32)

The coefficient matrix 8N is clearly symmetric and positive-definite.

21.4.2 Time Updates

It is straightforward to verify that 8N and sN so defined satisfy simple time-update relations, viz.,

8N+1 = λ8N + uN+1uT
N+1 , (21.33)

sN+1 = λsN + uN+1

[
d(N + 1) − uT

N+1w̄
]
, (21.34)

with initial conditions 8−1 = 5−1
0 and s−1 = 0. Note that 8N+1 and λ8N differ only by a rank-one

matrix.
The solution ŵ obtained by solving (21.30) is the optimal weight estimate based on the available

data from time i = 0 up to time i = N . We shall denote it from now on by wN ,

8N(wN − w̄) = sN .

The subscript N in wN indicates that the data up to, and including, time N were used. This is to
differentiate it from the estimate obtained by using a different number of data points.

This notational change is necessary because the main objective of the recursive least-squares (RLS)
problem is to show how to update the estimate wN , which is based on the data up to time N , to the
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estimate wN+1, which is based on the data up to time (N + 1), without the need to solve afresh a
new set of linear equations of the form

8N+1(wN+1 − w̄) = sN+1 .

Such a recursive update of the weight estimate should be possible since the coefficient matrices λ8N

and 8N+1 of the associated linear systems differ only by a rank-one matrix. In fact, a wide variety of
algorithms has been devised for this end and our purpose in this chapter is to provide an overview
of the different schemes.

Before describing these different variants, we note in passing that it follows from (21.20) that we
can express the minimum value of E(N) in the form:

Emin(N) =
∥∥∥3

1/2
N (dN − AN w̄)

∥∥∥2 − sT
N(wN − w̄) . (21.35)

21.5 The RLS Algorithm

The first recursive solution that we consider is the famed recursive least-squares algorithm, usually
referred to as the RLS algorithm. It can be derived as follows.

Let wi−1 be the solution of an optimization problem of the form (21.27) that uses input data up
to time (i − 1) [that is, for N = (i − 1)]. Likewise, let wi be the solution of the same optimization
problem but with input data up to time i [N = i].

The recursive least-squares (RLS) algorithm provides a recursive procedure that computes wi from
wi−1. A classical derivation follows by noting from (21.30) that the new solution wi should satisfy

wi − w̄ = 8−1
i si =

[
λ8i−1 + uiu

T
i

]−1 (
λsi−1 + ui

[
d(i) − uT

i w̄
])

,

where we have also used the time-updates for {8i, si}.
Introduce the quantities

Pi = 8−1
i , gi = 8−1

i ui . (21.36)

Expanding the inverse of [λ8i−1+uiuT
i ] by using the matrix inversion formula [stated after (21.24)],

and grouping terms, leads after some straightforward algebra to the RLS procedure:

• Initial conditions: w−1 = w̄ and P−1 = 50.

• Repeat for i ≥ 0:

wi = wi−1 + gi

[
d(i) − uT

i wi−1

]
, (21.37)

gi = λ−1Pi−1ui

1 + λ−1uT
i Pi−1ui

, (21.38)

Pi = λ−1
[
Pi−1 − giu

T
i Pi−1

]
. (21.39)

• The computational complexity of the algorithm is O(M2) per iteration.

21.5.1 Estimation Errors and the Conversion Factor

With the RLS problem we associate two residuals at each time instant i: the a priori estimation error
ea(i), defined by

ea(i) = d(i) − uT
i wi−1 ,
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and the a posteriori estimation error ep(i), defined by

ep(i) = d(i) − uT
i wi .

Comparing the expressions for ea(i) and ep(i), we see that the latter employs the most recent weight
vector estimate.

If we replace wi in the definition for ep(i) by its update expression (21.37), say

ep(i) = d(i) − uT
i (wi−1 + gi

[
d(i) − uT

i wi−1

]
) ,

some straightforward algebra will show that we can relate ep(i) and ea(i) via a factor γ (i) known as
the conversion factor:

ep(i) = γ (i)ea(i) ,

where γ (i) is equal to

γ (i) = 1

1 + λ−1uT
i Pi−1ui

= 1 − uT
i Piui . (21.40)

That is, the a posteriori error is a scaled version of the a priori error. The scaling factor γ (i) is defined
in terms of {ui , Pi−1} or {ui , Pi}. Note that 0 ≤ γ (i) ≤ 1.

Note further that the expression for γ (i) appears in the definition of the so-called gain vector gi

in (21.38) and, hence, we can alternatively rewrite (21.38) and (21.39) in the forms:

gi = λ−1γ (i)Pi−1ui , (21.41)

Pi = λ−1Pi−1 − γ −1(i)gig
T
i . (21.42)

21.5.2 Update of the Minimum Cost

Let Emin(i) denote the value of the minimum cost of the optimization problem (21.27) with data up
to time i. It is given by an expression of the form (21.35) with N replaced by i,

Emin(i) =

 i∑

j=0

λi−j
∥∥∥d(j) − uT

j w̄
∥∥∥2


 − sT

i (wi − w̄) .

Using the RLS update (21.37) for wi in terms of wi−1, as well as the time-update (21.34) for si in
terms of si−1, we can derive the following time-update for the minimum cost:

Emin(i) = λEmin(i − 1) + ep(i)ea(i) , (21.43)

where Emin(i − 1) denotes the value of the minimum cost of the same optimization problem (21.27)
but with data up to time (i − 1).

21.6 RLS Algorithms in Array Forms

As mentioned in the introduction, we intend to stress the array formulations of the RLS solution due
to their intrinsic advantages:

• They are easy to implement as a sequence of elementary rotations on arrays of numbers.

• They are modular and parallelizable.

• They have better numerical properties than the classical RLS description.
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21.6.1 Motivation

Note from (21.39) that the RLS solution propagates the variable Pi as the difference of two quantities.
This variable should be positive-definite. But due to roundoff errors, however, the update (21.39)
may not guarantee the positive-definiteness of Pi at all times i. This problem can be ameliorated
by using the so-called array formulations. These alternative forms propagate square-root factors of

either Pi or P−1
i , namely, P1/2

i or P−1/2
i , rather than Pi itself. By squaring P1/2

i , for example, we can
always recover a matrix Pi that is more likely to be positive-definite than the matrix obtained via
(21.39),

Pi = P1/2
i PT/2

i .

21.6.2 A Very Useful Lemma

The derivation of the array variants of the RLS algorithm relies on a very useful matrix result that
encounters applications in many other scenarios as well. For this reason, we not only state the result
but also provide one simple proof.

LEMMA 21.1 Given two n × m (n ≤ m) matrices A and B, then AAT = BBT if, and only if, there
exists an m × m orthogonal matrix 2 (22T = Im) such that A = B2.

PROOF 21.1 One implication is immediate. If there exists an orthogonal matrix 2 such that
A = B2 then

AAT = (B2)(B2)T = B(22T )BT = BBT .

One proof for the converse implication follows by invoking the singular value decompositions of
the matrices A and B,

A = UA

[
6A 0

]
VT

A ,

B = UB

[
6B 0

]
VT

B ,

where UA and UB are n × n orthogonal matrices, VA and VB are m × m orthogonal matrices, and
6A and 6B are n × n diagonal matrices with nonnegative (ordered) entries.

The squares of the diagonal entries of 6A (6B) are the eigenvalues of AAT (BBT ). Moreover, UA

(UB) are constructed from an orthonormal basis for the right eigenvectors of AAT (BBT).
Hence, it follows from the identity AAT = BBT that we have 6A = 6B and we can choose

UA = UB . Let 2 = VBVT
A. We then obtain 22T = Im and B2 = A.

21.6.3 The Inverse QR Algorithm

We now employ the above result to derive an array form of the RLS algorithm that is known as the
inverse QR algorithm.

Let P1/2
i−1 denote a (preferably lower triangular) square-root factor of Pi−1, i.e., any matrix that

satisfies
Pi−1 = P1/2

i−1 PT/2
i−1 .

[The triangular square-root factor of a symmetric positive-definite matrix is also known as the
Cholesky factor].

c©1999 by CRC Press LLC



Now note that the RLS recursions (21.38) and (21.39) can be expressed in factored form as follows:[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

] [
1 0T

1√
λ
PT/2

i−1ui
1√
λ
PT/2

i−1

]

=
[

γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

] [
γ −1/2(i) gT

i γ −1/2(i)

0 PT/2
i

]
.

To verify that this is indeed the case, we simply multiply the factors and compare terms on both sides
of the equality.

The point to note is that the above equality fits nicely into the statement of the previous lemma by
taking

A =
[

1 1√
λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
(21.44)

and

B =
[

γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

]
. (21.45)

We therefore conclude that there should exist an orthogonal matrix 2i that relates the arrays A and
B in the form [

1 1√
λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i =

[
γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

]
.

That is, there should exist an orthogonal 2i that transforms the prearray A into the postarray B.

Note that the prearray contains quantities that are available at step i, namely {ui , P1/2
i−1}, while the

postarray provides the (normalized) gain vector giγ
−1/2(i), which is needed to update the weight

vector estimate wi−1 into wi , as well as the square-root factor of the variable Pi , which is needed to
form the prearray for the next iteration.

But how do we determine 2i? The answer highlights a remarkable property of array algorithms.
We do not really need to know or determine 2i explicitly!

To clarify this point, we first remark from the expressions (21.44) and (21.45) for the pre and
postarrays that 2i is an orthogonal matrix that takes an array of numbers of the form (assuming a
vector ui of dimension M = 3) 


1 x x x

0 x 0 0
0 x x 0
0 x x x


 (21.46)

and transforms it to the form 


x 0 0 0
x x 0 0
x x x 0
x x x x


 . (21.47)

That is, 2i annihilates all the entries of the top row of the prearray (except for the left-most entry).
Now assume we form the prearray A in (21.44) and choose any 2i (say as a sequence of elementary

rotations) so as to reduce A to the triangular form (21.47), that is, in order to annihilate the desired
entries in the top row.

Let us denote the resulting entries of the postarray arbitrarily as:
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[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i =

[
a 0T

b C

]
, (21.48)

where {a, b, C} are quantities that we wish to identify [a is a scalar, b is a column vector, and C is a
lower triangular matrix]. The claim is that by constructing 2i in this way (i.e., by simply requiring
that it achieves the desired zero pattern in the postarray), the resulting quantities {a, b, C} will be
meaningful and can in fact be identified with the quantities in the postarray B.

To verify that the quantities {a, b, C} can indeed be identified with {γ −1/2(i), giγ
−1/2(i), P1/2

i },
we proceed by squaring both sides of (21.48),

[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i2

T
i︸ ︷︷ ︸

I

[
1 0

1√
λ
PT/2

i−1ui
1√
λ
PT/2

i−1

]
=

[
a 0T

b C

] [
a bT

0 CT

]
,

and comparing terms on both sides of the equality to get the identities:

a2 = 1 + λ−1uT
i Pi−1ui = γ −1(i) ,

ba = λ−1Pi−1ui = giγ
−1(i) ,

CCT = λ−1Pi−1 − bbT = λ−1Pi−1 − γ −1(i)gig
T
i .

Hence, as desired, we can make the identifications

a = γ −1/2(i) , b = giγ
−1/2(i) , C = P1/2

i .

In summary, we have established the validity of an array alternative to the RLS algorithm, known
as the inverse QR algorithm (also as square-root RLS). It is listed in Table 21.3. The recursions are

known as inverse QR since they propagate P1/2
i , which is a square-root factor of the inverse of the

coefficient matrix 8i .

TABLE 21.3 The Inverse QR Algorithm
Initialization. Start with w−1 = w̄ and

P
1/2
−1 = 5

1/2
0

• Repeat for each time instant i ≥ 0:
 1 1√

λ
uT
i

P
1/2
i−1

0 1√
λ

P
1/2
i−1


 2i =

[
γ −1/2(i) 0T

gi γ
−1/2(i) P

1/2
i

]

where 2i is any orthogonal rotation that
produces the zero pattern in the postarray.

The weight-vector estimate is updated via

wi = wi−1 +
[

gi
γ 1/2(i)

] [
1

γ 1/2(i)

]−1 [
d(i) − uT

i
wi−1

]

where the quantities {γ −1/2(i), gi γ
−1/2(i)} are

read from the entries of the postarray.

The computational cost is O(M2) per iteration.
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21.6.4 The QR Algorithm

The RLS recursion (21.39) and the inverse QR recursion of Table 21.3 propagate the variable Pi or
a square-root factor of it. The starting condition for both algorithms is therefore dependent on the

weighting matrix 50 or its square-root factor 5
1/2
0 .

This situation becomes inconvenient when the initial condition 50 assumes relatively large values,
say 50 = σ I with σ � 1. A particular instance arises, for example, when we take σ → ∞ in which
case the regularized least-squares problem (21.27) reduces to a standard least-squares problem of the
form

min
w


E(N) =

N∑
j=0

λN−j |d(j) − uT
j w|2


 . (21.49)

For such problems, it is preferable to propagate the inverse of the variable Pi rather than Pi itself.
Recall that the inverse of Pi is 8i since we have defined earlier Pi = 8−1

i .

The QR algorithm is a recursive procedure that propagates a square-root factor of 8i . Its validity
can be verified in much the same way as we did for the inverse QR algorithm. We form a prearray of
numbers and then choose a sequence of rotations that induces a desired zero pattern in the postarray.
Then by squaring and comparing terms on both sides of an equality we can identify the resulting
entries of the postarray as meaningful quantities in the RLS context. For this reason, we shall be brief
and only highlight the main points.

Let 8
1/2
i−1 denote a square-root factor (preferably lower-triangular) of 8i−1, 8i−1 = 8

1/2
i−1 8

T/2
i−1,

and define, for notational convenience, the quantity

qi−1 = 8
T/2
i−1 wi−1 . (21.50)

At time (i − 1) we form the prearray of numbers

A =



√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1


 ,

whose entries have the following pattern (shown for M = 3):

A =




x 0 0 x

x x 0 x

x x x x

x x x x

0 0 0 1


 .

Now implement an orthogonal transformation 2i that reduces A to the form

B =




x 0 0 0
x x 0 0
x x x 0
x x x x

x x x x


 =


 C 0

bT a

hT f


 ,

where the quantities {C, b, h, a, f } need to be identified. By comparing terms on both sides of the
equality


√

λ8
1/2
i−1 ui√

λqT
i−1 d(i)

0T 1


 2i2

T
i︸ ︷︷ ︸

I




√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1




T

=

 C 0

bT a

hT f





 C 0

bT a

hT f


T

,
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we can make the identifications:

C = 8
1/2
i , bT = qT

i , hT = uT
i 8

−T/2
i ,

a = ea(i)γ
1/2(i), f = γ 1/2(i) ,

where ea(i) = d(i)−uT
i wi−1 is the a priori estimation error. This derivation establishes the so-called

QR algorithm (listed in Table 21.4).

TABLE 21.4 The QR Algorithm

Initialization. Start with w−1 = w̄, 8
1/2
−1 = 5

−T/2
0 , q−1 = 5

−1/2
0 w̄.

• Repeat for each time instant i ≥ 0:


√
λ8

1/2
i−1 uT

i√
λqT

i−1 d(i)

0T 1


 2i =


 8

1/2
i

0

qT
i

ea(i)γ 1/2(i)

uT
i

8
−T/2
i

γ 1/2(i)




where 2i is any orthogonal rotation that produces the
zero pattern in the postarray.

The weight-vector estimate can be obtained by solving the
triangular linear system of equations

8
T/2
i

wi = qi

where the quantities {81/2
i

, qi } are available from the
entries of the postarray.

The computational complexity is still O(M2) per iteration.

The QR solution determines the weight-vector estimate wi by solving a triangular linear system of
equations, e.g., via back-substitution. A major drawback of a back-substitution step is that it involves
serial operations and, therefore, does not lend itself to a fully parallelizable implementation.

An alternative procedure for computing the estimate wi can be obtained by appending one more
block row to the arrays of the QR algorithm, leading to the equations:




√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1
1√
λ
8

−T/2
i−1 0


 2i =




8
1/2
i 0

qT
i ea(i)γ

1/2(i)

uT
i 8

−T/2
i γ 1/2(i)

8
−T/2
i −giγ

−1/2(i)


 . (21.51)

In this case, the last row of the postarray provides the gain vector gi that can be used to update the
weight-vector estimate as follows:

wi = wi−1 +
[

gi

γ 1/2(i)

] [
ea(i)γ

1/2(i)
]

.

Note, however, that the pre- and postarrays now propagate both 8
1/2
i and its inverse, which may lead

to numerical difficulties.
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21.7 Fast Transversal Algorithms

The earlier recursive least-squares solutions require O(M2) floating point operations per iteration,
where M is the size of the input vector ui .

uT
i = [

u1(i) u2(i) . . . uM(i)
]

.

It often happens in practice that the entries of ui are time-shifted versions of each other. More
explicitly, if we denote the value of the first entry of ui by u(i) [instead of u1(i)], then ui will have
the form

uT
i = [

u(i) u(i − 1) . . . u(i − M + 1)
]
. (21.52)

This has the pictorial representation shown in Fig. 21.3. The term z−1 represents a unit-time delay.
The structure that takes u(j) as an input and provides the inner product

∑M
k=1 u(j + 1− k)w(k) as

an output is known as a transversal or FIR (finite-impulse response) filter.

FIGURE 21.3: A linear combiner with shift structure in the input channels.

The shift structure in ui can be exploited in order to derive fast variants to the RLS solution that
would require O(M) operations per iteration rather than O(M2). This can be achieved by showing
that, in this case, the M ×M variables Pi that are needed in the RLS recursion (21.39) exhibit certain
matrix structure that allows us to replace the RLS recursions by an alternative set of recursions that
we now motivate.

21.7.1 The Prewindowed Case

We first assume that no input data is available prior to and including time i = 0. That is, u(i) = 0
for i ≤ 0. In this case, the values at time 0 of the variables {ui , gi , γ (i), Pi} become:

u0 = 0, g0 = 0, γ (0) = 1, P0 = λ−1P−1 = λ−150 .

It then follows that the following equality holds:[
P0 0
0T 0

]
−

[
0 0T

0 P−1

]
=

[
λ−150 0

0T 0

]
−

[
0 0T

0 50

]

Note that we have embedded P0 and P−1 into larger matrices [of size (M + 1) × (M + 1) each] by
adding one zero row and one zero column. This embedding will allow us to suggest a suitable choice
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for the initial weighting matrix 50 in order to enforce a low-rank difference matrix on the right-hand
side of the above expression. In so doing, we guarantee that (P0 ⊕0) can be obtained from (0⊕P−1)

via a low rank update.
Strikingly enough, the argument will further show that because of the shift structure in the input

vectorsui , if this low-rankpropertyholds for the initial time instant then it alsoholds for the successive
time instants! Consequently, the successive matrices (Pi ⊕ 0) will also be low rank modifications of
earlier matrices (0 ⊕ Pi−1).

In this way, a fast procedure for updating the Pi can be developed by replacing the propagation of
Pi via (21.39) by a recursion that instead propagates the low rank factors that generate the Pi . We
will verify that this procedure also allows us to update the weight vector estimates rapidly (in O(M)

operations).

21.7.2 Low-Rank Property

Assume we choose 50 in the special diagonal form

50 = δ · diagonal {λ2, λ3, . . . , λM+1}, (21.53)

where δ is a positive quantity (usually much larger than one, δ � 1). In this case, we are led to a
rank-two difference of the form

[
λ−150 0

0T 0

]
−

[
0 0T

0 50

]
= δ · λ ·


 1

0
−λM


 ,

which can be factored as [
P0 0
0T 0

]
−

[
0 0T

0 P−1

]
= λ · Ł̄0S0Ł̄

T
0 , (21.54)

where Ł̄0 is (M + 1) × 2 and S0 is a 2 × 2 signature matrix that are given by

Ł̄0 = √
δ ·


 1 0

0 0

0 λ
M
2


 , S0 =

[
1 0
0 −1

]
.

21.7.3 A Fast Array Algorithm

We now argue by induction, and by using the shift property of the input vectors ui , that if the low-rank
property holds at a certain time instant i, say[

Pi 0
0T 0

]
−

[
0 0T

0 Pi−1

]
= λ · Ł̄iSi Ł̄

T
i , (21.55)

then three important facts hold:

• The low-rank property also holds at time i + 1, say[
Pi+1 0
0T 0

]
−

[
0 0T

0 Pi

]
= λ · Ł̄i+1Si+1Ł̄

T
i+1 ,

• There exists an array algorithm that updates Ł̄i to Ł̄i+1. Moreover, the algorithm also
provides the gain vector gi that is needed to update the weight-vector estimate in the RLS
solution.
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• The signature matrices {Si , Si+1} are equal! That is, all successive low-rank differences
have the same signature matrix as the initial difference and, hence,

Si = S0 =
[

1 0
0 −1

]
for all i .

To verify these claims, consider (21.55) and form the prearray

A =




γ −1/2(i)
[

u(i + 1) uT
i

]
Ł̄i[

0
giγ

−1/2(i)

]
Ł̄i


 .

For M = 3, the prearray has the following generic form (recall that L̄i is (M + 1) × 2):

A =




x x x

0 x x

x x x

x x x

x x x


 .

Now let 2i be a matrix that satisfies

2i


 1

1
−1


 2T

i =

 1

1
−1


 =

[
1

Si

]
,

and such that it transforms A into the form

B =




x 0 0
x x x

x x x

x x x

x x x


 =

[
a 0T

b C

]
.

That is, 2i annihilates two entries in the top row of the prearray. This can be achieved by employing
a circular rotation that pivots with the left-most entry of the first row and annihilates its second entry.
We then employ a hyperbolic rotation that pivots again with the left-most entry and annihilates the
last entry of the top row.

The unknown entries {a, b, C} can be identified by resorting to the same technique that we em-
ployed earlier during the derivation of the QR and inverse QR algorithms. By comparing entries on
both sides of the equality

A

[
1

Si

]
AT =

[
a 0T

b C

] [
1

Si

] [
a 0T

b C

]T

we obtain several equalities. For example, by equating the (1, 1) entries we obtain the following
relation:

γ −1(i) + [
u(i + 1) uT

i

]
Ł̄iSi Ł̄

T
i

[
u(i + 1)

ui

]
= a2 . (21.56)

By using (21.55) for Ł̄iSi Ł̄i and by noting that we can rewrite the vector
[

u(i + 1) uT
i

]
in two

equivalent forms (due to its shift structure):[
u(i + 1) uT

i

] = [
uT

i+1 u(i − M + 1)
]

, (21.57)
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we readily conclude that (21.56) collapses to

γ −1(i) + λ−1uT
i+1Piui+1 − λ−1uT

i Pi−1ui = a2 .

But γ −1(i) = 1 + λ−1uT
i Pi−1ui . Therefore,

a2 = 1 + λ−1uT
i+1Piui+1 = γ −1(i + 1),

which shows that we can identify a as

a = γ −1/2(i + 1).

A similar argument allows us to identify b. By comparing the (2, 1) entries we obtain

ab =
[

0
giγ

−1(i)

]
+ Ł̄iSi Ł̄

T
i

[
u(i + 1)

ui

]
. (21.58)

Again, by (21.55) for Ł̄iSi Ł̄
T
i , (21.57) for the vector

[
u(i + 1) uT

i

]
, and by noting from the

definition of gi that [
0

giγ
−1(i)

]
=

[
0

λ−1Pi−1ui

]
we obtain

b =
[

gi+1γ
−1/2(i + 1)

0

]
.

Finally, for the last term C we compare the (2, 2) entries to obtain

CSiC
T =

[
Pi+1 0
0T 0

]
−

[
0 0T

0 Pi

]
.

The difference on the right-hand side is by definition λŁ̄i+1Si+1Ł̄
T
i+1. This shows that we can make

the identifications
C = √

λ · Ł̄i+1 , Si+1 = Si .

In summary, we have established the validity of the array algorithm shown in Table 21.5, which
minimizes the cost function (21.27) in the prewindowed case and for the special choice of 50 in
(21.53).

Note that this fast procedure computes the required gain vectors gi without explicitly evaluating the
matrices Pi . Instead, the low-rank factors Ł̄i are propagated, which explains the lower computational
requirements.

21.7.4 The Fast Transversal Filter

The fast algorithm of the last section is an array version of fast RLS algorithms known as FTF (Fast
Transversal Filter) and FAEST (Fast A posteriori Error Sequential Technique). In contrast to the
above array description, where the transformation 2i that updates the data from time i to time
(i + 1) is left implicit, the FTF and FAEST algorithms involve explicit sets of equations.

The derivation of these explicit sets of equations can be motivated as follows. Note that the
factorization (21.54) is highly nonunique. What is special about (21.54) [and also (21.55)] is that
we have forced S0 to be a signature matrix, i.e., a matrix with ±1′s on its diagonal. More generally,
we can allow for different factorizations with an S0 that is not restricted to be a signature matrix.
Different choices lead to different sets of equations.
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TABLE 21.5 A Fast Array Algorithm
Input. Prewindowed data {d(j), u(j)} for j ≥ 1 and 50 as in (21.53) in the cost (21.27).

Initialization. Set
w−1 = w̄, γ −1/2(0) = 1

Ł̄0 = √
δ ·


 1 0

0 0

0 λ
M
2


 , S0 =

[
1 0
0 −1

]

Repeat for each time instant i ≥ 0:




γ −1/2(i)
[

u(i + 1) uT
i

]
Ł̄i[

0
gi γ

−1/2(i)

]
Ł̄i


 2i =




γ −1/2(i + 1) 0T

[
gi+1γ −1/2(i + 1)

0

] √
λ Ł̄i+1




where 2i is any (1 ⊕ S0)−orthogonal matrix that produces the zero pattern in the
postarray, and Ł̄i is a two-column matrix.

The weight-vector estimate is updated via:

wi = wi−1 +
[

gi
γ 1/2(i)

] [
γ −1/2(i)

]−1 [
d(i) − uT

i
wi−1

]
The computational cost is O(M) per iteration.

More explicitly, assume we factor the difference matrix in (21.55) as[
Pi 0
0T 0

]
−

[
0 0T

0 Pi−1

]
= λ · ŁiMiŁ

T
i , (21.59)

where Łi is an (M+1)×2matrix and Mi is a 2×2matrix that is not restricted to be a signature matrix.
[We already know from the earlier array-based argument that this difference is always low-rank.]

Given the factorization (21.59), it is easy to verify that two successive gain vectors satisfy the relation:[
gi+1γ

−1(i + 1)

0

]
=

[
0

giγ
−1(i)

]
+ ŁiMiŁ

T
i

[
u(i + 1)

ui

]
.

This is identical to (21.58) except that Si is replaced by Mi and Ł̄i is replaced by Łi . The fast array
algorithm of the previous section provides one possibility for enforcing this relation and, hence, of
updating gi to gi+1 via updates of Ł̄i .

The FTF and FAEST algorithms follow by employing one such alternative factorization, where the
two columns of the factor Łi turn out to be related to the solution of two fundamental problems in
adaptive filter theory: the so-called forward and backward prediction problems. Moreover, the Mi

factor turns out to be diagonal with entries equal to the so-called forward and backward minimum
prediction energies. An explicit derivation of the FTF equations can be pursued along these lines. We
omit the details and continue to focus on the square-root formulation. We now proceed to discuss
order-recursive adaptive filters within this framework.

21.8 Order-Recursive Filters

The RLS algorithms that were derived in the previous sections are all fixed-order solutions of (21.27)
in the sense that they recursively evaluate successive weight estimates wi that correspond to a fixed-
order combiner of order M . This form of computing the minimizing solution wN is not convenient
from an order-recursive point of view. In other words, assume we pose a new optimization problem
of the same form as (21.27) but where the vectors {w, uj } are now of order (M + 1) rather than M .
How do the weight estimates of this new higher-dimensional problem relate to the weight estimates
of the lower dimensional problem?
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Before addressing this issue any further, it is apparent at this stage that we need to introduce a
notational modification in order to keep track of the proper sizes of the variables. Indeed, from
now on, we shall explicitly indicate the size of a variable by employing an additional subscript. For
example, we shall write {wM, uM,j } instead of {w, uj } to denote vectors of size M .

Returning to the point raised in the previous paragraph, let wM+1,N denote the optimal solution of
the new optimization problem (with (M + 1)−dimensional vectors {wM+1, uM+1,j }. The adaptive
algorithms of the previous sections give an explicit recursive (time-update) relation between wM,N

andwM,N−1. But theydonotprovidea recursive (order-update) relationbetween wM,N andwM+1,N .

There is an alternative to the FIR implementation of Fig. 21.3 that allows us to easily carry over the
information from previous computations for the order M filter. This is the so-called lattice filter.

From now on we assume, for simplicity of presentation, that the weighting matrix 50 in (21.27) is
very large, i.e., 50 → ∞I. This assumption reduces (21.27) to a standard least-squares formulation:

min
wM


 N∑

j=0

λN−i |d(j) − uT
M,j wM |2


 . (21.60)

The order-recursive filters of this section deal with this kind of minimization.

Now suppose that our interest in solving (21.60) is not to explicitly determine the weight estimate
wM,N , but rather to determine estimates for the reference signals {d(·)}, say

dM(N) = uT
M,NwM,N = estimate of d(N) of order M.

Likewise, for the higher-order problem,

dM+1(N) = uT
M+1,NwM+1,N = estimate of d(N) of order M + 1.

The resulting estimation errors will be denoted by

eM(N) = d(N) − dM(N), eM+1(N) = d(N) − dM+1(N).

The lattice solution allows us to update eM(N) to eM+1(N) without explicitly computing the weight
estimates wM,N and wM+1,N .

The discussion that follows relies heavily on the orthogonality property of least-squares solutions
and, therefore, serves as a good illustration of the power and significance of this property. It will
further motivate the introduction of the forward and backward prediction problems.

21.8.1 Joint Process Estimation

For the sake of illustration, and without loss of generality, the discussion in this section assumes
particular values for M and λ, say M = 3 and λ = 1. These assumptions simplify the exposition
without affecting the general conclusions. In particular, a nonunity λ can always be incorporated
into the discussion by properly normalizing the vectors involved in the derivation [cf. (21.28) and
(21.29)] and we will do so later. We continue to assume prewindowed data (i.e., the data is zero for
time instants i ≤ 0).

To begin with, assume we solve the following problem [as suggested by (21.60)]: minimize over
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w3 the cost function

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0
d(1)

d(2)

.

.

.

d(N)




︸ ︷︷ ︸
dN

−




0 0 0
u(1) 0 0
u(2) u(1) 0

.

.

.
.
.
.

.

.

.

u(N) u(N − 1) u(N − 2)




︸ ︷︷ ︸
A3,N


 w3(1)

w3(2)

w3(3)




︸ ︷︷ ︸
w3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(21.61)

where dN denotes the vector of desired signals up to time N , and A3,N denotes a three-column matrix
of input data {u(·)}, also up to time N .

The optimal solution is denoted by w3,N . The subscript N indicates that it is an estimate based
on the data u(·) up to time N . Determining w3,N corresponds to determining the entries of a 3-
dimensional weight vector so as to approximate the column vector dN by the linear combination
A3,Nw3,N in the least-squares sense (21.61). We thus say that expression (21.61) defines a third-
order estimator for the reference sequence {d(·)}. The resulting a posteriori estimation error vector
is denoted by

e3,N = dN − A3,Nw3,N ,

where, for example, the last entry of e3,N is given by

e3(N) = d(N) − uT
3,Nw3,N ,

and it denotes the a posteriori estimation error in estimating d(N) from a linear combination of the
three most recent inputs.

We already know from the orthogonality property of least-squares solutions that the a posteriori
residual vector e3,N has to be orthogonal to the data matrix A3,N , viz.,

AT
3,Ne3,N = 0.

We also know that the optimal solution w3,N provides an estimate vector A3,Nw3,N that is the closest
element in the column space of A3,N to the column vector dN .

Now assume that we wish to solve the next higher order problem, viz., of order M = 4: minimize
over w4 the cost function ∥∥dN − A4,Nw4

∥∥2
, (21.62)

where

A4,N =




0 0 0 0
u(1) 0 0 0
u(2) u(1) 0 0

...
...

...
...

u(N − 1) u(N − 2) u(N − 3) u(N − 4)

u(N) u(N − 1) u(N − 2) u(N − 3)




, w4 =




w4(1)

w4(2)

w4(3)

w4(4)


 .

This statement is very close to (21.61) except for an extra column in the data matrix A4,N : the first
three columns of A4,N coincide with those of A3,N , while the last column of A4,N contains the extra
new data that are needed for a fourth-order estimator. More specifically, A3,N and A4,N are related
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as follows:

A4,N =




0
0
0

A3,N

...

u(N − 4)

u(N − 3)




. (21.63)

The problem in (21.62) requires us to linearly combine the four columns of A4,N in order to
compute the fourth-order estimates of {0, d(1), d(2), . . . , d(N)}. In other words, it requires us to
determine the closest element in the column space of A4,N to the same column vector dN .

Wealreadyknowwhat is the closest element todN in the columnspaceof A3,N , which is a submatrix
of A4,N . This suggests that we should try to decompose the column space of A4,N into two orthogonal
subspaces, viz.,

Range(A4,N ) = Range(A3,N ) ⊕ Range(m) , (21.64)

where m is a column vector that is orthogonal to A3,N , AT
3,Nm = 0. The notation Range(A3,N ) ⊕

Range(m) also means that every element in the column space of A4,N can be expressed as a linear
combination of the columns of A3,N and of m.

The desired decomposition motivates the backward prediction problem.

21.8.2 The Backward Prediction Error Vectors

We continue to assume λ = 1 and M = 3, and we note that the required decomposition can be
accomplished by projecting the last column of A4,N onto the column space of its first three columns
(i.e., onto the column space of A3,N ) and keeping the residual vector as the desired vector m. This is
nothingbutaGram-Schmidtorthogonalizationstepand it is equivalent to the followingminimization
problem: minimize over wb

3 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0
0
0
...

u(N − 4)

u(N − 3)




︸ ︷︷ ︸
Last column

of A4,N

−A3,N


 wb

3(1)

wb
3(2)

wb
3(3)




︸ ︷︷ ︸
wb

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (21.65)

This is also a special case of (21.60) where we have replaced the sequence

{0, d(1), . . . , d(N)}
by the sequence

{0, 0, 0, . . . , u(N − 4), u(N − 3)}.
We denote the optimal solution by wb

3,N . The subscript N indicates that it is an estimate based on the

data u(·) up to time N . Determining wb
3,N corresponds to determining the entries of a 3-dimensional
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weight vector so as to approximate the last column of A4,N by a linear combination of the columns
of A3,N , viz., A3,Nwb

3,N , in the least-squares sense.

Note that theentries inevery rowof thedatamatrixA3,N are the three“future”values corresponding
to the entry in the last column of A4,N . Hence, the last element of the above linear combination
serves as a backward prediction of u(N − 3) in terms of {u(N), u(N − 1), u(N − 2)}. A similar
remark holds for the other entries. The superscript b stands for backward.

We thus say that expression (21.65) defines a third-order backward prediction problem. The
resulting a posteriori backward prediction error vector is denoted by

b3,N =




0
0
0
...

u(N − 4)

u(N − 3)




− A3,Nwb
3,N .

In particular, the last entry of b3,N is defined as the aposterioribackward prediction error in estimating
u(N − 3) from a linear combination of the future 3 inputs. It is denoted by b3(N) and is given by

b3(N) = u(N − 3) − uT
3,Nwb

3,N . (21.66)

We further know, from the orthogonality property of least-squares solutions, that the a posteriori
backward residual vector b3,N has to be orthogonal to the data matrix A3,N , AT

3,Nb3,N = 0, which
therefore implies that it can be taken as the m column that we mentioned earlier, viz., we can write

Range (A4,N ) = Range (A3,N ) ⊕ Range (b3,N ). (21.67)

Our original motivation for introducing the a posteriori backward residual vector b3,N was the
desire to solve the fourth-order problem (21.62), not afresh, but in a way so as to exploit the solution
of lower order, thus leading to an order-recursive algorithm.

Assume now that we have available the estimation error vectors e3,N and b3,N , which are both
orthogonal to A3,N . Knowing that b3,N leads to an orthogonal decomposition of the column space
of A4,N as in (21.67), then updating e3,N into a fourth-order a posteriori residual vector e4,N , which
has to be orthogonal to A4,N , simply corresponds to projecting the vector e3,N onto the vector b3,N .
More explicitly, it corresponds to determining a scalar coefficient k3 that solves the optimization
problem

min
k3

∥∥e3,N − k3b3,N

∥∥2
. (21.68)

This is a standard least-squares problem and its optimal solution is denoted by

k3(N) = 1

bT
3,Nb3,N

bT
3,Ne3,N . (21.69)

We now know how to update e3,N into e4,N by projecting e3,N onto b3,N . In order to be able to
proceed with this order update procedure, we still need to know how to order-update the backward
residual vector. That is, we need to know how to go from b3,N to b4,N .
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21.8.3 The Forward Prediction Error Vectors

We continue to assume λ = 1 and M = 3. The order-update of the backward residual vector

motivates us to introduce the forward prediction problem: minimize over wf

3 the cost function∥∥∥∥∥∥∥∥∥∥∥∥∥∥




u(1)

u(2)

u(3)
...

u(N + 1)


 − A3,N


 w

f

3 (1)

w
f

3 (2)

w
f

3 (3)




︸ ︷︷ ︸
wf

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (21.70)

We denote the optimal solution by wf

3,N+1. The subscript indicates that it is an estimate based on

the data u(·) up to time N + 1. Determining wf

3,N+1 corresponds to determining the entries of a
3-dimensional weight vector so as to approximate the column vector


u(1)

u(2)

u(3)
...

u(N + 1)




by a linear combination of the columns of A3,N , viz., A3,Nwf

3,N+1.
Note that the entries of the successive rows of the data matrix A3,N are the past three inputs relative

to the corresponding entries of the column vector. Hence, the last element of the linear combination

A3,Nwf

3,N+1 serves as a forward prediction of u(N + 1) in terms of {u(N), u(N − 1), u(N − 2)}. A

similar remark holds for the other entries. The superscript f stands for forward.
We thus say that expression (21.70)defines a third-order forwardpredictionproblem. The resulting

a posteriori forward prediction error vector is denoted by

f3,N+1 =




u(1)

u(2)

u(3)
...

u(N + 1)


 − A3,Nwf

3,N+1 .

Inparticular, the last entryof f3,N+1 is definedas theaposteriori forwardpredictionerror in estimating
u(N + 1) from a linear combination of the past three inputs. It is denoted by f3(N + 1) and is given
by

f3(N + 1) = u(N + 1) − u3,Nwf

3,N+1 . (21.71)

Now assume that we wish to solve the next-higher order problem, viz., of order M = 4: minimize

over wf

4 the cost function ∥∥∥∥∥∥∥∥∥∥∥




u(1)

u(2)

u(3)
...

u(N + 1)


 − A4,N




w
f

4 (1)

w
f

4 (2)

w
f

4 (3)

w
f

4 (4)




∥∥∥∥∥∥∥∥∥∥∥

2

. (21.72)
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We again observe that this statement is very close to (21.70) except for an extra column in the data
matrix A4,N , in precisely the same way as happened with e4,N and b3,N . We can therefore obtain
f4,N+1 by projecting f3,N+1 onto b3,N and taking the residual vector as f4,N+1,

min
k
f
3

‖f3,N+1 − k
f

3 b3,N‖2 . (21.73)

This is also a standard least-squares problem and we denote its optimal solution by k
f

3 (N + 1),

k
f

3 (N + 1) = bT
3,N f3,N+1

bT
3,Nb3,N

, (21.74)

with

f4,N+1 = f3,N+1 − k
f

3 (N + 1)b3,N . (21.75)

Similarly, the backward residual vector b3,N can be updated to b4,N+1 by projecting b3,N onto f3,N+1,

min
kb

3

∥∥∥b3,N − kb
3f3,N+1

∥∥∥2
, (21.76)

and we get, after denoting the optimal solution by kb
3(N + 1),

b4,N+1 = b3,N − kb
3(N + 1)f3,N+1 , (21.77)

where

kb
3(N + 1) = fT

3,N+1b3,N

fT
3,N+1f3,N+1

. (21.78)

Note the change in the time index as we move from b3,N to b4,N+1. This is because b4,N+1 is obtained
by projecting b3,N onto f3,N+1, which corresponds to the following definition for b4,N+1,

b4,N+1 =




0
0
0
...

u(N − 4)

u(N − 3)




− A4,N+1




wb
4,N+1(1)

wb
4,N+1(2)

wb
4,N+1(3)

wb
4,N+1(4)




︸ ︷︷ ︸
wb

4,N+1

.

Finally, in view of (21.69), the joint process estimation problem involves a recursion of the form

e4,N = e3,N − k3(N)b3,N , (21.79)

where

k3(N) = bT
3,Ne3,N

bT
3,Nb3,N

. (21.80)
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21.8.4 A Nonunity Forgetting Factor

For a general filter order M and for a nonunity λ, an extension of the above arguments would show
that the prediction vectors can be updated as follows:

fM+1,N+1 = fM,N+1 − k
f
M(N + 1)bM,N ,

bM+1,N+1 = bM,N − kb
M(N + 1)fM,N+1 ,

eM+1,N = eM,N − kM(N)bM,N ,

k
f
M(N + 1) = bT

M,N3N fM,N+1

bT
M,N3NbM,N

,

kb
M(N + 1) = fT

M,N+13NbM,N

fT
M,N+13N fM,N+1

,

kM(N) = bT
M,N3NeM,N

bT
M,N3NbM,N

,

where
3N = diag {λN, λN−1, . . . , λ, 1} .

For completeness, we also include the defining relations for the a priori and a posteriori prediction
errors:

βM(N) = u(N − M) − uT
M,Nwb

M,N−1 ,

bM(N) = u(N − M) − uT
M,Nwb

M,N ,

αM(N + 1) = u(N + 1) − uT
M,Nwf

M,N ,

fM(N + 1) = u(N + 1) − uT
M,Nwf

M,N+1 .

Using the definition (21.40) for a conversion factor in a least-squares formulation, it is easy to see that
the same factor converts the a priori prediction errors to the corresponding a posteriori prediction
errors. This factor will be denoted by γM(N).

TABLE 21.6 Useful Relations for the Prediction Problems
Variable Definition or Relation

A priori forward error αM(N + 1) = u(N + 1) − uT
M,N

w
f
M,N−1

A priori backward error βM(N) = u(N − M) − uT
M,N

wb
M,N−1

A posteriori forward error fM(N + 1) = u(N + 1) − uT
M,N

w
f
M,N

A posteriori backward error bM(N) = u(N − M) − uT
M,N

wb
M,N

Forward error by conversion fM(N + 1) = αM(N + 1)γM(N)
Backward error by conversion bM(N) = βM(N)γM(N)

Gain vector gM,N = 8−1
M,N

uM,N

Conversion factor γM(N) = 1 − uT
M,N

8−1
M,N

uM,N

Minimum forward-prediction error energy ξ
f
M

(N + 1) = λξ
f
M

(N) + |f̄M (N + 1)|2
Minimum backward-prediction error energy ξb

M
(N + 1) = λξb

M
(N) + |b̄M (N + 1)|2

Table 21.6 summarizes, for ease of reference, the definitions and relations that have been introduced
thus far. In particular, the last two lines of the table also provide time-update relations for the
minimum costs of the forward and backward prediction problems. These costs are denoted by

ξ
f
M(N+1) and ξb

M(N) and they are equal to the quantities fT
M,N+13N fM,N+1 and bT

M,N3NbM,N that
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appear in the denominators of some of the earlier expressions. The last two relations of Table 21.6 use
the result (21.43) to express the minimum costs in terms of the so-called angle-normalized prediction
errors:

f̄M(N + 1) = αM(N + 1)γ
1/2
M (N) , (21.81)

b̄M(N) = βM(N)γ
1/2
M (N) . (21.82)

We can derive, in different ways, similar update relations for the inner product terms

1M(N + 1) = fT
M,N+13NbM,N ,

ρM(N) = bT
M,N3NeM,N .

One possibility is to note, after some algebra and using the orthogonality principle, that the following
relation holds:

1M(N + 1) =
[

1 −(wf
M,N)T 0

]
8M+2,N+1


 0

−wb
M,N

1


 ,

where

8M+2,N+1 =
N+1∑
j=0

λN+1−j uM+2,j uT
M+2,j

If we now invoke the time-update expression

8M+2,N+1 = λ8M+2,N + uT
M+2,N+1uM+2,N+1,

we conclude that 1M(N + 1) satisfies the time-update formula:

1M(N + 1) = λ1M(N) + αM(N + 1)bM(N)

= λ1M(N) + fM(N + 1)bM(N)

γM(N)
.

A similar argument for ρM(N) shows that it satisfies the time-update relation

ρM(N) = λρM(N − 1) + eM(N)bM(N)

γM(N)
.

Finally, the orthogonality principle can again be invoked to derive order-update (rather than

time-update) relations for ξ
f
M(N + 1) and ξb

M(N). Indeed, using fT
M+1,N+13NbM,N = 0 we obtain

ξ
f

M+1(N + 1) = fT
M+1,N+13N fM+1,N+1 = fT

M+1,N+13N fM,N+1 ,

= ξ
f
M(N + 1) − ‖1M(N + 1)‖2

ξb
M(N)

.

Likewise,

ξb
M+1(N + 1) = ξb

M(N) − ‖1M(N + 1)‖2

ξ
f
M(N + 1)

.

Table 21.7 summarizes the order-update relations derived thus far.
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TABLE 21.7 Order-Update Relations

1M(N + 1) = λ1M(N) + fM(N+1)bM (N)

γM (N)

ρM(N) = λρM(N − 1) + eM (N)bM (N)

γM (N)

ξ
f
M

(N + 1) = λξ
f
M

(N) + |fM(N+1)|2
γM (N)

ξb
M

(N) = λξb
M

(N − 1) + |bM (N)|2
γM (N)

k
f
M

(N + 1) = 1M(N + 1)/ξb
M

(N)

kb
M

(N + 1) = 1M(N + 1)/ξ
f
M

(N + 1)

kM(N) = ρM(N)/ξb
M

(N)

fM+1(N + 1) = fM(N + 1) − k
f
M

(N + 1)bM(N)

bM+1(N + 1) = bM(N) − kb
M

(N + 1)fM(N + 1)

eM+1(N) = eM(N) − kM(N)bM(N)

ξ
f
M+1(N + 1) = ξ

f
M

(N + 1) − |1M(N+1)|2
ξb
M

(N)

ξb
M+1(N + 1) = ξb

M
(N) − |1M(N+1)|2

ξ
f
M

(N+1)

21.8.5 The QRD Least-Squares Lattice Filter

There are many variants of adaptive lattice algorithms. In this section we present one such variant
in square-root form. Most, if not all, other alternatives can be obtained as special cases. Some
alternatives propagate the a posteriori prediction errors {fM(N + 1), bM(N)}, while others employ
the a priori prediction errors {αM(N + 1), βM(N)}. The QRD-LSL algorithm we present here is
invariant to the particular choice of a posteriori or a priori errors because it propagates the angle
normalized prediction errors that we introduced earlier in (21.81) and (21.82), viz.,

f̄M(i + 1) = αM(i + 1)γ
1/2
M (i) = [u(i + 1) − uT

M,iw
f
M,i]γ 1/2

M (i) ,

b̄M(i) = βM(i)γ
1/2
M (i) = [u(i − M) − uT

M,iw
b
M,i−1]γ 1/2

M (i) .

The QRD-LSL algorithm can be motivated as follows. Assume we form the following two vectors
of angle normalized prediction errors:

f̄M,N+1 =




f̄M(1)

f̄M(2)
...

f̄M(N + 1)


 , b̄M,N =




b̄M(0)

b̄M(1)
...

b̄M(N)


 . (21.83)

We then conclude from the time-updates in Table 21.6 for ξ
f
M(N + 1) and ξb

M(N) that ξ
f
M(N + 1)

and ξb
M(N) are the (weighted) squared Euclidean norms of the angle normalized vectors f̄M(N + 1)

and b̄M(N), respectively. That is, ξ
f
M(N + 1) = f̄T

M,N+13N f̄M,N+1 and ξb
M(N) = b̄T

M,N3N b̄M,N .
Likewise, it follows from the time-update for 1M(N + 1) that it is equal to the inner product of the
angle normalized vectors,

1M(N + 1) = b̄T
M,N3N f̄M,N+1 . (21.84)

Consequently, the coefficients k
f
M(N + 1) and kb

M(N + 1) are also equal to the ratios of the inner

product of the angle normalized vectors to their energies. But recall that k
f
M(N +1) is the coefficient

we need in order to project fM,N+1 onto bM,N . This means that we can alternatively evaluate the same
coefficient by posing the problem of projecting f̄M,N+1 onto b̄M,N . In a similar fashion, kb

M(N + 1)
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can be evaluated alternatively by projecting b̄M,N onto f̄M,N+1. (The inner products and projections
are to be understood here to include the additional weighting by 3N .)

We are therefore reduced to two simple projection problems that involve projecting a vector onto
another vector (with exponential weighting). But these are special cases of standard least-squares
problems. In particular, recall that the QR solution of Table 21.4 solves the problem of projecting a
given vector dN onto the range space of a data matrix AN (whose rows are uT

j ).
In a similar fashion, we can write down the QR solution that would solve the problem of projecting

f̄M,N+1 onto b̄M,N . For this purpose, we introduce the scalar variables q
f
M(N + 1) and qb

M(N + 1)

[recall the earlier notation (21.50)]:

qb
M(N + 1) = 1M(N + 1)

ξ
b/2
M (N)

, q
f
M(N + 1) = 1M(N + 1)

ξ
f/2
M (N + 1)

. (21.85)

The QR array that updates the forward prediction errors can now be obtained as follows. Form
the 3 × 2 prearray (this is a special case of the QR array of Table 21.4):

A =



√
λξ

b/2
M (N − 1) b̄M(N)√
λqb

M(N) f̄M(N + 1)

0 1




and choose an orthogonal rotation 2b
M,N that reduces it to the form

A2b
M,N =


 x 0

a b

y c


 .

That is, it annihilates the second entry in the top row of the prearray. The scalar quantities
{a, b, c, x, y} can be identified, as before, by squaring and comparing entries of the resulting equality.
This step allows us to make the following identifications very immediately:

x = ξ
b/2
M (N) ,

a = qb
M(N + 1) ,

y = b̄M(N)ξ
−b/2
M (N) ,

bc = γ
−1/2
M (N)fM+1(N + 1) ,

b2 = |f̄M+1(N + 1)|2 ,

where for the last equality we used the following relation that follows immediately from the last two
lines of Table 21.7:∥∥∥qb

M(N + 1)

∥∥∥2 + ∥∥f̄M+1(N + 1)
∥∥2 = λ

∥∥∥qb
M(N)

∥∥∥2 + ∥∥f̄M(N + 1)
∥∥2

Therefore, b2c2 = γM+1(N)

γM(N)
|f̄M+1(N + 1)|2 and we can make the identifications:

c = γ
1/2
M+1(N)

γ
1/2
M (N)

, b = f̄M+1(N + 1) .

A similar argument leads to an array equation for the update of the backward errors. In summary,
we obtain the QRD-LSL algorithm (listed in Table 21.8) for the update of the angle-normalized
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forward and backward prediction errors with prewindowed data that correspond to the minimization
problem:

min
wM

N∑
j=0

λN−j |d(j) − uT
M,j wM |2 .

The recursions of the table can be shown to collapse, by squaring and comparing terms on both sides
of the resulting equality, to several lattice forms that are available in the literature. We forgo the
details here.

TABLE 21.8 The QRD Least-Squares Lattice Algorithm
Input. Prewindowed data {d(j), u(j)} for j ≥ 1.

Initialization. For each M = 0, 1, 2, . . . , Mmax set

ξ
f/2
M

(0) = 0, ξ
b/2
M

(−1) = 0, qb
M

(0) = 0 = q
f
M

(0)

• For each time instant N ≥ 0 do:

γ0(N) = 1, f̄0(N) = u(N), b̄0(N) = u(N)

• For each M = 0, 1, 2, . . . , Mmax − 1 do:




√
λξ

b/2
M

(N − 1) b̄M (N)√
λqb

M
(N) f̄M(N + 1)

0 γ
1/2
M

(N)


 2b

M,N
=


 ξ

b/2
M

(N) 0
qb
M

(N + 1) f̄M+1(N + 1)

bM(N)ξ
−b/2
M

(N) γ
1/2
M+1(N)




[ √
λξ

f/2
M

(N) f̄M(N + 1)√
λq

f
M

(N) b̄M (N)

]
2

f
M,N+1 =

[
ξ
f/2
M

(N + 1) 0

q
f
M

(N + 1) b̄M+1(N + 1)

]

The orthogonal matrices 2b
M,N

and 2
f
M,N+1 are chosen so as to annihilate the

(1, 2) entries in the corresponding postarrays.
• end

� end

21.8.6 The Filtering or Joint Process Array

We now return to the estimation of the sequence {d(·)}. We argued earlier that if we are given
the backward residual vector bM,N and the estimation residual vector eM,N , then the higher-order
estimation residual vector eM+1,N can be obtained by projecting eM,N onto bM,N and using the
corresponding residual vector as eM+1,N .

Arguments similar to what we have done in the previous section will readily show that the array
for the joint process estimation problem is the following: define the angle-normalized residual

ēM(i) = eM(i)γ
−1/2
M (i) = [d(i) − uT

M,iwM,i]γ −1/2
M (i) ,

as well as the scalar quantity

qd
M(N) = ρM(N)

ξ
b/2
M (N)

.

Then the array for the filtering process is what is shown in Table 21.9. Note that it uses precisely the
same rotation as the first array in the QRD-LSL algorithm. Hence, the second line in the above array
can be included as one more line in the first array of QRD-LSL, thus completing the algorithm to
also include the joint-process estimation part.
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TABLE 21.9 Array for Joint Process Estimation
Input. Prewindowed data {d(j), u(j)} for j ≥ 1.

Initialization. For each M = 0, 1, 2, . . . , Mmax set

ξ
b/2
M

(−1) = 0, qd
M

(−1) = 0, qb
M

(0) = 0

• For each time instant N ≥ 0 do:

γ0(N) = 1, ē0(N) = d(N), b̄0(N) = u(N)

• For each M = 0, 1, 2, . . . , Mmax − 1 do:[ √
λξ

b/2
M

(N − 1) b̄M (N)√
λqd

M
(N − 1) ēM (N)

]
2b

M,N
=

[
ξ
b/2
M

(N) 0
qd
M

(N) ēM+1(N)

]

where the orthogonal matrix 2b
M,N

is the same as in the
QRD-LSL algorithm.

• end
� end

21.9 Concluding Remarks

The intent of this chapter was to provide an overview of the fundamentals of recursive least-squares
estimation, with emphasis on array formulations of the varied algorithms (slow or fast) that are
available for this purpose. More details and related discussion can be found in several of the references
indicated in this section. The references are not intended to be complete but rather indicative of the
work in the different areas. More complete lists can be found in several of the textbooks mentioned
herein.
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One of the earliest works on transform domain adaptive filtering was published in 1978 by Dentino
et al. [4], in which the concept of adaptive filtering in the frequency domain was proposed. Many
publications have since appeared that further develop the theory and expand the current under-
standing of performance characteristics for this class of adaptive filters. In addition to the discrete
Fourier transform (DFT), other orthogonal transforms such as the discrete cosine transform (DCT)
and the Walsh Hadamard transform (WHT) can also be used effectively as a means to improve the
LMS algorithm without adding too much computational complexity. For this reason, the general
term transform domain adaptive filtering is used in the following discussion to mean that the input
signal is preprocessed by decomposing the input vector into orthogonal components, which are in
turn used as inputs to a parallel bank of simpler adaptive subfilters. With an orthogonal transforma-
tion, the adaptation takes place in the transform domain, as it is possible to show that the adjustable
parameters are indeed related to an equivalent set of time domain filter coefficients by means of the
same transformation that is used for the real time processing [5, 14, 17].

A direct form FIR digital filter structure is shown in Fig. 22.1. The direct form requires N − 1
delays, N multiplications, and N −1additions for each output sample that is produced. The amount
of hardware (as well as power) required to implement the direct form structure depends on the degree
of hardware multiplexing that can be utilized within the speed demands of the application. A fully
parallel implementation consisting of N delay registers, N multipliers, and a tree of two-input adders
would be needed for very high-frequency applications. At the opposite end of the performance spec-
trum, a sequential implementation consisting of a length N delay line and a single time multiplexed
multiplier and accumulation adder would provide the cheapest (and slowest) implementation. This

c©1999 by CRC Press LLC



FIGURE 22.1: The direct form adaptive filter structure.

latter structure would be characteristic of a filter that is implemented in software on one of the many
commercially available DSP chips.

Regardless of the hardware complexity that results from a particular implementation, the com-
putational complexity of the filter is determined by the requirements of the algorithm and, as such,
remains invariant with respect to different hardware structures. In particular, the computational
complexity of the direct form FIR filter is O[N ], since N multiplications and (N −1) additions must
be performed at each iteration. When designing an adaptive filter, it seems reasonable to seek an
adaptive algorithm whose order of complexity is no greater than the order of complexity of the basic
filter structure itself. This goal is achieved by the LMS algorithm, which is the major contributing
factor to the enormous success of that algorithm. Extending this principle for 2-D adaptive filters
implies that desirable 2-D adaptive algorithms have an order of complexity of O[N2], since a 2-D
FIR direct form filter has O[N2] complexity inherent in its basic structure [11, 21].

The transform domain adaptive filter is a generalization of the LMS FIR structure, in which a linear
transformation is performed on the input signal and each transformed “chanel” is power normalized
to improve the convergence rate of the adaptation process. The linear transform is characterized
throughout the following discussions as a sliding window operator that consists of a transformation
matrix multiplying an input vector [14]. At each iteration n the input vector includes one new input
sample x(n), and N − 1 past input samples x(n − k), k = 1, . . . , N − 1. As the window slides
forward sample by sample, filtered outputs are produced continuously at each value of the index n.

Since the input transformation is represented by a matrix-vector product, it might appear that
the computational complexity of the transform domain filter is at least O[N2]. However, many
transformations can be implemented with fast algorithms that have complexities less than O[N2].
For example, the discrete Fourier transform can be implemented by the FFT algorithm, resulting in
a complexity of O[N log2 N ] per iteration. Some transformations can be implemented recursively
in a bank of parallel filters, resulting in a net complexity of O[N ] per iteration. The main point to
be made here is that the complexity of the transform domain filter typically falls between O[N ] and
O[N2], with the actual complexity depending on the specific algorithm that is used to compute the
sliding window transform operator [17].

22.1 LMS Adaptive Filter Theory

The LMS algorithm is derived as an approximation to the steepest descent optimization strategy. The
fact that the field of adaptive signal processing is based on an elementary principle from optimization
theory suggests that more advanced adaptive algorithms can be developed by incorporating other
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results from the field of optimization [22]. This point of view recurs throughout this discussion, as
concepts are borrowed from the field of optimization and modified for adaptive filtering as needed.
In particular, one of the borrowed ideas that appears later is the quasi-Newton optimization strategy.
It will be shown that transform domain adaptive filtering algorithms are closely related to quasi-
Newton algorithms, but have computational complexity that is closer to the simple requirements of
the LMS algorithm.

For a length N FIR filter with the input expressed as a column vector x(n) = [x(n), x(n −
1), . . . , x(n − N + 1)]T , the filter output y(n) is easily expressed as

y(n) = wT (n)x(n) , (22.1)

where w(n) = [w0(n), w1(n), . . . , wN−1(n)]T is the time varying vector of filter coefficients (tap
weights), and the superscript “T” denotes vector transpose. The output error is formed as the
difference between the filter output and a training signal d(n), i.e., e(n) = d(n)−y(n). Strategies for
obtaining an appropriate d(n) vary from one application to another. In many cases the availability
of a suitable training signal determines whether an adaptive filtering solution will be successful
in a particular application. The ideal cost function is defined by the mean squared error (MSE)
criterion, E[|e(n)|2]. The LMS algorithm is derived by approximating the ideal cost function by the
instantaneous squared error, resulting in JLMS(n) = |e(n)|2. While the LMS seems to make a rather
crude approximation at the very beginning, the approximation results in an unbiased estimator.
In many applications the LMS algorithm is quite robust and is able to converge rapidly to a small
neighborhood of the optimum Wiener solution.

The steepest descent optimization strategy is given by

w(n + 1) = w(n) − µ∇
E[|e|2](n) , (22.2)

where ∇
E[|e|2](n) is the gradient of the cost function with respect to the coefficient vector w(n). When

the gradient is formed using the LMS cost function JLMS(n) = |e(n)|2, the conventional LMS results:

w(n + 1) = w(n) + µe(n)x(n) ,

e(n) = d(n) − y(n) , (22.3)

and

y(n) = x(n)T w(n) .

(Note: Many sources include a “2” before the µ factor in Eq. (22.3) because this factor arises during
the derivation of (22.3) from (22.2). In this discussion we assume this factor is absorbed into the µ,
so it will not appear explicitly.) Since the LMS algorithm is treated in considerable detail in other
sections of this book, we will not present any further derivation or analysis of it here. However, the
following observations will be useful when other algorithms are compared to the LMS as a baseline
design [2, 3, 6, 8].

1. Assume that all of the signals and filter variables are real-valued. The filter itself requires
N multiplications and N − 1 additions to produce y(n) at each value of n . The coeffi-
cient update algorithm requires 2N multiplications and N additions, resulting in a total
computational burden of 3N multiplications and 2N − 1 additions per iteration. Since
N is generally much larger than the factor of three, the order of complexity of the LMS
algorithm is O[N ].

2. The cost function given for the LMS algorithm is a simplified form of the one used for
the RLS algorithm. This implies that the LMS algorithm is a simplified version of the RLS
algorithm, where averages are replaced by single instantaneous terms.
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3. The (power normalized) LMS algorithm is also a simplified form of the transform domain
adaptive filter which results by setting the transform matrix equal to the identity matrix.

4. The LMS algorithm is also a simplified form of the Gauss-Newton optimization strategy
which introduces second order statistics (the input autocorrelation function) to accelerate
the rate of convergence. In order to obtain the LMS algorithm from the Gauss-Newton
algorithm, two approximations must be made: (i) The gradient must be approximated by
the instantaneous error squared, and (ii) the inverse of the input autocorrelation matrix
must be crudely approximated by the identity matrix.

These observations suggest that many of the seemingly distinct adaptive filtering algorithms that
appear scattered about in the literature are indeed closely related, and can be considered to be mem-
bers of a family whose hereditary characteristics have their origins in Gauss-Newton optimization
theory [15, 16]. The different members of this family inherit their individual characteristics from
approximations that are made on the pure Gauss-Newton algorithm at various stages of their deriva-
tions. However, after the individual derivations are complete and each algorithm is packaged in
its own algorithmic form, the algorithms look considerably different from one another. Unless a
conscious effort is made to reveal their commonality, the fact that they have evolved from common
roots may be entirely obscured.

The convergence behavior of the LMS algorithm, as applied to a direct form FIR filter structure, is
controlled by the autocorrelation matrix Rx of the input process, where

Rx ≡ E[x∗(n)xT (n)] . (22.4)

(The ∗ in Eq. (22.4) denotes complex conjugate to account for the general case of complex input
signals, although throughout most of the following discussions it will be assumed that x(n) and d(n)

are both real-valued signals.) The autocorrelation matrix Rx is usually positive definite, which is
one of the conditions necessary to guarantee convergence to the Wiener solution. Another necessary
condition for convergence is 0 < µ < 1/λmax, where λmax is the largest eigenvalue of Rx . It is also
well established that the convergence of this algorithm is directly related to the eigenvalue spread of
Rx . The eigenvalue spread is measured by the condition number of Rx , defined as κ = λmax/λmin,
where λmin is the minimum eigenvalue of Rx . Ideal conditioning occurs when κ = 1 (white noise); as
this ratio increases, slower convergence results. The eigenvalue spread (condition number) depends
on the spectral distribution of the input signal and can be shown to be related to the maximum and
minimum values of the input power spectrum (22.4). From this line of reasoning it becomes clear that
white noise is the ideal input signal for rapidly training an LMS adaptive filter. The adaptive process
becomes slower and requires more computation for input signals that are more severely colored [6].

Convergence properties are reflected in the geometry of the MSE surface, which is simply the
mean squared output error E[|e(n)|2] expressed as a function of the N adaptive filter coefficients in
(N + 1)-space. An expression for the error surface of the direct form filter is

J (z) ≡ E
[
|e(n)|2

]
= Jmin + z∗T Rxz , (22.5)

with Rx defined in (22.4) and z ≡ w − wopt, where wopt is the vector of optimum filter coefficients in
the sense of minimizing the mean squared error ( wopt is known as the Wiener solution). An example
of an error surface for a simple two-tap filter is shown in Fig. 22.2. In this example x(n) was specified
to be a colored noise input signal with an autocorrelation matrix

Rx =
[

1.0 0.9
0.9 1.0

]
.

Figure 22.2 shows three equal-error contours on the three dimensional surface. The term z∗T Rxz
in Eq. (22.2) is a quadratic form that describes the bowl shape of the FIR error surface. When Rx is
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positive definite, the equal-error contours of the surface are hyperellipses (N dimensional ellipses)
centered at the origin of the coefficient parameter space. Furthermore, the principle axes of these
hyperellipses are the eigenvectors of Rx , and their lengths are proportional to the eigenvalues of Rx .
Since the convergence rate of the LMS algorithm is inversely related to the ratio of the maximum to the
minimum eigenvalues of Rx , large eccentricity of the equal-error contours implies slow convergence
of the adaptive system. In the case of an ideal white noise input, Rx has a single eigenvalue of
multiplicity N , so that the equal-error contours are hyperspheres [8].

FIGURE 22.2: Example of an error surface for a simple two-tap filter.

22.2 Orthogonalization and Power Normalization

The transform domain adaptive filter (TDAF) structure is shown in Fig. 22.3. The input x(n) and
desired signal d(n) are assumed to be zero mean and jointly stationary. The input to the filter is a
vector of N current and past input samples, defined in the previous section and denoted as x(n).
This vector is processed by a unitary transform, such as the DFT. Once the filter order N is fixed, the
transform is simply an N × N matrix T, which is in general complex, with orthonormal rows. The
transformed outputs form a vector v(n) which is given by

v(n) = [
v0(n), v1(n), . . . , vN−1(n)

]T = Tx(n) . (22.6)

With an adaptive tap vector defined as

W(n) = [
W0(n), W1(n), . . . , WN−1(n)

]T
, (22.7)

the filter output is given by

y(n) = WT (n)v(n) = WT (n)Tx(n) . (22.8)

The instantaneous output error

e(n) = d(n) − y(n) (22.9)
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FIGURE 22.3: The transform domain adaptive filter structure

is then formed and used to update the adaptive filter taps using a modified form of the LMS algo-
rithm (22.11):

W(n + 1) = W(n) + µe(n)3−2v∗(n)

32 ≡ diag
[
σ 2

0 , σ 2
1 , . . . , σ 2

N−1

]
(22.10)

where

σ 2
i = E

[
|vi(n)|2

]
.

As before, the superscript asterisk in (22.10) indicates complex conjugation to account for the most
general case in which the transform is complex. Also, the use of the upper case coefficient vector
in Eq. (22.10) denotes that W(n) is a transform domain variable. The power estimates σ 2

i can be
developed on-line by computing an exponentially weighted average of past samples according to

σ 2
i (n) = ασ 2

i (n − 1) + |vi(n)|2 , 0 < α < 1 . (22.11)

If σ 2
i becomes too small due to an insufficient amount of energy in the i-th channel, the update

mechanism becomes ill-conditioned due to a very large effective step size. In some cases the process
will become unstable and register overflow will cause the adaptation to catastrophically fail. So
the algorithm given by (22.10) should have the update mechanism disabled for the i-th orthogonal
channel if σ 2

i falls below a critical threshold.
Alternatively the transform domain algorithm may be stabilized by adding small positive constants

ε to the diagonal elements of 32 according to

3̂2 = 32 + εI . (22.12)

Then 3̂2 is used in place of 32 in Eq. (22.10). For most input signals σ 2
i � ε, and the inclusion

of the stabilization factors is transparent to the performance of the algorithm. However, whenever
σ 2

i ≈ ε, the stabilization terms begins to have a significant effect. Within this operating region the
power in the channels will not be uniformly normalized and the convergence rate of the filter will
begin to degrade but catatrophic failure will be avoided.

The motivation for using the TDAF adaptive system instead of a simpler LMS based system is
to achieve rapid convergence of the filter’s coefficients when the input signal is not white, while
maintaining a reasonably low computational complexity requirement. In the following section this
convergence rate improvement of the TDAF will be explained geometrically.
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22.3 Convergence of the Transform Domain Adaptive Filter

In this section the convergence rate improvement of the TDAF is described in terms of the mean
squared error surface. From Eqs. (22.4) and (22.6) it is found that Rv = T∗RxTT , so that for the
transform structure without power normalization Eq. (22.5) becomes

J z ≡ E
[
|e(n)|2

]
= Jmin + z∗T

[
T∗RxTT

]
z . (22.13)

The difference between (22.5) and (22.13) is the presence of T in the quadratic term of (22.13). When
T is a unitary matrix, its presence in (22.13) gives a rotation and/or a reflection of the surface. The
eccentricity of the surface is unaffected by the transform, so the convergence rate of the system is
unchanged by the transformation alone.

However, the signal power levels at the adaptive coefficients are changed by the transforma-
tion. Consider the intersection of the equal-error contours with the rotated axes: letting z =
[0 · · · zi · · · 0]T , with zi in the i-th position, Eq. (22.13) becomes

J (z) − Jmin =
[
T∗RxTT

]
i
z2
i ≈ σ 2

i z2
i . (22.14)

If the equal-error contours are hyperspheres (the ideal case), then for a fixed value of the error
J (n), (22.14) must give |zi | = |zj | for all i and j , since all points on a hypersphere are equidistant
from the origin. When the filter input is not white, this will not hold in general. But since the power
levels σ 2

i are easily estimated, the rotated axes can be scaled to have this property. Let 3−1ẑ = z,
where 3 is defined in (22.10). Then the error surface of the TDAF, with transform T and including
power normalization, is given by

J (ẑ) = Jmin + ẑ∗T
[
3−1T∗RxTT 3−1

]
ẑ . (22.15)

The main diagonal entries of 3−1T∗RxTT 3−1 are all equal to one, so (22.14) becomes J (z)−Jmin =
ẑ2
i , which has the property described above.
Thus, the action of the TDAF system is to rotate the axes of the filter coefficient space using a

unitary rotation matrix T, and then to scale these axes so that the error surface contours become
approximately hyperspherical at the points where they can be easily observed, i.e., the points of
intersection with the new (rotated) axes. Usually the actual eccentricity of the error surface contours
is reduced by this scaling, and faster convergence is obtained.

As a second example, transform domain processing is now added to the previous example, as
illustrated in Figs. 22.4 and 22.5. The error surface of Fig. 22.4 was created by using the (arbitrary)
transform

T =
[

0.866 0.500
0.500 0.866

]
,

on the error surface shown in Fig. 22.2, which produces clockwise rotation of the ellipsoidal contours
so that the major and minor axes more closely align with the coordinate axes than they did without
the transform. Power normalization was then applied using the normalization matrix3−1 as shown
in Fig. 22.5, which represents the transformed and power normalized error surface. Note that the
elliptical contours after transform domain processing are nearly circular in shape, and in fact they
would have been perfectly circular if the rotation of Fig. 22.4 had brought the contours into precise
alignment with the coordinate axes. Perfect alignment did not occur in this example because T was
not able to perfectly diagonalize the input autocorrelation matrix for this particular x(n). Since T is
a fixed transform in the TDAF structure, it clearly cannot properly diagonalize Rx for an arbitrary
x(n), hence the surface rotation (orthogonalization) will be less than perfect for most input signals. It
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FIGURE 22.4: Error surface for the TDAF with transform T.

FIGURE 22.5: Error surface with transform and power normalization.

should be noted here that a well-known conventional algorithm called recursive least squares (RLS) is
known to achieve near optimum convergence rates by forming an estimate of R−1

x , the inverse of the
autocorrelation matrix. This type of algorithm automatically adjusts to whiten any input signal, and
it also varies over time if the input signal is a nonstationary process. Unfortunately, the computation
required for the RLS algorithm is large and is not easily carried out in real time within the resource
limitations of many practical applications. The RLS algorithm falls into the general class of quasi-
Newton optimization techniques, which are thoroughly treated in numerous places throughout the
literature.

There are two different ways to interpret the mechanism that brings about improved convergence
rates achieved through transform domain processing [16]. The first point of view considers the com-
bined operations of orthogonalization and power normalization to be the effective transformation
3−1T , an interpretation that is implied by Eq. (22.15). This line of thinking leads to an understand-
ing of the transformed error surfaces as illustrated by example in Figs. 22.4 and 22.5 and leads to the
logical conclusion that the faster learning rate is due to the conventional LMS algorithm operating on
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an improved error surface that has been rendered more properly oriented and more symmetrical via
the transformation. While this point of view is useful in understanding the principles of transform
domain processing, it is not generally implementable from a practical point of view. This is because
for an arbitrary input signal, the power normalization factors that constitute the 3−1 part of the
input transformation are not known a priori, and must be estimated after T is used to decompose
the input signal into orthogonal channels.

The second point of view interprets the transform domain equations as operating on the trans-
formed error surface (without power normalization) with a modified LMS algorithm where the
step sizes are adjusted differently in the various channels according to µ(n) = µ3−2, where
µ(n) = diag[µi(n)] is a diagonal matrix that contains the step size for the i-th channel at loca-
tion (i, i). The dependence of the µi(n)’s on the iteration (time) index n acknowledges that the
steps sizes are a function of the power normalization factors, which are updated in real time as part
of the on-line algorithm. This suggests that the TDAF should be able to track nonstationary input
statistics within the limited abilities of the transformation T to orthogonalize the input and within
the accuracy limits of the power normalization factors. Furthermore, when the input signal is white,
all of the σ 2

i ’s are identical and each is equal to the power in the input signal. In this case the TDAF
with power normalization becomes the conventional normalized LMS algorithm.

It is straightforward to show mathematically that the above two points of view are indeed com-
patible [10]. Let v̂(n) ≡ 3−1Tx(n) = 3−1v(n) and let the filter tap vector be denoted Ŵ(n) when
the matrix 3−1T is treated as the effective transformation. For the resulting filter to have the same
response as the filter in Fig. 22.3 we must have

vT (n)W = y(n) = v̂T Ŵ = vT (n)3−1Ŵ , ∀v(n) (22.16)

which implies that W = 3−1Ŵ. It the tap vector ŵ is updated using the LMS algorithm, then

W(n + 1) = 3−1Ŵ(n + 1) = 3−1[Ŵ(n) + µe(n)v̂∗(n)]
= 3−1Ŵ(n) + µe(n)3−1v̂∗(n)

= W(n) + µe(n)3−2v∗(n) , (22.17)

which is precisely the algorithm (22.10). This analysis demonstrates that the two interpretations are
consistent, and they are, in fact, alternate ways to explain the fundamentals of transform domain
processing.

22.4 Discussion and Examples

It is clear from the above development that the power estimates σ 2
i are the optimum scale factors,

as opposed to |σi | or some other statistic. Also, it is significant to note that no convergence rate
improvement can be realized without power normalization. This is the same conclusion that was
reached in [6] where the frequency domain LMS algorithm was analyzed with a constant convergence
factor. Fromthe error surfacedescriptionof theTDAF’s operation, it is seen that anoptimal transform
rotates the axes of the hyperellipsoidal equal-error contours into alignment with the coordinate axes.
The prescribed power normalization scheme then gives the ideal hyperspherical contours, and the
convergence rate becomes the same as if the input were white. The optimal transform is composed
of the orthonormal eigenvectors of the input autocorrelation matrix and is known in the literature
as the Karhunen-Loe’ve transform (KLT). The KLT is signal dependent and usually cannot be easily
computed in real time. Note that real signals have real KLT’s, suggesting the use of real transforms
in the TDAF (in contrast to complex transforms such as the DTF).

Since theoptimal transformfor theTDAF is signaldependent, auniversallyoptimalfixedparameter
transform can never be found. It is also clear that once the filter order has been chosen, any unitary
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matrix of correct dimensions is a possible choice for the transform; there is no need to restrict
attention to classes of known transforms. In fact, if a prototype input power spectrum is available,
its KLT can be constructed and used. One factor that must be considered in choosing a transform for
real-time applications is computational complexity. In this respect, real transforms are superior to
complex ones, transforms with fast algorithms are superior to those without, and transforms whose
elements are all powers-of-two are attractive since only additions and shifts are needed to compute
them. Throughout the literature the discrete Fourier transform (DFT), the discrete cosine transform
(DCT), and the Walsh Hadamard transform (WHT) have received considerable attention as possible
candidates for use in the TDAF [14]. In spite of the fact that the DFT is a complex transform and not
computationally optimal from that point of view, it is often used in practice because of the availability
of efficient FFT algorithms.

Figure 22.6 shows learning characteristics for computer-generated TDAF examples using six dif-
ferent orthogonal transforms to decorrelate the input signal. The examples presented are for system
identification experiments, where the desired signal was derived by passing the input through an
8-tap FIR filter, which serves as the model system to be identified. Computer-generated white
pseudo-noise, uncorrelated with the input signal, was added to the output of the model system,
creating a −100dB noise floor. The filter inputs were generated by filtering white pseudo-noise with
a 32-tap linear phase FIR noise-coloring filter to produce an input autocorrelation eigenvalue ratio of
681. Experiments were then performed using the discrete Fourier transform (DFT), the discrete co-
sine transform (DCT), the Walsh-Hadamard transform (WHT), discrete Hartley transform (DHT),
and a specially designed computationally efficient “power-of-2” PO2 transform, as listed in Fig. 22.6.
The eigenvalue ratios that result from transform processing with each of these transforms is shown
in Fig. 22.6, where it is seen that the PO2 transform with power normalization reduces the input
condition number from 681 to 128, resulting in the most effective transform for this particular input
coloring. All of the transforms used in this experiment are able to reduce the input condition number
and greatly improve convergence rates, although some transforms are seen to be more effective than
others for the coloring chosen for these examples.

22.5 Quasi-Newton Adaptive Algorithms

The dependence of the adaptive system’s convergence rate on the input power spectrum can be
reduced by using second-order statistics via the Gauss-Newton method [9, 10, 21]. The Gauss-
Newton algorithm is well known in the field of optimization as one of the basic accelerated search
techniques. In recent years it has also appeared in various forms in publications on adaptive filtering.
In this section a brief introduction to quasi-Newton adaptive filtering methods is presented. When
the quasi-Newton concept is integrated into the LMS algorithm, the resulting adaptive strategy is
closely related to the transform domain adaptive filter, but where the transform is computed on-line
as an approximation to the Hessian acceleration matrix. For FIR structures it turns out that the
Hessian is equivalent to the input autocorrelation matrix inverse, and therefore the quasi-Newton
LMS algorithm effectively implements a transform that adjusts to the statistics of the input signal
and is capable of tracking slowly varying nonstationary input signals.

The basic Gauss-Newton coefficient update algorithm for an FIR adaptive filter is given by

w(n + 1) = w(n) − µH(n)∇E[e2](n) , (22.18)

where H(n) is the Hessian matrix and ∇E[e2](n) is the gradient of the cost function at iteration n. For

an FIR adaptive filter with a stationary input the Hessian is equal to R−1
x . If the gradient is estimated

with the instantaneous error squared, as in the LMS algorithm, the result is

w(n + 1) = w(n) + µe(n)R̂−1
x (n)x(n) , (22.19)
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FIGURE 22.6: Comparison of (smoothed) learning curves for five different transforms operating on
a colored noise input signal with condition number 681.

where R̂−1
x (n) is an estimate of R−1

x that varies as a function of the index n. Equation (22.19)
characterizes the quasi-Newton LMS algorithm. Note that (22.18) is the starting point for the
development of many practical adaptive algorithms that can be obtained by making approximations
to one or both of the Hessian and the gradient. Therefore, we typically refer to all such algorithms
derived from (22.18) as the family of quasi-Newton algorithms.

The autocorrelation estimate R̂x(n) is constructed from data received up to time step n. It must
then be inverted for use in (22.19). This is in general an O[N3] operation, which must be performed
for every iteration of the algorithm. However, the use of certain autocorrelation estimators allows
more economical matrix inversion techniques to be applied. Using this approach, the conventional
sequential regression algorithm (22.11) and the recursive least squares (RLS) algorithm (22.3) achieve
quasi-Newton implementations with a computational requirement of only O[N2].

TheRLSalgorithmisprobably thebest-knownmemberof theclassofquasi-Newtonalgorithms[6].
The drawback that has prevented its widespread use in real-time signal processing is its O[N2]
computational requirement, which is still toohigh formanyapplications (and is anorderofmagnitude
higher than the order of complexity of the FIR filter itself). This problem appeared to have been
solved by the formulation of O[N ] versions of the RLS algorithm. Unfortunately, many of these
more efficient forms of the RLS tend to be numerically ill-conditioned. They are often unstable in
finite precision implementations, especially in low signal-to-noise applications or where the input
signal is highly colored. This behavior is caused by the accumulation of finite precision errors in
internal variables of the algorithm and is essentially the same source of numerical instability that
occurs in the standard O[N2] RLS algorithm, although the problem is greater in the O[N ] case since
these algorithms typically have a larger number of coupled internal recursions. Considerable work
has been reported in the literature to stabilize O[N2] RLS algorithm and to produce a numerically
robust O[N ] RLS algorithm.
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22.5.1 A Fast Quasi-Newton Algorithm

The quasi-Newton algorithms discussed above achieve reduced computation through the use of
particular autocorrelation estimators which lend themselves to efficient matrix inversion techniques.
This section reviews a particular quasi-Newton algorithm that was developed to provide a numerically
robustO[N ]algorithm[15]. Thisparticular1-Dalgorithmisdiscussedhere simplyasa representative
algorithm from the quasi-Newton class; numerous variations of the Newton optimization strategy
are reported in various places throughout the adaptive filtering literature. The fast quasi-Newton
algorithm described below has also been extended successfully to 2-D FIR adaptive filters [11].

To derive theO[N ] fast quasi-Newton (FQN) algorithm, an autocorrelation matrix estimate is used
which permits the use of more robust and efficient computation techniques. Assuming stationarity,
the autocorrelation matrix Rx has a high degree of structure; it is symmetric and Toeplitz, and thus
has only N free parameters, the elements of the first row. This structure can be imposed on the
autocorrelation estimate, since this incorporates prior knowledge of the autocorrelation into the
estimation process. The estimation problem then becomes that of estimating the N autocorrelation
lags ri, i = 0, . . . , N − 1, which comprise the first row of Rx . The autocorrelation estimate is also
required to be positive definite, to ensure the stability of the adaptive update process.

A standard positive semidefinite autocorrelation lag estimator for a block of data is given by

r̂i = 1

M + 1

M∑
k=i

x(k − i)x(k) , (22.20)

where x(k), k = 0, . . . , M , is a block of real data samples, and i ranges from 0 to M . However,
the preferred form of the estimation equation for use in an adaptive system, from an implemen-
tation standpoint, is an exponentially weighted recursion. Thus, (22.20) must be expressed in an
exponentially weighted recursive form, without destroying its positive semidefiniteness property.
Consider the form of the sum in Eq. (22.20): it is the (deterministic) correlation of the data se-
quence x(k), k = 0, . . . , M , with itself. Thus, r̂i , i = 0, . . . , M is the deterministic autocorrelation
sequence of the sequence x(k). (Note that r̂i must also be defined for i = −M, . . . ,−1, according
to the requirement that r̂i = r̂−i). In fact, the deterministic autocorrelation for any sequence is
positive semidefinite. The goal of exponential weighting, in a general sense, is to weight recent data
most heavily and to forget old data by using progressively smaller weighting factors. To construct
an exponentially weighted, positive definite autocorrelation estimate, we must weight the data first,
then form its deterministic autocorrelation to guarantee positive semidefiniteness. At time step n,
the available data are x(k), k = 0, . . . , n. If these samples are exponentially weighted using

√
α, the

result is α(n−k)/2x(k), k = 0, . . . , n. Using (22.20) and assuming n > N − 1, we then have

r̂i (n) =
n∑

k=i

[α(n−k+i)/2x(k − i)][α(n−k)/2x(k)]

= α

n−1∑
k=i

α(n−1−k)αi/2x(k − i)x(k)

+ αi/2x(n − i)x(n) (22.21)

= αr̂i(n − 1) + αi/2x(n − i)x(n)

for i = 0, . . . , N − 1 .

A normalization term is omitted in (22.21), and initialization is ignored. With regard to the latter
point, the simplest way to consistently generate r̂i (n) for 0 ≤ n ≤ N − 1 is to assume that x(n) = 0
for n < 0, set r̂i (−1) = 0 for all i, and then use the above recursion. A small positive constant δ may
be added to r̂0(n) to ensure positive definiteness of the estimated autocorrelation matrix.
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With this choice of an autocorrelation matrix estimate, a quasi-Newton algorithm is determined.
Thus, the fast quasi-Newton (FQN) algorithm is given by (22.19) and (22.21), where R̂x(n) ≈ Rx is
understood to be the Toeplitz symmetric matrix whose first row consists of the autocorrelation lag
estimates r̂i (n), i = 0, . . . , N − 1, generated by (22.21). Because R̂x(n) is Toeplitz, its inverse can be
obtained using the Levinson Recursion, leading to an O[N ] implementation of this algorithm. The
step size µ for the FQN algorithm is given by

1

2
µ−1 = ε + xT (n)R̂−i

x (n − 1)x(n) . (22.22)

This step size is used in other quasi-Newton algorithms (22.4), and seems nearly optimal. The
parameter ε is intended to be small relative to the average value of xT (n)R̂−1

x (n − 1)x(n). Then
the normalization term omitted from (22.21), which is a function of α but not of i, cancels out of
the coefficient update, since R̂−1

x (n) appears in both the numerator and the denominator. Thus, the
normalization can be safely ignored.

22.5.2 Examples
The previous examples are used again here to compare the performance of the fast quasi-Newton
algorithm with the recursive least squares (RLS), which provides a baseline for performance compar-
isons. The RLS examples are shown in Fig. 22.7(a) for different values of the exponential forgetting
factor α, and the FQN examples are shown in Fig. 22.7(b). Note that the FQN algorithm is somewhat
slower to converge due to the fact that the autocorrelation inverse matrix is updated only once every
eight samples. In comparison the RLS algorithm converges more quickly, but has a computational
complexity of O[N3] as compared to a complexity of O[N ] for the FQN algorithm. But, more im-
portant, note that the convergence rate of the FQN algorithm is much faster than any of the transform
domain examples shown previously.

22.6 The 2-D Transform Domain Adaptive Filter

Many successful 1-D FIR algorithms have been extended to 2-D filters [7, 10, 19, 21]. Transform
domain adaptive algorithms are also well suited to 2-D signal processing. Orthogonal transforms with
power normalization can be used to accelerate the convergence of an adaptive filter in the presence
of a colored input signal.

The 2-D TDAF structure is shown in Fig. 22.8 with the corresponding (possibly complex) LMS
algorithm given as

wk+1(m1, m2) = wk(m1, m2) + µ e(n1, n2)3
−2
u u∗

k (n1, n2) , (22.23)

where uk(n1, n2) is the column-ordered vector formed by premultiplying the input column-ordered
vector xk(n1, n2) by the 2-D unitary transform T, i.e.,

uk(n1, n2) = T xk(n1, n2) . (22.24)

Channel normalization results from including 32
u = diag[σ 2

u (0, 0)σ 2
u (1, 0) . . . σ 2

u (N, N)] in (22.23)
where σ 2

u (n1, n2) ≈ E[|u(n1, n2)|2]. Ideally, the Karhunen-Loe’ve transform (KTL) is used to
achieve optimal convergence, but this requires a priori knowledge of the input statistical prop-
erties. The KLT corresponding to the input autocorrelation matrix Rx is constructed using as
rows of T the orthonormal eigenvectors of Rx . Therefore, with unitary QH

X = [q1 . . . qM2] and
3x =diag[λ1 . . . λM2] (M = N + 1 for convenience), the unitary similarity transformation is
Rx = Q−1

x 3xQx , and the KLT is given by T = Qx . However, since the statistical properties of the
input process are usually unknown and time varying, the KLT cannot be implemented in practice.
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FIGURE 22.7: Comparison of the RLS and FQN performance. Simulated learning curves for (a) the
RLS algorithm and (b) the FQN algorithm.

Researchers have found that many fixed transforms do provide good orthogonalization for a wide
class of input signals. Those include the discrete Fourier transform (DFT or FFT), the discrete co-
sine transform (DCT), and the Walsh Hadamard transform (WHT). For example, the DFT provides
only approximate channel decorrelation since it is well-known that a “sliding” DFT implements a
parallel bank of overlapping band-pass filters with center frequencies evenly distributed over the
interval [0, 2π ]. Furthermore, the DFT (or FFT) is hampered by the fact that it requires complex
arithmetic. It is still a very effective method of orthogonalization which we compare here to the 2-D
FQN algorithm.

The convergence plots in Fig. 22.9 show the comparison between the 2-D FQN, the 2-D TDAF
(with the DFT), and the simple 2-D LMS with the same fourth-order low-pass coloring filter. The
adaptive filter is second order, and the 2-D FQN algorithm, as expected, outperforms the 2-D TDAF.
The 2-D FQN algorithm is effectively attempting to estimate the KLT on-line so that, while not able
to perfectly orthogonalize the training signal, it does offer improved convergence over that of the
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FIGURE 22.8: Two-dimensional transform domain adaptive filter structure.

fixed transform algorithm. Similar results appear in Fig. 22.10 with the same coloring filter and a
fourth-order adaptive filter.

22.7 Block-Based Adaptive Filters

The block-based LMS (BLMS) algorithm is one of the many efficient adaptive filtering algorithms
aimed at increasing convergence speed and reducing the computational complexity. The basic prin-
ciple of the BLMS algorithm is that the filter coefficients remain unchanged during the processing
of each data block and are updated only once per block [1, 20]. The updating equation of the block
LMS algorithm for linear adaptive filters is as follows:

wk+1 = wk + µ

L−1∑
m=0

x(kL + m)e(kL + m) , (22.25)

where k refers to the kth block of input data, k-th denotes the index of the incoming data, and
L is the block length. Due to the fact that in the BLMS algorithm the computation of the filter
output and of the gradient itself are represented by linear convolution and correlation, they can
be implemented efficiently using the FFT. Based on the convolutional property of the FFT and the
overlap-save method, the BLMS algorithm can be implemented in the frequency domain and the
computational complexity can be reduced dramatically. Both the constrained and the unconstrained
linear frequency domain LMS algorithms have been developed (22.2 and 22.9). In this chapter we
formulate both the constrained and unconstrained FBLMS algorithms and then present performance
comparisons between them.
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FIGURE 22.9: Convergence plot for 3 × 3 FIR 2-D LMS, 2-D TDAF, and 2-D FQN adaptive filters
in the system identification configuration with low-pass colored inputs.

In this section the frequency-domain block LMS (FBLMS) algorithm is summarized. Throughout
this chapter, capital letters are used to denote the frequency-domain variables and lowercase letters to
denote the time-domain variables. Boldface letters denote vectors and matrices. The basic principle
of the FBLMS algorithm is to use the DFT to calculate a block of the filter output and the block
gradient. Figure 22.11 shows the block diagram of the frequency domain block LMS algorithm.

Because the DFT-based calculation actually implements circular convolution, in order to obtain a
result that is equivalent to linear convolution, a data vector xk that has a larger dimension than the
filter length must be used. Assume the filter length is N , then the formulate a length 2N input data
vector xk as

xk = [x(2Nk), x(2Nk + 1), · · · , x(2Nk + 2N − 1)]T , (22.26)

where the last N samples in xk are taken from the current block of input data and the first N samples
are taken from the previous input data block. In order to maintain consistent dimensions, the filter
weight vector must also be increased to length 2N by appending N zeros to the original filter weights,
as indicated below:

Wk = [
wk,c︷ ︸︸ ︷

wk (0)wk (1) · · ·wk (N − 1)

N︷ ︸︸ ︷
0 · · · 0]T . (22.27)

If F denotes the 2N × 2N DFT matrix with elements as Fmn = exp(−j2πmn/2N), then the output
of the adaptive filter in the frequency domain is

Yk = XkWk (22.28)

where Xk =diag(Fxk) and Wk = Fwk . Because the last N elements of F−1Yk coincide with the result
of linear convolution, only these N elements should be used in calculating the error vector. Define
the time domain desired signal vector dk and the filter output vector as:

dk = [
N︷ ︸︸ ︷

0 · · · 0

dk,c︷ ︸︸ ︷
dk (0)dk (1) · · · dk (N − 1)]T , (22.29)

yk = [
N︷ ︸︸ ︷

0 · · · 0

yk,c︷ ︸︸ ︷
last N elements of F−1Yk]T . (22.30)
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FIGURE 22.10: Convergence plot for 5 × 5 FIR 2-D LMS, 2-D TDAF, and 2-D FQN adaptive filters
in the system identification configuration with low-pass colored inputs.

Then the error signal in the frequency domain is

Ek = F(dk − yk) . (22.31)

In order to guarantee that there are only N nonzero terms in the impulse response of the adaptive
filter, a gradient constraint should be used to force the last N terms of the gradient in the time domain
to be zeros, as shown in Fig. 22.11. The weight vector update equation for the constrained FBLMS
algorithm is

Wk+1 = Wk + µF
(
∇ (k)T , 0 · · · 0

)T

, (22.32)

where ∇(k) = the first N elements of F−1XH
k Ek and H denotes the complex conjugate transpose.

From Fig. 22.11 it can be seen that five forward and inverse FFTs are used in the constrained FBLMS
algorithm, where two of them are required to apply the gradient constraint.

In order to reduce the computational complexity, the unconstrained FBLMS algorithm (22.21) has
been developed by simply removing the constraint from the constrained FBLMS updating equation
as

Wk+1 = Wk + µXH
k Ek . (22.33)

With the constraint removed, the gradient is no longer the result of linear convolution but rather
a circular correlation. But this simplified algorithm requires only three FFTs, so the computational
complexity is significantly reduced.

22.7.1 Comparison of the Constrained and Unconstrained Frequency Domain
Block-LMS Adaptive Algorithms

Some work has been done in analyzing the performance of the constrained and unconstrained FBLMS
algorithm. Mansour and Gray [13] proved the almost sure asymptotic exponential convergence of
the unconstrained FBLMS algorithm. More thorough analysis of the convergence behavior of the
unconstrained FBLMS algorithm was given in [11]. By formulating the time domain updating
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FIGURE 22.11: The block diagram of the linear frequency domain BLMS algorithms.

equations of the two FBLMS algorithms, it can be shown that the two algorithms are equivalent to
time domain adaptive filters with different numbers of taps. It is this effective difference in filter length
that results in different convergence performance of the two algorithms. Although the unconstrained
FBLMS algorithm corresponds to a longer filter, “wrap-around” error prevents it from effectively
performing as a higher order filter [12].

In order to guarantee the mean-squared error convergence, the step size parameter µ must satisfy
the condition

0 < µ <
2

Total input power
= 2

T r(R)
. (22.34)

Also, the following relationship between the misadjustment and the step size exists

Misadjustment = µNλavg

2
(22.35)

with λavg = 1
N

∑N
1 λi . For stationary input signals it can be shown easily that T r(Rc) = 2T r(Ru)

whereRc is the inputautocorrelationmatrix for theconstraint algorithmand Ru for theunconstrained
case. So λavg is the same for both Rc and Ru. Combining the above two conditions with the properties
of the correlation matrices Rc and Ru we can conclude that the unconstrained FBLMS algorithm has
a reduced stable range of step size compared to the constrained FBLMS algorithm. If we keep the
misadjustment of both algorithms the same, the stepsize of the unconstrained FBLMS algorithm is
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FIGURE 22.12: Learning curves of the length-8 constrained (µ = 0.055) and unconstrained (µ =
0.030) frequency domain BLMS algorithms with colored Gaussian noise input.

FIGURE 22.13: Learning curves of the length-8 constrained (µ = 0.055) and unconstrained (µ =
0.055) frequency domain BLMS algorithms with colored Gaussian noise input.
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about one half that of the constrained FBLMS algorithm and its convergence rate is approximately
one half that of the constrained FBLMS algorithm.

The unconstrained FBLMS algorithm is equivalent to a length-2N adaptive filter. Is it capable
of modeling a higher order system than the constrained FBLMS algorithm? The answer is no;
the unconstrained FBLMS algorithm works on the circulant data matrix which generates the “wrap-
around” error. This error, which is embedded in the gradient of the unconstrained FBLMS algorithm
during the learning process, prevents the unconstrained FBLMS algorithm with filter coefficient
length 2N from accurately modeling an unknown system with greater than N coefficients, although
it is capable of achieving more accuracy than the constrained FBLMS algorithm of length N .

22.7.2 Examples and Discussion

Computer simulations are presented here to demonstrate the FBLMS algorithms. In the first example,
an 8-tap FIR filter was used to identify an 8-tap lowpass filter using the constrained and the uncon-
strained FBLMS algorithms. Colored Gaussian noise was used as the input signal. The signal-to-noise
ratio of the output signal of the system being identified is 100 dB. During the adaption the best step
size µ (as experimentally determined for fastest convergence) for each case was used. Figure 22.12
shows the learning curves of the constrained and unconstrained FBLMS algorithms. From the figure
we can see that the constrained FBLMS algorithm converges faster than the unconstrained FBLMS
algorithm. In the second example, instead of using the best step size of each algorithm, the best
step size of the constrained FBLMS algorithm was used for both the constrained and unconstrained
FBLMS algorithms. Figure 22.13 shows the corresponding learning curves of the two algorithms.
When the best step size of the constrained FBLMS algorithm is used, the performance of the un-
constrained FBLMS algorithm tends to be unstable. The ultimate effect of removing the gradient
constraint from the constrained FBLMS algorithm is slower convergence, a smaller range for stable
step sizes, doubling of the equivalent filter length, in exchange for a reduction in computational cost.
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23.1 Introduction

In comparison with adaptive finite impulse response (FIR) filters, adaptive infinite impulse response
(IIR) filters offer the potential to implement an adaptive filter meeting desired performance levels,
as measured by mean-square error, for example, with much less computational complexity. This
advantage stems from the enhanced modeling capabilities provided by the pole/zero transfer function
of the IIR structure, compared to the “all-zero” form of the FIR structure.

However, adapting an IIR filter brings with it a number of challenges in obtaining stable and
optimal behavior of the algorithms used to adjust the filter parameters. Since the 1970s, there has
been much active research focused on adaptive IIR filters, but many of these challenges to date have
not been completely resolved. As a consequence, adaptive IIR filters are not found in commercial
practice in anywhere near the frequency that adaptive FIR filters are. Nonetheless, recent advances
in adaptive IIR filter research have provided new results and insights into the behavior of several
methods for adapting the filter parameters, and new algorithms have been proposed that address
some of the problems and open issues in these systems. Hence, this class of adaptive filter continues
to maintain promise as a potentially effective and efficient adaptive filtering option.

In this section, we provide an up-to-date overview of the different approaches to the adaptive IIR
filtering problem. Due to the extensive literature on the subject, many readers may wish to peruse
several earlier general treatments of the topic. Johnson’s 1984 [11] and Shynk’s 1989 paper [23] are
still current in the sense that a number of open issues cited therein remain open today. More recently,
Regalia’s 1995 book [19] provides a comprehensive view of the subject.

c©1999 by CRC Press LLC



23.1.1 The System Identification Framework for Adaptive IIR Filtering

The spreadof issues associatedwith adaptive IIRfilters ismost easily understood if one adopts a system
identification perspective to the filtering problem. To this end, consider the diagram presented in
Fig. 23.1. Available to the adaptive filter are two external signals: the input signal x(n) and the desired
output signal d(n). The adaptive filtering problem is to adjust the parameters of the filter acting on
x(n) so that its outputy(n) approximates d(n). From the system identification perspective, the task at
hand is to adjust the parameters of the filter generating y(n) from x(n) in Fig. 23.1 so that the filtering
operation itself matches in some sense the system generating d(n) from x(n). These two viewpoints
are closely related because if the systems are the same, then their outputs will be close. However, by
adopting the convention that there is a system generating d(n) from x(n), clearer insights into the
behavior and design of adaptive algorithms are obtained. This insight is useful even if the “system”
generating d(n) from x(n) has only a statistical and not a physical basis in reality.

FIGURE 23.1: System identification configuration of the adaptive IIR filter.

The standard adaptive IIR filter is described by

y(n)+a1(n)y(n−1)+· · ·+aN(n)y(n−N) = b0(n)x(n)+b1(n)x(n−1)+· · ·+bM(n)x(n−M) ,

(23.1)
or equivalently(

1 + a1(n)q−1 + · · · + aN(n)q−N
)

y(n) =
(
b0(n) + b1(n)q−1 + · · · + bM(n)q−M

)
x(n) .

(23.2)
As is shown in Fig. 23.1, Eq. (23.2) may be written in shorthand as

y(n) = B(q−1, n)

A(q−1, n)
x(n) , (23.3)

c©1999 by CRC Press LLC



where B(q−1, n) and A(q−1, n) are the time-dependent polynomials in the delay operator q−1

appearing in (23.2). The parameters that are updated by the adaptive algorithm are the coefficients
of these polynomials. Note that the polynomial A(q−1, n) is constrained to be monic, such that
a0(n) = 1.

We adopt a rather more general description for the unknown system, assuming that d(n) is gen-
erated from the input signal x(n) via some linear time-invariant system H(q−1), with the addition
of a noise signal v(n) to reflect components in d(n) that are independent of x(n). We further break
down H(q−1) into a transfer function Hm(q−1) that is explicitly modeled by the adaptive filter, and
a transfer function Hu(q

−1) that is unmodeled. In this way, we view d(n) as a sum of three compo-
nents: the signal ym(n) that is modeled by the adaptive filter, the signal yu(n) that is unmodeled but
that depends on the input signal, and the signal v(n) that is independent of the input. Hence,

d(n) = ym(n) + yu(n) + v(n) (23.4)

= ys(n) + v(n) , (23.5)

where ys(n) = ym(n) + yu(n). The modeled component of the system output is viewed as

ym(n) = Bopt(q
−1)

Aopt(q−1)
x(n) , (23.6)

with Bopt(q
−1) = ∑M

i=0 bi,optq
−i and Aopt(q

−1) = 1 + ∑N
i=i ai,optq

−i . Note that (23.6) has the
same form as (23.3). The parameters {ai,opt} and {bi,opt} are considered to be the optimal values for
the adaptive filter parameters, in a manner that we describe shortly.

Figure 23.1 shows two error signals: ee(n) termed the equation error , and eo(n), termed the
output error. The parameters of the adaptive filter are usually adjusted so as to minimize some
positive function of one or the other of these error signals. However, the figure of merit for judging
adaptive filter performance that we will apply throughout this section is the mean-square output error
E{e2

o(n)}. In most adaptive filtering applications, the desired signal, d(n), is available only during a
“training phase” in which the filter parameters are adapted. At the conclusion of the training phase,
the filter will be operated to produce the output signal y(n) as shown in the figure, with the difference
between the filter output y(n) and the (now unmeasurable) system output d(n) the error. Thus,
we adopt the convention that {ai,opt} and {bi,opt} are defined such that when ai(n) ≡ ai,opt and
bi(n) ≡ bi,opt, E{e2

o(n)} is minimized, with Aopt(q
−1) constrained to be stable.

At this point it is convenient to set down some notation and terminology. Define the regressor
vectors

Ue(n) = [x(n) · · · x(n − M) − d(n − 1) · · · − d(n − N)]T , (23.7)

Uo(n) = [x(n) · · · x(n − M) − y(n − 1) · · · − y(n − N)]T , (23.8)

Um(n) = [x(n) · · · x(n − M) − ym(n − 1) · · · − ym(n − N)]T . (23.9)

These vectors are the equation error regressor, output error regressor, and modeled system regressor
vectors, respectively. Define a noise regressor vector

V(n) = [0 · · · 0 − v(n − 1) · · · − v(n − N)]T (23.10)

with M + 1 leading zeros corresponding to the x(n − i) values in the preceding regressors. Further-
more, define the parameter vectors

W(n) = [b0(n) b1(n) · · · bM(n) a1(n) · · · aN(n)]T , (23.11)

Wopt = [
b0,opt b1,opt · · · bM,opt a1,opt · · · aN,opt

]T
, (23.12)

W̃(n) = Wopt − W(n) , (23.13)

W∞ = lim
n→∞ E{W(n)} . (23.14)
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We will have occasion to use W to refer to the adaptive filter parameter vector when the parameters
are considered to be held at fixed values. With this notation, we may for instance write ym(n) =
UT

m(n)Wopt and y(n) = UT
o (n)W(n).

The situation in which yu(n) ≡ 0 is referred to as the sufficient order case. The situation in which
yu(n) 6≡ 0 is termed the undermodeled case.

23.1.2 Algorithms and Performance Issues

A number of different algorithms for the adaptation of the parameter vector W(n) in (23.11) have
been suggested. These may be characterized with respect to the form of the error criterion employed
by the algorithm. Each algorithm attempts to drive to zero either the equation error, the output error,
or some combination or hybrid of these two error criteria. Major algorithm classes that we consider
for the equation error approach include the standard least-squares (LS) and least mean-square (LMS)
algorithms, which parallel the algorithms used in adaptive FIR filtering. For equation error meth-
ods, we also examine the instrumental variables (IV) algorithm, as well as algorithms that constrain
the parameters in the denominator of the adaptive filter’s transfer function to improve estimation
properties. In the output error class, we examine gradient algorithms and hyperstability-based algo-
rithms. Within the equation and output error hybrid algorithm class, we focus predominantly on the
Steiglitz-McBride (SM) algorithm, though there are several algorithms that are more straightforward
combinations of equation and output error approaches.

In general, we desire that the adaptive filtering algorithm adjusts the parameter vector Wn so that
it converges to Wopt, the parameters that minimize the mean-square output error. The major issues
for adaptive IIR filtering on which we will focus herein are

1. conditions for the stability and convergence of the algorithm used to adapt W(n), and

2. the asymptotic value of the adapted parameter vector W∞, and its relationship to Wopt.

This latter issue relates to the minimum mean-square error achievable by the algorithm, as noted
above. Other issues of importance include the convergence speed of the algorithm, its ability to
track time variations of the “true” parameter values, and numerical properties, but these will receive
less attention here. Of these, convergence speed is of particular concern to practitioners, especially
as adaptive IIR filters tend to converge at a far slower rate than their FIR counterparts. However,
we emphasize the stability and nature of convergence over the speed because if the algorithm fails
to converge or converges to an undesirable solution, the rate at which it does so is of less concern.
Furthermore, convergence speed is difficult to characterize for adaptive IIR filters due to a number of
factors, including complicated dependencies on algorithm initializations, input signal characteristics,
and the relationship between x(n) and d(n).

23.1.3 Some Preliminaries

Unless otherwise indicated, we assume in our discussion that all signals in Fig. 23.1 are stationary,
zero mean, random signals with finite variance. In particular, the properties we ascribe to the various
algorithms are stated with this assumption and are presumed to be valid. Results that are based on a
deterministic framework are similar to those developed here; see [1] for an example.

We shall also make use of the following definitions.

DEFINITION 23.1 A (scalar) signal is persistently exciting (PE) of order L if, with

X(n) = [x(n) · · · x(n − L + 1)]T , (23.15)
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there exist α and β satisfying 0 < α < β < ∞ such that αI < E{X(n)XT (n)} < βI . The (vector)
signal X(n) is then also said to be PE.

If x(n) contains at least L/2 distinct sinusoidal components, then x(n) is PE of order L. Any
random signal x(n) whose power spectrum is nonzero over a interval of nonzero width will be PE
for any value of L in (23.15). Such is the case, for example, if x(n) is uncorrelated or if x(n) is
modeled as an AR, MA, or ARMA process driven by uncorrelated noise. PE conditions are required
of all adaptive algorithms to ensure good behavior because if there is inadequate excitation to provide
information to the algorithm, convergence of the adapted parameters estimates will not necessary
follow [22].

DEFINITION 23.2 A transfer function H(q−1) is said to be strictly positive real (SPR) if H(q−1)

is stable and the real part of its frequency response is positive at all frequencies.

An SPR condition will be required to ensure convergence for a few of the algorithms that we discuss.
Note that such a condition cannot be guaranteed in practice when H(q−1) is an unknown transfer
function, or when H(q−1) depends on an unknown transfer function.

23.2 The Equation Error Approach

To motivate the equation error approach, consider again Fig. 23.1. Suppose that y(n) in the figure
were actually equal to d(n). Then the system relationship A(q−1, n)y(n) = B(q−1, n)x(n) would
imply that A(q−1, n)d(n) = B(q−1, n)x(n). But of course this last equation does not hold exactly,
and we term its error the “equation error” ee(n). Hence, we define

ee(n) = A(q−1, n)d(n) − B(q−1, n)x(n) . (23.16)

Using the notation developed in (23.7) through (23.14), we find that

ee(n) = d(n) − UT
e (n)W(n) . (23.17)

Equation error methods for adaptive IIR filtering typically adjust W(n) so as to minimize the mean-
squared error (MSE) JMSE(n) = E{e2

e (n)}, where E{·} denotes statistical expectation, or the expo-
nentially weighted least-squares (LS) error JLS(n) = ∑n

k=0 λn−ke2
e (k).

23.2.1 The LMS and LS Equation Error Algorithms

The equation error ee(n) of (23.17) is the difference between d(n) and a prediction of d(n) given by
UT

e (n)W(n). Noting that UT
e (n) does not depend on W(n), we see that equation error adaptive IIR

filtering is a type of linear prediction, and in particular the form of the prediction is identical to that
arising in adaptive FIR filtering. One would suspect that many adaptive FIR filter algorithms would
then apply directly to adaptive IIR filters with an equation error criterion, and this is in fact the case.

Two adaptive algorithms applicable to equation error adaptive IIR filtering are the LMS algorithm
given by

W(n + 1) = W(n) + µ(n)Ue(n)ee(n) , (23.18)

and the recursive least-squares (RLS) algorithm given by

W(n + 1) = W(n) + P(n)Ue(n)ee(n) , (23.19)

P(n) = 1

λ

(
P(n − 1) − P(n − 1)Ue(n)UT

e (n)P (n − 1)

λ + UT
e (n)P (n − 1)Ue(n)

)
, (23.20)

c©1999 by CRC Press LLC



where the above expression for P(n) is a recursive implementation of

P(n) =
(

n∑
k=0

λn−kUe(k)UT
e (k)

)−1

. (23.21)

Some typical choices for µ(n) in (23.18) are µ(n) ≡ µ0, a constant, or µ(n) = µ̄/(ε+UT
e (n)Ue(n)),

a normalized step size. For convergence of the gradient algorithm in (23.18), µ0 is chosen in the
range 0 < µ0 < 1/((M + 1)σ 2

x + Nσ 2
d ), where σ 2

x = E{x2(n)} and σ 2
d = E{d2(n)}. Typically,

values of µ0 in the range 0 < µ0 < 0.1/((M + 1)σ 2
x + Nσ 2

d ) are chosen. With the normalized step
size, we require 0 < µ̄ < 2 and ε > 0 for stability, with typical choices of µ̄ = 0.1 and ε = 0.001.
In 23.20, we require that λ satisfy 0 < λ ≤ 1, with λ typically close to or equal to one, and we
initialize P(0) = γ I with γ a large, positive number. These results are analogous to the FIR filter
cases considered in the earlier sections of this chapter.

These algorithms possess nice convergence properties, as we now discuss.

Property 1: Given that x is PE of order N + M + 1, under (23.18) and under (23.19) and (23.20),
with algorithm parameters chosen to satisfy the conditions noted above, then E{W(n)} converges to a
value W∞ minimizing JMSE(n) and JLS(n), respectively, as n → ∞.

This property is desirable in that global convergence to parameter values optimal for the equation
error cost function is guaranteed, just as with adaptive FIR filters. The convergence result holds
whether the filter is operating in the sufficient order case or the undermodeled case. This is an
important advantage of the equation error approach over other approaches. The reader is referred
to Chapters 19, 20, and 21 for further details on the convergence behaviors of these algorithms and
their variations. As in the FIR case, the eigenvalues of the matrix R = E{Ue(n)UT

e (n)} determine
the rates of convergence for the LMS algorithm. A large eigenvalue disparity in R engenders slow
convergence in the LMS algorithm and ill-conditioning, with the attendant numerical instabilities,
in the RLS algorithm. For adaptive IIR filters, compared to the FIR case, the presence of d(n) in
Ue(n) tends to increase the eigenvalue disparity, so that slower convergence is typically observed for
these algorithms.

Of importance is the value of the convergence points for the LMS and RLS algorithms with respect
to the modeling assumptions of the system identification configuration of Fig. 23.1. For simplicity,
let us first assume that the adaptive filter is capable of modeling the unknown system exactly; that is,
Hu(q

−1) = 0. One may readily show that the parameter vector W that minimizes the mean-square
equation error (or equivalently the asymptotic least square equation error, given ergodic stationary
signals) is

W = E
{
Ue(n)UT

e (n)
}−1

E{Ue(n)d(n)} (23.22)

=
(
E{Um(n)UT

m(n)} + E
{
V(n)VT (n)

})−1

(E{Um(n)ym(n)} + E{V(n)v(n)}) . (23.23)

Clearly, if v(n) ≡ 0, the W so obtained must equal Wopt, so that we have

Wopt = E
{
Um(n)UT

m(n)
}−1

E{Um(n)ym(n)} . (23.24)

By comparing (23.23) and (23.24), we can easily see that when v(n) 6≡ 0, W 6= Wopt. That is, the
parameter estimates provided by (23.18) through (23.20) are, in general, biased from the desired
values, even when the noise term v(n) is uncorrelated.

What effect on adaptive filter performance does this bias impose? Since the parameters that
minimize the mean-square equation error are not the same as Wopt, the values that minimize the
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mean-square output error, the adaptive filter performance will not be optimal. Situations can arise
in which this bias is severe, with correspondingly significant degradation of performance.

Furthermore, a critical issue with regard to the parameter bias is the input-output stability of the
resulting IIR filter. Because the equation error is formed as A(q−1)d(n) − B(q−1)x(n), a difference
of two FIR filtered signals, there are no built in constraints to keep the roots of A(q−1) within the
unit circle in the complex plane. Clearly, if an unstable polynomial results from the adaptation, then
the filter output y(n) can grow unboundedly in operational mode, so that the adaptive filter fails. An
example of such a situation is given in [25]. An important feature of this example is that the adaptive
filter is capable of precisely modeling the unknown system, and that interactions of the noise process
within the algorithm are all that is needed to destabilize the resulting model.

Nonetheless, under certain operating conditions, this kind of instability can be shown not to occur,
as described in the following.

Property 2: [18] Consider the adaptive filter depicted in Fig. 23.1, where y(n) is given by (23.2). If
x(n) is an autoregressive process of order no more than N , and v(n) is independent of x(n) and of finite
variance, then the adaptive filter parameters minimizing the mean-square equation error E{e2

e (n)} are
such that A(q−1) is stable.

For instance, if x(n) is an uncorrelated signal, then the convergence point of the equation error
algorithms corresponds to a stable filter.

To summarize, for LMS and RLS adaptation in an equation error setting, we have guaranteed
global convergence, but bias in the presence of additive noise even in the exact modeling case, and
an estimated model guaranteed to be stable only under a limited set of conditions.

23.2.2 Instrumental Variable Algorithms

A number of different approaches to adaptive IIR filtering have been proposed with the intention of
mitigating the undesirable biased properties of the LMS- and RLS-based equation error adaptive IIR
filters. One such approach, still within the equation error context, is the instrumental variables (IV)
method. Observe that the bias problem illustrated above stems from the presence of v(n) in both
Ue(n) and in ee(n) in the update terms in (23.18) and (23.19), so that second order terms in v(n) then
appear in (23.23). This simultaneous presence creates, in expectation, a nonzero, noise-dependent
driving term to the adaptation. The IV algorithm approach addresses this by replacing Ue(n) in these
algorithms with a vector Uiv(n) of instrumental variables that are independent of v(n). If Uiv(n)

remains correlated with Um(n), the noiseless regressor, convergence to unbiased filter parameters is
possible.

The IV algorithm is given by

W(n + 1) = W(n) + µ(n)Piv(n)Uiv(n)ee(n) . (23.25)

Piv(n) = 1

λ(n)

(
Piv(n − 1) − Piv(n − 1)Uiv(n)UT

e (n)Piv(n − 1)

(λ(n)/µ(n)) + UT
e (n)Piv(n − 1)Uiv(n)

)
. (23.26)

with λ(n) = 1− µ(n). Common choices for λ(n) are to set λ(n) ≡ λ0, a fixed constant in the range
0 < λ < 1 and usually chosen in the range between 0.9 and 0.99, or to choose µ(n) = 1/n and
λ(n) = 1 − µ(n). As with RLS methods, P(0) = γ I with γ a large, positive number. The vector
Uiv(n) is typically chosen as

Uiv(n) = [x(n) · · · x(n − M) − z(n − 1) · · · − z(n − N)]T (23.27)

with either

z(n) = −x(n − M) or z(n) = B̄(q−1)

Ā(q−1)
x(n) . (23.28)
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In the first case, Uiv(n) is then simply an extended regressor in the input x(n), while the second
choice may be viewed as a regressor parallel to Um(n), with z(n) playing the role of ym(n). For this
choice, one may think of Ā(q−1) and B̄(q−1) as fixed filters chosen to approximate Aopt(q

−1) and
Bopt(q

−1), but the exact choice of Ā(q−1) and B̄(q−1) is not critical to the qualitative behavior of
the algorithm. In both cases, note that Uiv(n) is independent of v(n), since d(n) is not employed in
its construction.

The convergence of this algorithm is described by the following property, derived in [15].

Property 3: In the sufficient order case with x(n) PE of order at least N + M + 1, the IV algorithm
in (23.25) and (23.26) with Uiv(n) chosen according to (23.27) or (23.28) causes E{W(n)} to converge
to W∞ = Wopt.

There are a few additional technical conditions an Aopt(q
−1), Bopt(q

−1), Ā(q−1), and B̄(q−1) that
are required for the property to hold. These conditions will be satisfied in almost all circumstances; for
details, the reader is referred to [15]. This convergence property demonstrates that the IV algorithm
does in fact achieve unbiased parameter estimates in the sufficient order case.

In the undermodeled case, little has been said regarding the behavior and performance of the
IV algorithm. A convergence point W∞ must satisfy E{Uiv(n) − (d(n)UT

e (n)W∞)} = 0, but no
characterization of such points exists if N and M are not of sufficient order. Furthermore, it is
possible for the IV algorithm to converge to a point such that 1/A(q−1) is unstable [9].

Notice that (23.25) and (23.26) are similar in form to the RLS algorithm. One may postulate an
“LMS-style” IV algorithm as

W(n + 1) = W(n) + µ(n)Uiv(n)ee(n), (23.29)

which is computationally much simpler than the “RLS-style” IV algorithm of (23.25) and (23.26).
However, the guarantee of convergence of the algorithm to Wopt in the sufficient order case for the
RLS-style algorithm is now complicated by an additional requirement on Uiv(n) for convergence of
the algorithm in (23.29). In particular, all eigenvalues of

Riv = E
{
Uiv(n)UT

e (n)
}

(23.30)

must lie strictly in the right half of the complex plane. Since the properties of Ue(n) depend on
the unknown relationship between x(n) and d(n), one is generally unable to guarantee a priori
satisfaction of such conditions. This situation has parallels with the stability-theory approach to
output error algorithms, as discussed later in this section.

Summarizing the IV algorithm properties, we have that in the sufficient order case, the RLS-style
IV algorithm is guaranteed to converge to unbiased parameter values. However, an understanding
and characterization of its behavior in the undermodeled case is yet incomplete, and the IV algorithm
may produce unstable filters.

23.2.3 Equation Error Algorithms with Unit Norm Constraints

A different approach to mitigating the parameter bias in equation error methods arises as follows.
Consider modifying the equation error of (23.17) to

ee(n) = a0(n)d(n) − UT
e (n)W(n). (23.31)

In terms of the expression (23.16), this change corresponds to redefining the adaptive filter’s denom-
inator polynomial to be

A(q−1, n) = a0(n) + a1(n)q−1 + · · · + aN(n)q−N , (23.32)
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and allowing for adaptation of the new parameter a0(n). One can view the equation error algorithms
that we have already discussed as adapting the coefficients of this version of A(q−1, n), but with
a monic constraint that imposes a0(n) = 1. Recently, several algorithms have been proposed that
consider instead equation error methods with a unit norm constraint. In these schemes, one adapts
W(n) and a0(n) subject to the constraint

N∑
i=0

a2
i (n) = 1 (23.33)

Note that if A(q−1, n) is defined as in (23.32), then ee(n) as constructed in Fig. 23.1 is in fact the
error ee(n) given in (23.31).

The effect on the parameter bias stemming from this change from a monic to a unit norm constraint
is as follows.

Property 4: [18] Consider the adaptive filter in Fig. 23.1 with A(q−1, n) given by (23.32), with v(n)

an uncorrelated signal and with Hu(q
−1) = 0 (the sufficient order case). Then the parameter values W

and a0 that minimize E{e2
e (n)} subject to the unit norm constraint (23.33) satisfy W/a0 = Wopt.

That is, the parameter estimates are unbiased in the sufficient order case with uncorrelated out-
put noise. Note that normalizing the coefficients in W by a0 recovers the monic character of the
denominator for Wopt:

B(q−1)

A(q−1)
= b0 + b1q

−1 + · · · + bMq−M

a0 + a1q−1 + · · · + aNq−N

(23.34)

= (b0/a0) + (b1/a0) q−1 + · · · + (bM/a0) q−M

1 + (a1/a0) q−1 + · · · + (aN/a0) q−N
. (23.35)

In the undermodeled case, we have the following.
Property 5: [18] Consider the adaptive filter in Fig. 23.1 with A(q−1, n) given by (23.32). If x(n) is

an autoregressive process of order no more than N , and v(n) is independent of x(n) and of finite variance,
then the parameter values W and a0 that minimize E{e2

e (n)} subject to the unit norm constraint (23.33)
are such that A(q−1) is stable. Furthermore, at those minimizing parameter values, if x(n) is an
uncorrelated input, then

E{e2
e (n)} ≤ σ 2

N+1 + σ 2
v , (23.36)

where σN+1 is the (N + 1)st Hankel singular value of H(z).
Notice that Property 5 is similar to Property 2, except that we have the added bonus of a bound

on the mean-square equation error in terms of the Hankel singular values of H(q−1). Note that
the (N + 1)st Hankel singular value of H(q−1) is related to the achievable modeling error in an
N th order, reduced order approximation to H(q−1) (see [19, Ch.4] for details). This bound thus
indicates that the optimal unit norm constrained equation error filter will in fact do about as well
as can be expected with an N th order filter. However, this adaptive filter will suffer, just as with the
equation error approaches with the monic constraint on the denominator, from a possibly unstable
denominator if the input x(n) is not an autoregressive process.

An adaptive algorithm for minimizing the mean-square equation error subject to the unit norm
constraint can be found in [4]. The algorithm of [4] is formulated as a recursive total least squares
algorithm using a two-channel, fast transversal filter implementation. The connection between total
least squares and the unit norm constrained equation error adaptive filter implies that the correlation
matrices that are embedded within the adaptive algorithm will be more poorly conditioned than the
correlation matrices arising in the RLS algorithm. Consequently, convergence will be slower for the
unit norm constrained approach than in the standard, monic constraint approach.
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More recently, several new algorithms that generalize the above approach to confer unbiasedness
in the presence of correlated output noises v(n) have been proposed [5]. These algorithms require
knowledge of the statistics of v(n), though versions of the algorithms in which these statistics are
estimated on-line are also presented in [5]. However, little is known about the transient behaviors
or the local stabilities of these adaptive algorithms, particularly in the undermodeled case.

In conclusion, minimizing the equation error cost function with a unit norm constraint on the
autoregressive parameter vector provides bias-free estimates in the sufficient order case and a bias level
similar to the standard equation error methods in the undermodeled case. Adaptive algorithms for
constrained equation error minimization are under development, and their convergence properties
are largely unknown.

23.3 The Output Error Approach

We have already noted that the error of merit for adaptive IIR filters is the output error eo(n). We
now describe a class of algorithms that explicitly uses the output error in the parameter updates.
We distinguish between two categories within this class: those algorithms that directly attempt to
minimize the least squares or mean-square output error, and those formulated using stability theory
to enforce convergence to the “true” system parameters. This class of algorithms has the advantage of
eliminating the parameter bias that occurs in the equation error approach. However, as we will see,
the price paid is that convergence of the algorithms becomes more complicated, and unlike in the
equation error methods, global convergence to the desired parameter values is no longer guaranteed.

Critical to the formulation of these output error algorithms is an understanding of the relationship
of W(n) to eo(n). With reference to Fig. 23.1, we have

eo(n) = d(n) − B(q−1, n)

A(q−1, n)
x(n) . (23.37)

Using the notation in (23.7) through (23.14) and following a standard derivation [19, Ch.9] shows
that

ym(n) − y(n) = 1

Aopt(q−1)

[
UT

o (n)W̃(n)
]

, (23.38)

so that

eo(n) = 1

Aopt(q−1)

[
UT

o (n)W̃(n)
]

+ yu(n) + v(n) . (23.39)

The expression in (23.39) makes clear two characteristics of eo(n). First, eo(n) separates the error due
to the modeled component, which is the term based on W̃(n), from the error due to the unmodeled
effects ind(n), that isyu(n)+v(n). Neitheryu(n)norv(n) appear in the termbasedonW̃(n). Second,
eo(n) is nonlinear in W(n), since Uo(n) depends on W(n). The first feature leads to the desirable
unbiasedness characteristic of output error methods, while the second is a source of difficulty for
defining globally convergent algorithms.

23.3.1 Gradient-Descent Algorithms

An output error-based gradient descent algorithm may be defined as follows. Set

xf (n) = 1

A(q−1, n)
x(n), yf (n) = 1

A(q−1, n)
y(n), (23.40)

and define

Uof(n) = [
xf (n) · · · xf (n − M) − yf (n − 1) · · · − yf (n − N)

]T
. (23.41)
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Then
W(n + 1) = W(n) + µ(n)Uof(n)eo(n) (23.42)

defines an approximate stochastic gradient (SG) algorithm for adapting the parameter vector W(n).
The direction of the update term in (23.42) is opposite to the gradient of eo(n) with respect to W(n),
assuming that the parameter vector W(n) varies slowly in time. To see how a gradient descent results
in this algorithm, note that the output error may be written as

eo(n) = d(n) − y(n) (23.43)

= d(n) −
M∑

i=0

bi(n)x(n − i) +
N∑

i=1

ai(n)y(n − i) (23.44)

so that
∂eo(n)

∂bi(n)
= −x(n − i) +

N∑
i=1

ai(n)
∂y(n − 1)

∂bi(n)
. (23.45)

Noting that ∂eo(n)/∂bi(n) = −∂y(n)/∂bi(n), and assuming that the parameter bi(n) varies slowly
enough so that

∂e(n − i)

∂bi(n)
≈ ∂e(n − i)

∂bi(n − i)
, (23.46)

(23.45) becomes

∂e(n)

∂bi(n)
≈ −x(n − i) −

N∑
i=1

ai(n)
∂e(n − i)

∂bi(n − i)
. (23.47)

This equation can be rearranged to

∂e(n − i)

∂bi(n)
≈ −A(q−1, n)x(n − i) = −xf (n − i) . (23.48)

The relation
∂e(n − i)

∂ai(n)
≈ A(q−1, n)y(n − i) = yf (n − i) (23.49)

may be found in a similar fashion. Since the gradient descent algorithm is

bi(n + 1) = bi(n) − µ

2

∂e2
o(n)

∂bi(n)
(23.50)

≈ bi(n) + µxf (n − i)eo(n) (23.51)

ai(n + 1) = ai(n) − µ

2

∂e2
o(n)

∂ai(n)
(23.52)

≈ bi(n) − µyf (n − i)eo(n) , (23.53)

(23.42) follows.
The step size µ(n) is typically chosen either as a constant µ0, or normalized by Uof(n) as

µ(n) = µ̄

1 + µ̄UT
of(n)Uof(n)

. (23.54)

Due to the nonlinear relationship between the parameters and the output error, selection of values
for µ(n) is less straightforward than in the equation error case. Roughly speaking, one would like
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that 0 < µ(n) ≤ 1/UT
of(n)Uof(n), or more conservatively, µ(n) = 0.1/UT

of(n)Uof(n). This suggests
setting µ0 = 0.1/E{UT

of(n)Uof(n)}, given an estimate of the expected value, or µ̄ at about the same
value. The behavior of the algorithm using the normalized step size of (23.54) is in general less
sensitive to variations in µ̄ than is the unnormalized version with respect to choice of µ0.

Another alternative to (23.42) is the Gauss-Newton (GN) algorithm given by

W(n + 1) = W(n) + µ(n)P (n)Uof(n)eo(n) , (23.55)

P(n) = 1

λ(n)

(
P(n − 1) − P(n − 1)Uof(n)UT

of(n)P (n − 1)

(λ(n)/µ(n)) + UT
of(n)P (n − 1)Uof(n)

)
, (23.56)

while setting λ(n) = 1 − µ(n), and P(0) = γ I just as for the IV algorithm. Most frequently λ(n)

is chosen as a constant in the range between 0.9 and 0.99. Another choice is to set µ(n) = 1/n, a
decreasing adaptation gain, but when µ(n) tends to zero, one loses adaptability. The GN algorithm
is a descent strategy utilizing approximate second order information, with the matrix P(n) being
an approximation of the inverse of the Hessian of eo(n) with respect to W(n). Note the similarity
of (23.55) and (23.56) to (23.19) and (23.20). In fact, replacing Uof(n) in the GN algorithm with
Ue(n), replacing eo(n) with ee(n), and setting µ(n) = (1 − λ)/(1 − λn), one recovers the RLS
algorithm, though the interpretation of P(n) in this form is slightly different. As n gets large, the
choice of constant λ and µ = 1 − λ approximates RLS (with 0 < λ < 1).

Precise convergence analyses of these two algorithms are quite involved and rely on a number
of technical assumptions. Analyses fall into two categories. One approach treats the step size µ(n)

in (23.42)and in(23.55)and(23.56)asaquantity that tends tozero, satisfying the followingproperties:

(1) µ(n) → 0, (2) lim
L→∞

L∑
n=0

µ(n) → ∞, (3) lim
L→∞

L∑
n=0

µ2(n) < ∞ ; (23.57)

for instanceµ(n) = 1/n, asnotedabove. TheODEanalysis of [15] applies in this situation. Assuming
a decreasing step size is a necessary technicality to enable convergence of the adapted parameters to
their optimum values in a random environment. The second approach allows µ to remain as a fixed,
but small, step size, as in [3]. The results describe the probabilistic behavior of W(n) over finite
intervals of time, with the extent of the interval increasing and the degree of variability of W(n)

decreasing as the fixed value of µ becomes smaller.
However, in both cases, the conclusions are essentially the same. The behavior of these algorithms

with small enough step size µ is to follow gradient descent of the mean-square output error E{e2
o(n)}.

We should note that a technical requirement for the analyses to remain valid is that signals within
the adaptive filter remain bounded, and to insure this the stability for the polynomial A(q−1, n)

must be maintained to ensure this requirement. Therefore, at each iteration of the gradient descent
algorithm, one must check the stability of A(q−1, n) and, if it is unstable, prevent the update of the
ai(n+1) values in W(n+1), or project W(n+1) back into the set of parameter vector values whose
corresponding A(q−1, n) polynomial is stable [11, 15]. For direct-form adaptive filters, this stability
check can be computationally burdensome, but it is necessary as the algorithm often fails to converge
without its implementation, especially if Aopt(q

−1) has roots near to the unit circle. Imposing a
stability check at each iteration of the algorithm guarantees the following result.

Property 6: For the SG or GN algorithm with decreasing µ(n) satisfying (23.57), W(n) converges to
a value locally minimizing the mean-square output error or locks up on a point on the stability boundary
where W represents a marginally stable filter. For the SG or GN algorithm with constant µ that is small
enough, W(n) remains close in probability to a trajectory approaching a value locally minimizing the
mean-square output error.

c©1999 by CRC Press LLC



This property indicates that the value of W(n) found by these algorithms does in practice approach
a local minimum of the mean-square output error surface. A stronger analytic statement of this
expected convergence is unfortunately not possible, and in fact, the probability of large deviations of
the algorithms from a minimum point becomes large with time with constantµ. As a practical matter,
however, one can expect the parameter vector to approach and stay near a minimizing parameter
value using these methods.

More problematic, however, is whether effective convergence to a global minimum is achieved. A
thorough treatment of this issue appears in [16] and [27], with conclusions as follows.

Property 7: In the sufficient order case (yu ≡ 0) with an uncorrelated input x(n), all minima of
E{e2

o(n)} are global minima.
The same conclusion holds if x(n) is generated as an ARMA process, given satisfaction of certain

conditions on the orders of the adaptive filter, the unknown system, and the system generating x(n);
see [27] for details. However, in the undermodeled case (yu(n) 6≡ 0), it is possible for the system to
converge to a local but not global minimum. Several examples of this are presented in [16]. Since the
insufficient order case will likely be the one encountered in practice, the possibility of convergence to
a local but not global minimum will always exist with these gradient descent output error algorithms.
It is possible that these local minima will provide a level of mean-square output error much greater
than that obtained at the global minimum, so serious performance degradation may result. However,
any such minimum must correspond to a stable parametrization of the adaptive filter, in contrast with
the equation error methods for which there is no such guarantee in the most general of circumstances.

We have the following summary. The output error gradient descent algorithms converge to a
stable filter parametrization that locally minimizes the mean-square output error. These algorithms
are unbiased, and reach a global minimum, when yu(n) ≡ 0, but when the true system has been
undermodeled, convergence to a local but not global minimum is likely.

23.3.2 Output Error Algorithms Based on Stability Theory

One of the first adaptive IIR filters to be proposed employs the parameter update

W(n + 1) = W(n) + µ(n)Uo(n)eo(n). (23.58)

This algorithm, often referred to as a pseudolinear regression, Landau’s algorithm, or Feintuch’s
algorithm, was proposed as an alternative to the gradient descent algorithm of (23.42). This algorithm
is similar in form to (23.18), save that the regressor vector and error signal of the output error
formulation appear in place of their equation error counterparts. In essence, the update in (23.58)
ignores the nonlinear dependence of eo(n) on W(n), and takes the form of an algorithm for a linear
regression, hence the label “pseudolinear” regression. One advantage of (23.58) over the algorithm
in (23.42) is that the former is computationally simpler as it avoids the filtering operations necessary
to generate (23.40). An additional requirement is needed for stability of the algorithm, however, as
we now discuss.

The algorithm of (23.58) is one possibility among a broad range of algorithms studied in [21],
given by

W(n + 1) = W(n) + µ(n)F (q−1, n)[Uo(n)]G(q−1, n)[eo(n)] , (23.59)

where F(q−1, n) and G(q−1, n) are possibly time-varying filters, and where F(q−1, n) acting on the
vector Uo(n) denotes an element-by-element filtering operation. We can see that setting F(q−1) =
G(q−1) = 1 yields (23.58). The convergence of these algorithms have been studied using the theory
of hyperstability and the theory of averaging [1]. For this reason, we classify this family as “stability
theory based” approaches to adaptive IIR filtering. The method behind (23.59) can be understood
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by considering the algorithm subclass represented by

W(n + 1) = W(n) + µ(n)Uo(n)G(q−1)[eo(n)] , (23.60)

which is known as the Simplified Hyperstable Adaptive Recursive Filter or SHARF algorithm [12].
A GN-like alternative is

W(n + 1) = W(n) + µ(n)P (n)Uo(n)G(q−1)[eo(n)] , (23.61)

P(n) = 1

λ(n)

(
P(n − 1) − P(n − 1)Uo(n)UT

o (n)P (n − 1)

(λ(n)/µ(n)) + UT
o (n)P (n − 1)Uo(n)

)
. (23.62)

with again λ(n) = 1−µ(n). Choice of µ(n), λ(n), and P(0) are similar to those for other algorithms.
The averaging analyses applied in [21] to (23.60) and (23.61)–(23.62) obtain the following con-

vergence results, with reference to Definitions 23.1 and 23.2 in the Introduction.

Property 8: If G(q−1)/Aopt(q
−1) is SPR and Um(n) is a bounded, PE vector sequence,1 then when

yu(n) = v(n) = 0, there exists a µ0 such that 0 < µ < µ0 implies that (23.60) is locally exponentially
stable about W = Wopt. It also follows that nonzero, but small, yu(n) and v(n) result in a bounded
perturbation of W from Wopt. If the SPR condition is strengthened to (G(q−1)/Aopt(q

−1)) − (1/2)

being SPR, then the results apply to (23.61) and (23.62) with µ constant and small enough.
The essence of the analysis is to describe the average behavior of the parameter error W̃(n) un-

der (23.60) by
W̃avg(n + 1) = [I − µR]W̃avg(n) + µξ1(n) + µ2ξ2(n) . (23.63)

In (23.63), the signal ξ1(n) is a term dependent on yu(n) and v(n), the signal ξ2(n) represents the
approximation error made in linearizing and averaging the update, and the matrix R is given by

R = avg

{
Um(n)

(
G(q−1)

Aopt(q−1)
[Um(n)]

)T
}

. (23.64)

The SPR and PE conditions imply that the eigenvalues of R all have positive real part, so that µ may
then be chosen small enough so that the eigenvalues of I−µR are all less than one in magnitude. Then
W̃avg(n + 1) = [I − µR]W̃avg(n) is exponentially stable, and Property 8 follows. The exponential
stability of (23.63) is the property that allows the algorithm to behave robustly in the presence of a
number of effects, including that the undermodeling [1].

The above convergence result is local in nature and is the best that can be stated for this class of
algorithms in the general case. In the variation proposed for system identification by Landau and
interpreted for adaptive filters by Johnson [10], a stronger statement of convergence can be made
in the exact modeling case when yu(n) is zero and assuming that v(n) = 0. In that situation,
given satisfaction of the SPR and PE conditions, W(n) can be shown to converge to Wopt. For
nonzero v(n), analyses with a vanishing step size µ(n) → ∞ have established this convergence,
again assuming exact modeling, even in the presence of a correlated noise term v(n) [20]. One
advantage on this convergence result in comparison to the exact modeling convergence result for the
gradient algorithm (23.42) is that the PE condition on the input is less restrictive than the conditions
that enable global convergence of the gradient algorithm. Nonetheless, in the undermodeled case,
convergence is local innature, andalthough the robustness conferredby the local, exponential stability
to some extent mitigates this problem, it represents a drawback to the practical application of these
techniques.

1The PE condition applies toUm(n), rather thanUo(n), since this is an analysis local toW = Wopt, where Uo(n) = Um(n).
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A further drawback of this technique is the SPR condition that G(q−1)/Aopt(q
−1) must satisfy.

The polynomial Aopt(q
−1) is of course unknown to the adaptive filter designer, presenting difficulties

in the selection of G(q−1) to ensure that G(q−1)/Aopt(q
−1) is SPR. Recent research into choices of

filters G(q−1) that render G(q−1)/Aopt(q
−1) SPR for all Aopt(q

−1) within a set of filters, a form of
“robust SPR” result, has begun to address this issue [2], but the problem of selecting G(q−1) has not
yet been completely resolved.

To summarize, for the SHARF algorithm and its cousins, we have convergence to unbiased pa-
rameter values guaranteed in the sufficient order case when there is adequate excitation and an SPR
condition is satisfied. Satisfaction of the SPR condition cannot be guaranteed without a priori knowl-
edge of the optimal filter, however. In the undermodeled case, no general results can be stated, but
as long as the unmodeled component of the optimal filter is small in some sense, the exponential
convergence in the sufficient order case implies stable behavior in this situation. Filter order selection
to make the unmodeled component small again requires a priori knowledge about the optimal filter.

23.4 Equation-Error/Output-Error Hybrids

We have seen that equation error methods enjoy global convergence of their parameters, but suffer
from parameter estimation bias, while output error methods enjoy unbiased parameter estimates
while suffering from difficulties in their convergence properties. A number of algorithms have been
proposed that in a sense strive to combine the best of both of these approaches. The most important of
these is the Steiglitz-McBride algorithm, which we consider in detail below. Several other algorithms
in this class work by using convex combinations of terms in the equation error and output error
parameter updates. Two such algorithms include the Bias Remedy Least Mean-Squares algorithm
of [14] and the Composite Regressor Algorithm of [13]. We will not consider these algorithms here;
for details, see [14] and [13].

23.4.1 The Steiglitz-McBride Family of Algorithms

The Steiglitz-McBride (SM) algorithm is adapted from an off-line system identification method that
iteratively minimizes the squared equation error criterion using prefiltered data. The prefiltering
operations are based on the results of the previous iteration in such a way that the algorithm bears a
close relationship to an output error approach.

A clear understanding of the algorithm in an adaptive filtering context is best obtained by first
considering the original off-line method. Given a finite record of input and output sequences x(n)

and d(n), one first forms the equation error according to (23.16). The parameters of A(q−1) and
B(q−1) minimizing the LS criterion for this error are then found, and the minimizing polynomials
are labelled as A(0)(q−1) and B(0)(q−1). The SM method then proceeds iteratively by minimizing
the LS criterion for

e(i)
e (n) = A(q−1)d

(i)
f (n) − B(q−1)x

(i)
f (n) (23.65)

to find A(i)(q−1) and B(i)(q−1), where

d
(i)
f (n) = 1

A(i−1)(q−1)
d(n); x

(i)
f (n) = 1

A(i−1)(q−1)
x(n) . (23.66)

Notice that at each iteration, we find A(i)(q−1) and B(i)(q−1) through equation error minimization,
for which we have globally convergent methods as discussed previously.

Let A(∞)(q−1), B(∞)(q−1) denote the polynomials obtained at a convergence point of this algo-
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rithm. Then minimizing the LS criterion applied to

e(∞)
e (n) = A(q−1)

1

A(∞)(q−1)
d(n) − B(q−1)

1

A(∞)(q−1)
x(n) (23.67)

results again in A(q−1) = A(∞)(q−1) and B(q−1) = B(∞)(q−1) by virtue of this solution being a
convergence point, and the error signal at this minimizing choice of parameters is

e(∞)
e (n) = d(n) − B(∞)(q−1)

A(∞)(q−1)
x(n) . (23.68)

Comparing (23.68) to (23.37), we see that at a convergence point of the SM algorithm, e
(∞)
e (n) =

eo(n), thereby drawing the connection between equation error and output error approaches in the
SM approach.2 Because of this connection, one expects that the parameter bias problem is mitigated,
and in fact this is the case, as demonstrated by the following property.

Property 9: [26] If yu(n) ≡ 0 and v(n) is white noise, then with x(n) PE of order at least N + M +
1, B(q−1) = Bopt(q

−1) and A(q−1) = Aopt(q
−1) is the only convergence point of the SM algorithm,

and this point is locally stable.
The local stability implies that if the initial denominator estimate A(0)(q−1) is close enough to

Aopt(q
−1), then the algorithm converges to the unbiased solution in the uncorrelated noise case.

The on-line variation of the SM algorithm useful for adaptive filtering applications is given as
follows. Set xf (n) as in (23.40) and set

df (n) = 1

A(q−1, n + 1)
d(n) . (23.69)

The (n + 1) index in the above filter is reasonable as only past df (n) samples shall appear in the
parameter updates at time n. Then by defining the SM regressor vector as

Uef(n) = [
xf (n) · · · xf (n − M) − df (n − 1) · · · − df (n − N)

]T
, (23.70)

the algorithm is
W(n + 1) = W(n) + µ(n)Uef(n)eo(n) . (23.71)

Alternatively, we may employ the GN-style version given by

W(n + 1) = W(n) + µ(n)Pef(n)Uef(n)eo(n) , (23.72)

Pef(n) = 1

λ(n)

(
Pef(n − 1) − Pef(n − 1)Uef(n)UT

ef (n)Pef(n − 1)

(λ(n)/µ(n)) + UT
ef (n)Pef(n − 1)Uef(n)

)
, (23.73)

with λ(n), µ(n), and P(0) chosen in the same fashion as with the IV and GN algorithms. For these
algorithms, the signal eo(n) is the output error, constructed as shown in Fig. 23.1, a reflection of the
connection of the SM and output error approaches noted above. Also, note that Uef(n) is a filtered
version of the equation error regressor Ue(n), but with the time index of the filtering operation
of (23.69) set to n + 1 rather than n, reflecting the derivation of the algorithm from the iterative

2Realize, however, that minimizing the square of e
(∞)
o (n) in (23.67) is not equivalent to minimizing the squared output

error, and in general these two approaches can result in different values for A(q−1) and B(q−1).
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off-line procedure. This form of the algorithm is only one of several variations; see [8] or [19] for
others.

Assuming that one monitors and maintains the stability of the adapted polynomial A(q−1, n), in
order that the signals xf (n) and df (n) remain bounded, this algorithm has the following proper-
ties [19].

Property 10: [6] In the sufficient order case where yu(n) ≡ 0 and with v(n) an uncorrelated noise
sequence and x(n) PE of order at least N + M + 1, the on-line SM algorithm converges to W∞ = Wopt

or locks up on the stability boundary.

Property 11: [19] In the sufficient order case where yu(n) ≡ 0 with v(n) a correlated sequence, and
in the undermodeled case where yu(n) 6≡ 0, the existence of convergence points W∞ of the on-line SM
algorithm is not guaranteed, and if these convergence points exist, they are generally biased away from
Wopt.

Property 12: [19] In the undermodeled case with the order of the adaptive filter numerator and
denominator both equal to N , and with x(n) an uncorrelated sequence, then at the convergence points
of the on-line SM algorithm, if they exist,

E{e2
o(n)} ≤ σ 2

N+1 + maxω Sv

(
ejω

)− σ 2
v

σ 2
u

+ σ 2
v , (23.74)

where σN+1 is the (N + 1)st Hankel singular value of H(z) = Hm(z) + Hu(z) and where Sv(e
jω) is

the power spectral density function of v(n).

Note that in the off-line version for either the sufficient order case with correlated v(n) or the
undermodeled case, the SM algorithm can possibly converge to a set of parameters yielding an
unstable filter. The stability check and projection steps noted above will prevent such convergence
in the on-line version, contributing in part to the possibility of non-convergence.

The pessimistic nature of Properties 11 and 12 with regard to existence of convergence points is
somewhat unfair in the following sense. In practice, one finds that in most circumstances the SM
algorithm does converge, and furthermore that the convergence point is close to the minimum of the
mean-square output error surface [7]. Property 12 quantifies this closeness. The (N + 1)st Hankel
singular value of a transfer function is an upper bound for the minimum mean-square output error
of an N th order transfer function approximation [19, Ch.4]. Hence, one sees that W∞ under the SM
algorithm is guaranteed to remain close in this sense to Wopt, and this fact remains true regardless of
the existence or relative values of local minima on the mean-square output error surface.

The second term in (23.74) describes the effect of the noise term. The fact that maxω Sv(e
jω) = σ 2

v

for uncorrelated v(n) shows the disappearance of noise effects in that case. For strongly correlated
v(n), the effect of this noise term will increase, as the adaptive filter attempts to model the noise as
well as the unknown system, and of course this effect is reduced as the signal-to-noise ratio of d(n)

is increased. One sees, then, that with strongly correlated noise, the SM algorithm may produce a
significantly biased solution W∞.

To summarize, given adequate excitation, the SM algorithm in the sufficient order case converges
to unbiased parameter values when the noise v(n) is uncorrelated, and generally converges to biased
parameter values when v(n) is correlated. The SM algorithm is not guaranteed to converge in the
undermodeled case and, furthermore, if it converges, there is no general guarantee of stability of the
resulting filter. However, a bound of the modeling error in these instances quantifies what can be
considered as the good performance of the algorithm when it converges.
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23.5 Alternate Parametrizations

Thus far we have couched our discussion of adaptive IIR filters in terms of a direct-form implemen-
tation of the system. Direct-form implementations suffer from poor finite precision effects both
in terms of coefficient quantization and round-off effects in their computations. Furthermore, in
output error adaptive IIR filtering, one must check the stability of the adaptive filter’s denominator
polynomial at each iteration. In direct-form implementations, this stability check is cumbersome
and computationally expensive to implement. For these reasons, adaptive IIR filters implemented
in alternative realizations such as parallel-form, cascade-form, and lattice-form have been proposed.
For these structures, a stability check is easily implemented.

The SG and GN algorithms of (23.42), (23.55), and (23.56), respectively, are easily adapted for
many of the alternate parametrizations. The resulting updates are

W(n + 1) = W(n) + µ(n)Ualt(n)eo(n) (23.75)

and

W(n + 1) = W(n) + µ(n)P (n)Ualt(n)eo(n) (23.76)

P(n) = 1

λ(n)

(
P(n − 1) − P(n − 1)Ualt(n)UT

alt(n)P (n − 1)

(λ(n)/µ(n)) + UT
alt(n)P (n − 1)Ualt(n)

)
, (23.77)

respectively, where all signal definitions parallel those for the direct-form algorithms, save that Ualt(n)

equals the gradient of the filter output with respect to the adapted parameters. Note that Uof(n)

in (23.42), (23.55), and (23.56) is such a gradient for the direct-form implementation. The output
gradient Uof(n) for the direct-form was constructed as shown in (23.40) and (23.41). For alternate
parametrizations, these output gradients may be constructed as described in [29]. In [29], the
implementation for a two-multiplier lattice adaptive IIR filter is shown, but the methodology is
applicable to cascade and parallel implementations, resulting for instance in the same algorithm
for the parallel-form filter that appears in [24]. We should note that the complexity of the output
gradient generation may be an issue; however, implementations for parallel and cascade realizations
exist where this complexity is equivalent to that of the direct form. The lattice implementation of [29]
presents a sizable computational burden in gradient generation, but the normalized lattice of [17]
(see below) can be implemented with the same complexity as the direct form.

The convergence results we have noted for previous output error approaches for the most part
apply as well for these alternate realizations. Differences in these results for cascade and parallel form
filters stem from the fact that permutations of some of the filter parameters yield equivalent filter
transfer functions, but these differences do not affect the convergence results. In general, gradient
algorithms for alternate implementations appear to converge more slowly than their direct-form
counterparts; however, the reasons for this difference in convergence speed are poorly understood.

Algorithms other than the gradient approach have not been extensively explored for the alternate
parametrizations. There may be fundamental limitations in this regard. For direct-form implemen-
tations, the signals of the unknown system corresponding to internal states of the adaptive filter are
available through the delayed outputs d(n − i), and it is these signals that are used in the equation
error-based algorithms. However, the analogous signals for alternate implementations are unavail-
able, and so equation error methods, as well as the Steiglitz-McBride approach, are a challenge to
even devise, let alone implement. Stability theory-based approaches are difficult to formulate, and
the results of [28] indicate that simple algorithms of the form of (23.60) would not be stable in a wide
set of operating conditions.

One promising alternate structure is the normalized lattice of [17]. The normalized structure is
by nature stable, and hence no stability check is necessary in the adaptive algorithm. Furthermore, a
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clever implementation of the output gradient calculation keeps the computational burden of the SG
and GN algorithms for this normalized lattice comparable to direct-form implementations. Conver-
gence rates for this structure appear to be comparable to the direct-form structure as well [19]. While
we have noted that SM approaches are, in general, infeasible for alternate parametrizations, it is in
fact possible to implement an SM algorithm for the normalized lattice through use of an invertibility
property held by stages of the lattice [17]. The convergence results we have noted for SM apply as
well to the normalized lattice implementation.

We summarize as follows. Alternate parametrizations of adaptive IIR filters enable the stability of
the adaptive system to be easily checked. Convergence results for gradient-based algorithms typically
apply to these alternate structures. However, the complexities of the gradient calculations can be
large for certain systems, and Gauss-Newton approaches appear to be difficult to implement and
stabilize for these systems.

23.6 Conclusions

Adaptive IIR filtering remains an open area of research. The preceding survey has examined a
number of different approaches to algorithm design within this field. We have considered equation
error algorithm designs, including the well-known LMS and RLS algorithms, but also the IV approach
and the more recent equation error algorithms with a unit-norm constraint. Output error algorithm
designs that we have treated are gradient descent methods and methods based on stability theory.
Somewhere in between these two categories is the Steiglitz-McBride approach to adaptive IIR filtering.

Each of these approaches has certain advantages but also disadvantages. We have evaluated each
approach in terms of convergence conditions and also with regard to the nature of the filter parameters
to which the algorithm converges. We have taken special interest in whether the algorithm converges
to or is biased away from the optimal filter parameters, both in the presence of undermodeling and
also measurement noise effects, and a further concern has been the stability of the resulting filter. We
have placed less emphasis on convergence speed, as this issue is highly dependent on the particular
environment in which the filter is to operate.

Unfortunately, no one algorithm possesses satisfactory properties in all of these regards. Therefore,
the choice of algorithm in a given application will depend on which property is most critical in the
application setting. Meanwhile, research seeking improvement in adaptive IIR filtering algorithms
continues.
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[26] Stoica, P. and Söderström, S., The Steiglitz-McBride identification algorithm revisited – con-

vergence analysis and accuracy aspects, IEEE Trans. Automat. Contr., 26(3), 712–717, 1981.
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24.1 Introduction

One of the earliest and most successful applications of adaptive filters is adaptive channel equalization
in digital communication systems. Using the standard least mean LMS algorithm, an adaptive
equalizer is a finite-impulse-response FIR filter whose desired reference signal is a known training
sequence sent by the transmitter over the unknown channel. The reliance of an adaptive channel
equalizer on a training sequence requires that the transmitter cooperates by (often periodically)
resending the training sequence, lowering the effective data rate of the communication link.

In many high-data-rate bandlimited digital communication systems, the transmission of a training
sequence is either impractical or very costly in terms of data throughput. Conventional LMS adaptive
filters depending on the use of training sequences cannot be used. For this reason, blind adaptive
channel equalization algorithms that do not rely on training signals have been developed. Using these
“blind” algorithms, individual receivers can begin self-adaptation without transmitter assistance.
This ability of blind startup also enables a blind equalizer to self-recover from system breakdowns.
This self-recovery ability is critical in broadcast and multicast systems where channel variation often
occurs.
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In this section, we provide an introduction to the basics of blind adaptive equalization. We describe
commonly used blind algorithms, highlight important issues regarding convergence properties of
various blind equalizers, outline common initialization tactics, present several open problems, and
discuss recent advances in this field.

24.2 Channel Equalization in QAM Data Communication
Systems

In data communication, digital signals are transmitted by the sender through an analog channel to
the receiver. Nonideal analog media such as telephone cables and radio channels typically distort the
transmitted signal.

Theproblemofblindchannel equalizationcanbedescribedusing the simple systemdiagramshown
in Fig. 24.1. The complex baseband model for a typical QAM (quadrature amplitude modulated)
data communication system consists of an unknown linear time-invariant (LTI) channel h(t) which
represents all the interconnectionsbetween the transmitter and the receiver at baseband. Thematched
filter is also included in the LTI channel model. The baseband-equivalent transmitter generates a
sequence of complex-valued random input data {a(n)}, each element of which belongs to a complex
alphabet A (or constellation) of QAM symbols. The data sequence {a(n)} is sent through a baseband-
equivalent complex LTI channel whose output x(t) is observed by the receiver. The function of the
receiver is to estimate the original data {a(n)} from the received signal x(t).

FIGURE 24.1: Baseband representation of a QAM data communication system.

For a causal and complex-valued LTI communication channel with impulse response h(t), the
input/output relationship of the QAM system can be written as

x(t) =
∞∑

n=−∞
a(n)h(t − nT + t0)+ w(t), a(n) ∈ A , (24.1)

where T is the symbol (or baud) period. Typically the channel noisew(t) is assumed to be stationary,
Gaussian, and independent of the channel input a(n).

In typical communication systems, the matched filter output of the channel is sampled at the
known symbol rate 1/T assuming perfect timing recovery. For our model, the sampled channel
output

x(nT ) =
∞∑

k=−∞
a(k)h(nT − kT + t0)+ w(nT ) (24.2)

is a discrete time stationary process. Equation (24.2) relates the channel input to the sampled matched
filter output. Using the notations

x(n)
1= x(nT ), w(n)

1= w(nT ), and h(n)
1= h(nT + t0) , (24.3)
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the relationship in (24.2) can be written as

x(n) =
∞∑

k=−∞
a(k)h(n− k)+ w(n) . (24.4)

When the channel is nonideal, its impulse response h(n) is nonzero for n 6= 0. Consequently,
undesirable signal distortion is introduced as the channel output x(n) depends on multiple symbols
in {a(n)}. This phenomenon, known as intersymbol interference (ISI), can severely corrupt the
transmitted signal. ISI is usually caused by limited channel bandwidth, multipath, and channel
fading in digital communication systems. A simple memoryless decision device acting on x(n)may
not be able to recover the original data sequence under strong ISI. Channel equalization has proven
to be an effective means of significant ISI removal. A comprehensive tutorial on nonblind adaptive
channel equalization by Qureshi [2] contains detailed discussions on various aspects of channel
equalization.

FIGURE 24.2: Adaptive blind equalization system.

Figure 24.2 shows the combined communication system with adaptive equalization. In this system,
the equalizerG(z,W) is a linear FIR filter with parameter vector W designed to remove the distortion
caused by channel ISI. The goal of the equalizer is to generate an output signal y(n) that can be
quantized to yield a reliable estimate of the channel input data as

â(n) = Q(y(n)) = a(n− δ) , (24.5)

where δ is a constant integer delay. Typically any constant but finite amount of delay introduced by
the combined channel and equalizer is acceptable in communication systems.

The basic task of equalizing a linear channel can be translated to that task of identifying the
equivalent discrete channel, defined in z-transform notation as

H(z) =
∞∑
k=0

h(k)z−k . (24.6)

With this notation, the channel output becomes

x(n) = H(z)a(n)+ w(n) (24.7)

whereH(z)a(n) denotes linear filtering of the sequence a(n) by the channel andw(n) is a white (for
a root-raised-cosine matched filter [2]) stationary noise with constant power spectrum N0. Once
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FIGURE 24.3: Decision-directed channel equalization algorithm.

the channel has been identified, the equalizer can be constructed according to the minimum mean
square error (MMSE) criterion between the desired signal a(n− δ) and the output y(n) as

Gmmse(z,W) = H ∗(z−1)z−δ

H(z)H ∗(z−1)+N0
, (24.8)

where ∗ denotes complex conjugate. Alternatively, if the zero-forcing (ZF) criterion is employed,
then the optimum ZF equalizer is

Gzf (z,W) = z−δ

H(z)
, (24.9)

which causes the combined channel-equalizer response to become a purely δ-sample delay with zero
ISI. ZF equalizers tend to perform poorly when the channel noise is significant and when the channels
H(z) have zeros near the unit circle.

Both the MMSE equalizer (24.8) and the ZF equalizer (24.9) are of a general infinite impulse
response (IIR) form. However, adaptive linear equalizers are usually implemented as FIR filters due
to the difficulties inherent in adapting IIR filters. Adaptation is then based on a well-defined criterion
such as the MMSE between the ideal IIR and truncated FIR impulse responses or the MMSE between
the training signal and the equalizer output.

24.3 Decision-Directed Adaptive Channel Equalizer

Adaptive channel equalization was first developed by Lucky [1] for telephone channels. Figure 24.3
depicts the traditional adaptive equalizer. The equalizer begins adaptation with the assistance of a
known training sequence initially transmitted over the channel. Since the training signal is known,
standard gradient-based adaptive algorithms such as the LMS algorithm can be used to adjust the
equalizer coefficients to minimize the mean square error (MSE) between the equalizer output and the
training sequence. It is assumed that the equalizer coefficients are sufficiently close to their optimum
values and that much of the ISI is removed by the end of the training period. Once the channel
input sequence {a(n)} can be accurately recovered from the equalizer output through a memoryless
decision device such as a quantizer, the system is switched to the decision-directed mode whereby
the adaptive equalizer obtains its reference signal from the decision output.

One can construct a blind equalizer by employing decision-directed adaptation without a training
sequence. The algorithm minimizes the MSE between the quantizer output

â(n− δ) = Q(y(n)) (24.10)
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and the equalizeroutputy(n). Naturally, theperformanceof thedecision-directedalgorithmdepends
on the accuracy of the estimateQ(y(n)) for the true symbol a(n− δ). Undesirable convergence to a
local minimum with severe residual ISI can occur in this situation such that Q(y(n)) and a(n − δ)

differ sufficiently often. Thus, the challenge of blind equalization lies in the design of special adaptive
algorithms that eliminate the need for training without compromising the desired convergence to
near the optimum MMSE or ZF equalizer coefficients.

24.4 Basic Facts on Blind Adaptive Equalization

In blind equalization, the desired signal or input to the channel is unknown to the receiver, except
for its probabilistic or statistical properties over some known alphabet A. As both the channel h(n)
and its input a(n) are unknown, the objective of blind equalization is to recover the unknown input
sequence based solely on its probabilistic and statistical properties.

The first comprehensive analytical study of the blind equalization problem was presented by Ben-
veniste, Goursat, and Ruget in 1980 [3]. In fact, the very term “blind equalization” can be attributed
to Benveniste and Goursat from the title of their 1984 paper [4]. The seminal paper of Benveniste
et al. [3] established the connection between the task of blind equalization and the use of higher
order statistics of the channel output. Through rigorous analysis, they generalized the original Sato
algorithm [5] into a class of algorithms based on non-MSE cost functions. More importantly, the
convergence properties of the proposed algorithms were carefully investigated. Based on the work
of [3], the following facts about blind equalization are generally noted:

1. Second order statistics of x(n) alone only provide the magnitude information of the
linear channel and are insufficient for blind equalization of a mixed phase channelH(z)
containing zeros inside and outside the unit circle in the z-plane.

2. A mixed phase linear channelH(z) cannot be identified from its outputs when the input
signal is i.i.d. Gaussian, since only second order statistical information is available.

3. Although the exact inverse of a nonminimum phase channel is unstable, a truncated
anticausal expansion can be delayed by δ to allow a causal approximation to a ZF equalizer.

4. ZF equalizers cannot be implemented for channelsH(z) with zeros on the unit circle.

5. The symmetry of QAM constellations A ⊂ C causes an inherent phase ambiguity in the
estimateof the channel input sequenceor theunknownchannelwhen input to the channel
is uniformly distributed over A. This phase ambiguity can be overcome by differential
encoding of the channel input.

Due to the absence of a training signal, it is important to exploit various available information
about the input symbol and the channel output to improve the quality of blind equalization. Usually,
the following information is available to the receiver for blind equalization:

• The power spectral density (PSD) of the channel output signal x(t), which contains
information on the magnitude of the channel transfer function;

• The higher-order statistics (HOS) of the T -sampled channel output {x(kT )}, which
contains information on the phase of the channel transfer function;

• Cyclostationary second and higher order statistics of the channel output signalx(t), which
contain additional phase information of the channel; and

• The finite channel input alphabet, which can be used to design quantizers or decision
devices with memory to improve the reliability of the channel input estimate.

Naturally in some cases, these information sources are not necessarily independent as they contain
overlapping information. Efficient and effective blind equalization schemes are more likely to be
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designed when all useful information is exploited at the receiver. We now describe various algorithms
for blind channel identification and equalization.

24.5 Adaptive Algorithms and Notations

There are basically two different approaches to the problem of blind equalization. The stochastic
gradientdescent (SGD)approach iterativelyminimizes a chosen cost functionover all possible choices
of the equalizer coefficients, while the statistical approach uses sufficient stationary statistics collected
over a block of received data for channel identification or equalization. The latter approach often
exploits higher order or cyclostationary statistical information directly. In this discussion, we focus
on the the adaptive online equalization methods employing the the gradient descent approach, as
these methods are most closely related to other topics in this chapter. Consequently, the design of
special, non-MSE cost functions that implicitly exploits the HOS of the channel output is the key
issue in our methods and discussions.

For reasons of practicality and ease of adaptation, a linear channel equalizer is typically imple-
mented as an FIR filterG(z, W). Denote the equalizer parameter vector as

W
1= [w0 w1 · · · wm ]T , m < ∞ .

In addition, define the received signal vector as

X(n)
1= [x(n) x(n− 1) . . . x(n−m) ]T . (24.11)

The output signal of the linear equalizer is thus

y(n) = WTX(n)

= G(z,W){x(n)} , (24.12)

where we have defined the equalizer transfer function as

G(z, W) =
m∑
i=0

wiz
−i . (24.13)

All the ISI is removed by a ZF equalizer if

H(z)G(z,W) = gz−δ, g 6= 0 (24.14)

such that the noiseless equalizer output becomes y(n) = ga(n − δ), where g is a complex-valued
scaling factor. Hence, a ZF equalizer attempts to achieve the inverse of the channel transfer function
with a possible gain difference g and/or a constant time delay δ.

Denoting the parameter vector of the equalizer at sample instant n as W(n), the conventional LMS
adaptive equalizer employing a training sequence is given by

W(n+ 1) = W(n)+ µ[a(n− δ)− y(n)]X(n) , (24.15)

where ·∗ denotes complex conjugates and µ is a small positive stepsize. Naturally, this algorithm
requires that the channel input a(n− δ) be available. The equalizer iteratively minimizes the MSE
cost function

E
{
|en|2

}
= E{|a(n− δ)− y(n)|2} .
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If the MSE is so small after training that the equalizer output y(n) is a close estimate of the true
channel input a(n − δ), then Q(y(n)) can replace a(n− δ) in a decision-directed algorithm that
continues to track modest time-variations in the channel dynamics [2].

In blind equalization, the channel input a(n− δ) is unavailable, and thus different minimization
criteria are explored. The crudest blind equalization algorithm is the decision-directed scheme that
updates the adaptive equalizer coefficients as

W(n+ 1) = W(n)+ µ[Q(y(n))− y(n)]X∗(n) . (24.16)

The performance of the decision-directed algorithm depends on how close W(n) is to its optimum
setting Wopt under the MMSE or the ZF criterion. The closer W(n) is to Wopt , the smaller the ISI is
and the more accurate the estimateQ(y(n)) is to a(n− δ). Consequently, the algorithm in (24.16)
is likely to converge to Wopt if W(n) is initially close to Wopt . The validity of this intuitive argument
is shown analytically in [6, 7]. On the other hand, W(n) can also converge to parameter values that
do not remove sufficient ISI from certain initial parameter values W(0), as Q(y(n)) 6= a(n− δ)

sufficiently often in some cases [6, 7].
The ability of the equalizer to achieve the desired convergence result when it is initialized with

sufficiently small ISI accounts for the key role that the decision-directed algorithm plays in channel
equalization. In the system of Fig. 24.3, the training session is designed to help W(n) converge
to a parameter vector such that most of the ISI has been removed, from which adaptation can be
switched to the decision-directed mode. Without direct training, a blind equalization algorithm
is therefore used to provide a good initialization for the decision-directed equalizer because of the
decision-directed equalizer’s poor convergence behavior under high ISI.

24.6 Mean Cost Functions and Associated Algorithms

Under the zero-forcing criterion, theobjectiveof theblindequalizer is to adjustW(n) such that (24.14)
can be achieved using a suitable rule of self-adaptation. We now describe the general methodology
of blind adaptation and introduce several popular algorithms.

Unless otherwise stated, we focus on the blind equalization of pulse-amplitude modulation (PAM)
signals, in which the input symbol is uniformly distributed over the followingM levels,

{±(M − 1)d, ±(M − 3)d, . . . , ±3d, ±d }, M even . (24.17)

We study this particular case because (1) algorithms are often defined only for real signals when first
developed [3, 5], and (2) the extension to complex (QAM) systems is generally straightforward [4].

Blind adaptive equalization algorithms are often designed by minimizing special non-MSE cost
functions that do not involve the use of the original input a(n) but still reflect the current level of ISI
in the equalizer output. Define the mean cost function as

J (W)
1= E{9(y(n))} , (24.18)

where 9(·) is a scalar function of its argument. The mean cost function J (W) should be specified
such that its minimum point W corresponds to a minimum ISI or MSE condition. Because of the
symmetric distribution of a(n) over A in 24.17, the function 9 should be even (9(−x) = 9(x)),
so that both y(n) = a(n− δ) and y(n) = −a(n− δ) are desired objectives or global minima of the
mean cost function.

Using 24.18, the stochastic gradient descent minimization algorithm is easily derived as [3]

W(n+ 1) = W(n)− µ · ∂

∂W(n)
9(y(n))

= W(n)− µ ·9 ′ (XT (n)W(n)
)

X∗(n) . (24.19)
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Define the first derivative of 9 as

ψ(x)
1= 9 ′(x) = ∂

∂x
9(x) .

The resulting blind equalization algorithm can then be written as

W(n+ 1) = W(n)− µψ(XT (n)W(n))X∗(n) . (24.20)

Hence, a blind equalizer can either be defined by its cost function 9(x), or equivalently, by the
derivative ψ(x) of its cost function, which is also called the error function since it replaces the
prediction error in the LMS algorithm. Correspondingly, we have the following relationship:

Minima of the mean cost J (W) ⇐⇒ Stable equilibria of the algorithm in (24.20) .

The design of the blind equalizer thus translates into the selection of the function 9 (or ψ) such
that local minima of J (W), or equivalently, the locally stable equilibria of the algorithm (24.20)
correspond to a significant removal of ISI in the equalizer output.

24.6.1 The Sato Algorithm

The first blind equalizer for multilevel PAM signals was introduced by Sato [5] and is defined by the
error function

ψ1(y(n)) = y(n)− R1 sgn (y(n)) , (24.21)

where

R1
1= E|a(n)|2
E|a(n)| .

Clearly, the Sato algorithm effectively replacesa(n− δ)withR1sgn(y(n)), known as the slicer output.
The multilevel PAM signal is viewed as an equivalent binary input signal in this case, so that the error
function often has the same sign for adaptation as the LMS error y(n)− a(n− δ).

24.6.2 BGR Extensions of Sato Algorithm

The Sato algorithm was extended by Benveniste, Goursat, and Ruget [3] who introduced a class of
error functions given by

ψb(y(n)) = ψ̃(y(n))− Rb sgn (y(n)) , (24.22)

where

Rb
1= E{ψ̃(a(n))a(n)}

E|a(n)| . (24.23)

Here, ψ̃(x) is an odd and twice differentiable function satisfying

ψ̃ ′′(x) ≥ 0, ∀x ≥ 0 . (24.24)

The use of the function ψ̃ generalizes the linear function ψ̃(x) = x in the Sato algorithm. The
class of algorithms satisfying (24.22) and (24.24) are called BGR algorithms. They are individually
represented by the explicit specification of the ψ̃ function, as with the Sato algorithm.

The generalization of these algorithms to complex signals (QAM) and complex equalizer param-
eters is straightforward by separating signals into their real and the imaginary as

ψb(y(n)) = ψ̃(Re[y(n)])− Rbsgn(Re[y(n)])+ j{ψ̃(Im[y(n)])− Rbsgn(Im[y(n)])} . (24.25)

c©1999 by CRC Press LLC



24.6.3 Constant Modulus or Godard Algorithms

Integrating the Sato error function ψ1(x) shows that the Sato algorithm has an equivalent cost
function

91(y(n)) = 1

2

(|y(n)| − R1
)2
.

This cost function was generalized by Godard into another class of algorithms that are specified by
the cost functions [8]

9q(y(n)) = 1

2q

(|y(n)|q − Rq
)2
, q = 1,2, . . . (24.26)

where

Rq
1= E|a(n)|2q
E|a(n)|q .

This class of Godard algorithms is indexed by the positive integer q. Using the stochastic gradient
descent approach, the Godard algorithms given by

W(n+ 1) = W(n)− µ(|X(n)HW(n)|q − Rq)|X(n)TW(n)|q−2X(n)TW(n)X∗(n) . (24.27)

The Godard algorithm for the case q = 2 was independently developed as the “constant modulus
algorithm” (CMA) by Treichler and co-workers [9] using the philosophy of property restoral. For
channel input signal that has a constant modulus |a(n)|2 = R2, the CMA equalizer penalizes output
samples y(n) that do not have the desired constant modulus characteristics. The modulus error is
simply

e(n) = |y(n)|2 − R2 ,

and the squaring of this error yields the constant modulus cost function that is the identical to the
Godard cost function.

This modulus restoral concept has a particular advantage in that it allows the equalizer to be
adapted independent of carrier recovery. A carrier frequency offset of 1f causes a possible phase
rotation of the equalizer output so that

y(n) = |y(n)| exp[j (2π1f n+ φ(n))] .
Because the CMA cost function is insensitive to the phase of y(n), the equalizer parameter adaptation
can occur independently and simultaneously with the operation of the carrier recovery system. This
property also allows CMA to be applied to analog modulation signals with constant amplitude such
as those using frequency or phase modulation [9].

24.6.4 Stop-and-Go Algorithms

Given the standard form of the blind equalization algorithm in (24.20), it is apparent that the
convergence characteristics of these algorithms are largely determined by the sign of the error signal
ψ(y(n)). In order for the coefficients of a blind equalizer to converge to the vicinity of the optimum
MMSE solution as observed through LMS adaptation, the sign of its error signal should agree with the
sign of the LMS prediction error y(n)−a(n− δ)most of the time. Slow convergence or convergence
of the parameters to local minima of the cost function J (W) that do not provide proper equalization
can occur if the signs of these two errors differ sufficiently often. In order to improve the convergence
properties of blind equalizers, the so-called “stop-and-go” methodology was proposed by Picchi et
al. [10]. We now describe its simple concept.
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The idea behind the stop-and-go algorithms is to allow adaptation “to go” only when the error
function is more likely to have the correct sign for the gradient descent direction. Since there are
several criteria for blind equalization, one can expect a more accurate descent direction when more
than one of the existing algorithms provide the same sign of the error function. When the error signs
differ for a particular output sample, parameter adaptation is “stopped”. Consider two algorithms
with error functions ψ1(y) and ψ2(y). We can devise the following stop-and-go algorithm:

W(k + 1) =
{

W(k)− µψ1(y(n))X∗(n), if sgn[ψ1(y(n))] = sgn[ψ2(y(n))] ;
W(k), if sgn[ψ1(y(n))] 6= sgn[ψ2(y(n))] . (24.28)

In their work, Picchi and Prati combined only the Sato and the decision-directed algorithms with
faster convergence results through the corresponding error function

ψ(y(n)) = 1

2
(y(n)−Q(y(n)))+ 1

2
|y(n)−Q(y(n))| sgn

(
y(n)− R1sgn(y(n))

)
.

However, given the number of existing algorithms, the stop-and-go methodology can include many
different combinations of error functions. One that combines Sato and Godard algorithms was tested
by Hatzinakos [11].

24.6.5 Shalvi and Weinstein Algorithms

Unlike previously introduced algorithms, the methods of Shalvi-Weinstein [12] are based on higher
order statistics of the equalizer output. Define the kurtosis of the equalizer output signal y(n) as

Ky
1= E

∣∣∣y(n)4∣∣∣− 2E2
∣∣∣y(n)2∣∣∣− ∣∣∣E {y(n)2}∣∣∣2 . (24.29)

The Shalvi-Weinstein algorithm maximizes |Ky | subject to the constant power constraintE|y(n)|2 =
E|a(n)2|. Define cn as the combined channel-equalizer impulse response given by

cn =
m∑
k=0

hkwn−k, −∞ < n < ∞ . (24.30)

Using the fact that a(n) is i.i.d., it can be shown [13] that

E

∣∣∣y(n)2∣∣∣ = E

∣∣∣a(n)2∣∣∣ ∞∑
i=−∞

|ci |2 (24.31)

Ky = Ka
∑

|cn|4 , (24.32)

where Ka is the kurtosis of the channel input, a quantity that is nonzero for most QAM and PAM
signals. Hence, the Shalvi-Weinstein equalizer is equivalent to the following criterion:

maximize
∞∑

n=−∞
|cn|4 subject to

∞∑
n=−∞

|cn|2 = 1 . (24.33)

It can be shown [14] that there is a one-to-one correspondence between the minima of the cost
function surface searched by this algorithm and those of the Godard algorithm with q = 2. However,
the methods of adaptation given in [12] can exhibit convergence characteristics different from those
of the CMA.
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24.6.6 Summary

Over the years, there have been many attempts to derive new algorithms and equalization methods
that are more reliable and faster than the existing methods. Nonetheless, the algorithms presented
above are still the most commonly used methods in blind equalization due to their computational
simplicity and practical effectiveness. In particular, CMA has proven to be useful not only in blind
equalization but also in blind array signal processing systems. Because it does not rely on the accuracy
of the decision device output nor the knowledge of the channel input signal constellation, CMA is a
versatile algorithm that can be used not only for digital communication signals but also for analog
signals that do not conform to a finite constellation alphabet.

FIGURE 24.4: An example of a CMA equalizer in a 64 QAM communication system.

As a practical example, consider a QAM system in which the channel impulse response is shown
in Fig. 24.4(a). This sampled composite channel response results from a continuous time system in
which the transmitter and receiver filters both have identical root-raised cosine frequency response
with the roll-off factor of 0.13, while the channel between the two filters is nonideal with several
nondominant multipaths. The channel input signal is generated from a rectangular 64-QAM con-
stellation as shown in Fig. 24.4(b). The channel output points are shown in Fig. 24.4(c). The channel
output signal clearly has significant ISI such that a simple quantizer based on the nearest neighbor
principle is likely to make many decision errors. We use a CMA equalizer with 25 parameter taps.
The equalizer input is normalized by its power and a stepsize µ = 10−3 is used in the CMA adap-
tation. After 20,000 iterations, the final equalizer output after parameter convergence is shown in
Fig. 24.4(d). The tighter clustering of the equalizer output shows that the decision error rate will be
very low so that the equalizer can be switched to the decision-directed or decision-feedback algorithm
mode at this point.
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24.7 Initialization and Convergence of Blind Equalizers

The success and effectiveness of a QAM blind equalization algorithm clearly hinges on its convergence
behavior in practical QAM systems with distortive channels. A desired globally convergent algorithm
shouldonlyproduce stable equilibria that are close to theoptimumMMSEorZFequalizer coefficients.
If an equalization algorithm has local equilibria, then the initial equalizer parameter values are critical
in determining the final values of parameters at convergence. Due to the analytical difficulty in
locating and characterizing these local minima, most analytical studies of blind equalizers focus
on the noiseless environment. For noiseless channels, the optimum MMSE and ZF equalizers are
identical. The goal in the noiseless system is to remove sufficient ISI so that the open eye condition
or errorless decision output, given by

Q(y(n)) = a(n− δ) ,

holds.
Although the problem of blind equalization has been studied for over two decades, useful con-

vergence analyses of most blind adaptive algorithms have proven to be difficult to perform. While
some recent analytical results have helped to characterize the behavior of several popular algorithms,
the overall knowledge of the behaviors of most known effective algorithms is still quite limited.
Consequently, practical implementations of blind equalizers still employ heuristic measures to im-
prove their convergence characteristics. We summarize several issues regarding the convergence and
initialization of blind equalizers in this subsection.

24.7.1 A Common Analysis Approach

Although many readers may be surprised by the apparent lack of convergence proofs for most blind
equalization algorithms, a closer look at the cost functions for these algorithms shows the analytical
difficulty of the problem. Specifically, the stable stationary points of the blind algorithm in (24.20)
correspond to the local minima of the mean cost function

J (W) = E

{
9

(
m∑
i=0

wix(n− i)

)}
. (24.34)

The convergence of the adaptive algorithm is thus determined by the geometry of the error function
J (W) over the equalizer parameters {wi}. An analysis of the convergence of the algorithm in terms
of its parameters {wi} is difficult because the statistical characterization of the channel output signal
x(n) is highly dependent on the channel impulse response. For this reason, most blind equaliza-
tion algorithms have initially been presented with only simulation results and without a rigorous
convergence analysis.

Faced with this difficulty, several researchers have studied the global behavior of the equalizer in
the combined parameter space ci of (24.30) since

J (W) = E

{
9

( ∞∑
i=−∞

wix(n− i)

)}
= E

{
9

( ∞∑
i=−∞

cia(n− i)

)}
. (24.35)

Because theprobabilistic informationof the signala(n) is completely known, the convergence analysis
of the ci parameters tends to be much simpler than that of the equalizer parameterswi . The following
convergence results are known from these analyses:

• For channel input signals with uniform or sub-Gaussian probability distributions, Sato
andBGRalgorithmsareglobally convergentunder zerochannelnoise. Thecorresponding
cost functions only have global minima at parameter settings that result in zero ISI [3].
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• For uniform and discrete PAM channel input distributions, undesirable local minima of
the Sato and the BGR algorithms exist that do not satisfy the open-eye condition [6, 7, 16].

• For uniform and discrete PAM (or QAM) channel input distributions, the Godard al-
gorithm with q = 2 (CMA) and the Shalvi-Weinstein algorithm have no local minima
under zero channel noise. Only global minima exist at parameter settings that result in
zero ISI [12, 15]. In other words, all minima satisfy the zero-forcing condition

c2
n =

{
1, n = δ

0, n 6= δ .
(24.36)

24.7.2 Local Convergence of Blind Equalizers

In order for the convergence analysis of the ci parameters to be valid for thewi parameters, a one-to-
one linear mapping must exist between the two parameter spaces. A cost function of two variables
will still have the same number of minima, maxima, and saddle points after a linear one-to-one
coordinate change. On the other hand, a mapping that is not one-to-one can turn a nonstationary
or saddle point into a local minimum.

If a one-to-one linear mapping exists between the two parameter spaces {wi} and {ci}, then a
stationary point for the equalizer coefficients wi must correspond to a stationary point in the ci
parameters. Consequently, the convergence properties in the ci parameter space will be equivalent
to those in the wi parameter space. However, ci = ∑m

k=0 hkwi−k does not provide a one-to-one
mapping. The linear mapping is one-to-one if and only if ci = ∑∞

k=−∞ hkwi−k , i.e., the equalizer
coefficients wi must exist for −∞ < i < ∞.

In this case, the equalizer parameter vector W needs to be doubly infinite. Hence, unless the
equalizer has an infinite number of parameters and is infinitely non-causal, the convergence behavior
of the ci parameters do not completely characterize the behavior of the finite-length equalizer [17].

Undesirable local convergence of the Godard algorithm to a high ISI equalizer was initially thought
to be impossible due to some over-zealous interpretations of the global convergence results in the
combined ci space [15]. The local convergence of the Godard (q = 2) algorithm or CMA is
accurately analyzed by Ding et al. [18], where it is shown that even for noiseless channels whose ISI
can be completely eliminated by an FIR equalizer, there can be local convergence of this equalizer to
undesirable minima of the cost surface. Furthermore, these equilibria still remain under moderate
channel noise. Based on the convergence similarity between the Godard algorithm and the Shalvi-
Weinstein algorithm, the local convergence of the Shalvi-Weinstein algorithm to undesirable minima
is established in [14]. Using a similar method, Sato and BGR algorithms have also been seen to have
additional local minima previously undetected in the combined parameter space [16].

The proof that existing blind equalization algorithms previously thought to be robust can converge
to poor solutions demonstrates that rigorous convergence analyses of blind equalizers must be based
on the actual equalizer coefficients. Moreover, the undesirable local convergence behavior of existing
algorithms indicates the importance of algorithm parameter initialization, which can avoid these
local convergent points.

24.7.3 Initialization Issues

In [19], it is shown that local minima of a CMA equalizer cost surface tend to exist near MMSE
parameter settings if the delay δ is chosen to be too short or too long. In other words, convergence to
local minima is more likely to occur when the equalizer has large tap weights concentrated near either
end of the finite equalizer coefficient vector. This type of lopsided parameter weight distribution
was also suggested in [15] as being indicative of a local convergence phenomenon. To avoid local
convergence to a lopsided tap weight vector, Foschini [15] introduced a tap-centering initialization
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strategy that requires the gravity center of the equalizer coefficient vector be centered through periodic
tap-shifting. A more recent result [14] shows that, by over-parameterization and tap-centering, the
Godard algorithm or CMA can effectively reduce the probability of local convergence. This tap-
centering method has also been proposed for the Shalvi-Weinstein algorithm [20].

In practice, the tap-centering initialization approach has become an integral part of most blind
equalization algorithms. Although a thorough analysis of its effect has not been shown, most re-
ported successful uses of blind equalization algorithms typically rely on tap-centering or center-spike
initialization scheme [17]. Although special channels exist that can foil the successful convergence of
Sato and BGR algorithms using tap-centering, such channels are atypical [16]. Hence, unless global
convergence of the equalizer can be proven, tap-centering is commonly recommended for most blind
equalizers.

24.8 Globally Convergent Equalizers

24.8.1 Linearly Constrained Equalizer With Convex Cost

Without a proof of global convergence and a thorough analysis on initialization of existing equaliza-
tion methods, one can design new and possibly better blind algorithms that can proven to always result
in the global minimization of ISI. Here we present one strategy based on highly specialized convex cost
functions coupled with a constrained equalizer parameterization designed to avoid ill-convergence.

Recall that the goal of blind equalization is to remove ISI so that the equalizer output is

y(n) = ga(n− δ), g 6= 0 . (24.37)

Blind equalization of pulse amplitude modulation (PAM) systems without gain recovery has been
proposed in [21]. The idea is to fix the center tap w0 as a non-zero constant in order to prevent
equalizer to the trivial minimum with all zero coefficient values in a convex cost function. For QAM
input, a nontrivial extension is shown here.

For the particular equalizer design, assume that the input QAM constellation is square, which
resembles the constellation in Fig. 24.4(b). The cost function to be minimized is

J (W)
1= max|Re{y(n)}| = max|Im{y(n)}| . (24.38)

The convexity of J (W) with respect to the equalizer coefficient vector W follows from the triangle
inequality under the assumption that all input sequences are possible. We constrain the equalizer
coefficients W(n) with the following linear constraint

Re{w0} + Im{w0} = 1 , (24.39)

where w0 is the center tap. Due to the linearity of this constraint, the convexity of the cost func-
tion (24.38) with respect to both the real and imaginary parts of the equalizer coefficients is main-
tained, and global convergence is therefore assured.

Because of its convexity, this cost function is unimodal with a unique global minimum for almost
all channels. It can then be shown [22] that a doubly infinite noncausal equalizer under the linear
constraint is globally convergent to the condition in (24.37).

The linear constraint in (24.39) can be changed to any weighted linear combination of the two terms
in (24.39). More general linear constraints on the equalizer coefficients can also be employed [23].
This fact is particularly important for preserving the global convergence property when causal finite-
length equalizers are used. This behavior is a direct consequence of convexity, since restricting most
of the equalizer taps to zero values as in FIR is a form of linear constraint. Convexity also ensures
that one can approximate arbitrarily closely the performance of the ideal nonimplementable double
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infinite noncausal equalizer with a finite length FIR equalizer. These facts are important since many
of the limitations illustrated earlier for convergence analyses of other equalizers can be overcome in
this case.

For an actual implementation of this algorithm, a gradient descent method can be derived by using
an lp-norm cost function to approximate (24.38) as

J (W) ≈ E|Re{zk}|p , (24.40)

where p is a large integer. As the cost function in (24.40) is strictly convex, linear constraints such as
truncation preserve convexity. Simulation examples of this algorithm can be found in [22] and [24].

24.9 Fractionally Spaced Blind Equalizers

A so-called fractionally spaced equalizer (FSE) is obtained from the system in Fig. 24.2 if the channel
output is sampled at a rate faster than the baud or symbol rate 1/T . Recent work on the blind FSE
has been motivated by several new results on nonadaptive blind equalization based on second order
cyclostationary statistics. In addition to the first noted work by Tong et al. [25], new nonadaptive
algorithms are also presented in [26, 27, 28, 29]. Here we only focus on the adaptive framework.

Letp be an integer such that the sampling interval be1 = T/p. As long as the channel bandwidth
is greater than the minimum 1/(2T ), sampling at higher than 1/T can retain channel diversity as
shown here.

Let the sequence of sampled channel output be

x(k1) =
∞∑
n=0

a(n)h(k1− np1+ t0)+ w(k1) . (24.41)

For notational simplicity, the oversampled channel output x(k1) can be divided into p linearly-
independent subsequences

x(i)(n)
1= x[(np + i)1] = x(nT + i1), i = 1, . . . , p . (24.42)

DefineK as the effective channel length based on

h
(i)
0 6= 0, for some 1 ≤ i ≤ p

h
(i)
K 6= 0, for some 1 ≤ i ≤ p . (24.43)

By denoting the sub-channel transfer function as

Hi(z) =
K∑
k=0

h
(i)
k z

−k where h
(i)
k

1= h(kT + i1+ t0) , (24.44)

the p subsequences can be written as

x(i)(n) = Hi(z)a(n)+ w(nT + i1), i = 1, . . . , p . (24.45)

Thus, these p subsequences can be viewed as stationary outputs of p discrete FIR channels with
a common input sequence a(n) as shown in Fig. 24.5. Naturally, they can also represent physical
sub-channels in multisensor receivers.
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FIGURE 24.5: The structure of blind adaptive FSE.

The vector representation of the FSE is shown in Fig. 24.5. One equalizer filter is provided for each
subsequence x(i)(n). In fact, the actual equalizer is a vector of filters

Gi(z) =
m∑
k=0

wi,kz
−k, i = 1, . . . p . (24.46)

The p filter outputs {y(n)(i)} are summed to form the stationary equalizer output

y(n) = WTX(n) (24.47)

where

W
1= [
w1,0 . . . w1,m . . . wp,0 . . . wp,m

]T
.

X(n)
1= [
x(n)(1) . . . x(n−m)(1) . . . x(n)(p) . . . x(n−m)(p)

]T
.

Given the equalizer output and parameter vector, any T -sampled blind equalization adaptive algo-
rithm can be applied to the FSE via stochastic gradient descent techniques.

Since their first use, adaptive blind equalizers have often been implemented as FSEs. When training
data are available, FSEs have the known advantage of suppressing timing phase sensitivity [30]. In
fact, a blind FSE has another important advantage: there exists a one-to-one mapping between the
combined parameter space and the equalizer parameter space, as shown in [31], under the following
length and zero conditions:

• The equalizer length satisfies (m+ 1) ≥ K ;

• The p discrete sub-channels {Hi(z)} do not share any common zeros.

Note that for T -sampled equalizers (TSE), only one (p = 1) sub-channel exists and all zeros
are common zeros, and, thus, the length and zero conditions cannot be satisfied. In most practical
implementations, p is either 2 or 3. So long as the above conditions hold, the convergence behaviors
of blind adaptive FSEs can be characterized completely in the combined parameter space. Based on
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the work of [12, 15], for QAM channel inputs, there do not exist any algorithm-dependent stable
equilibria other than the desired global minima (24.36) for FSEs driven by the Godard (q = 2)
algorithm (CMA) and the Shalvi-Weinstein algorithms. Thus, the Godard and the Shalvi-Weinstein
algorithms are globally convergent for FSEs satisfying these conditions [31].

Notice that global convergence of the Godard FSE is only proven for noiseless channels under the
no-common zero condition. There have been recent advances in analyzing the performance of blind
equalizers in the presence of Gaussian noise and the existence of common sub-channel zeros. While
all possible delays of (24.36) are global minima for noiseless channels, the locations and effects of
minima vary when channel noises are present. An analysis by Zeng and Tong shows that for noisy
channels, CMA equalizer parameters have minima near the MMSE equilibria [32]. The effects of
noise and common zeros was also studied by Fijalkow et al. [33, 34], providing further indications
of the robustness of CMA when implemented as an FSE.

24.10 Concluding Remarks

Adaptive channel equalization and blind equalization are among the most successful applications of
adaptive filtering. We have introduced the basic concept of blind equalization along with some of
the most commonly used blind equalization algorithms. Without the aid of training signals, the key
challenge of blind adaptive equalizers lies in the design of special cost functions whose minimization
is consistent with the goal of ISI removal. We have also summarized key results on the convergence
of blind equalizers The idea of constrained minimization of a convex cost function to assure global
convergence of the blind equalizer was described. Finally, the blind adaptation in fractionally spaced
equalizers and multichannel receivers was shown to possess useful convergence properties.

It is important to note that the problem of blind equalization has not been completely solved by any
means. In addition to the fact that the convergence behaviors of most algorithms are still unknown,
the rates of convergence of typical algorithms such as CMA is quite slow, often needing thousands
of iterations to achieve acceptable output. The difficulty of the convergence analysis and the slow
rate of convergence of these algorithms have prompted many efforts to modify blind error functions
to obtain faster and better algorithms. Furthermore, nonadaptive algorithms that explicitly exploit
higher order statistics [35]–[38] and second order cyclostationary statistics [25]–[29] appear to be
quite efficient in exploiting small amount of channel output data. A detailed discussion of these
methods is beyond the scope of the section. Interested readers may refer to two collected works
edited by Haykin [24] and Gardner [39] and the references therein.
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T
HERE ARE MANY SITUATIONS where a desired signal cannot be measured directly. The
measurement might be degraded by physical limitations of the signal source and/or by the
measurement device itself. The acquired signal is thus a transformation of the desired signal.

The inversion of such transformations is the subject of the present chapter. In the following sections
we will review several inverse problems and various methods of implementation of the inversion or
recovery process. The methods differ in the ability to deal with the specific limitations present in each
application. For example, the a priori constraint of non-negativity is important for image recovery,
but not so for adaptive array processing. The goal of the following sections is to present the basic
approaches of inversion and signal recovery. Each section focuses on a particular application area
and describes the appropriate methods for that area.

The first chapter, 25, is entitled “Signal Recovery from Partial Information” by Christine Podilchuk.
This section reviews the basic problem of signal recovery. The idea of projection onto convex sets
(POCs) is introduced as an elegant solution to the signal recovery problem. The inclusion of linear
and non-linear constraints are addressed. The POCs method is shown to be a subset of the set
theoretic approach to signal estimation. The application of image of restoration is described in
detail.

Chapter 26 is entitled “Algorithms for Computed Tomography” by Gabor T. Herman. This section
presents methods to reconstruct the interiors of objects from data collected based on transmitted or
emitted radiation. The problem occurs in a wide range of application areas. The computer algorithms
used for achieving the reconstructions are discussed. The basic techniques of image reconstruction
from projections are classified into “Transform Methods” (including Filtered Backprojection and the
Linogram Methods) and “Series Expansion Methods” (including, in particular, the Algebraic Recon-
struction Techniques and the method of Expectation Maximization). In addition, a performance
comparison of the various algorithms for computed tomography is given.

Chapter 27 is entitled “Robust Speech Processing as an Inverse Problem” by Richard J. Mammone
and Xiaoyu Zhang. The performance of speech and speaker recognition systems is significantly
affected by the acoustic environment. The background noise level, the filtering effects introduced by
the microphone and the communication channel dramatically affect the performance of recognition
systems. It is therefore critical that these speech recognition systems be capable of detecting the
ambient acoustic environment continue and inverse their effects from the speech signal. This is
the inverse problem in robust speech processing that will be addressed in this section. A general
approach to solving this inverse problem is presented based on an affine transform model in the
cepstrum domain.

Chapter 28 is entitled “Inverse Problems, Statistical Mechanics and Simulated Annealing” by K.
Venkatesh Prasad. In this section, a computational approach to 3-D coordinate restoration is pre-
sented. The problem is to obtain high-resolution coordinates of 3-D volume-elements (voxels) from
observations of their corresponding 2-D picture-elements (pixels). The problem is posed as a com-
binatorial optimization problem and borrowing from our understanding of statistical mechanics,
we show how to adapt the tool of simulated annealing to solve this problem. This method is highly
amenable to parallel and distributed processing.

Chapter 29 is entitled “Image Recovery Using the EM Algorithm” by Jun Zhang and Aggelos K.
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Katsaggelos. In this section, the image recovery/reconstructionproblem is formulatedas amaximum-
likelihood (ML) problem in which the image is recovered by maximizing an appropriately defined
likelihood function. These likelihood functions are often highly non-linear and when some of the
variables involved are not directly observable, they can only be specified in integral form (i.e., aver-
aging over the “hidden variables”). The EM (expectation-maximization) algorithm is revised and
applied to some typical image recovery problems. Examples include image restoration using the
Markov random field model and single and multiple channel image restoration with blur identifica-
tion.

Chapter 30 is entitled “Inverse Problems In Array Processing” by Kevin R. Farrell. Array processing
uses multiple sensors to improve signal reception by reducing the effects of interfering signals that
originate from different spatial locations. Array processing algorithms are generally implemented
via narrowband and broadband arrays, both of which are discussed in this chapter. Two classical
approaches, namely sidelobe canceler and Frost beam formers, are reviewed. These algorithms are
formulated as an inverse problem and an iterative approach for solving the resulting inverse problem
is provided.

Chapter 31 is entitled “Channel Equalization as a Regularized Inverse Problem” by John F. Doherty.
In this section, the relationship between communication channel equalization and the inversion of
a linear system of equations is examined. A regularized method of inversion is an inversion process
in which the noise dominated modes of the restored signal are attenuated. Channel equalization is
the process that reduces the effects of a band-limited channel at the receiver of a communication
system. A regularized method of channel equalization is presented in this section. Although there
are many ways to accomplish this, the method presented uses linear and adaptive filters, which makes
the transition to matrix inversion possible.

Chapter 32 is entitled “Inverse Problems in Microphone Arrays” by A.C. Surendran. The response
of an acoustic enclosure is, in general, a non-minimum phase function and hence not invertible. In
this section, we discuss techniques using microphone arrays that attempt to recover speech signals
degraded by the filtering effect of acoustic enclosures by either approximately or exactly “inverting”
the room response. The aim of such systems is to force the impulse response of the overall system,
after de-reverberation, to be an impulse function. Beamforming and matched-filtering techniques
(that approximate this ideal case) and the Diophantine inverse filtering method (a technique that
provides an exact inverse) are discussed in detail.

Chapter 33 is entitled “Synthetic Aperture Radar Algorithms” by Clay Stewart and Vic Larson.
A synthetic aperture radar (SAR) is a radar sensor that provides azimuth resolution superior to
that achievable with its real beam by synthesizing a long aperture by platform motion. This section
presents an overview of the basics of SAR phenomenology and the associated algorithms that are used
to form the radar image and to enhance it. The section begins with an overview of SAR applications,
historical development, fundamental phenomenology, and a survey of modern SAR systems. It also
presents examples of SAR imagery. This is followed by a discussion of the basic principles of SAR
image formation that begins with side looking radar, progresses to unfocused SAR, and finishes with
focused SAR. A discussion of SAR image enhancement techniques, such as the polarimetric whitening
filters, follows. Finally, a brief discussion of automatic target detection and classification techniques
is offered.

Chapter 34 is entitled “Iterative Image Restoration Algorithms” by Aggelos K. Katsaggelos. In this
section, a class of iterative restoration algorithms is presented. Such algorithms provide solutions
to the problem of recovering an original signal or image from a noisy and blurred observation of it.
This situation is encountered in a number of important applications, ranging from the restoration
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of images obtained by the Hubble space telescope, to the restoration of compressed images. The
successive approximation methods form the basis of the material presented in this section.

The sample of applications and methods described in this chapter are meant to be representative
of the large volume of work performed in this field. There is no claim of completeness, any omissions
of significant contributors or other errors are solely the responsibility of the section editor, and all
praiseworthy contributions are due solely to the chapter authors.
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25.1 Introduction

Signal recovery has been an active area of research for applications in many different scientific dis-
ciplines. A central reason for exploring the feasibility of signal recovery is due to the limitations
imposed by a physical device on the amount of data one can record. For example, for diffraction-
limited systems, the finite aperture size of the lens constrains the amount of frequency information
that can be captured. The image degradation is due to attenuation of high frequency components
resulting in a loss of details and other high frequency information. In other words, the finite aperture
size of the lens acts like a lowpass filter on the input data. In some cases, the quality of the recorded
image data can be improved by building a more costly recording device but many times the required
condition for acceptable data quality is physically unrealizable or too costly. Other times signal re-
covery may be necessary is for the recording of a unique event that cannot be reproduced under more
ideal recording conditions.

Some of the earliest work on signal recovery includes the work by Sondhi [1] and Slepian [2] on
recovering images from motion blur and Helstrom [3] on least squares restoration. A sampling of
some of the signal recovery algorithms applied to different types of problems can be found in [4]–
[21]. Further reading includes the other sections in this book, Chapter 53, and the extended list of
references provided by all the authors.

The simple signal degradation model described in the next section turns out to be a useful represen-
tation for many different problems encountered in practice. Some examples that can be formulated
using the general signal recovery paradigm include image restoration, image reconstruction, spectral
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estimation, and filter design. We distinguish between image restoration, which pertains to image re-
covery based on a measured distorted version of the original image, and image reconstruction, which
refers most commonly to medical imaging where the image is reconstructed from a set of indirect
measurements, usually projections. For many of the signal recovery applications, it is desirable to
extrapolate a signal outside of a known interval. Extrapolating a signal in the spatial or temporal
domain could result in improved spectral resolution and applies to such problems as power spec-
trum estimation, radio–astronomy, radar target detection, and geophysical exploration. The dual
problem, extrapolating the signal in the frequency domain, also known as superresolution, results in
improved spatial or temporal resolution and is desirable in many image restoration problems. As
will be shown later, the standard inverse filtering techniques are not able to resolve the signal estimate
beyond the diffraction limit imposed by the physical measuring device.

The observed signal is degraded from the original signal by both the measuring device as well as
external conditions. Besides the measured, distorted output signal we may have some additional
information about the following: the measuring system and external conditions, such as noise, as
well as some a priori knowledge about the desired signal to be restored or reconstructed. In order
to produce a good estimate of the original signal, we should take advantage of all the available
information.

Although the data recovery algorithms described here apply in general to any data type, we derive
most of the techniques based on two-dimensional input data for image processing applications. For
most cases, it is straightforward to adapt the algorithms to other data types. Examples of data recovery
techniques for different inputs are illustrated in the other sections in this book as well as Chapter 53
for image restoration. The material in this section requires some basic knowledge of linear algebra
as found in [22].

Section 25.2 presents the signal degradation model and formulates the signal recovery problem.
The early attempts of signal recovery based on inverse filtering are presented in Section 25.3. The
concept of Projection Onto Convex Sets (POCS) described in Section 25.4 allows us to introduce a
priori knowledge about the original signal in the form of linear as well as nonlinear constraints into
the recovery algorithm. Convex set theoretic formulations allow us to design recovery algorithms
that are extremely flexible and powerful. Sections 25.5 and 25.6 present some basic POCS-based
algorithms and Section 25.7 presents a POCS-based algorithm for image restoration as well as some
results. The sample algorithms presented here are not meant to be exhaustive and the reader is
encouraged to read the other sections in this chapter as well as the references for more details.

25.2 Formulation of the Signal Recovery Problem

Signal recovery can be viewed as an estimation process in which operations are performed on an
observed signal in order to estimate the ideal signal that would be observed if no degradation was
present. In order to design a signal recovery system effectively, it is necessary to characterize the
degradation effects of thephysicalmeasuring system. Thebasic idea is tomodel the signal degradation
effects as accurately aspossible andperformoperations toundo thedegradations andobtain a restored
signal. When the degradation cannot be modeled sufficiently, even the best recovery algorithms will
not yield satisfactory results. For many applications, the degradation system is assumed to be linear
and can be modeled as a Fredholm integral equation of the first kind expressed as

g(x) =
∫ +∞

−∞
h(x; a)f (a)da + n(x). (25.1)

This is the general case for a one-dimensional signal where f and g are the original and measured
signals, respectively, n represents noise, and h(x; a) is the impulse response or the response of the
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measuring system to an impulse at coordinate a.1 A block diagram illustrating the general one-
dimensional signal degradation system is shown in Fig. 25.1. For image processing applications, we
modify this equation to the two-dimensional case, that is,

g(x, y) =
∫ +∞

−∞

∫ +∞

−∞
h(x, y; a, b)f (a, b)dadb + n(x, y) (25.2)

The degradation operator h is commonly referred to as a point spread function (PSF) in imaging
applications because in optics, h is the measured response of an imaging system to a point of light.

FIGURE 25.1: Block diagram of the signal recovery problem.

The Fourier transform of the point spread function h(x, y) denoted as H(wx,wy) is known as
the optical transfer function (OTF) and can be expressed as

H(wx,wy) =
∫ ∫∞

−∞ h(x, y)exp
{−i (wxx + wyy

)}
dxdy∫ ∫∞

−∞ h(x, y)dxdy
. (25.3)

The absolute value of the OTF is known as the modulation transfer function (MTF). A commonly
used optical image formation system is a circular thin lens. The recovery problem is considered
ill-posed when a small change in the observed image, g, results in a large change in the solution, f .
Most signal recovery problems in practice are ill-posed.

The continuous version of the degradation system for two-dimensional signals formulated in
Eq. (25.2) can be expressed in discrete form by replacing the continuous arguments with arrays of
samples in two dimensions, that is,

g(i, j) =
∑
m

∑
n

h(i, j ;m, n)f (m, n)+ n(i, j). (25.4)

It is convenient for image recovery purposes to represent the discrete formulation given in Eq. (25.4)
as a system of linear equations expressed as

g = Hf + n, (25.5)

where g, f, and n are the lexicographic row-stacked versions of the discretized versions of g, f , and
n in Eq. (25.4) and H is the degradation matrix composed of the PSF.

This section presents an overview of some of the techniques proposed to estimate f when the
recovery problem can be modeled by Eq. (25.5). If there is no external noise or measurement error

1This corresponds to the case of a shift–varying impulse response.

c©1999 by CRC Press LLC



and the set of equations is consistent, Eq. (25.5) reduces to

g = Hf . (25.6)

It is usually not the case that a practical system can be described by Eq. (25.6). In this section, we
will focus on recovery algorithms where an estimate of the distortion operation represented by the
matrix H is known. For recovery problems where both the desired signal, f, and the degradation
operator, H, are unknown, refer to other articles in this book.

For most systems, the degradation matrix H is highly structured and quite sparse. The additive
noise term due to measurement errors and external and internal noise sources is represented by the
vector n. At first glance, the solution to the signal recovery problem seems to be straightforward —
find the inverse of the matrix H to solve for the unknown vector f. It turns out that the solution is not
so simple because in practice the degradation operator is usually ill-conditioned or rank-deficient
and the problem of inconsistencies or noise must be addressed. Other problems that may arise
include computational complexity due to extremely large problem dimensions especially for image
processing applications. The algorithms described here try to address these issues for the general
signal recovery problem described by Eq. (25.5).

25.2.1 Prolate Spheroidal Wavefunctions

We introduce the problem of signal recovery by examining a one-dimensional, linear, time-invariant
system that can be expressed as

g(x) =
∫ +T

−T
f (α)h(x − α)dα, (25.7)

whereg(x) is theobserved signal,f (α) is thedesired signal offinite supporton the interval (−T ,+T ),
and h(x) denotes the degradation operator. Assuming that the degradation operator in this case is
an ideal lowpass filter, h can be described mathematically as

h(x) = sin(x)

x
. (25.8)

For this particular case, it is possible to solve for the exact signal f (x) with prolate spheroidal
wavefunctions [23]. The key to successfully solving for f lies in the fact that prolate spheroidal
wavefunctions are the eigenfunctions of the integral equation expressed by Eq. (25.7) with Eq. (25.8)
as the degradation operator. This relationship is expressed as:

∫ +T

−T
ψn(α)

sin(x − α)

x − α
dα = λnψn(x), n = 0,1,2,. . . , (25.9)

where ψn(x) are the prolate spheroidal wavefunctions and λn are the corresponding eigenvalues. A
critical feature of prolate spheroidal wavefunctions is that they are complete orthogonal bases in the
interval (−∞,+∞) as well as the interval (−T ,+T ), that is,

∫ +∞

−∞
ψn(x)ψm(x)dx =

{
1, if n = m,

0, if n 6= m,
(25.10)

and ∫ +T

−T
ψn(x)ψm(x)dx =

{
λn, if n = m,

0, if n 6= m.
(25.11)
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This allows the functions g(x) and f (x) to be expressed as the series expansion,

g(x) =
∞∑
n=0

cnψn(x), (25.12)

f (x) =
∞∑
n=0

dnψLn(x), (25.13)

whereψLn(x) are the prolate spheroidal functions truncated to the interval (−T , T ). The coefficients
cn and dn are given by

cn =
∫ ∞

−∞
g(x)ψn(x)dx (25.14)

and

dn = 1

λn

∫ T

−T
f (x)ψn(x)dx. (25.15)

If we substitute the series expansions given by Eqs. (25.12) and (25.13) into Eq. (25.7), we get

g(x) =
∞∑
n=0

cnψn(x)

=
∫ +T

−T

[ ∞∑
n=0

dnψLn(α)

]
h(x − α)dα (25.16)

=
∞∑
n=0

dn

[∫ +T

−T
ψn(α)h(x − α)dα

]
. (25.17)

Combining this result with Eq. (25.9),

∞∑
n=0

cnψn(x) =
∞∑
n=0

λndnψn(x), (25.18)

where
cn = λndn, (25.19)

and
dn = cn

λn
. (25.20)

We get an exact solution for the unknown signal f (x) by substituting Eq. (25.20) into Eq. (25.13),
that is,

f (x) =
∞∑
n=0

cn

λn
ψLn(x). (25.21)

Therefore, in theory, it is possible to obtain the exact image f (x) from the diffraction-limited im-
age, g(x), using prolate spheroidal wavefunctions. The difficulties of signal recovery become more
apparent when we examine the simple diffraction-limited case in relation to prolate spheroidal wave-
functions as described in Eq. (25.21). The finite aperture size of a diffraction-limited system translates
to eigenvalues λn which exhibit a unit–step response; that is, the several largest eigenvalues are ap-
proximately one followed by a succession of eigenvalues that rapidly fall off to zero. The solution given
by Eq. (25.21) will be extremely sensitive to noise for small eigenvalues λn. Therefore, for the general
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problem represented in vector–space by Eq. (25.5), the degradation operatorH is ill-conditioned or
rank-deficient due to the small or zero-valued eigenvalues, and a simple inverse operation will not
yield satisfactory results. Many algorithms have been proposed to find a compromise between exact
deblurring and noise amplification. These techniques include Wiener filtering and pseudo-inverse
filtering. We begin our overview of signal recovery techniques by examining some of the methods
that fall under the category of optimization-based approaches.

25.3 Least Squares Solutions

The earliest attempts toward signal recovery are based on the concept of inverting the degradation
operator to restore the desired signal. Because in practical applications the system will often be ill-
conditioned, several problems can arise. Specifically, high detail signal information may be masked
by observation noise, or a small amount of observation noise may lead to an estimate that contains
very large false high frequency components. Another potential problem with such an approach
is that for a rank-deficient degradation operator, the zero-valued eigenvalues cannot be inverted.
Therefore, the general inverse filtering approach will not be able to resolve the desired signal beyond
the diffraction limit imposed by the measuring device. In other words, referring to the vector–space
description, the data that has been nulled out by the zero-valued eigenvalues cannot be recovered.

25.3.1 Wiener Filtering

Wiener filtering combines inverse filtering with a priori statistical knowledge about the noise and
unknown signal [24] in order to deal with the problems associated with an ill-conditioned system.

The impulse response of the restoration filter is chosen to minimize the mean square error as
defined by

Ef = E

{(
f − f̂

)2
}

(25.22)

where f̂ denotes the estimate of the ideal signal f and E{·} denotes the expected value. The Wiener
filter estimate is expressed as

H−1
W = RffHT

HR ffHT + Rnn
(25.23)

where Rff and Rnn are the covariance matrices of f and n, respectively, and f and n are assumed to be
uncorrelated; that is,

Rff = E
{
ffT
}
, (25.24)

Rnn = E
{
nnT

}
, (25.25)

and
Rfn = 0. (25.26)

The superscript T in the above equations denotes transpose. The Wiener filter can also be expressed
in the Fourier domain as

H−1
W = H∗Sff

|H|2 Sff + Snn
(25.27)

where S denotes the power spectral density, the superscript ∗ denotes the complex conjugate, and H
denotes the Fourier transform of H. Note that when the noise power is zero, the Wiener filter reduces
to the inverse filter; that is,

H−1
W = H−1. (25.28)
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The Wiener filter approach for signal recovery assumes that the power spectra are known for the
input signal and the noise. Also, this approach assumes that finding a least squares solution that
optimizes Eq. (25.22) is meaningful. For the case of image processing, it has been shown, specifically
in the context of image compression, that the mean square error (mse) does not predict subjective
image quality [25]. Many signal processing algorithms are based on the least squares paradigm
because the solutions are tractable and, in practice, such approaches have produced some useful
results. However, in order to define a more meaningful optimization metric in the design of image
processing algorithms, we need to incorporate a human visual model into the algorithm design. In
the area of image coding, several coding schemes based on perceptual criteria have been shown to
produce improved results over schemes based on maximizing signal–to–noise ratio or minimizing
mse [25]. Likewise, the Wiener filtering approach will not necessarily produce an estimate that
maximizes perceived image or signal quality. Another limitation of the Wiener filter approach is that
the solution will not necessarily be consistent with any a priori knowledge about the desired signal
characteristics. In addition, the Wiener filter approach does not resolve the desired signal beyond
the diffraction limit imposed by the measuring system. For more details on Wiener filtering and the
various applications, see other chapters in this book.

25.3.2 The Pseudoinverse Solution

The Wiener filters attempt to minimize the noise amplification obtained in a direct inverse by pro-
viding a taper determined by the statistics of the signal and noise process under consideration. In
practice, the power spectra of the noise and desired signal might not be known. Here we present
what is commonly referred to as the generalized inverse solution. This will be the framework for
some of the signal recovery algorithms described later.

The pseudoinverse solution is an optimization approach that seeks to minimize the least squares
error as given by

En = nT n = (
g − Hf

)T
(g − Hf). (25.29)

The least squares solution is not unique when the rank of theM×N matrix H is r < N ≤ M . In other
words, there are many solutions that satisfy Eq. (25.29). However, the Moore-Penrose generalized
inverse or pseudoinverse [26] does provide a unique least squares solution based on determining
the least squares solution with minimum norm. For a consistent set of equations as described in
Eq. (25.6), a solution is sought that minimizes the least squares estimation error; that is,

Ef =
(
f − f̂

)T
(f − f̂)

= tr

{
(f − f̂)

(
f − f̂

)T }
(25.30)

where f is the desired signal vector, f̂ is the estimate, and tr denotes the trace [22]. The generalized
inverse provides an optimum solution that minimizes the estimation error for a consistent set of
equations. Thus, the generalized inverse provides an optimum solution for both the consistent and
inconsistent set of equations as defined by the performance functions Ef and En, respectively. The
generalized inverse solution satisfies the normal equations

HT g = HTHf . (25.31)

The generalized inverse solution, also known as the Moore-Penrose generalized inverse, pseudoin-
verse, or least squares solution with minimum norm is defined as

f† =
(
HTH

)−1
HT g = H†g, (25.32)
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where the dagger † denotes the pseudoinverse and the rank of H is r = N ≤ M .
For the case of an inconsistent set of equations as described in Eq. (25.5), the pseudoinverse solution

becomes
f† = H†g = H†Hf + H†n (25.33)

where f† is the minimum norm, least squares solution. If the set of equations are overdetermined with
rank r = N < M , H†H becomes an identity matrix of size N denoted as IN and the pseudoinverse
solution reduces to

f† = f + H†n

= f +1f . (25.34)

A straightforward result from linear algebra is the bound on the relative error,

‖ 1f ‖
‖ f ‖ ‖ H† ‖‖ H ‖ ‖ n ‖

‖ g ‖ , (25.35)

where the product ‖ H† ‖‖ H ‖ is the condition number of H. This quantity determines the relative
error in the estimate in terms of the ratio of the vector norm of the noise to the vector norm of the
observed image. The condition number ofH is defined as

CH =‖ H† ‖‖ H ‖= σ1

σN
(25.36)

where σ1 and σN denote the largest and smallest singular values of the matrix H , respectively. The
larger the condition number, the greater the sensitivity to noise perturbations. A matrix with a large
condition number, typically greater than 100, results in an ill-conditioned system.

The pseudoinverse solution is best described by diagonalizing the degradation matrix H using
singular value decomposition (SVD) [22]. SVD provides a way to diagonalize any arbitraryM ×N

matrix. In this case, we wish to diagonalize H; that is,

H = U6VT (25.37)

where U is a unitary matrix composed of the orthonormal eigenvectors of HTH, V is a unitary matrix
composed of the orthonormal eigenvectors of HHT , and 6 is a diagonal matrix composed of the
singular values of H. The number of nonzero diagonal terms denotes the rank of H. The degradation
matrix can be expressed in series form as

H =
r∑
i=1

σiuiv
T
i (25.38)

where ui and vi are the i-th columns of U and V, respectively and r is the rank of H. From Eqs. (25.37)
and (25.38), the pseudoinverse of H becomes as

H† = V6†UT =
r∑
i=1

σ−1
i .viu

T
i (25.39)

Therefore, from Eq. (25.39), the pseudoinverse solution can be expressed as

f† = H†g = V6†UT g (25.40)

or

f† =
r∑
i=1

σ−1
i viu

T
i g =

r∑
i=1

σ−1
i

(
uTi g

)
vi . (25.41)
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The series form of the pseudoinverse solution using SVD allows us to solve for the pseudoinverse
solution using a sequential restoration algorithm expressed as

f†(k+1) = f†(k) + σ−1
k

(
uTk g

)
vk. (25.42)

The iterative approach for finding the pseudoinverse solution is advantageous when dealing with
ill-conditioned systems and noise corrupted data. The iterative form can be terminated before the
inversion of small singular values resulting in an unstable estimate. This technique becomes quite
easy to implement for the case of a circulant degradation matrix H, where the unitary matrices in
Eq. (25.37) reduce to the discrete Fourier transform (DFT).

25.3.3 Regularization Techniques

Smoothing and regularization techniques [27, 28, 29] have been proposed in an attempt to overcome
the problems associated with inverting ill-conditioned degradation operators for signal recovery.
These methods attempt to force smoothness on the solution of a least squares error problem. The
problem can be formulated in two different ways. One way of formulating the problem is

minimize:
f̂T Sf̂ (25.43)

subject to: (
g − Hf̂

)T
W(g − Hf̂) = e (25.44)

where S represents a smoothing matrix, W is an error weighting matrix, and e is a residual scalar
estimation error. The error weighting matrix can be chosen as W = R−1

nn . The smoothing matrix is
typically composed of the first or second order difference. For this case, we wish to find the stationary
point of the Lagrangian expression

F(f̂ , λ) = f̂T Sf̂ + λ

[(
g − Hf̂

)T
W(g − Hf̂)− e

]
. (25.45)

The solution is found by taking derivatives with respect to f and λ and setting them equal to zero.
The solution for a nonsingular overdetermined set of equations becomes

f̂ =
(

HTWH + 1

λ
S

)−1

HTWg (25.46)

where λ is chosen to satisfy the compromise between residual error and smoothness in the estimate.
Alternately, this problem can be formulated as
minimize: (

g − Hf̂
)T

W(g − Hf̂) (25.47)

subject to:

f̂T Sf̂ = d (25.48)

where d represents a fixed degree of smoothness. The Lagrangean expression for this formulation
becomes

G(f̂ , γ ) =
(
g − Hf̂

)T
W
(
g − Hf̂

)T + γ
(
f̂T Sf̂ − d

)
(25.49)

and the solution for a nonsingular overdetermined set of equations becomes

f̂ =
(
HTWH + γ S

)−1
HTWg. (25.50)
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Note that for the two problem formulations, the results as given by Eq. (25.46) and Eq. (25.50) are
identical if γ = 1/λ. The shortcomings of such a regularization technique is that the smoothing
function S must be estimated and either the degree of smoothness, d , or the degree of error, e, must
be known to determine γ or λ.

Constrained restoration techniques have also been developed [30] to overcome the problem of
an ill-conditioned system. Linear equality constraints and linear inequality constraints have been
enforced to yield one-step solutions similar to those described in this section. All the techniques
described thus far attempt to overcome the problem of noise corrupted data and ill-conditioned
systems by forcing some sort of taper on the inverse of the degradation operator. The sampling of
algorithms discussed thus far fall under the category of optimization techniques where the objective
function to be minimized is the least squares error. Recovery algorithms that fall under the category of
optimization-based algorithms include maximum likelihood, maximum a posteriori, and maximum
entropy methods [17].

Wenow introduce the conceptofProjectionontoConvexSets (POCS),whichwill be the framework
for a much broader and more powerful class of signal recovery algorithms.

25.4 Signal Recovery using Projection onto Convex Sets
(POCS)

Abroad setof recovery algorithmshasbeenproposed to conformto thegeneral framework introduced
by the theory of projection onto convex sets (POCS) [31]. The POCS framework enables one to define
an iterative recovery algorithm that can incorporate a number of linear as well as nonlinear constraints
that satisfy certain properties. The more a priori information about the desired signal that one can
incorporate into the algorithm, the more effective the algorithm becomes. In [21], POCS is presented
as a particular example of a much broader class of algorithms described as Set Theoretic Estimation.
The author distinguishes between two basic approaches to a signal estimation or recovery problem:
optimization-based approaches and set theoretic approaches. The effectiveness of optimization-
based approaches is highly dependent on defining a valid optimization criterion that, in practice,
is usually determined by computational tractability rather than how well it models the problem.
The optimization-based approaches seek a unique solution based on some predefined optimization
criterion. The optimization-based approaches include the least squares techniques of the previous
section as well as maximum likelihood (ML), maximum a posteriori (MAP), and maximum entropy
techniques. Set theoretic estimation is based on the concept of finding a feasible solution, that is, a
solution that is consistent with all the available a priori information. Unlike the optimization-based
approaches which seek to find one optimum solution, the set theoretic approaches usually determine
one of many possible feasible solutions. Many problems in signal recovery can be approached
using the set theoretic paradigm. POCS has been one of the most extensively studied set theoretic
approaches in the literature due to its convergence properties and flexibility to handle a wide range
of signal characteristics. We limit our discussion here to POCS–based algorithms. The more general
case of signal estimation using nonconvex as well as convex sets is covered in [21]. The rest of this
section will focus on defining the POCS framework and describing several useful algorithms that fall
into this general category.

25.4.1 The POCS Framework

A projection operator onto a closed convex set is an example of a nonlinear mapping that is easily
analyzed and contains some very useful properties. Such projection operators minimize error dis-
tance and are nonexpansive. These are two very important properties of ordinary linear orthogonal
projections onto closed linear manifolds (CLMs). The benefit of using POCS for signal restoration
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is that one can incorporate nonlinear constraints of a certain type into the POCS framework. Lin-
ear image restoration algorithms cannot take advantage of a priori information based on nonlinear
constraints.

The method of POCS depends on the set of solutions that satisfies a priori characteristics of the
desired signal to lie in a well-defined closed convex set. For such properties, f is restricted to lie in
the region defined by the intersection of all the convex sets, that is,

f ∈ C0 = ∩li=1Ci. (25.51)

Here Ci denotes the i-th closed convex set corresponding to the i-th property of f , Ci ∈ S , and
i ∈ I . The unknown signal f can be restored by using the corresponding projection operators Pi
onto each convex set Ci . A property of closed convex sets is that a projection of a point onto the
convex set is unique. This is known as the unique-nearest-neighbor property. The general form of
the POCS-based recovery algorithm is expressed as

f (k+1) = Pik f
(k) (25.52)

where k denotes the iteration and ik denotes a sequence of indices in I . A common technique for
iterating through the projections is referred to as cyclic control where the projections are applied in
a cyclic manner, that is, ik = k(modulol) + 1. A geometric interpretation of the POCS algorithm
for the simple case of two convex sets is illustrated in Fig. (25.2). The original POCS formulation is

FIGURE 25.2: Geometric interpretation of POCS.

further generalized by introducing a relaxation parameter expressed as

f (k+1) = f (k) + λk(Pik (f
(k))− f (k)), (25.53)

0< λk < 2

where λk denotes the relaxation parameter. If λk < 1, the algorithm is said to be underrelaxed and if
λk > 1, the algorithm is overrelaxed. Refer to [31] for further details on the convergence properties
of POCS.
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Common constraints that apply to many different signals in practice and whose solution space
obeys the properties of convex sets are described in [10]. Some examples from [10] include frequency
limits, spatial/temporal bounds, nonnegativity, sparseness, intensity or energy bounds, and partial
knowledge of the spectral or spatial/temporal components. For further details on commonly used
convex sets, see [10]. Most of the commonly used constraints for different signal processing applica-
tions fall under the category of convex sets which provide weak convergence. However, in practice,
most of the POCS algorithms provide strong convergence.

Many of the commonly used iterative signal restoration techniques are specific examples of the
POCS algorithm. The Kaczmarz algorithm [32], Landweber’s iteration [33], and the method of al-
ternating projections [9] are all POCS-based algorithms. It is worth noting that the image restoration
technique developed independently by Gerchberg and Saxton [4] and Papoulis [5] are also versions
of POCS. The algorithm developed by Gerchberg addressed phase retrieval from two images and
Papoulis addressed superresolution by iterative methods. The Gerchberg–Papoulis (GP) algorithm
is based on applying constraints on the estimate in the signal space and the Fourier space in an
iterative fashion until the estimate converges to a solution. For the image restoration problem, the
high frequency components of the image are extrapolated by imposing the finite extent of the object
in the spatial domain and by imposing the known low frequency components in the frequency do-
main. The dual problem involves spectral estimation where the signal is extrapolated in the time or
spatial domain. The algorithm consists of imposing the known part of the signal in the time domain
and imposing a finite bandwidth constraint in the frequency domain. The GP algorithm assumes a
space-invariant (or time-invariant) degradation operator.

We now present several signal recovery algorithms that conform to the POCS paradigm which are
broadly classified under two categories: row-based and block-based algorithms.

25.5 Row-Based Methods

As early as 1937, Kaczmarz [32] developed an iterative projection technique to solve the inverse
problem for a linear set of equations as given by Eq. (25.5). The algorithm takes the following form:

f (k+1) = f (k) + λk
gik − (hik , f

(k))

‖ hik ‖2
hik . (25.54)

The relaxation parameter λk is bound by 0 ≤ λk ≤ 2, h represents a row of the matrix H, ik denotes
a sequence of indices corresponding to a row in H, gi represents the i-th element of the vector g,
(·, ·) is the standard inner product between two vectors, k denotes the iteration, and ‖ · ‖ denotes
the Euclidean or L2 norm of a vector defined as

‖ g ‖=
(

N∑
i=1

g2
i

)1/2

. (25.55)

Kaczmarz proved that Eq. (25.54) converges to the unique solution when the relaxation parameter is
unity andH represents a square, nonsingular matrix, that is,H possesses an inverse and under certain
conditions, the solution will converge to the minimum norm least squares or pseudoinverse solution.
For further reading on the Kaczmarz algorithm and conditions for convergence, see [7, 8, 34, 35].

In general, the order in which one performs the Kaczmarz algorithm on theM existing equations
can differ. Cyclic control, where the algorithm iterates through the equations in a periodic fashion is
described as ik = k(moduloM)+ 1 whereM is the number of rows in H. Almost cyclic control exists
whenM sequential iterations of the Kaczmarz algorithm yield exactly one operation per equation in
any order. Remotest set control exists when one performs the operations on the most distant equation
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first; most distant in the sense that the projection onto the hyperplane represented by the equation
is the furthest away. The measure of distance is determined by the norm. This type of control is
seldomly used since it requires a measurement dependent on all the equations.

The method of Kaczmarz for λ = 1.0, can be expressed geometrically as follows. Given f (k) and
the hyperplaneHik = {f ∈ Rn | (hik , f) = gik }, f (k+1) is the orthogonal projection of f (k) ontoHik .
This is illustrated in Fig. 25.3. Note that by changing the relaxation parameter, the next iterate can be

FIGURE 25.3: Geometric interpretation of the Kaczmarz algorithm.

a point anywhere along the line segment connecting the previous iterate and its orthogonal reflection
with respect to the hyperplane.

The technique of Kaczmarz to solve for a set of linear equations has been rediscovered over the years
for many different applications where the general problem formulation can be expressed as Eq. (25.5).
For this reason, the Kaczmarz algorithm appears as the algebraic reconstruction technique (ART)
in the field of medical imaging for computerized tomography (CT) [7], as well as the Widrow-
Hoff least mean squares (LMS) algorithm [36] for channel equalization, echo cancellation, system
identification, and adaptive array processing.

For the case of solving linear inequalities where Eq. (25.5) is replaced with

Hf ≤ g, (25.56)

a method very similar to Kaczmarz’s algorithm is developed by Agmon [37] and Motzkin and Schoen-
berg [38],

f (k+1) = f (k) + c(k)hik

c(k) = min

(
0, λk

gik − (
hik , f

(k)
)

‖ hik ‖2

)
. (25.57)

Once again, the relaxation parameter is defined on the interval 0 ≤ λk ≤ 2. The method of
solving linear inequalities by Agmon and Motzkin and Schoenberg is mathematically identical to the
perceptron convergence theorem from the theory of learning machines (see [39]).
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25.6 Block-Based Methods

A generalization of the Kaczmarz algorithm introduced in the previous section has been suggested
by Eggermont [35] which can be described as a block, iterative algorithm. Recall the set of linear
equationsgivenbyEq. (25.5)where thedimensionsof theproblemare redefined so thatH ∈ RLM×N ,
f ∈ RN , and g ∈ RLM . In order to describe the generalization of the Kaczmarz algorithm, the matrix
H is partitioned into M blocks of length L,

H =




hT1
hT2
...

hTLM


 =




H1
H2
...

HM


 (25.58)

and g is partitioned as

g =




g1
g2
...

gLM


 =




G1
G2
...

GM


 (25.59)

where Gi , i = 1,2, . . . ,M is a vector of length L and the subblocks Hi are of dimensionL×N . The
generalized group-iterative variation of the Kaczmarz algorithm is expressed as

f (k+1) = f (k) + HT
ik
6k

(
Gik − Hik f

(k)
)

(25.60)

where f (0) ∈ RN . Eggermont gives details of convergence as well as conditions for convergence to
the pseudoinverse solution [35].

A further generalization of Kaczmarz’s algorithm led Eggermont [35] to the following form of the
general block Kaczmarz algorithm:

f (k+1) = f (k) + H†
ik
3k

(
Gik − Hik x

(k)
)

(25.61)

where once again H†
ik

denotes the Moore–Penrose inverse of Hik ,3k is the L×L relaxation matrix,
and cyclic control is defined as ik = k(moduloM)+ 1.

When the block size L given in Eq. (25.60) is equal to the number of equationsM , the algorithm
becomes identical to Landweber’s iteration [33] for solving Fredholm equations of the first kind; that
is,

f (k+1) = f (k) + HT 6k

(
g − Hf (k)

)
. (25.62)

The resulting Landweber iteration becomes

f (k+1) = HT g +
(
I − HTH

)
f (k). (25.63)

Another interesting approach that is similar to the generalized block-Kaczmarz algorithm, with the
block sizeL equal to the number of equationsM , is the method of alternating orthogonal projections
describedbyYoula [9]wherealternatingorthogonalprojectionsaremadeontoclosed linearmanifolds
(CLM).

The row-based andblock-based algorithmsdescribedhere correspond to aPOCS frameworkwhere
the only a priori information incorporated into the algorithm is the original problem formulation as
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described by Eq. (25.5). At times, the only information we may have is the original measurement g
and an estimate of the degradation operator H and these algorithms are suited for such applications.
However, for most applications, other a priori information is known about the desired signal and an
effective algorithm should utilize this information.

We now describe a POCS-based algorithm suited for the problem of image restoration where
additional a priori signal information is incorporated into the algorithm.

25.7 Image Restoration Using POCS

Here we describe an image recovery algorithm [18, 40] that is based on the POCS framework and
show some image restoration results [19, 20]. The list of references includes other examples of
POCS-based recovery algorithms.

The least squares minimum norm or pseudoinverse solution can be formulated as

f† = H†Hf = V3VT f (25.64)

where the dagger † denotes the pseudoinverse, V is the unitary matrix found in the diagonalization
of H, and3 is the following diagonal matrix whose first r diagonal terms are equal to one:

3 =




11 0 . . .

0 12 0
. . .

1r
0



. (25.65)

By defining
P = V3VT , (25.66)

the orthogonal complement to the operator P is given by the projection operator

Q = I − P = V3CVT (25.67)

where

3C =




0 . . .
...

. . .

1
1r+1

. . .



. (25.68)

The diagonal matrix 3C contains ones in the last N − r diagonal positions and zeroes elsewhere.
The superscript C denotes the complement.

Any arbitrary vector f can be decomposed as follows:

f = Pf + Qf (25.69)

where the projection operator P projects f onto the range space of the degradation matrix HTH and
the orthogonal projection operator Q projects f onto the null space of the degradation matrix HTH.
The component Pf will be referred to as the “in-band” term and the component Qf will be referred
to as the “out-of-band” term.
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In general, the least squares family of solutions to the image restoration problem can be stated as

f = fin−band + fout−of−band
= f† +Kr+1vr+1 +Kr+2vr+2 + . . .+KNvN. (25.70)

The vectors vi correspond to the eigenvectors of {σ 2
r+1, σ

2
r+2, . . . , σ

2
N } for HTH; they are the eigen-

vectors associated with zero valued eigenvalues. The out-of-band solutionKr+1vr+1 + . . .+KNvN
must satisfy

Hfout−of−band = 0. (25.71)

Adding the terms {Kr+1vr+1,Kr+2vr+2, . . . , KNvN }, to the pseudoinverse solution f† does not
change the L2 norm of the error since

‖ n ‖ = ‖ g − Hf ‖
= ‖ g − H

(
f† +Kr+1vr+1 + . . .+KNvN

)
‖ (25.72)

= ‖ g − Hf† − HKr+1vr+1 − . . .− HKNvN ‖
= ‖ g − Hf† ‖

which is the least squares error. The terms HKr+1vr+1, . . . ,HKNvN are all equal to zero because
the vectors vr+1, . . . , vN are in the null space of H. Therefore, any linear combination of vi in the
null space of H can be added to the pseudoinverse solution without affecting the least squares cost
function. The pseudoinverse solution, f†, provides the unique least squares estimate with minimum
norm,

min ‖ fLS ‖=‖ f† ‖ (25.73)

where fLS denotes the least squares solution. In practice, it is unlikely that the desired solution
is required to possess the minimum norm out of all feasible solutions so that f† is not necessarily
the optimum solution. The image restoration algorithm described here provides a framework that
allows a priori information in the form of signal constraints to be incorporated into the algorithm in
order to obtain a better estimate than the least squares minimum norm solution f†. The constraint
operator will be represented by C and can incorporate a variety of linear and nonlinear a priori
signal characteristics as long as they obey the properties of convex set theory. In the case of image
restoration, the constraint operator C includes non-negativity which can be described by

(C+f)i =
{
fi fi ≥ 0
0 fi < 0

. (25.74)

Concatenating the vectors vi in Eq. (25.70) yields

f = f† + V3CK (25.75)

where

K =




K1
K2
...

KN


 (25.76)

and

V3C = (
v1 v2 . . . vN

)



0
. . .

1r+1
. . .

1N



. (25.77)
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We would like to find the solution to the unknown vectorK in Eq. (25.75). A reasonable approach is
to start with the constrained pseudoinverse solution and solve for K in a least squares manner; that
is,

minimize:

‖ C+f† −
{
f† + V3CK

}
‖ (25.78)

subject to:

C+f† = f† + V3CK. (25.79)

The least squares solution becomes

C+f† − f† = V3CK

K = 3CVT
(
C+f† − f†

)
. (25.80)

Since3CVT f† = 0, we get
K = 3CVTC+f†. (25.81)

Substituting Eq. (25.81) into Eq. (25.79) yields

C+f† = f† + QC+f† + e. (25.82)

where e denotes a residual vector. The process of enforcing the overall least squares solution and
solving for the out-of-band component to fit the constraints can be implemented in an iterative
fashion. The resulting recursion is

C+f (k) = f† + QC+f (k) + e(k). (25.83)

By defining
f (k+1) ≡ C+f (k) − e(k) (25.84)

the final iterative algorithm becomes

f (0) = f†

f (k+1) = f† + QC+f (k). (25.85)

k = 0,1,2, . . . .

Note that the recursionyields the least squares solutionwhile enforcing theaprioriconstraints through
the out-of-band signal component. It is apparent that such an approach will yield a better estimate for
the unknown signal f than the minimum norm least squares solution f†. Note that this algorithm can
easily be generalized to other problems by replacing the non-negativity constraint C+ with the signal
appropriate constraints. In the case when f† satisfies all the constraints exactly, the solution to iterative
algorithm reduces to the pseudoinverse solution. For more details on this algorithm, convergence
issues, and stopping criterion, refer to [18, 20, 40]. By looking at this algorithmic framework from
the set theoretic viewpoint described in [21], the original set of solutions is given by all the solutions
that satisfy the least squares error criterion. The addition of a priori signal constraints attempts to
reduce the feasible set of solutions and to provide a better estimate than the pseudoinverse solution.

Finally, we would like to show some image restoration results based on the method described
in [19, 20, chap. 4]. The technique is a modification of the Kaczmarz method described here using
the theory of POCS. Original, degraded, restored images using the original Kaczmarz algorithm
and the restored images using the modified algorithm based on the POCS framework are shown in
Fig. (25.4). Similarly, we show the original, degraded and restored images in the frequency domain
in Fig. (25.5). The details of the algorithm are found in [19].
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FIGURE 25.4: (a) Original image. (b) Degraded image at 25 dB SNR. (c) Restored image using
Kaczmarz iterations. (d) Restored image using the modified Kaczmarz algorithm in a POCS frame-
work. (Courtesy of IEEE: Kuo, S.S. and Mammone, R.J., Image restoration by convex projections
using adaptive constraints and the l1 norm, IEEE Trans. Signal Process., 40, 159–168, 1992.)
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FIGURE 25.5: Spatial frequency response of the (a) original image, (b) degraded image, and (c) re-
stored image using the new algorithm. (Courtesy of IEEE: Kuo, S.S. and Mammone, R.J., Image
restoration by convex projections using adaptive constraints and the l1 norm, IEEE Trans. Signal
Process., 40, 159–168, 1992.)
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26.1 Introduction

Computed tomography is the process of reconstructing the interiors of objects from data collected
based on transmitted or emitted radiation. The problem occurs in a wide range of application areas.
Here we discuss the computer algorithms used for achieving the reconstructions.

26.2 The Reconstruction Problem

We want to solve the following general problem. There is a three-dimensional structure whose
internal composition is unknown to us. We subject this structure to some kind of radiation, either by
transmitting the radiation through the structure or by introducing the emitter of the radiation into the
structure. We measure the radiation transmitted through or emitted from the structure at a number
of points. Computed tomography (CT) is the process of obtaining from these measurements the
distribution of the physical parameter(s) inside the structure that have an effect on the measurements.
The problem occurs in a wide range of areas, such as x-ray CT, emission tomography, photon
migration imaging, and electron microscopic reconstruction; see, e.g., [1, 2]. All of these are inverse
problems of various sorts; see, e.g., [3].

Where it is not otherwise stated, we will be discussing the special reconstruction problem of
estimating a function of two variables from estimates of its line integrals. As it is quite reasonable
for any application, we will assume that the domain of the function is contained in a finite region of
the plane. In what follows we will introduce all the needed notation and terminology; in most cases
these agree with those used in [1].
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Suppose f is a function of the two polar variables r and φ. Let [Rf ](`, θ) denote the line integral
of f along the line that is at distance ` from the origin and makes an angle θ with the vertical axis.
This operator R is usually referred to as the Radon transform.

The input data to a reconstruction algorithm are estimates (based on physical measurements) of
the values of [Rf ](`, θ) for a finite number of pairs (`, θ); its output is an estimate, in some sense,
of f . More precisely, suppose that the estimates of [Rf ](`, θ) are known for I pairs: (`i, θi), 1
≤ i ≤ I . We use y to denote the I -dimensional column vector (called the measurement vector)
whose ith component, yi , is the available estimate of [Rf ](`i, θi). The task of a reconstruction
algorithm is:

given the data y, estimate the function f .

Following [1], reconstruction algorithms are characterized either as transform methods or as series
expansion methods. In the following subsections we discuss the underlying ideas of these two
approaches and give detailed descriptions of two algorithms from each category.

26.3 Transform Methods

The Radon transform has an inverse, R−1, defined as follows. For a function p of ` and θ ,

[
R−1p

]
(r, φ) = 1

2π2

∫ π

0

∫ ∞

−∞
1

r cos(θ − φ) − `
p1(`, θ)d`dθ , (26.1)

where p1(`, θ) denotes the partial derivative of p with respect to its first variable `. [Note that it is
intrinsically assumed in this definition that p is sufficiently smooth for the existence of the integral
in Eq. (26.1)]. It is known [1] that for any function f which satisfies some physically reasonable
conditions (such as continuity and boundedness) we have, for all points (r, φ),[

R−1Rf
]
(r, φ) = f (r, φ). (26.2)

Transform methods are numerical procedures that estimate values of the double integral on the
right hand side of Eq. (26.1) from given values of p(`i, θi), for 1 ≤ i ≤ I . We now discuss two such
methods: the widely adopted filtered backprojection (FBP) algorithm (called the convolution method
in [1]) and the more recently developed linogram method.

26.4 Filtered Backprojection (FBP)

In this algorithm, the right hand side of Eq. (26.1) is approximated by a two-step process (for
derivational details see [1] or, in a more general context, [3]). First, for fixed values of θ , convolutions
defined by

[p ∗Y q] (`′, θ) =
∫ ∞

−∞
p(`, θ)q

(
`′ − `, θ

)
d` (26.3)

are carried out, using a convolving function q (of one variable) whose exact choice will have an
important influence on the appearance of the final image. Second, our estimate f ∗ of f is obtained
by backprojection as follows:

f ∗(r, φ) =
∫ π

0
[p ∗Y q] (r cos(θ − φ), θ) dθ. (26.4)

To make explicit the implementation of this for a given measurement vector, let us assume that the
data function p is known at points (nd, m1),−N ≤ n ≤ N, 0 ≤ m ≤ M − 1, and M1 = π . Let
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us further assume that the function f is to be estimated at points (rj , φj ), 1 ≤ j ≤ J . The computer
algorithm operates as follows.

A sequence f0, . . . , fM−1, fM of estimates is produced; the last of these is the output of the
algorithm. First we define

f0
(
rj , φj

) = 0, (26.5)

for 1 ≤ j ≤ J . Then, for each value of m, 0 ≤ m ≤ M − 1, we produce the (m + 1)st estimate from
the mth estimate by a two-step process:

1. For −N ≤ n′ ≤ N , calculate

pc

(
n′d, m1

) = d

N∑
n=−N

p (nd, m1) q
((

n′ − n
)
d
)
, (26.6)

using the measured values of p(nd, m1) and precalculated values (same for all m) of
q((n′ − n)d). This is a discretization of Eq. (26.3). One possible (but by no means only)
choice is

2. For 1 ≤ j ≤ J , we set

fm+1
(
rj , φj

) = fm

(
rj , φj

)+ 1pc

(
rj cos

(
m1 − φj

)
, m1

)
. (26.7)

This is a discretization of Eq. (26.4). To do it, we need to interpolate in the first variable
of pc from the values calculated in Eq. (26.6) to obtain the values needed in Eq. (26.7).
In practice, once fm+1(rj , φj ) has been calculated, fm(rj , φj )is no longer needed and the
computercanreuse the samememory location forf0(rj , φj ), . . . , fM−1(rj , φj ), fM(rj , φj ).

In a complete execution of the algorithm, the uses of Eq. (26.6) require M(2N +1) multiplications
and additions, while all the uses of Eq. (26.7) require MJ interpolations and additions. Since J is
typically of the order of N2 and N itself in typical applications is between 100 and 1000, we see that
the cost of backprojection is likely to be much more computationally demanding than the cost of
convolution. In any case, reconstruction of a typical 512 × 512 cross-section from data collected by a
typical x-ray CT device is not a challenge to state-of-the art computational capabilities; it is routinely
done in the order of a second or so and can be done, using a pipeline architecture, in a fraction of a
second [4] .

26.5 The Linogram Method

The basic result that justifies this method is the well-known projection theorem which says that “taking
the two-dimensional Fourier transform is the same as taking the Radon transform and then applying
the Fourier transform with respect to the first variable” [1]. The method was first proposed in [5]
and the reason for the name of the method can be found there. The basic reason for proposing this
method is its speed of execution and we return to this below. In the description that follows, we use
the approach of [6]. That paper deals with the fully three-dimensional problem; here we simplify it
to the two-dimensional case.

For the linogram approach we assume that the data were collected in a special way (that is, at
points whose locations will be precisely specified below); if they were collected otherwise, we need
to interpolate prior to reconstruction. If the function is to be estimated at an array of points with
rectangular coordinates {(id, jd)| − N ≤ i ≤ N, −N ≤ j ≤ N} (this array is assumed to cover the
object to be reconstructed), then the data function p needs to be known at points

(ndm, θm) , −2N − 1 ≤ n ≤ 2N + 1, −2N − 1 ≤ m ≤ 2N + 1 (26.8)
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and at points (
ndm,

π

2
+ θm

)
, −2N − 1 ≤ n ≤ 2N + 1, −2N − 1 ≤ m ≤ 2N + 1, (26.9)

where

θm = tan−1 2m

4N + 3
and dm = d cosθm. (26.10)

The linogram method produces from such data estimates of the function values at the desired
points using a multi-stage procedure. We now list these stages, but first point out two facts. One is
that the most expensive computation that needs to be used in any of the stages is the taking of discrete
Fourier transforms (DFTs), which can always be implemented (possibly after some padding by zeros)
very efficiently by the use of the fast Fourier transform (FFT). The other is that the output of any stage
produces estimates of function values at exactly those points where they are needed for the discrete
computations of the next stage; there is never any need to interpolate between stages. It is these two
facts which indicate why the linogram method is both computationally efficient and accurate. (From
the point of view of this handbook, these facts justify the choice of sampling points in Eqs. (26.8)
through (26.10); a geometrical interpretation is given in [7].)

1. Fourier transforming of the data — For each value of the second variable, we take the DFT
of the data with respect to the first variable in Eq. (26.8) and Eq. (26.9). By the projection
theorem, this provides us with estimates of the two-dimensional Fourier transform F of
the object at points (in a rectangular coordinate system)

(
k

(4N+3)d ′ , k
(4N+3)d

tanθm

)
, −2N − 1 ≤ k ≤ 2N + 1 ,

−2N − 1 ≤ m ≤ 2N + 1 (26.11)

and at points (also in a rectangular coordinate system)

(
k

(4N+3)d
tan

(
π
2 + θm

)
, k

(4N+3)d

)
, −2N − 1 ≤ k ≤ 2N + 1 ,

−2N − 1 ≤ m ≤ 2N + 1 . (26.12)

2. Windowing — At this point we may suppress those frequencies which we suspect to be
noise-dominatedbymultiplyingwith awindow function (corresponding to the convolving
function in FBP).

3. Separating into two functions — The sampled Fourier transform F of the object to be
reconstructed is written as the sum of two functions, G and H . G has the same values
as F at all the points specified in Eq. (26.11) except at the origin and is zero-valued at all
other points. H has the same values as F at all the points specified in Eq. (26.12) except at
the origin and is zero-valued at all other points. Clearly, except at the origin, F = G+H .
The idea is that by first taking the two-dimensional inverse Fourier transforms of G and
H separately and then adding the results, we get an estimate (except for a DC term which
has to be estimated separately, see [6]) of f . We only follow what needs to be done with
G; the situation with H is analogous.

4. Chirp z-transforming in the second variable — Note that the way the θm were selected
implies that if we fix k, then the sampling in the second variable of Eq. (26.11) is uniform.
Furthermore, we know that the value of G is zero outside the sampled region. Hence, for
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each fixed k, 0 < |k| ≤ 2N+ 1, we can use the chirp z-transform to estimate the inverse
DFT in the second variable at points(

k

(4N + 3)d
, jd

)
, −2N − 1 ≤ k ≤ 2N + 1, −N ≤ j ≤ N. (26.13)

The chirp z-transform can be implemented using three FFTs, see [7].

5. Inverse transforming in the first variable — The inverse Fourier transform of G can now
be estimated at the required points by taking, for every fixed j , the inverse DFT in the
first variable of the values at the points of Eq. (26.13).

26.6 Series Expansion Methods

This approach assumes that the function, f , to be reconstructed can be approximated by a linear
combination of a finite set of known and fixed basis functions,

f (r, φ) ≈
J∑

j=1

xjbj (r, φ), (26.14)

and that our task is to estimate the unknowns, xj . If we assume that the measurements depend
linearly on the object to be reconstructed (certainly true in the special case of line integrals) and that
we know (at least approximately) what the measurements would be if the object to be reconstructed
was one of the basis functions (we use ri,j to denote the value of the ith measurement of the j th basis
function), then we can conclude [1] that the ith of our measurements of f is approximately

J∑
j=1

ri,j xj . (26.15)

Our problem is then to estimate the xj from the measured approximations (for 1 ≤ i ≤ I ) to
Eq. (26.15). The estimate can often be selected as one that satisfies some optimization criterion.

To simplify the notation, the image is represented by a J -dimensional image vector x (with compo-
nents xj ) and the data form an I -dimensional measurement vector y. There is an assumed projection
matrix R (with entries ri,j ). We let ri denote the transpose of the ith row of R (1 ≤ i ≤ I ) and so
the inner product 〈ri, x〉 is the same as the expression in Eq. (26.15). Then y is approximately Rx

and there may be further information that x belongs to a subset C of RJ , the space of J -dimensional
real-valued vectors. In this formulation R, C, and y are known and x is to be estimated. Substituting
the estimated values of xj into Eq. (26.14) will then provide us with an estimate of the function f .

The simplest way of selecting the basis functions is by subdividing the plane into pixels (or space
into voxels) and choosing basis functions whose value is 1 inside a specific pixel (or voxel) and is
0 everywhere else. However, there are other choices that may be preferable; for example, [8] uses
spherically symmetric basis functions that are not only spatially limited, but also can be chosen to be
very smooth. The smoothnessof thebasis functions then results in smoothnessof the reconstructions,
while the spherical symmetry allows easy calculation of the ri,j . It has been demonstrated [9], for the
case of fully three-dimensional positron emission tomography (PET) reconstruction, that such basis
functions indeed lead to statistically significant improvements in the task-oriented performance of
series expansion reconstruction methods.

In many situations only a small proportion of the ri,j are nonzero. (For example, if the basis
functions are based on voxels in a 200 × 200 × 100 array and the measurements are approximate
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line integrals, then the percent of nonzero ri,j is less than 0.01, since a typical line will intersect fewer
than 400 voxels.) This makes certain types of iterative methods for estimating the xj surprisingly
efficient. This is because one can make use of a subroutine which, for any i, returns a list of those
js for which ri,j is not zero, together with the values of the ri,j [1, 10]. We now discuss two such
iterative approaches: the so-called algebraic reconstruction techniques (ART) and the use of expectation
maximization (EM).

26.7 Algebraic Reconstruction Techniques (ART)

The basic version of ART operates as follows [1]. The method cycles through the measurements
repeatedly, considering only one measurement at a time. Only those xj are updated for which the
corresponding ri,j for the currently considered measurement i is nonzero and the change made to xj

is proportional to ri,j . The factor of proportionality is adjusted so that if Eq. (26.15) is evaluated for
the resulting xj , then it will match exactly the ith measurement. Other variants will use a block of
measurements in one iterative step and will update the xj in different ways to ensure that the iterative
process converges according to a chosen estimation criterion.

Here we discuss only one specific optimization criterion and the associated algorithm. (Others
can be found, for example, in [1]). Our task is to find the x in RJ which minimizes

r2‖y − Rx‖2 + ‖x − µx‖2 (26.16)

(‖ · ‖ indicates the usual Euclidean norm), for a given constant scalar r (called the regularization
parameter) and a given constant vector µx .

The algorithm makes use of an I -dimensional vector u of additional variables, one for each mea-
surement. First we define u(0) to be the I -dimensional zero vector and x(0) to be the J -dimensional
zero vector. Then, for k ≥ 0, we set

u(k+1) = u(k) + c(k)eik ,

x(k+1) = x(k) + rc(k)rik , (26.17)

where ei is an I -dimensional vector whose ith component is 1 with all other components being 0 and

c(k) = λ(k)
r
(
yik − 〈rik , x(k)〉)− u

(k)
ik

1 + r2‖rik‖2
, (26.18)

with ik = [k(modI ) + 1].

THEOREM 26.1 (see [1] for a proof). Let y be any measurement vector, r be any real number, and
µx be any element of RJ . Then for any real numbers λ(k) satisfying

0 < ε1 ≤ λ(k) ≤ ε2 < 2 , (26.19)

the sequence x(0), x(1), x(2), . . . determined by the algorithm given above converges to the unique vector
x which minimizes Eq. (26.16).

The implementation of this algorithm is hardly more complicated than that of basic ART which
is described at the beginning of this subsection. We need an additional sequence of I -dimensional
vectors u(k), but in the kth iterative step only one component of u(k) is needed or altered. Since the
iks are defined in a cyclic order, the components of the vector u(k) (just as the components of the
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measurement vector y) can be sequentially accessed. (The exact choice of this — often referred to as
the data access ordering — is very important for fast initial convergence; it is described in [11]. The
underlying principle is that in any subsequence of steps, we wish to have the individual actions to be
as independent as possible.) We also use, for every integer k ≥ 0, a positive real number λ(k). (These
are the so-called relaxation parameters. They are free parameters of the algorithm and in practice
need to be optimized [11].) The ri are usually not stored at all, but the location and size of their
nonzero elements are calculated as and when needed. Hence, the algorithm described by Eq. (26.17)
and Eq. (26.18) shares the storage efficient nature of basic ART and its computational requirements
are essentially the same. Assuming, as is reasonable, that the number of nonzero ri,j is of the same
order as J , we see that the cost of cycling through the data once using ART is of the order IJ , which is
approximately the same as the cost of reconstructing using FBP. (That this is indeed so is confirmed
by the timings reported in [12].) An important thing to note about Theorem 26.1 is that there are
no restrictions of consistency in its statement. Hence, the algorithm of Eqs. (26.17) and (26.18) will
converge to the minimizer of Eq. (26.16) — the so-called regularized least squares solution — using
the real data collected in any application.

26.8 Expectation Maximization (EM)

We may wish to find the x that maximizes the likelihood of observing the actual measurements,
based on the assumption that ith measurement comes from a Poisson distribution whose mean is
given by Eq. (26.15). An iterative method to do exactly that, based on the so-called EM (expectation
maximization) approach, was proposed in [13]. Here we discuss a variant of this approach that was
designed for a somewhat more complicated optimization criterion [14], which enforces smoothness
of the results where the original maximum likelihood criterion may result in noisy images.

Let RJ+ denote those elements of RJ in which all components are non-negative. Our task is to find
the x in RJ+ which minimizes

I∑
i=1

[〈ri, x〉 − yi ln〈ri, x〉] + γ

2
xT Sx, (26.20)

where the J × J matrix S (with entries denoted by sj,u) is a modified smoothing matrix [1] which
has the following property. (This definition is only applicable if we use pixels to define the basis
functions.) Let N denote the set of indexes corresponding to pixels that are not on the border of the
digitization. Each such pixel has eight neighbors, let Nj denote the indexes of the pixels associated
with the neighbors of the pixel indexed by j . Then

xT Sx =
∑
j∈N


xj − 1

8

∑
k∈Nj

xk




2

. (26.21)

Consider the following rules for obtaining x(k+1) from x(k).

p
(k)
j =

I∑
i=1

ri,j

9γ sj,j
− x

(k)
j + 1

9sj,j

J∑
u=1

sj,ux
(k)
u , (26.22)

q
(k)
j = x

(k)
j

9γ sj,j

I∑
i=1

ri,j yi

〈ri, x(k)〉 , (26.23)
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x
(k+1)
j = 1

2

(
−p

(k)
j +

√(
p

(k)
j

)2 + 4q
(k)
j

)
. (26.24)

Since the first term of Eq. (26.22) can be precalculated, the execution of Eq. (26.22) requires
essentially no more effort than multiplying x(k) with the modified smoothing matrix. As explained
in [1], there is a very efficient way of doing this. The execution of Eq. (26.23) requires approximately
the same effort as cycling once through the data set using ART; see Eq. (26.18). Algorithmic details of
efficient computations of Eq. (26.23) appeared in [15]. Clearly, the execution of Eq. (26.24) requires
a trivial amount of computing. Thus, we see that one iterative step of the EM algorithm of Eq. (26.22)
to Eq. (26.24) requires, in total, approximately the same computing effort as cycling through the data
set once with ART, which costs about the same as a complete reconstruction by FBP. A basic difference
between the ART method and the EM method is that the former updates its estimate based on one
measurement at a time, while the latter deals with all measurements simultaneously.

THEOREM 26.2 (see [14] for a proof). For any x(0) with only positive components, the sequence
x(0), x(1), x(2), . . . generated by the algorithm of Eqs. (26.22) to (26.24) converges to the minimizer
of (26.20) in RJ+.

26.9 Comparison of the Performance of Algorithms

We have discussed four very different-looking algorithms and the literature is full of many others,
only some of which are surveyed in books such as [1]. Many of the algorithms are available in general
purpose image reconstruction software packages, such as SNARK [10]. The novice faced with a prob-
lem of reconstruction is justified in being puzzled as to which algorithm to use. Unfortunately, there
is not a generally valid answer: the right choice may very well be dependent on the area of application
and on the instrument used for gathering the data. Here we make only some general comments
regarding the four approaches discussed above, followed by some discussion of the methodologies
that are available to comparatively evaluate reconstruction algorithms for a particular application.

Concerning the two transform methods we have discussed, the linogram method is faster than FBP
(essentially an N2 logN method, rather than an N3 method as is the FBP) and, when the data are
collected according to the geometry expressed by Eqs. (26.8) and (26.9), then the linogram method
is likely to be more accurate because it requires no interpolations. However, data are not normally
collected this way and the need for an initial interpolation together with the more complicated-
looking expressions that need to be implemented for the linogram method may indeed steer some
users towards FBP, in spite of its extra computational requirements.

Advantages of series expansion methods over transform methods are their flexibility (no special
relationship needs to be assumed between the object to be reconstructed and the measurements
taken, such as that the latter are samples of the Radon transform of the former) and the ability to
control the type of solution we want by specifying the exact sense in which the image vector is to
be estimated from the measurement vector; see Eqs. (26.16) and (26.20). The major disadvantage is
that it is computationally much more intensive to find these precise estimators than to numerically
evaluate Eq. (26.1). Also, if the model (the basis functions, the projection matrix, and the estimation
criterion) isnotwell chosen, then the resultingestimatemaybe inferior to thatprovidedbya transform
method. The recent literature has demonstrated that usually there are models that make the efficacy
of a reconstruction provided by a series expansion method at least as good as that provided by a
transform method. To avoid the problem of computational expense, one usually stops the iterative
process involved in the optimization long before the method has converged to the mathematically
specified estimator. Practical experience indicates that this can be done very efficaciously. For
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example, as reported in [12], in the area of fully three-dimensional PET, the reconstruction times
for FBP are slightly longer than for cycling through the data just once with a version of ART using
spherically symmetric basis functions and the accuracy of FBP is significantly worse than what is
obtained by this very early iterate produced by ART.

Since the iterative process is, in practice, stopped early, in evaluating the efficacy of the result of a
series expansion method one should look at the actual outputs rather than the ideal mathematical
optimizer. Reported experiences comparing an optimized version of ART with an optimized version
of EM [9, 11] indicate that the former can obtain as good or better reconstructions as the latter, but at
a fraction of the computational cost. This computational advantage appears to be due to not trying
to make use of all the measurements in each iterative step.

The proliferation of image reconstruction algorithms imposes a need to evaluate the relative per-
formance of these algorithms and to understand the relationship between their attributes (free pa-
rameters) and their performance. In a specific application of an algorithm, choices have to be made
regarding its parameters (such as the basis functions, the optimization criterion, constraints, relax-
ation, etc.). Such choices affect the performance of the algorithm and there is a need for an efficient
and objective evaluation procedure which enables us to select the best variant of an algorithm for a
particular task and to compare the efficacy of different algorithms for that task.

An approach to evaluating an algorithm is to first start with a specification of the task for which
the image is to be used and then define a figure of merit (FOM) which determines quantitatively
how helpful the image is, and hence the reconstruction algorithm, for performing that task. In the
numerical observer approach [11, 16, 17], a task-specific FOM is computed for each image. Based
on the FOMs for all the images produced by two different techniques, we can calculate the statistical
significance at which we can reject the null hypothesis that the methods are equally helpful for solving
a particular task in favor of the alternative hypothesis that the method with the higher average FOM
is more helpful for solving that task. Different imaging techniques can then be rank-ordered on the
basis of their average FOMs. It is strongly advised that a reconstruction algorithm should not be
selected based on the appearance of a few sample reconstructions, but rather that a study along the
lines indicated above be carried out.

In addition to the efficacy of images produced by the various algorithms, one should also be aware
of the computational possibilities that exist for executing them. A survey from this point of view can
be found in [2].
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27.1 Introduction

This section addresses the inverse problem in robust speech processing. A problem that speaker and
speech recognition systems regularly encounter in the commercialized applications is the dramatic
degradation of performance due to the mismatch of the training and operating environments. The
mismatchgenerally results fromthediversityof theoperating environments. For applicationsover the
telephone network, the operating environments may vary from offices and laboratories to household
places and airports. The problem becomes worse when speech is transmitted over the wireless
network. Here the systemexperiences cross-channel interferences inaddition to the channel andnoise
degradations that exist in the regular telephone network. The key issue in robust speech processing is
to obtain good performance regardless of the mismatch in the environmental conditions. The inverse
problem in this sense refers to the process of modeling the mismatch in the form of a transformation
and resolving it via an inverse transformation. In this section, we introduce the method of modeling
the mismatch as an affine transformation.

Before getting into the details of the inverse problem in robust speech processing, we would like to
give abrief reviewof themechanismof speechproduction, aswell as the retrieval ofuseful information
from the speech for the recognition purposes.
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27.2 Speech Production and Spectrum-Related Parameterization

The speech signal consists of time-varying acoustic waveforms produced as a result of acoustical
excitation of the vocal tract. It is nonstationary in that the vocal tract configuration changes over
time. A time-varying digital filter is generally used to describe the vocal tract characteristics. The
steady-state system function of the filter is of the form [1, 2]:

S(z) = G

1 −∑p

i=1 aiz−i
= G∏p

i=1

(
1 − ziz−1

) , (27.1)

where p is the order of the system and zi denote the poles of the transfer function. The time domain
representation of this filter is

s(n) =
p∑

i=1

ais(n − i) + Gu(n) . (27.2)

The speech sample s(n) is predicted as a linear combination of previous p samples plus the excitation
Gu(n), where G is the gain factor. The factor G is generally ignored in the recognition-type tasks to
allow for robustness to variations in the energy of speech signals. This speech production model is
often referred to as the linear prediction (LP) model, or the autoregressive model, and the coefficients
ai are called the predictor coefficients.

The cepstrum of the speech signal s(n) is defined as

c(n) =
∫ π

−π

log
∣∣∣S (ejω

)∣∣∣ ejωn dω

2π
. (27.3)

It is simply the inverse Fourier transform of the logarithm of the magnitude of the Fourier transform
S(ejω) of the signal s(n).

From the definition of cepstrum in Eq. (27.3), we have

n=∞∑
n=−∞

c(n)e−jωn = log
∣∣∣S (ejω

)∣∣∣ =
∣∣∣∣∣log

1

1 −∑p

n=1 ane−jωn

∣∣∣∣∣ . (27.4)

If we differentiate both sides of the equation with respect to ω and equate the coefficients of like
powers of ejω, the following recursion is obtained:

c(n) =



logG n = 0

a(n) + 1
n

∑n−1
i=1 ic(i)a(n − i) n > 0

(27.5)

The cepstral coefficients can be calculated using the recursion once the predictor coefficients are
solved. The zeroth order cepstral coefficient is generally ignored in speech and speaker recognition
due to its sensitivity to the gain factor, G.

An alternative solution for the cepstral coefficients is given by

c(n) = 1

q

p∑
i=1

zn
i . (27.6)

It is obtained by equating the terms of like powers of z−1 in the following equation:

n=∞∑
n=−∞

c(n)z−n = log
1∏p

n=1

(
1 − znz−1

) = −
p∑

i=1

log
[
1 − znz

−1
]

, (27.7)
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where the logarithm terms can be written as a power series expansion given as

log
[
1 − znz

−1
]

=
∞∑

k=1

1

k
zk
nz

−k . (27.8)

There are two standard methods of solving for the predictor coefficients, ai , namely, the autocor-
relation method and the covariance method [3, 4, 5, 6]. Both approaches are based on minimizing
the mean square value of the estimation error e(n) as given by

e(n) = s(n) −
p∑

i=1

ais(n − i) . (27.9)

The two methods differ with respect to the details of numerical implementation. The autocorrelation
method assumes that the speech samples are zero outside the processing interval of N samples. This
results in a nonzero prediction error, e(n), outside the interval. The covariance method fixes the
interval over which the prediction error is computed and has no constraints on the sample values
outside the interval. The autocorrelation method is computationally simpler than the covariance
approach and assures a stable system where all poles of the transfer function lie within the unit circle.
A brief description of the autocorrelation method is given as follows.

The autocorrelation of the signal s(n) is defined as

rs(k) =
N−1−k∑

n=0

s(n)s(n + k) = s(n) ⊗ s(−n) , (27.10)

where N is the number of samples in the sequence s(n) and the sign ⊗ denotes the convolution
operation. The definition of autocorrelation implies that rs(k) is an even function. The predictor
coefficients ai can therefore be obtained by solving the following set of equations


rs(0) rs(1) · · · rs(p − 1)

rs(1) rs(0) · · · rs(p − 2)
...

...
. . .

...

rs(p − 1) rs(p − 2) · · · rs(0)






a1
...

ap


 =




rs(1)
...

rs(p)


 .

Denoting the p × p Toeplitz autocorrelation matrix on the left hand side by Rs , the predictor
coefficient vector by a, and the autocorrelation coefficients by rs , we have

Rsa = rs . (27.11)

The solution for the predictor coefficient vector a can be solved by the inverse relation

a = R−1
s rs .

This equation will be used throughout the analysis in the rest of this article. Since the matrix Rs is
Toeplitz, a computationally efficient algorithm known as Levinson-Durbin recursion can be used to
solve for a [3].

27.3 Template-Based Speech Processing

The template-based matching algorithms for speech processing are generally conducted using the
similarity of the vocal tract characteristics inhabited in the spectrum of a particular speech sound.
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There are two types of speech sounds, namely, voiced and unvoiced sounds. Figure 27.1 shows the
speech waveforms, the spectra, and the spectral envelopes of the voiced and the unvoiced sounds.
Voiced sounds such as the vowel /a/ and the nasal sound /n/ are produced by the passage of a quasi-
periodic air wave through the vocal tract that creates resonances in the speech waveforms known
as formants. The quasi-periodic air wave is generated as a result of the vibration of the vocal cord.
The fundamental frequency of the vibration is known as the pitch. In the case of generating fricative
sounds such as /sh/, the vocal tract is excited by random noise, resulting in speech waveforms
exhibiting no periodicity, as can be seen in Fig. 27.1. Therefore, the spectral envelopes of voiced
sounds constantly exhibit the pitch as well as three to five formants when the sampling rate is 8 kHz,
whereas the spectral envelopes of the unvoiced sounds reveal no pitch and formant characteristics.
In addition, the formants of different voiced sounds differ with respect to the shape and the location
of the center frequencies of the formants. This is due to the unique shape of the vocal tract formed to
produce a particular sound. Thus, different sounds can be distinguished based on attributes of the
spectral envelope.

The cepstral distance given by

d =
∞∑

n=−∞

[
c(n) − c′(n)

]2
(27.12)

is one of the metrics for measuring the similarity of two spectra envelopes. The reason is as follows.
From the definition of cepstrum, we have

∞∑
n=∞

[
c(n) − c′(n)

]
ejωn = log |S

(
ejω

)
| − log |S′ (ejω

)
|

= log
|S (ejω

) |
|S′ (ejω

) | . (27.13)

The Fourier transform of the difference between a pair of cepstra is equal to the difference between the
corresponding spectra pair. By applying the Parseval’s theorem, the cepstral distance can be related
to the log spectral distance as

d =
∞∑

n=∞

[
c(n) − c′(n)

]2 =
∫ π

−π

[
log |S

(
ejω

)
| − log |S′ (ejω

)
|
]2 dω

2π
. (27.14)

The cepstral distance is usually approximated by the distance between the first few lower order
cepstral coefficients, the reason being that the magnitude of the high order cepstral coefficients is
small and has a negligible contribution to the cepstral distance.

27.4 Robust Speech Processing

Robust speech processing attempts to maintain the performance of speaker and speech recognition
system when variations in the operating environment are encountered. This can be accomplished if
the similarity in vocal tract structures of the same sound can be recovered under adverse conditions.

Figure 27.2 illustrates how the deterministic channel and random noise contaminate a speech
signal during the recording and transmission of the signal.

First of all, at the front end of the speech acquisition system, additive background noise N1(ω)

from the speaking environment distorts the speech waveform. Adverse background conditions are
also found to put stress on the speech production system and change the characteristics of the vocal
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FIGURE 27.1: Illustration of voiced/unvoiced speech.
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FIGURE 27.2: The speech acquisition system.

tract. It is equivalent to performing a linear filtering of the speech. This problem will be addressed
in another chapter and will not be discussed here.

After being sampled and quantized, the speech samples corrupted by the background noise N1(ω)

are then passed through the transmission channel such as a telephone network to get to the receiver’s
site. The transmission channel generally involves two types of degradation sources: the deterministic
and convolutional filter with the transfer function H(ω), and the additive noise denoted by N2(ω)

in Fig. 27.2.
The signal observed at the output of the system is, therefore,

Y (ω) = H(ω) [X(ω) + N1(ω)] + N2(ω) . (27.15)

The spectrum of the output signal is corrupted by both additive and multiplicative interferences.
The multiplicative interference due to the linear channel H(ω) is sometimes referred to as the mul-
tiplicative noise.

The various sources of degradation cause distortions of the predictor coefficients and the cepstral
coefficients. Fig. 27.4 shows the change of spatial clustering of the cepstral coefficients due to inter-
ferences of the linear channel, white noise, and the composite effect of both linear channel and white
noise.

• When the speech is interfered by a linear bandpass channel, the frequency response of
which is shown in Fig. 27.3, a translation of the cepstral clusters is observed, as shown in
Fig. 27.4(b).

• When the speech is corrupted by Gaussian white noise of 15 dB SNR, a shrinkage of the
cepstral vectors results. This is shown in Fig. 27.4(c), where it can be seen that the cepstral
clusters move toward the origin.

• When the speech is degraded by both the linear channel and Gaussian white noise, the
cepstral vectors are translated and scaled simultaneously.

There are three underlying thoughts behind the various solutions to robust speech processing.
The first is to recover the speech signal from the noisy observation by removing an estimate of the
noise from the signal. This is also known as the speech enhancement approach. Methods that
are executed in the speech sample domain include noise suppression [7] and noise masking [8].
Other speech enhancement methods are carried out in the feature domain, for example, cepstral
mean subtraction (CMS) and pole-filtered cepstral mean subtraction (PFCMS). In this category,
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FIGURE 27.3: The simulated environmental interference. (a) Medium voiced channel and (b) Gaus-
sian white noise.

the key to the problem is to find feature sets that are invariant1 to the changes of transmission
channel and environmental noise. Liftered cepstrum [9] and the adaptive component weighted
(ACW) cepstrum [10] are examples of the feature enhancement approach. A third category consists
of methods for matching the testing features with the models after adaptation of environmental
conditions [11, 12, 13, 14]. In this case, the presence of noise in the training and testing environments
are tolerable as longas anadaptationalgorithmcanbe found tomatch the conditions. Theadaptations
can be performed in either of the following two directions, i.e., adapt the training data to the testing
environment, or adapt the testing data to the environment.

The focus of the following discussion will be on viewing the robust speech processing as an inverse
problem. We utilize the fact that both deterministic and non-deterministic noise introduce a sound-
dependent linear transformation of the predictor coefficients of speech. This can be approximated
by an affine transformation in the cepstrum domain. The mismatch can, therefore, be resolved by
solving for the inverse affine transformation of the cepstral coefficients.

27.5 Affine Transform

An affine transform y of a vector x is defined as

y = Ax + b, for b 6= 0 . (27.16)

The matrix, A, represents the linear transformation of the vector, x, and b is a nonzero vector
representing the translation of the vector. Note that the addition of the vector b to the equation
causes the transform to become nonlinear.

The singular value decomposition (SVD) of the matrix, A, can be used to gain some insight into
the geometry of an affine transform, i.e.,

y = U6VT x + b , (27.17)

1In practice, it is difficult to find a set of features invariant to the environmental changes. The robust features currently
used are mostly less sensitive to environmental changes.
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FIGURE 27.4: The spatial distribution of cepstral coefficients under various conditions, “∗” for
the sound /a/, “o” for the sound /n/, and “+” for the sound /sh/. (a) Cepstrum of the clean speech;
(b) cepstrum of signals filtered by continental U.S. mid-voice channel (CMV); (c) cepstrum of signals
with 15 dB SNR, the noise type is additive white Gaussian (AWG); (d) cepstrum of speech corrupted
by both CMV channel and AWG noise of 15 dB SNR.

where U and VT are unitary matrices and 6 is a diagonal matrix . The geometric interpretation is
thus seen to be that x is rotated by unitary matrix VT , rescaled by the diagonal matrix 6, rotated
again by the unitary matrix U, and finally translated by the vector b.

27.6 Transformation of Predictor Coefficients

It will be proved in this section that the contamination of a speech signal by a stationary convolutional
channel and random white noise is equivalent to a signal dependent linear transformation of the
predictor coefficients. The conclusion drawn here will be used in the next section to show that the
effect of environmental interference is equivalent to an affine transform in the cepstrum domain.

27.6.1 Deterministic Convolutional Channel as a Linear Transform

When a sample sequence is passed through a convolutional channel of impulse response h(n), the
filtered signal s′(n) obtained at the output of the channel is

s′(n) = h(n) ⊗ s(n) . (27.18)

c©1999 by CRC Press LLC



If the power spectra of the signals s(n) and s′(n) are denoted Ss(ω), and Ss′(ω), respectively, then

Ss′(ω) = |H(ω)|2Ss(ω) . (27.19)

Therefore, in the time domain,

rs′(k) = [h(n) ⊗ h(−n)] ⊗ rs(k) = rh(k) ⊗ rs(k) , (27.20)

where rs(k) and rs′(k) are the autocorrelation of the input and output signals. The autocorrelation
of the impulse response h(n) is denoted rh(k) and by definition,

rh(k) = h(n) ⊗ h(−n) . (27.21)

If the impulse response h(n) is assumed to be zero outside the interval [0, p − 1], then

rh(k) = 0 for |k| > p − 1 . (27.22)

Equation (27.20) can therefore be rewritten in matrix form as




rs′(0)

rs′(1)
...

rs′(p − 1)


 =




rh(0) rh(1) rh(2) · · · rh(p − 1)

rh(1) rh(0) rh(1) · · · rh(p − 2)
...

...
. . .

...

rh(p − 1) rh(p − 2) rh(p − 3) · · · rh(0)




×




rs(0)

rs(1)
...

rs(p − 1)




= Rh1rs . (27.23)

Rh1 refers to the autocorrelation matrix of the impulse response of the channel on the right-hand
side of the above equation.

The autocorrelation matrix Rs′ of the filtered signal s′(n) is then

Rs′ =




rs′(0) rs′(1) rs′(2) · · · rs′(p − 1)

rs′(1) rs′(0) rs′(1) · · · rs′(p − 2)
...

...
. . .

...

rs′(p − 1) rs′(p − 2) rs′(p − 3) · · · rs′(0)




=




rh(0) rh(1) rh(2) · · · rh(p − 1)

rh(1) rh(0) rh(1) · · · rh(p − 2)
...

...
. . .

...

rh(p − 1) rh(p − 2) rh(p − 3) · · · rh(0)




×




rs(0) rs(1) rs(2) · · · rs(p − 1)

rs(1) rs(0) rs(1) · · · rs(p − 2)
...

...
. . .

...

rs(p − 1) rs(p − 2) rs(p − 3) · · · rs(0)




= Rh1Rs . (27.24)
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Also, the autocorrelation vector rs′ of the filtered signal s′(n) is

rs′ =




rs′(1)

rs′(2)
...

rs′(p)




=




rh(1) rh(0) rh(1) · · · rh(p − 2)

rh(2) rh(1) rh(0) · · · rh(p − 3)
...

...
. . .

...

rh(p) rh(p − 1) rh(p − 2) · · · rh(1)




×




rs(1)

rs(2)
...

rs(p)




= Rh2rs , (27.25)

where Rh2 denotes the matrix on the right-hand side.
The predictor coefficients of the output signal s′(n) is thus given by

as′ = R−1
s′ rs′ = (Rh1Rs)

−1 × (Rh2rs) = R−1
s

(
R−1

h1 Rh2

)
Rsa . (27.26)

Therefore, the predictor coefficients of a speech signal filtered by a convolutional channel can be
obtained via taking a linear transformation of the predictor coefficients of the input speech signal.
Note that the transformation inEq. (27.26) is sounddependent, as the estimates of the autocorrelation
matrices assume stationary.

27.6.2 Additive Noise as a Linear Transform

The random noise arising from the background and the fluctuation of the transmission channel is
generally assumed to be additive white noise (AWN). The resulted noisy observation of the original
speech signal is given by

s′(n) = s(n) + e(n) , (27.27)

where
E[e(n)] = 0 and E

[
e2(n)

]
= σ 2 , (27.28)

and s′(n) results from the original speech signal s(n) being corrupted by the noise e(n).
The autocorrelation of the corrupted speech signal s′(n) is

rs′(k) = [s(n) + e(n)] ⊗ [s(−n) + e(−n)] = rs(k) + rse(k) + res(k) + re(k) , (27.29)

where rs(k) and re(k) denote the autocorrelation of the signal s(n) and the noise e(n), respectively,
and rse(k) and res(k) represent the cross-correlation of s(n) and e(n). Since

re(k) = E

[
N−1−k∑

m=0

e(m)e(m + k)

]
=
{

σ 2 k = 0
0 otherwise

rse(k) = E

[
N−1−k∑

m=0

s(m)e(m + k)

]
=

N−1−k∑
m=0

s(m)E[e(m + k)] = 0, and
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res(k) = E

[
N−1−k∑

m=0

e(m)s(m + k)

]
=

N−1−k∑
m=0

s(m + k)E[e(m)] = 0 , (27.30)

the autocorrelation of the signal s′(n) presented in Eq. (27.29) becomes

rs′(k) =
{

rs(k) + σ 2 k = 0
rs(k) otherwise

. (27.31)

Hence, the predictor coefficients as given by Eq. (27.11) are

a′ = R−1
s′ rs′

=




rs(0) + σ 2 rs(1) rs(2) · · · rs(p − 1)

rs(1) rs(0) + σ 2 rs(1) · · · rs(p − 2)
...

...
. . .

...

rs(p − 1) rs(p − 2) rs(p − 3) · · · rs(0) + σ




−1


rs(1)

rs(2)
...

rs(p)




= (
Rs + σ 2I

)−1
rs = (

Rs + σ 2I
)−1

Rsa . (27.32)

It can be seen from Eq. (27.32) that the addition of AWN noise to the speech is also equivalent
to taking a linear transformation of the predictor coefficients. The linear transformation depends
on the autocorrelation of the speech and thus in a spectrum-based model, all the spectrally similar
predictors will be mapped by a similar linear transform.

The singular value decomposition (SVD) will gain us some insight into what the transformation
in Eq. (27.32) actually does. Assume that the Toeplitz autocorrelation matrix of the original speech
signal Rs is decomposed as

Rs = U3UT , (27.33)

where U is a unitary matrix and 3 is a diagonal matrix whose diagonal elements are the eigenvalues
of the matrix Rs . Then the autocorrelation matrix of the noise-corrupted signal is

R′
s = Rs + σ 2I = U

(
3 + σ 2I

)
UT . (27.34)

Therefore, Eq. (27.32) can be rewritten as

a′ =
(
U
(
3 + σ 2I

)
UT
)−1 (

U3UT
)

a = U

[(
3 + σ 2I

)−1
3

]
UT

= U




λ2
1

λ2
1+σ2

λ2
2

λ2
2+σ2

. . .

λ2
n

λ2
n+σ2




UT . (27.35)

From the above equation we can see that the norm of the predictor coefficients is reduced when the
speech is perturbed by white noise.
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27.7 Affine Transform of Cepstral Coefficients

Most speaker and speech recognition systems use a spectrum-based similarity measure to group the
vectors, which are normally the LP cepstrum vectors. Thus, we shall investigate the spectrum as to
whether or not the cepstral vectors are affinely mapped.

Consider the cepstrum of a speech signal as defined by

cn = Z−1
[
log

1

A(z)

]
, (27.36)

where 1
A(z)

= 1
1−∑p

i=1 aiz
−i

is the transfer function of the linear predictive system. Taking the first

order partial derivative of cn with respect to ai yields

∂cn

∂ai

=
∂Z−1

[
log

(
1

1−∑p
i=1 aiz

−i

)]
∂ai

(27.37)

= Z−1




∂ log

(
1

1−∑p
i=1 aiz

−i

)
∂ai


 (27.38)

= −h(n − i) , (27.39)

where h(n − i) is the nth impulse response delayed by i taps. Therefore, if c is the vector of the first
p cepstral coefficients of the clean speech s(n), then

dc = Hda (27.40)

where

H = −




h(0) 0 · · · 0
h(1) h(0) · · · 0

...
...

. . .
...

h(p − 1) h(p − 2) · · · h(0)


 . (27.41)

Note that the impulse response matrix H would be the same for a group of spectrally similar cepstral
vectors. The relationship between a degradation in the predictor coefficients and the corresponding
degradation in the cepstral coefficients is given by Eq. (27.40). A degraded set of spectrally similar
vectors would undergo the transformation

dc′ = H′da′ , (27.42)

where c′ and a′ are the degraded cepstrum and predictor coefficients, respectively. H ′ is a lower
triangular matrix corresponding to the impulse response of the test signal. Since the predictor
coefficients satisfy the linear relation a′ = Aa, as shown in Eq. (27.26) and Eq. (27.32), differentiating
both sides of the equation yields

da′ = Ada . (27.43)

If we integrate the above three equations, we have

dc′

dc
=
(

dc′

da′

)(
da′

da

)(
da

dc

)
= H′AH−1 . (27.44)
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The degraded cepstrum is then given by

c′ = H′AH−1c + bc (27.45)

In order to draw the conclusion that there exists an affine transform for the cepstral coefficients, all
the variables on the right-hand side of the above equation must be expressed as an explicit function of
the training data. However, this is not the case for the matrix H′ in the equation. Since H′ consists of
the impulse response of the prediction model of the test data h′(n), we need to represent the impulse
response as a function of the training data.

Consider the cases of channel interferences and noise corruption, respectively.

• Assume the training data is of the form

s(n) = hch1(n) ⊗ hsig(n) ⊗ e(n) = hch1(n) ⊗ s0(n) , (27.46)

where e(n) represents the innovation sequence, hsig(n) is the impulse response of the
all-pole model of the vocal tract, and hch1(n) is the impulse response of the transmission
channel. The convolution of the innovation sequence with the impulse response of
the vocal tract yields the clean speech signal s0(n), the convolution of which with the
transmission channel generates the observed sequence s(n).
Similarly, the test data is

s′(n) = hch2(n) ⊗ hsig(n) ⊗ e(n) = hch2(n) ⊗ s0(n) , (27.47)

where hch2(n) is the impulse response of the transmission channel in the operating
environment. In practice, the all-pole model is applied to the observation sequence
involving channel interference rather than the clean speech signal. The estimated impulse
response of the observed signal h′(n) is actually given by

h′(n) = hch2(n) ⊗ hsig(n) . (27.48)

The matrix H′ can therefore be written as

H′ =




h′(0) 0 · · · 0
h′(1) h′(0) · · · 0

...
...

. . .
...

h′(p − 1) h′(p − 2) · · · h′(0)




=




hch2(0) 0 · · · 0
hch2(1) hch2(0) · · · 0

...
...

. . .
...

hch2(p − 1) hch2(p − 2) · · · hch2(0)







hsig(0) 0 · · · 0
hsig(1) hsig(0) · · · 0

...
...

. . .
...

hsig(p − 1) hsig(p − 2) · · · hsig(0)


 (27.49)

• When the speech is corrupted by additive noise, the autocorrelation matrix R′
s can also

be written as
R′

s = H′H′T . (27.50)
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Equating the right-hand side of Eqs. (27.34) and (27.50) yields

H′ = U
(
3 + σ 2I

)1/2
. (27.51)

where H′ is an explicit function of the training data and the noise.

At this point, we can conclude that the cepstrum coefficients are affinely mapped by mismatches in
the noise and channel conditions. Note again that the parameters of the affine mapping are spectrally
dependent.

27.8 Parameters of Affine Transform

Assume the knowledge of the correspondence between the set of training cepstral vectors {ci =
(ci1, ci2, . . . , ciq)T |i = 1, 2, . . . , N}andthesetof testingcepstral vectors {c′

i = (c′
i1, c

′
i2, . . . , c

′
iq )T |i =

1, 2, . . . , N}. Here N is the number of vectors in the vector set and q is the order of the cepstral
coefficients. The affine transform holds for the corresponding vectors ci and c′

i in the following way:

c′T
i = AcT

i + b

⇓


c′
i1
...

c′
iq


 =




α11 · · · α1q

...
. . .

...

αq1 · · · αqq






ci1
...

ciq


+




b1
...

bq


 ,

for i = 1, 2, . . . , N . (27.52)

The entries {αij } and {bj } can be solved in the row by row order since for the j th row of the matrix,
i.e., (αj1, αj2, . . . , αjq), there exists a set of equations given by




c′
1j

...

c′
Nj


 =




c11 · · · c1q 1
...

. . .
...

...

cN1 · · · cNq 1






αj1
...

αjq

bj


 ,

for j = 1, 2, . . . , q . (27.53)

Denoting the vector on the left-hand side of the above equation by γ ′
j , the matrix and the vector on

the right-hand side by 0 and αj , respectively, we have

γ ′
j = 0αj . (27.54)

The least squares solution to the above systems of equation is

αj =


∑N

i=1 cicT
i

∑N
i=1 ci

(∑N
i=1 ci

)T

N




−1

×
(

c1 · · · cN

1 · · · 1

)
γ ′
j

for j = 1, . . . , q , (27.55)

where

N∑
i=1

cic
T
i =

N∑
i=1




ci1
ci2
...

ciq


(ci1, ci2, . . . , ciq

)
,
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for i = 1, . . . , N , (27.56)

is the summation of a series of matrices.
The testing vectors can then be adapted to the model by an inverse affine transformation of the

form
ĉ = A−1 (c′ − b

)
(27.57)

or vice versa. The adaptation removes the mismatch of environmental conditions due to channel
and noise variability.

In the case that the matrix A is diagonal, i.e.,

A =



α11
. . .

αqq


 , (27.58)

the solutions of αij in Eq. (27.55) can be simplified as

αjj =
∑N

i=1 γ ′
ij γij −∑N

i=1 γ ′
ij ·∑N

i=1 γij /N∑N
i=1 γ 2

ij −
(∑N

i=1 γij

)2
/N

=
E
[
γ ′
j , γj

]
− E

[
γ ′
j

]
· E

[
γj

]
E
[
γj , γj

]− E2
[
γj

] =
COV

[
γ ′
j , γj

]
VAR

[
γj , γj

] (27.59)

and

bj = 1

N

(
N∑

i=1

γ ′
ij − αjj

N∑
i=1

γij

)
= E

[
γ ′
j

]
− αjjE

[
γj

]
. (27.60)

Here, E[] is the expected value operator, and V AR[] and COV [] represent the variance and covari-
ance operators, respectively.

As can be seen from Eq. (27.60), the diagonal entries αjj are the weighted covariance of the model
and the testing vector, and the value of bj is equal to the weighted difference between the mean of
the training vectors and that of the testing vectors. There are three cases of interest:

1. If the training and operating conditions are matched, then

E
[
γ ′
j

]
= E

[
γj

]
and COV

[
γ ′
j , γj

]
= V AR

[
γj , γj

]
. (27.61)

Therefore,

αjj = 1 and bj = 0, for j = 1, 2, . . . , q ⇒ ĉ = c′ . (27.62)

No adaptation is necessary in this case.

2. If the operating environment differs from the training environment due to convolutional
distortions, then all the testing vectors are translated by a constant amount as given by

c′
i = ci + c0 , (27.63)

and

E
[
γ ′
j

]
= E

[
γj

]+ c0 and COV
[
γ ′
j , γj

]
= V AR

[
γj , γj

]
. (27.64)
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Therefore,

αjj = 1 and bj = c0
j , for j = 1, 2, . . . , q ⇒ ĉ = c′ − bc . (27.65)

This is equivalent to the method of cepstral mean subtraction (CMS) [6].

3. If themismatch is causedbybothchannel andrandomnoise, the testingvector is translated
as well as shrunk. The shrinkage is measured by αjj and the translation by bj . The
smaller the covariance of the model and the testing data, the greater the scaling of the
testing vectors by noise.

The affine matching is similar to matching the z scores of the training and testing cepstral vectors.
The z score of a set of vectors, ci , is defined as

zci = ci − µc

σc

, (27.66)

where µc is the mean of the vectors, ci , and σc is the variance. Thus, we could form

zc′
i
= σc′

[
ci − µc

σc

]
+ µc′ . (27.67)

In the above analysis, we show that the cepstrum domain distortions due to channel and noise
interference can be modeled as an affine transformation. The parameters of the affine transformation
can be optimally estimated using the least squares method which yields the general result given by
Eq. (27.55). In the special case of a similarity transform, we get the result given by Eq. (27.60).

27.9 Correspondence of Cepstral Vectors

While solving for the affine transform parameters, A and b, we assume to have a priori knowledge
of the correspondence between the cepstral vectors. A straightforward solution to finding the corre-
spondence is to align the sound units in a speech utterance in terms of the time stamp of the sounds.
However, this is generally not realizable in practice due to variations in the content of speech, the
identity of a speaker, as well as the rate of speaking. For example, in a speaker recognition system, the
text of the testing speech may not be the same as that of the training speech, resulting in a sequence
of sounds in a completely different order than the training sequence. Furthermore, even if the text of
the speech is the same, the speaking rate may change over time as well as speakers. The time stamp
of a particular sound is still not sufficient for lining up corresponding sounds. A valuable solution
to the correspondence problem [11] is to use the expectation-maximization (EM) algorithm, also
known as the Baum-Welch algorithm [15].

The EM algorithm approaches the optimal solution to a system by repeating the procedure of
(1) estimating a set of prespecified system parameters and (2) optimizing the system solution based
on these parameters. The step of estimating the parameters is known as the expectation step, and the
step of optimizing the solution is the maximization step. The second step is usually realized via the
maximum-likelihood (ML) method.

With the EM algorithm, the parameters of the affine transform in Eq. (27.52) can be solved at
the same time as the correspondence of the cepstral vectors are found. The method can be stated as
follows.

• Expectation
Solve for the parameters {A, b} using Eq. (27.55). The vector correspondence is found
based on the optimization results obtained in the maximization step.
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• Maximization
Compute the a posteriori probability P(cAT C

j |ci ) and find the optimal matching by max-
imizing the a posteriori probability. This can be formulated as

k = argmaxiP
(
cAT C
j |ci

)
, for all j . (27.68)

Here, cAT C
i represents the affine-transformed cepstrum that can be obtained by

cAT C
i = A−1 (c′

i − bc

)
(27.69)

Therefore, we have a set of vector pairs denoted by (ck, c′
j ).

The definition of the a posteriori probability is dependent on the models employed by the classifier.
In general, for the VQ-based classifiers, the a posteriori likelihood probability is defined as a Gaussian
given by

P
(
cAT C
j |ci

)
= 1√

2π61/2
e

1
2

(
cAT C
j −ci

)T
6−1

(
cAT C
j −ci

)
, (27.70)

where 6 is the variance matrix. If we assume that every cepstral coefficient has a unit variance,
namely, 6 = I, where I is the identity matrix, then the maximization of the likelihood probability is
equivalent to finding the cepstral vector in the VQ codebook that has minimum Euclidean distance
to the affine-transformed vector cAT C

j .
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29.1 Introduction

Image recovery constitutes a significant portion of the inverse problems in image processing. Here,
by image recovery we refer to two classes of problems, image restoration and image reconstruction. In
image restoration, an estimate of the original image is obtained from a blurred and noise-corrupted
image. In image reconstruction, an image is generated from measurements of various physical
quantities, such as X-ray energy in CT and photon counts in single photon emission tomography
(SPECT) and positron emission tomography (PET). Image restoration has been used to restore
pictures in remote sensing, astronomy, medical imaging, art history studies, e.g., see [1], and more
recently, it has been used to remove picture artifacts due to image compression, e.g., see [2] and [3].
While primarily used in biomedical imaging [4], image reconstruction has also found applications
in materials studies [5].

Due to the inherent randomness in the scene and imaging process, images and noise are often
best modeled as multidimensional random processes called random fields. Consequently, image
recovery becomes the problem of statistical inference. This amounts to estimating certain unknown
parameters of a probability density function (pdf) or calculating the expectations of certain random
fields from the observed image or data. Recently, the maximum-likelihood estimate (MLE) has begun
to play a central role in image recovery and led to a number of advances [6, 8]. The most significant
advantage of the MLE over traditional techniques, such as the Wiener filtering, is perhaps that it can
work more autonomously. For example, it can be used to restore an image with unknown blur and
noise level by estimating them and the original image simultaneously [8, 9]. The traditional Wiener
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filter and other LMSE (least mean square error) techniques, on the other hand, would require the
knowledge of the blur and noise level.

In the MLE, the likelihood function is the pdf evaluated at an observed data sample conditioned
on the parameters of interest, e.g., blur filter coefficients and noise level, and the MLE seeks the
parameters that maximize the likelihood function, i.e., best explain the observed data. Besides being
intuitively appealing, the MLE also has several good asymptotic (large sample) properties [10] such
as consistency (the estimate converges to the true parameters as the sample size increases). However,
for many nontrivial image recovery problems, the direct evaluation of the MLE can be difficult, if not
impossible. This difficulty is due to the fact that likelihood functions are usually highly nonlinear
and often cannot be written in closed forms (e.g., they are often integrals of some other pdf ’s). While
the former case would prevent analytic solutions, the latter case could make any numerical procedure
impractical.

The EM algorithm, proposed by Dempster, Laird, and Rubin in 1977 [11], is a powerful iterative
technique for overcoming these difficulties. Here, EM stands for expectation-maximization. The
basic idea behind this approach is to introduce an auxiliary function (along with some auxiliary
variables) such that it has similar behavior to the likelihood function but is much easier to maximize.
By similar behavior, we mean that when the auxiliary function increases, the likelihood function also
increases. Intuitively, this is somewhat similar to the use of auxiliary lines for the proofs in elementary
geometry.

The EM algorithm was first used by Shepp and Verdi [7] in 1982 in emission tomography (medical
imaging). It was first used by Katsaggelos and Lay [8] and Lagendijk et al. [9] for simultaneous image
restoration and blur identification around 1989. The work of using the EM algorithm in image
recovery has since flourished with impressive results. A recent search on the Compendex data base
with key words “EM” and “image” turned up more than 60 journal and conference papers, published
over the two and a half year period from January, 1993 to June, 1995.

Despite these successes, however, some fundamental problems in the application of the EM algo-
rithm to image recovery remain. One is convergence. It has been noted that the estimates often do not
converge, converge rather slowly, or converge to unsatisfactory solutions (e.g., spiky images) [12, 13].
Another problem is that, for some popular image models such as Markov random fields, the condi-
tional expectation in the E-step of the EM algorithm can often be difficult to calculate [14]. Finally,
the EM algorithm is rather general in that the choice of auxiliary variables and the auxiliary function
is not unique. Is it possible that one choice is better than another with respect to convergence and
expectation calculations [17]?

The purpose of this chapter is to demonstrate the application of the EM algorithm in some typical
image recovery problems and survey the latest research work that addresses some of the fundamental
problems described above. The chapter is organized as follows. In section 29.2, the EM algorithm is
reviewed and demonstrated through a simple example. In section 29.3, recent work in convergence,
expectation calculation, and the selection of auxiliary functions is discussed. In section 29.4, more
complicated applications are demonstrated, followed by a summary in section 29.5. Most of the
examples in this chapter are related to image restoration. This choice is motivated by two consider-
ations — the mathematical formulations for image reconstruction are often similar to that of image
restoration and a good account on image reconstruction is available in Snyder and Miller [6].

29.2 The EM Algorithm

Let the observed image or data in an image recovery problem be denoted by y. Suppose that y can
be modeled as a collection of random variables defined over a lattice S with y = {yi, i ∈ S}. For
example, S could be a square lattice of N2 sites. Suppose that the pdf of y is py(y|θ), where θ is a
set of parameters. In this chapter, p(·) is a general symbol for pdf and the subscript will be omitted
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whenever there is no confusion. For example, when y and x are two different random fields, their
pdf ’s are represented as p(y) and p(x), respectively.

29.2.1 The Algorithm

Under statistical formulations, image recovery often amounts to seeking an estimate of θ , denoted
by θ̂ , from an observed y. The MLE approach is to find θ̂ML such that

θ̂ML = arg max
θ

p
(
y|θ) = arg max

θ
logp

(
y|θ)

, (29.1)

where p(y|θ), as a function of θ , is called the likelihood. As described previously, a direct solution
of (29.1) can be difficult to obtain for many applications. The EM algorithm attempts to overcome
this problem by introducing an auxiliary random field x with pdf p(x|θ). Here, x is somewhat “more
informative” [17] than y in that it is related to y by a many-to-one mapping

y = H(x) . (29.2)

That is, y can be regarded as a partial observation of x, or incomplete data, with x being the complete
data.

The EM algorithm attempts to obtain the incomplete data MLE of (29.1) through an iterative
procedure. Starting with an initial estimate θ0, each iteration k consists of two steps:

• The E-step: Compute the conditional expectation1 〈logp(x|θ)|y, θk〉. This leads to a
function of θ , denoted by Q(θ |θk), which is the auxiliary function mentioned previously.

• M-step: Find θk+1 from

θk+1 = arg max
θ

Q
(
θ |θk

)
. (29.3)

It has been shown that the EM algorithm is monotonic [11], i.e., logp(y|θk) ≥ logp(y|θk+1).
It has also been shown that under mild regularity conditions, such as that the true θ must lie in the
interior of a compact set and that the likelihood functions involved must have continuous derivatives,
the estimate of θ from the EM algorithm converges, at least to a local maxima of p(y|θ) [20, 21].
Finally, the EM algorithm extends easily to the case in which the MLE is used along with a penalty
or a prior on θ . For example, suppose that q(θ) is a penalty to be minimized. Then, the M-step is
modified to maximizing Q(θ |θk) − q(θ) with respect to θ .

29.2.2 Example: A Simple MRF

As an illustration of the EM algorithm, we consider a simple image restoration example. Let S
be a two-dimensional square lattice. Suppose that the observed image y and the original image
u = {ui, i ∈ S} are related through

y = u + w , (29.4)

where w = {ui, i ∈ S} is an i.i.d. additive zero-mean white Gaussian noise with variance σ 2. Suppose
that u is modeled as a random field with an exponential or Gibbs pdf

p(u) = Z−1e−βE(u) (29.5)

1 In this chapter, we use 〈·〉 rather than E[·] to represent expectations since E is used to denote energy functions of the
MRF.

c©1999 by CRC Press LLC



where E(u) is an energy function with

E(u) = 1

2

∑
i

∑
j∈Ni

φ
(
ui, uj

)
(29.6)

and Z is a normalization factor
Z =

∑
u

e−βE(u) (29.7)

called the partition function whose evaluation generally involves all possible realizations of u. In
the energy function, Ni is a set of neighbors of i (e.g., the nearest four neighbors) and φ(·, ·) is a
nonlinear function called the clique function. The model for u is a simple but nontrivial case of the
Markov random field (MRF) [22, 23] which, due to its versatility in modeling spatial interactions, has
emerged as a powerful model for various image processing and computer vision applications [24].

A restoration that is optimal in the sense of minimum mean square error is

û = 〈u|y〉 =
∫

up(u|y) du . (29.8)

If parameters β and σ 2 are known, the above expectation can be computed, at least approximately
(see Conditional Expectation Calculations in section 29.3 for details). To estimate the parameters,
now denoted by θ = (β, σ 2), one could use the MLE. Since u and w are independent,

p(y|θ) =
∫

pu(v|θ)pw(y − v|θ) dv = (pu ∗ pw) (y|θ) , (29.9)

where ∗ denotes convolution, and we have used some subscripts to avoid ambiguity. Notice that
the integration involved in the convolution generally does not have a closed-form expression. Fur-
thermore, for most types of clique functions, Z is a function of β and its evaluation is exponentially
complex. Hence, direct MLE does not seem possible.

To try with the EM algorithm, we first need to select the complete data. A natural choice here, for
example, is to let

x = (u, w) (29.10)

y = H(x) = H(u, w) = u + w . (29.11)

Clearly, many different x can lead to the same y. Since u and w are independent, p(x|θ) can be found
easily as

p(x|θ) = p(u)p(w) . (29.12)

However, as the reader can verify, one encounters difficulty in the derivation of p(x|y, θk) which is
needed for the conditional expectation of the E-step. Another choice is to let

x = (u, y) (29.13)

y = H(u, y) = y (29.14)

The log likelihood of the complete data is

logp(x|θ) = logp(y, u|θ)

= logp(y|u, θ)p(u|θ)

= c −
∑

i

(yi − ui)
2

2σ 2
− logZ(β) − β

2

∑
i

∑
j∈Ni

φ
(
ui, uj

)
, (29.15)
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where c is a constant. From this we see that in the E-step, we only need to calculate three types
of terms, 〈ui〉, 〈u2

i 〉, and 〈φ(ui, uj )〉. Here, the expectations are all conditioned on y and θk . To
compute these expectations, one needs the conditional pdf p(u|y, θk) which is, from Bayes’ formula,

p
(
u|y, θk

)
= p

(
y|u, θk

)
p

(
u|θk

)
p

(
y|θk

)
=

[
2πσ 2

]−||S||/2
e− ∑

i (yi−ui)
2/2

(
σ2

)k
Z−1e−βkE(u)

[
p

(
y|θk

)]−1
. (29.16)

Here, the superscript k denotes the kth iteration rather than the kth power. Combining all the
constants and terms in the exponentials, the above equation becomes that of a Gibbs distribution

p
(
u|y, θk

)
= Z−1

1

(
θk

)
e−E1

(
u|y,θk

)
(29.17)

where the energy function is

E1

(
u|y, θk

)
=

∑
i


 (yi − ui)

2

2
(
σ 2

)k
+ βk

2

∑
j∈Ni

φ
(
ui, uj

) . (29.18)

Even with this, the computation of the conditional expectation in the E-step can still be a difficult
problem due to the coupling of the ui and uj in E1. This is one of the fundamental problems of the
EM algorithm that will be addressed in section 29.3. For the moment, we assume that the E-step can
be performed successfully with

Q
(
θ |θk

)
= 〈logp(x|θ)|y, θk〉

= c −
∑

i

〈(yi − xi)
2〉k

2σ 2
− logZ(β) − β

2

∑
i

∑
j∈Ni

〈φ (
ui, uj

)〉k , (29.19)

where 〈·〉k is an abbreviation for 〈·|y, θk〉. In the M-step, the update for θ can be found easily by
setting

∂

∂σ 2
Q

(
θ |θk

)
= 0 ,

∂

∂β
Q

(
θ |θk

)
= 0 . (29.20)

From the first of these, (
σ 2

)k+1 = ||S||−1
∑

i

〈(yi − ui)
2〉k (29.21)

The solution of the second equation, on the other hand, is generally difficult due to the well-known
difficulties of evaluating the partition function Z(β) (see also Eq. (29.7)) which needs to be dealt
with via specialized approximations [22, 25]. However, as demonstrated by Bouman and Sauer [26],
some simple yet important cases exist in which the solution is straightforward. For example, when
φ(ui, uj ) = (ui − uj )

2, Z(β) can be written as

Z(β) =
∫

e
− β

2

∑
i

∑
j∈Ni

(ui−uj )
2

du

= β−||S||/2
∫

e
− 1

2

∑
i

∑
j∈Ni

(vi−vj )
2

dv = β−||S||/2Z(1) . (29.22)

Here, we have used a change of variable, vi = √
βui . Now, the update of β can be found easily as

βk+1 = ||S||−1
∑

i

∑
j∈Ni

〈(ui − uj

)2〉k . (29.23)
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This simple technique applies to a wider class of clique functions characterized by φ(ui, uj ) =
|ui − uj |r with any r > 0 [26].

29.3 Some Fundamental Problems

As is in many other areas of signal processing, the power and versatility of the EM algorithm has been
demonstrated in a large number of diverse image recovery applications. Previous work, however,
has also revealed some of its weaknesses. For example, the conditional expectation of the E-step can
be difficult to calculate analytically and too time-consuming to compute numerically, as is in the
MRF example in the previous section. To a lesser extent, similar remarks can be made to the M-step.
Since the EM algorithm is iterative, convergence can often be a problem. For example, it can be
very slow. In some applications, e.g., emission tomography, it could converge to the wrong result —
the reconstructed image gets spikier as the number of iterations increases [12, 13]. While some of
these problems, such as slow convergence, are common to many numerical algorithms, most of their
causes are inherent to the EM algorithm [17, 19].

In previous work, the EM algorithm has mostly been applied in a “natural fashion” (e.g., in
terms of selecting incomplete and complete data sets) and the problems mentioned above were dealt
with on an ad hoc basis with mixed results. Recently, however, there has been interest in seeking
more fundamental solutions [14, 19]. In this section, we briefly describe the solutions to two major
problems related to the EM algorithm, namely, the conditional expectation computation in the E-step
when the data is modeled as MRF’s and fundamental ways of improving convergence.

29.3.1 Conditional Expectation Calculations

When the complete data is an MRF, the conditional expectation of the E-step of the EM algorithm
can be difficult to perform. For instance, consider the simple MRF in section 29.2, where it amounts
to calculating 〈ui〉, 〈u2

i 〉, and 〈φ(ui, uj )〉 and the expectations are taken with respect to p(u|y, θk)

of Eq. (29.17). For example, we have

〈ui〉 = Z−1
1

∫
uie

−E1(u) du (29.24)

Here, for the sake of simplicity, we have omitted the superscript k and the parameters, and this is done
in the rest of this section whenever there is no confusion. Since the variables ui and uj are coupled in
the energy function for all i and j that are neighbors, the pdf and Z1 cannot be factored into simpler
terms, and the integration is exponentially complex, i.e., it involves all possible realizations of u.
Hence, some approximation scheme has to be used. One of these is the Monte Carlo simulation. For
example, Gibbs samplers [23] and Metropolis techniques [27] have been used to generate samples
according to p(u|y, θk) [26, 28]. A disadvantage of these is that, generally, hundreds of samples of
u are needed and if the image size is large, this can be computation intensive. Another technique is
based on the mean field theory (MFT) of statistical mechanics [25]. This has the advantage of being
computationally inexpensive while providing satisfactory results in many practical applications. In
this section, we will outline the essentials of this technique.

Let u be an MRF with pdf
p(u) = Z−1e−βE(u) . (29.25)

For the sake of simplicity, we assume that the energy function is of the form

E(u) =
∑

i

[
hi(ui) + 1

2

∑
j∈Ni

φ
(
ui, uj

) ]
(29.26)
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where hi(·) and φ(·, ·) are some suitable, and possibly nonlinear, functions. The mean field theory
attempts to derive a pdf pMF (u) that is an approximation to p(u) and can be factored like an
independent pdf.

The MFT used previously can be divided into two classes, the local mean field energy (LMFE) and
the ones based on the Gibbs-Bogoliubov-Feynman (GBF) inequality. The LMFE scheme is based
on the idea that when calculating the mean of the MRF at a given site, the influence of the random
variables at other sites can be approximated by the influence of their means. Hence, if we want to
calculate the mean ofui , a local energy function can be constructed by collecting all the terms in (29.26)
that are related to ui and replacing the uj ’s by their mean. Hence, for this energy function we have

EMF
i (ui) = hi(ui) +

∑
i∈Ni

φ
(
ui, 〈uj 〉

)
(29.27)

pMF
i (ui) = Z−1

i e−βEMF
i (ui ) (29.28)

pMF (u) =
∏
i

pMF
i (ui) (29.29)

Using this mean field pdf, the expectation of ui and its functions can be found easily.
Again we use the MRF example from section 29.2.2 as an illustration. Its energy function is (29.18)

and for the sake of simplicity, we assume that φ(ui, uj ) = |ui − uj |2. By the LMFE scheme,

EMF
i = (yi − ui)

2

2σ 2
+

∑
j∈Ni

β
(
ui − 〈uj 〉

)2
(29.30)

which is the energy of a Gaussian. Hence, the mean can be found easily by completing the square
in (29.30) with

〈ui〉 = yi/σ
2 + 2β

∑
j∈Ni

〈uj 〉
1/σ 2 + 2β||Ni || . (29.31)

When φ(·, ·) is some general nonlinear function, numerical integration might be needed. However,
compared to (29.24) such integrals are all with respect to one or two variables and are easy to compute.

Compared to the physically motivated scheme above, the GBF is an optimization approach. Sup-
pose that p0(u) is a pdf which we want to use to approximate another pdf, p(u). According to
information theory, e.g., see [29], the directed-divergence between p0 and p is defined as

D(p0||p) = 〈logp0(u) − logp(u)〉0, (29.32)

where the subscript 0 indicates that the expectation is taken with respect to p0, and it satisfies

D(p0||p) ≥ 0 (29.33)

with equality holds if and only if p0 = p. When the pdf ’s are Gibbs distributions, with energy
functions E0 and E and partition functions Z0 and Z, respectively, the inequality becomes

logZ ≥ logZ0 − β〈E − E0〉0 = logZ0 − β〈1E〉0 , (29.34)

which is known as the GBF inequality.
Let p0 be a parametric Gibbs pdf with a set of parameters ω to be determined. Then, one can

obtain an optimal p0 by maximizing the right-hand side of (29.34). As an illustration, consider again
the MRF example in section 29.2 with the energy function (29.18) and a quadratic clique function,
as we did for the LMFE scheme. To use the GBF, let the energy function of p0 be defined as

E0(u) =
∑

i

(ui − mi)
2

2ν2
i

(29.35)
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where {mi, ν
2
i , i ∈ S} = ω is the set of parameters to be determined in the maximization of the GBF.

Since this is the energy for an independent Gaussian, Z0 is just

Z0 =
∏
i

√
2πν2

i . (29.36)

The parameters of p0 can be obtained by finding an expression for the right-hand side of the GBF
inequality, letting its partial derivatives (with respect to the parameters mi and ν2

i ) be zero, and
solving for the parameters. Through a somewhat lengthy but straightforward derivation, one can
find that [30]

mi = yi/σ
2 + 2β

∑
j∈Ni

〈uj 〉
1/σ 2 + 2β||Ni || . (29.37)

Since mi = 〈ui〉, the GBF produces the same result as the LMEF. This, however, is an exception rather
than the rule [30] and it is due to the quadratic structures of both energy functions.

We end this section with several remarks. First, compared to the LMFE, the GBF scheme is an
optimization scheme, hence more desirable. However, if the energy function of the original pdf
is highly nonlinear, the GBF could require the solution of a difficult nonlinear equation in many
variables (see e.g., [30]). The LMFE, though not optimal, can always be implemented relatively
easily. Secondly, while the MFT techniques are significantly more computation-efficient than the
Monte Carlo techniques and provide good results in many applications, no proof exists as yet that
the conditional mean computed by the MFT will converge to the true conditional mean. Finally, the
performance of the mean field approximations may be improved by using “high-order” models. For
example, one simple scheme is to consider LMFE’s with a pair of neighboring variables [25, 31]. For
the energy function in (29.26), for example, the “second-order” LMFE is

EMF
i,j (ui, uj ) = hi(ui) + hi(uj ) + β

∑
i′∈Ni

φ(ui, 〈ui′ 〉) + β
∑

j ′∈Nj

φ(uj , 〈uj ′ 〉) (29.38)

and

pMF (ui, uj ) = Z−1
MF e

−βEMF
i,j (ui ,uj )

, (29.39)

pMF (ui) =
∫

pMF

(
ui, uj

)
duj . (29.40)

Notice that (29.40) is not the same as (29.28) in that the fluctuation of uj is taken into consideration.

29.3.2 Convergence Problem

Research on the EM algorithm-based image recovery has so far suggested two causes for the conver-
gence problems mentioned previously. The first is whether the random field models used adequately
capture the characteristics and constraints of the underlying physical phenomenon. For example,
in emission tomography the original EM procedure of Shepp and Verdi tends to produce spikier
and spikier images as the number of iteration increases [13]. It was found later that this is due to
the assumption that the densities of the radioactive material at different spatial locations are inde-
pendent. Consequently, various smoothness constraints (density dependence between neighboring
locations) have been introduced as penalty functions or priors and the problem has been greatly
reduced. Another example is in blind image restoration. It has been found that in order for the EM
algorithm to produce reasonable estimate of the blur, various constraints need to be imposed. For
instance, symmetry conditions and good initial guesses (e.g., a lowpass filter) are used in [8] and [9].
Since the blur tends to have a smooth impulse response, orthonormal expansion (e.g., the DCT) has
also been used to reduce (“compress”) the number of parameters in its representation [15].
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The second factor that can be quite influential to the convergence of the EM algorithm, noticed
earlier by Feder and Weinstein [16], is how the complete data is selected. In their work [18], Fessler
and Hero found that for some EM procedures, it is possible to significantly increase the convergence
rate by properly defining the complete data. Their idea is based on the observation that the EM
algorithm, which is essentially a MLE procedure, often converges faster if the parameters are estimated
sequentially in small groups rather than simultaneously. Suppose, for example, that 100 parameters
are to be estimated. It is much better to estimate, in each EM cycle, the first 10 while holding the next
90 constant; then estimate the next 10 holding the remaining 80 and the newly updated 10 parameters
constant; and so on. This type of algorithm is called the SAGE (Space Alternating Generalized EM)
algorithm.

We illustrate this idea through a simple example used by Fessler and Hero [18]. Consider a simple
image recovery problem, modeled as

y = A1θ1 + A2θ2 + n . (29.41)

Column vectors θ1 and θ2 represent two original images or two data sources, A1 and A2 are two blur
functions represented as matrices, and n is an additive white Gaussian noise source. In this model,
the observed image y is the noise-corrupted combination of two blurred images (or data sources).
A natural choice for the complete data is to view n as the combination of two smaller noise sources,
each associated with one original image, i.e.,

x = [A1θ1 + n1, A2θ2 + n2]′ . (29.42)

where n1 and n2 are i.i.d additive white Gaussian noise vectors with covariance matrix σ2

2 I and ′
denotes transpose. The incomplete data y can be obtained from x by

y = [I, I]x . (29.43)

Notice that this is a Gaussian problem in that both x and y are Gaussian and they are jointly Gaussian
as well. From the properties of jointly Gaussian random variables [32], the EM cycle can be found
relatively straightforwardly as

θk+1
1 = θk

1 + (A′
1A1)

−1A′
1ε̂/2σ 2 (29.44)

θk+1
2 = θk

2 + (A′
2A2)

−1A′
2ε̂/2σ 2 (29.45)

where
ε̂ = (y − A1θ

k
1 − A2θ

k
2)/σ 2 (29.46)

The SAGE algorithm for this simple problem is obtained by defining two smaller “complete data
sets”,

x1 = A1θ1 + n , x2 = A2θ2 + n . (29.47)

Notice that now the noise n is associated “totally” with each smaller complete data set. The incomplete
data y can be obtained from both x1 and x2, e.g.,

y = x1 + A2θ2 (29.48)

The SAGE algorithm amounts to two sequential and “smaller” EM algorithms. Specifically, corre-
sponding to each classical EM cycle (29.44)-(29.46), the first SAGE cycle is a classical EM cycle with
x1 as the complete data and θ1 as the parameter set to be updated. The second SAGE cycle is a classical
EM cycle with x2 as the complete data and θ2 as the parameter set to be updated. The new update of
θ1 is also used. The specific algorithm is

θk+1
1 = θk

1 + (
A′

1A1
)−1

A′
1ε̂1/2σ 2 (29.49)

θk+1
2 = θk

2 + (
A′

2A2
)−1

A′
2ε̂2/2σ 2 (29.50)
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where

ε̂1 =
(
y − A1θ

k
1 − A2θ

k
2

)
/σ 2 (29.51)

ε̂2 =
(
y − A1θ

k+1
1 − A2θ

k
2

)
/σ 2 (29.52)

Weend this subsectionwith several remarks. First, for awide classof randomfieldmodels including
the simple one above, Fessler and Hero have shown that the SAGE converges significantly faster than
the classical EM [17]. In some applications, e.g., tomography, an acceleration of 5 to 10 times may
be achieved. Secondly, just as for the EM algorithm, various constraints on the parameters are often
needed and can be imposed easily as penalty functions in the SAGE algorithm. Finally, notice that
in (29.41), the original images are treated as parameters (with constraints) rather than as random
variables with their own pdfs. It would be of interest to investigate a Bayesian counterpart of the
SAGE algorithm.

29.4 Applications

In this section, we describe the application of the EM algorithm to the simultaneous identification
of the blur and image model and the restoration of single and multichannel images.

29.4.1 Single Channel Blur Identification and Image Restoration

Most of the work on restoration in the literature was done under the assumption that the blurring
process (usually modeled as a linear space-invariant system (LSI) and specified by its point spread
function (PSF)) is exactly known (for recent reviews of the restoration work in the literature see [8,
33]). However, this may not be the case in practice since usually we do not have enough knowledge
about the mechanism of the degradation process. Therefore, the estimation of the parameters that
characterize the degradation operator needs to be based on the available noisy and blurred data.

Problem formulation

The observed image y(i, j) is modeled as the output of a 2D LSI system with PSF {d(p, q)}. In
the following we will use (i, j) to denote a location on the lattice S, instead of a single subscript. The
output of the LSI system is corrupted by additive zero-mean Gaussian noise v(i, j) with covariance
matrix 3V, which is uncorrelated with the original image u(i, j). That is, the observed image y(i, j)

is expressed as

y(i, j) =
∑

(p,q)∈SD

d(p, q)u(i − p, j − q) + v(i, j) , (29.53)

where SD is the finite support region of the distortion filter. We assume that the arrays y(i, j), u(i, j),
and v(i, j) are of size N × N . By stacking them into N2 × 1 vectors, Eq. (29.53) can be rewritten in
matrix/vector form as [35]

y = Du + v , (29.54)

where D is an N2 × N2 matrix.
The vector u is modeled as a zero-mean Gaussian random field. Its pdf is equal to

p(u) = |2π3U|−1/2 exp

{−1

2
uH3U

−1u

}
, (29.55)

where 3U is the covariance matrix of u, H denotes the Hermitian (i.e. conjugate transpose) of a
matrix and a vector, and | · | denotes the determinant of a matrix. A special case of this representation
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is when u(i, j) is described by an autoregressive (AR) model. Then 3U can be parameterized in
terms of the AR coefficients and the covariance of the driving noise [38, 57].

Equation (29.53) can be written in the continuous frequency domain according to the convolution
theorem. Since the discrete Fourier transform (DFT) will be used in implementing convolution, we
assume that Eq. (29.53) represents circular convolution (2D sequences can be padded with zeros in
such a way that the result of the linear convolution equals that of the circular convolution, or the
observed image can be preprocessed around its boundaries so that Eq. (29.53) is consistent with the
circular convolution of {d(p, q)} with {u(p, q)} [36]). Matrix D then becomes block circulant [35].

Maximum Likelihood (ML) Parameter Identification

The assumed image and blur models are specified in terms of the deterministic parameters
θ = {3U, 3V, D}. Since u and v are uncorrelated, the observed image y is also Gaussian with pdf
equal to

p(y/θ) = |2π
(
D3UDH + 3V

) |−1/2

exp

{−1

2
yT

(
D3UDH + 3V

)−1
y

}
, (29.56)

where the inverse of the matrix (D3UDH + 3V) is assumed to be defined since covariance matrices
are symmetric positive definite.

Taking the logarithm of Eq. (29.56) and disregarding constant additive and multiplicative terms,
the maximization of the log-likelihood function becomes the minimization of the function L(θ),
given by

L(θ) = log |D3UDH + 3V| +
{
yT (

D3UDH + 3V
)−1

y
}

. (29.57)

By studying the function L(θ) it is clear that if no structure is imposed on the matrices D, 3U,
and 3V, the number of unknowns involved is very large. With so many unknowns and only one
observation (i.e., y), the ML identification problem becomes unmanageable. Furthermore, the
estimate of {d(p, q)} is not unique, because the ML approach to image and blur identification uses
only second order statistics of the blurred image, since all pdfs are assumed to be Gaussian. More
specifically, the second order statistics of the blurred image do not contain information about the
phase of the blur, which, therefore, is in general undetermined. In order to restrict the set of solutions
and hopefully obtain a unique solution, additional information about the unknown parameters needs
to be incorporated into the solution process.

The structure we are imposing on 3U and 3V results from the commonly used assumptions in
the field of image restoration [35]. First we assume that the additive noise v is white, with variance
σ 2

V, that is,

3V = σ 2
VI . (29.58)

Further we assume that the random process u is stationary which results in 3U being a block Toeplitz
matrix [35]. A block Toeplitz matrix is asymptotically equivalent to a block circulant matrix as the
dimension of the matrix becomes large [37]. For average size images, the dimensions of 3U are
large indeed; therefore, the block circulant approximation is a valid one. Associated with 3U are
the 2D sequences {lU(p, q)}. The matrix D in Eq. (29.54) was also assumed to be block circulant.
Block circulant matrices can be diagonalized with a transformation matrix constructed from discrete
Fourier kernels [35]. The diagonal matrices corresponding to 3U and D are denoted respectively by
QU and QD. They have as elements the raster scanned 2D DFT values of the 2D sequences {lU(p, q)}
and {d(p, q)}, denoted respectively by SU(m, n) and 1(m, n).
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Due to the above assumptions Eq. (29.57) can be written in the frequency domain as

L(θ) =
N−1∑
m=0

N−1∑
n=0{

log
(
|1(m, n)|2SU(m, n) + σ 2

V

)
+ |Y (m, n)|2

|1(m, n)|2SU(m, n) + σ 2
V

}
, (29.59)

where Y (m, n) is the 2D DFT of y(i, j). Equation (29.59) more clearly demonstrates the already
mentioned nonuniqueness of the ML blur solution, since only the magnitude of 1(m, n) appears
in L(θ). If the blur is zero-phase, as is the case with D modeling atmospheric turbulence with
long exposure times and mild defocussing ({d(p, q)} is 2D Gaussian in this case), then a unique
solution may be obtained. Nonuniqueness of the estimation of {d(p, q)} can in general be avoided
by enforcing the solution to satisfy a set of constraints. Most PSFs of practical interest can be assumed
to be symmetric, i.e., d(p, q) = d(−p, −q). In this case the phase of the DFT of {d(p, q)} is zero
or ±π . Unfortunately, uniqueness of the ML solution is not always established by the symmetry
assumption, dueprimarily to thephase ambiguity. Therefore, additional constraintsmayalleviate this
ambiguity. Such additional constraints are the following: (1) The PSF coefficients are nonnegative,
(2) the support SD is finite, and (3) the blurring mechanism preserves energy [35], which results in

∑
(i,j)∈SD

d(i, j) = 1 . (29.60)

The EM Iterations for the ML Estimation of θ

The next step to be taken in implementing the EM algorithm is the determination of the
mapping H in Eq. (29.2). Clearly Eq. (29.54) can be rewritten as

y = [
0 I

] [
u
y

]
= [

D I
] [

u
v

]
= [

I I
] [

Du
v

]
, (29.61)

where 0 and I represent the N2 × N2 zero and identity matrices, respectively. Therefore, according
to Eq. (29.61), there are three candidates for representing the complete data x, namely, {u, y}, {u, v},
and {Du, v}. All three cases are analyzed in the following. However, as it will be shown, only the
choice of {u, y} as the complete data fully justifies the term “complete data”, since it results in the
simultaneous identification of all unknown parameters and the restoration of the image.

For the case when H in Eq. (29.2) is linear, as are the cases represented by Eq. (29.61), and the
data y is modeled as a zero-mean Gaussian process, as is the case under consideration expressed by
Eq. (29.56), the following general result holds for all three choices of the complete data [38, 39, 57].

The E-step of the algorithm results in the computation of Q(θ/θk) =constant−F(θ/θk) where

F(θ/θk) = log |3X| + tr
(
3−1

X Ck
X|y

)
= log |3X| + tr

(
3−1

X 3k
X|y

)
+ µ

(k)H

X|y
3−1

X µk
X|y , (29.62)

where 3X is the covariance of the complete data x which is also a zero-mean Gaussian process,

Ck
X|y = 〈xxH |y; θk〉 = 3k

X|y + µk
X|yµ

(k)H

X|y
,

µk
X|y = 〈x|y; θk〉 = 3XY3−1

Y y = 3XHH
(
H3H

XH

)−1
y , (29.63)
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and

3X|y = 〈(x − µX|y
) (

x − µX|y
)H |y; θk〉 = 3X − 3XY3−1

Y 3YX

= 3X − 3XHH
(
H3XHH

)−1
H3X . (29.64)

The M-step of the algorithm is described by the following equation

θ(k+1) = arg

{
min{θ} F(θ/θk)

}
. (29.65)

In our formulation of the identification/restoration problem the original image is not one of the
unknown parameters in the set θ . However, as it will be shown in the next section, the restored image
will be obtained in the E-step of the iterative algorithm.

{ u,y} as the complete data (CD uy algorithm)
Choosing the original and observed images as the complete data, we obtain H = [0 I] and x =

[uH yH ]H . The covariance matrix of x takes the form

3X = 〈xxH 〉 =
[

3U 3UDH

D3U D3UDH + 3V

]
, (29.66)

and its inverse is equal to [40]

3−1
X =

[
3−1

U + DH 3−1
V D −DH 3−1

V
−3−1

V D 3−1
V

]
. (29.67)

Substituting Eqs. (29.66) and (29.67) into Eqs. (29.62), (29.63), and (29.64), we obtain

F(θ/θk) = log |3U| + log |3V| + tr
{(

3−1
U + DH 3−1

V D
)

3k
U|y

}
+ µ

(k)H
U|y

(
3−1

U + DH 3−1
V D

)
µk

U|y

− 2yH 3−1
V Dµk

U|y + yH 3−1
V y , (29.68)

where

µk
U|y = 3k

UD(k)H
(
Dk3k

UD(k)H + 3k
V

)−1
y , (29.69)

and

3k
U|y = 3k

U − 3k
UD(k)H

(
Dk3k

UD(k)H + 3k
V

)−1
Dk3k

U . (29.70)

Due to the constraints on the unknown parameters described in the subsection Eq. (29.62) can be
written in the discrete frequency domain, as follows

F(θ/θk) = N2 logσ 2
V

+ 1

σ 2
V

N−1∑
m=0

N−1∑
n=0

{
|1(m, n)|2

(
Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2
)

+ 1

N2

(
|Y (m, n)|2 − 2Re

[
Y ∗(m, n)1(m, n)Mk

U|y(m, n)
])}

+
N−1∑
m=0

N−1∑
n=0

{
logSU(m, n) + 1

SU(m, n)

(
Sk

U|y(m, n)

+ 1

N2
|Mk

U|y(m, n)|2
)}

(29.71)
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where

Mk
U|y(m, n) = 1(k)∗(m, n)Sk

U(m, n)

|1k(m, n)|2Sk
U(m, n) + σ

2(p)
V

Y (m, n) , (29.72)

Sk
U|y(m, n) = Sk

U(m, n)σ
2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

. (29.73)

In Eq. (29.71), Y (m, n) is the 2D DFT of the observed image y(i, j) and Mk
U|y

(m, n) is the 2D

DFT of the unstacked vector µk
U|y

into an N × N array. Taking the partial derivatives of F(θ/θk)

with respect to SU(m, n) and 1(m, n) and setting them equal to zero, we obtain the solutions that

minimize F(θ/θk), which represent S
(k+1)
U (m, n) and 1(k+1)(m, n). They are equal to

S
(k+1)
U (m, n) = Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2 , (29.74)

1(k+1)(m, n) = 1

N2

Y (m, n)M
(k)∗
U|y

(m, n)

Sk
U|y

(m, n) + 1
N2 |Mk

U|y
(m, n)|2 , (29.75)

where Mk
U|y

(m, n) and Sk
U|y

(m, n) are computed by Eqs. (29.72) and (29.73). Substituting Eq. (29.75)

into Eq. (29.71) and then minimizing F(θ/θk) with respect to σ 2
V, we obtain

σ
2(k+1)
V = 1

N2

N−1∑
m=0

N−1∑
n=0

{
|1(k+1)(m, n)|2

(
Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2
)

+ 1

N2

(
|Y (m, n)|2 − 2Re

[
Y ∗(m, n)1(k+1)(m, n)Mk

U|y(m, n)
])}

. (29.76)

According to Eq. (29.72) the restored image (i.e., Mk
U|y

(m, n)) is the output of a Wiener filter, based

on the available estimate of θ , with the observed image as input.
{u,v} as the complete data (CD uv algorithm)

The second choice of the complete data is x = [uH vH ]H , therefore, H = [D I]. Following
similar steps as in the previous case it has been shown that the equations for evaluating the spectrum
of the original image are the same as in the previous case, i.e., Eqs. (29.72), (29.73) and (29.74) hold
true. The other two unknowns, i.e., the variance of the additive noise and the DFT of the PSF are
given by

σ
2(k+1)
V = 1

N2

N−1∑
m=0

N−1∑
n=0

(
Sk

V|y(m, n) + 1

N
|Mk

V|y(m, n)|2
)

, (29.77)

where

Mk
V|y(m, n) = σ

2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

Y (m, n) , (29.78)

Sk
V|y(m, n) = |1k(m, n)|2Sk

U(m, n)σ
2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

, (29.79)

and

|1k(m, n)|2 =



1
N2 |Y (m,n)|2−σ

2(k)

V
Sk
U(m,n)

, if 1
N2 |Y (m, n)|2 > σ

2(k)
V

0, otherwise .

(29.80)
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From Eq. (29.80) we observe that only the magnitude of 1k(m, n) is available, as was mentioned
earlier. A similar observation can be made for Eq. (29.75), according to which the phase of 1(m, n)

is equal to the phase of 10(m, n).
In deriving the above expressions the set of unknown parameters θ was divided into two sets

θ1 = {3U, 3V} and θ2 = {D}. F(θ1/θ
k) was then minimized with respect to θ1, resulting in

Eqs. (29.74) and (29.77). The likelihood function in Eq. (29.59) was then minimized directly with
respect to 1(m, n) assuming knowledge of θk

1 , resulting in Eq. (29.80). The effect of mixing the
optimization procedure into the EM algorithm has not been completely analyzed theoretically. That
is, the convergence properties of the EM algorithm do not necessarily hold, although the application
of the resulting equations increases the likelihood function. Based on the experimental results, the
algorithm derived in this section always converges to a stationary point. Furthermore, the results are
comparable to the ones obtained with the CD uy algorithm.

{ Dx,v } as the complete data (CD Dx,v algorithm)
The third choice of the complete data is x = [(Du)H , vH ]H . In this case, D and x cannot be

estimated separately, since various combinations of D and u can result in the same Du. The two
quantities D and u are lumped into one quantity t = Du.

Following similar steps as in the two previous cases it has been shown [38, 39, 57] that the variance
of the additive noise is computed according to Eq. (29.77), while the spectrum of the noise-free but
blurred image t by the iterations

S
(k+1)
T (m, n) = Sk

T|y(m, n) + 1

N2
|Mk

T|y(m, n)|2, (29.81)

where

Mk
T|y(m, n) = Sk

T(m, n)

Sk
T(m, n) + σ

2(k)
V

Y (m, n), (29.82)

and

Sk
T|y(m, n) = Sk

T(m, n) − S
(k)2
T (m, n)

Sk
T(m, n) + σ

2(k)
V

Y (m, n). (29.83)

Iterative Wiener Filtering
In this subsection, wedeviate somewhat fromtheoriginal formulationof the identificationproblem

by assuming that the blur function is known. The problem at hand then is the restoration of the
noisy-blurred image. Although there are a great number of approaches that can be followed in this
case, the Wiener filtering approach represents a commonly used choice. However, in Wiener filtering
knowledge of the power spectrum of the original image (SU) and the additive noise (SV) is required.
A standard assumption is that of ergodicity, i.e., ensemble averages are equal to spatial averages.
Even in this case, the estimation of the power spectrum of the original image has to be based on the
observed noisy-blurred image, since the original image is not available. Assuming that the noise is
white, its variance σ 2

V needs also to be estimated from the observed image. Approaches, according
to which the power spectrum of the original image is computed from images with similar statistical
properties, have been suggested in the literature [35]. However, a reasonable idea is to successively
use the Wiener-restored image as an improved prototype for updating the unknown SU and σ 2

V. This
idea is precisely implemented by the CD uy algorithm.

More specifically, now that the blur function is known, Eq. (29.75) is removed from the EM itera-
tions. Thus, Eqs. (29.74) and (29.76) are used to estimate SU and σ 2

V, respectively, while Eq. (29.72)
is used to compute the Wiener-filtered image. The starting point SU

0 for the Wiener iteration can be
chosen to be equal to

S0
U(m, n) = ŜY(m, n) , (29.84)
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where ŜY(m, n) is an estimate of the power spectral density of the observed image. The value of σ
2(0)
V

can be determined from flat regions in the observed image, since this represents a commonly used
approach for estimating the noise variance.

29.4.2 Multi-Channel Image Identification and Restoration

Introduction

We use the term multi-channel images to define the multiple image planes (channels) which
are typically obtained by an imaging system that measures the same scene using multiple sensors.
Multi-channel images exhibit strong between-channel correlations. Representative examples are
multispectral images [41], microwave radiometric images [42], and image sequences [43]. In the
first case such images are acquired for remote sensing and facilities/military surveillance applications.
The channels are the different frequency bands (color images represent a special case of great interest).
In the last case the channels are the different time frames after motion compensation. More recent
applications of multi-channel filtering theory include the processing of the wavelet decomposed
single-channel image [44] and the reconstruction of a high resolution image from multiple low
resolution images [45, 46, 47, 48].

Although the problem of single channel image restoration has been thoroughly researched, sig-
nificantly less work has been done on the problem of multi-channel restoration. The multi-channel
formulation of the restoration problem is necessary when cross-channel degradations exist. It can
be useful, however, in the case when only within-channel degradations exist, since cross-correlation
terms are exploited to achieve better restoration results [49, 50]. The cross-channel degradations
may come in the form of channel crosstalks, leakage in detectors, and spectral blurs [51]. Work on
restoring multi-channel images is reported in [42, 49, 50, 51, 52, 53, 54, 55], when the within- and
cross-channel (where applicable) blurs are known.

29.4.3 Problem Formulation

The degradation process is modeled again as [35]

y = Du + v , (29.85)

where y, u, and v are the observed (noisy and degraded) image, the original undistorted image, and
the noise process, respectively, all of which have been lexicographically ordered, and D the resulting
degradation matrix. The noise process is assumed to be white Gaussian, independent of u.

Let P be the number of channels, each of size N × N . If ui , i = 0, 1, . . . , P − 1 , represents the
i-th channel. Then using the ordering of [56], the multichannel image u can be represented in vector
form as

u =
[
u1(0)u2(0) . . . uP (0)u1(1) . . . uP (1) . . . u1(N

2 − 1) . . . uP (N2 − 1)
]T

. (29.86)

Defining y and v similarly to that of Eq. (29.86), we can now use the degradation model of Eq. (29.85),
recognizing that y, u, and v are of size PN2 × 1, and D is of size PN2 × PN2.

Assuming that the distortion system is linear shift invariant, D is a PN2×PN2 matrix of the form

D =




D(0) D(1) ·· D(N2 − 1)

D(N2 − 1) D(0) ·· D(N2 − 2)
...

... ·· ...

D(1) D(2) ·· D(0)


 , (29.87)
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where the P × P sub-matrices (sub-blocks) have the form

D(m) =




D11(m) D12(m) ·· D1P (m)

D21(m) D22(m) ·· D2P (m)
...

... ·· ...

DP1(m) DP2(m) ·· DPP (m)


 , 0 ≤ m ≤ N2 − 1 . (29.88)

Note that Dii(m) represents the intrachannel blur, while Dij (m), i 6=j represents the interchannel
blur. The matrix D in Eq. (29.87) is circulant at the block level. However, for D to be block-circulant,
each of its subblocks D(m) also needs to be circulant, which, in general, is not the case. Matrices of
this form are called semiblock circulant (SBC) matrices [56]. The singular values of such matrices
can be found with the use of the discrete Fourier transform (DFT) kernels. Equation (29.85) can
therefore be written in the vector DFT domain [56].

Similarly, the covariance matrix of the original signal, 3U, and the covariance matrix of the
noise process, 3V, are also semiblock circulant (assuming u and v are stationary). Note that 3U is
not block-circulant because there is no justification to assume stationarity between channels (i.e.,
3UiUj

(m) = E[ui (m)uj (m)∗] is not equal to 3Ui+pUj+p
(m) = E[ui+p(m)uj+p(m)∗] [50], where

3UiUj
(m) is the (i, j)th submatrix of 3U). However, 3U and 3V are semiblock circulant because

ui and vi are assumed to be stationary within each channel.

29.4.4 The E-Step

We follow here similar steps to the ones presented in the previous section. We choose [uH yH ]H as
the complete data. Since the matrices 3U , 3V , and D, are assumed to be semi-block circulant, the
E-step requires the evaluation of

F
(
θ; θk

)
=

N−1∑
m=0

N−1∑
n=0

J (m, n) , (29.89)

where

J (m, n) = log |2U(m, n)| + log |2V(m, n)| + tr
{(

2−1
U (m, n)

+ 2H
D (m, n)2−1

V (m, n)2D(m, n)
)

2k
U|y(m, n)

}
+ 1

N2
tr

{[
2−1

U (m, n) + 2H
D (m, n)2−1

V (m, n)2D(m, n)
]

× Mk
U|y(m, n)M(k)H

U|y
(m, n)

}
− 1

N2

(
YH (m, n)2−1

V (m, n)2D(m, n) Mk
U|y(m, n)

+ M(k)H

U|y
(m, n)2H

D (m, n)2−1
V (m, n)Y(m, n)

)
+ 1

N2
YH (m, n)2−1

V (m, n)Y(m, n) . (29.90)

The derivation of Eq. (29.90) is presented in detail in [48, 57, 58]. Equation (29.89) is the corre-
sponding equation to Eq. (29.71) for the multichannel case.

In Eq. (29.90), 2U(m, n) is the (m, n)-th component matrix of 2U, which is related to 3U by
a similarity transformation using two-dimensional discrete Fourier kernels [56, 57]. To be more
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specific, for P = 3, the matrix,

2U(m, n) =

 S11(m, n) S12(m, n) S13(m, n)

S21(m, n) S22(m, n) S23(m, n)

S31(m, n) S32(m, n) S33(m, n)


 , (29.91)

consists of all the (m, n)-th component of the power and cross power spectra of the original color
image (without loss of generality in the subsequent discussion three-channel examples will be used).
It is worthwhile noting here that the power spectra Sii(m, n), i = 1, 2, 3, which are the diagonal
entries of 2U(m, n), are real-valued, while the cross power spectra (the off-diagonal entries) are
complex. This illustrates one of the main differences between working with multichannel images
as opposed to single-channel images. In addition to each frequency component being a P × P

matrix versus a scalar quantity for the single-channel case, the cross power spectra is complex versus
being real for the single-channel case. Similarly, the (m, n)-th component of the inverse of the noise
spectrum matrix is given by

2V
−1(m, n) =


 z11(m, n) z12(m, n) z13(m, n)

z21(m, n) z22(m, n) z23(m, n)

z31(m, n) z32(m, n) z33(m, n)


 . (29.92)

One simplifying assumption that we can make about Eq. (29.92) is that the noise is white within
channels and zero across channels. This results in 2V(m, n) being the same diagonal matrix for all
(m, n).

2D(m, n) in Eq. (29.90) is equal to

2D(m, n) =

 111(m, n) 112(m, n) 113(m, n)

121(m, n) 122(m, n) 123(m, n)

131(m, n) 132(m, n) 133(m, n)


 , (29.93)

where 1ij (m, n) is the within-channel (i = j) or cross-channel (i 6= j) frequency response of the
blur system, and Y(m, n) is the (m, n)-th component of the DFT of the observed image. 2k

U|y
(m, n)

and Mk
U|y

(m, n) are the (m, n)-th frequency component matrix and vector of the multichannel

counterparts of 3U|y and µU|y , respectively, computed by

2k
U|y(m, n) = 2k

U(m, n) − 2k
U(m, n)2

(k)H
D (m, n)

[
2k

V(m, n)

+ 2k
D(m, n)2k

U(m, n)2
(k)H
D (m, n)

]−1
2k

D(m, n)2k
U(m, n)

(29.94)

and

Mk
U|y(m, n) = 2k

U(m, n)2
(k)H
D (m, n)

[
2k

V(m, n)

+ 2k
D(m, n)2k

U(m, n)2
(k)H
D (m, n)

]−1
Y(m, n) . (29.95)

29.4.5 The M-Step

The M-step requires the minimization ofJ (m, n)with respect to2U(m, n), 2V(m, n) and2D(m, n).

The resulting solutions become 2
(k+1)
U (m, n), 2(k+1)

V (m, n) and 2
(k+1)
D (m, n), respectively.

The minimization of J (m, n) with respect to 2U is straightforward, since 2U is decoupled from
2V(m, n) and 2D. An equation similar to Eq. (29.74) results. The minimization of J (m, n) with
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respect to 2D is not as straightforward; 2D is coupled with 2V. Therefore, in order to minimize
J (m, n) with respect to 2D, 2V must be solved first in terms of 2D, substituted back into Eq. (29.90),
and then minimized with respect to 2D.

It is shown in [48, 58] that two conditions must be met in order to obtain explicit equations for
the blur. First, the noise spectrum matrix, 2V(m, n), must be a diagonal matrix, which is frequently
encountered in practice. Second, all of the blurs must be symmetric, so that there is no phase when
working in the discrete frequency domain. The first condition arises from the fact that 2V(m, n) and
2D(m, n) are coupled. The second condition arises from the Cauchy-Riemann theorem, and must
be satisfied in order to guarantee the existence of a derivative at every point.

With these conditions, the iterations for 1(m, n) and σV(m, n) are derived in [48, 58], which are
similar respectively to Eqs. (29.75) and (29.76). Special cases are also analyzed in [48, 58], when
the number of unknowns is reduced. For example, if 2D is known, the multichannel Wiener filter
results.

29.5 Experimental Results

The effectiveness of both the single channel and multi-channel restoration and identification algo-
rithms is demonstrated experimentally. The red, green, and blue (RGB) channels of the original Lena
image used for this experiment are shown in Fig. 29.1. A 5×5 truncated Gaussian blur is used for
each channel and Gaussian white noise is added resulting in a blurred signal-to-noise ratio (SNR) of
20 dB. The degraded channels are shown in Fig. 29.2. Three different experiments were performed
with the available degraded data. The single channel algorithm of Eqs. (29.74), (29.75), and (29.76)
was first run for each of the RGB channels independently. The restored images are shown in Fig. 29.3.
The corresponding multichannel algorithm was then run, resulting in the restored channels shown
in Fig. 29.4. Finally the multichannel Wiener filter was also run, in demonstrating the upper bound
of the algorithm’s performance, since the blurs are now exactly known. The resulting restored images
are shown in Fig. 29.5. The improvement in SNR for the three experiments and for each channel is
shown in Table 29.1. According to this table, the performance of the algorithm increases from the first

TABLE 29.1 Improvement in SNR (dB)
η Decoupled EM Multichannel EM Wiener

Red 1.5573 2.1020 2.3420
Green 1.3814 2.0086 2.3181
Blue 1.1520 1.5148 1.8337

to the last experiment. This is to be expected, since in considering the multichannel algorithm over
the single channel algorithm the correlation between channels is taken into account, which brings
additional information into the problem.

A photographically blurred image is shown next in Fig. 29.6. The restorations of it by the CD uy
and CD uv algorithms are shown, respectively, in Figs. 29.7 and 29.8.

29.5.1 Comments on the Choice of Initial Conditions

The likelihood function which is optimized is highly nonlinear and a number of local minima exist.
Although the incorporation of the various constraints, discussed earlier, restricts the set of possible
solutions, a number of local minima still exist. Therefore, the final result depends on the initial
conditions. Based on our experience in implementing the EM iterations of the previous sections
for the single-channel and the multi-channel image restoration cases, the following comments and

c©1999 by CRC Press LLC



FIGURE 29.1: Original RGB Lena.

FIGURE 29.2: Degraded RGB Lena, intra-channel blurs only, 20 dB SNR.

FIGURE 29.3: Restored RGB by the decoupled single channel EM algorithm.

observations are in order.
It was observed experimentally that the final results are quite insensitive to variations in the values

of the noise variance(s) and the original image power spectra. An estimate of the noise variances
from flat regions of the noisy and blurred images were used as initial condition. It was observed that
using initial estimates of the noise variances larger than the actual ones produced good final results.

The final results are quite sensitive, however, to variations in the values of the PSF. Knowledge of
the support of the PSF is quite important. In [38] after convergence of the EM algorithm the estimate
of the PSF was truncated, normalized, and used as an initial condition in restarting another iteration
cycle.

29.6 Summary and Conclusion

In this chapter, we have described and illustrated how the EM algorithm can be used in image recovery
problems. The basic approach can be summarized by the following steps.
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FIGURE 29.4: Restored RGB Lena by the multi-channel EM algorithm.

FIGURE 29.5: Restored RGB Lena by the iterative multi-channel Wiener algorithm.

FIGURE 29.6: Photographically blurred image.

FIGURE 29.7: Restored image by the CD uy algorithm.
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FIGURE 29.8: Restored image by the CD uv algorithm.

1. Select a statistical model for the observed data and formulate the image recovery problem
as an MLE problem.

2. If the likelihood function is difficult to optimize directly, the EM algorithm can be used
by properly selecting the complete data.

3. Constraints on the parameters or image to be estimated, proper initial conditions, and
multiple complete data spaces can be considered to improve the uniqueness and conver-
gence of the estimates.

4. Derive the equations for the E-step and M-step.

We end this chapter with several remarks. We want to emphasize again that the EM algorithm
only guarantees convergence to a local optimum. Therefore, the initial conditions are quite critical,
as is also discussed in the previous section. Depending on the number of the unknown parameters,
one could consider evaluating in a systematic fashion the likelihood function directly at a number
of points and use as initial condition the point which results in the largest value of the likelihood
function. Improved results can be obtained potentially if the number of the unknown parameters
is reduced by parameterizing the unknown functions. For example, separable and nonseparable
exponential covariance models are used in [46, 47, 48], and an autoregressive model in [38, 57] to
model the original image, and parameterized blur models are discussed in [38]. We want to mention
also that the EM algorithm can be implemented in different domains. For example, it is implemented
in both spatial and frequency domains, respectively, in sections 29.3 and 29.4. Other domains are
also possible by applying proper transforms, e.g., the wavelet transform [59].
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30.1 Introduction

Signal reception has numerous applications in communications, radar, sonar, and geoscience among
others. However, the adverse effects of noise in these applications limit their utility. Hence, the quest
for new and improved noise removal techniques is an ongoing research topic of great importance in
a vast number of applications of signal reception.

When certain characteristics of noise are known, their effects can be compensated. For example,
if the noise is known to have certain spectral characteristics, then a finite impulse response (FIR) or
infinite impulse response (IIR) filter can be designed to suppress the noise frequencies. Similarly, if
the statistics of the noise are known, then a Weiner filter can be used to alleviate its effects. Finally, if
the noise is spatially separated from the desired signal, then multisensor arrays can be used for noise
suppression. This last case is discussed in this article.

A multisensor array consists of a set of transducers, i.e., antennas, microphones, hydrophones,
seismometers, geophones, etc. that are arranged in a pattern which can take advantage of the spatial
location of signals. A two-element television antenna provides a good example. To improve signal
reception and/or mitigate the effects of a noise source, the antenna pattern is manually adjusted to
steer a low gain component of the antenna pattern towards the noise source. Multisensor arrays
typically achieve this adjustment through the use of an array processing algorithm. Most applica-
tions of multisensor arrays involve a fixed pattern of transducers, such as a linear array. Antenna
pattern adjustments are made by applying weights to the outputs of each transducer. If the noise
arrives from a specific non-changing spatial location, then the weights will be fixed. Otherwise,
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if the noise arrives from random, changing locations then the weights must be adaptive. So, in a
military communications application where a communications channel is subject to jamming from
random spatial locations, an adaptive array processing algorithm would be the appropriate solution.
Commercial applications of microphone arrays include teleconferencing [6] and hearing aids [9].

There are several methods for obtaining the weight update equations in array processing. Most
of these are derived from statistically based formulations. The resulting optimal weight vector is
then generally expressed in terms of the input autocorrelation matrix. An alternative formulation
is to express the array processing problem as a linear system of equations to which iterative matrix
inversion techniques can be applied. The matrix inverse formulation will be the focus of this article.

The following section provides a background overview of wave propagation, spatial sampling, and
spatial filtering. Next, narrowband and broadband beamforming arrays are described along with the
standard algorithms used for these implementations. The narrowband and broadband algorithms
are then reformulated in terms of an inverse problem and an iterative technique for solving this
system of equations is provided. Finally, several examples are given along with a summary.

30.2 Background Theory

Array processing uses information regarding the spatial locations of signals to aid in interference
suppression and signal enhancement. The spatial locations of signals may be determined by the
wavefronts that are emanated by the signal sources. Some background theory regarding wave propa-
gation and spatial frequency is necessary to fully understand the interference suppression techniques
used within array processing. The following subsections provide this background material.

30.2.1 Wave Propagation

An adaptive array consists of a number of sensors typically configured in a linear pattern that utilizes
the spatial characteristics of signals to improve the reception of a desired signal and/or cancellation
of undesired signals. The analysis used in this chapter assumes that a linear array is being used, which
corresponds to the sensors being configured along a line. Signals may be spatially characterized
by their angle of arrival with respect to the array. The angle of arrival of a signal is defined as the
angle between the propagation path of the signal and the perpendicular of the array. Consider the
wavefront emanating from a point source as is illustrated in Fig. 30.1. Here, the angle of arrival is
shown as θ .

Note in Fig. 30.1 that wavefronts emanating from a point source may be characterized by plane
waves (i.e., the locus of constant phase form straight lines) when originating from the far field or
Fraunhofer, region. The far field approximation is valid for signals that satisfy the following condition:

s ≥ D2

λ
(30.1)

where s is the distance between the signal and the array, λ is the wavelength of the signal, and D is the
length of the array. Wavefronts that originate closer than D2/λ are considered to be from the near field
or Fresnel, region. Wavefronts originating from the near field exhibit a convex shape when striking
the array sensors. These wavefronts do not create linear phase shifts between consequetive sensors.
However, the curvature of the wavefront allows algorithms to determine point source location in
addition to direction of arrival [1]. The remainder of this article assumes that all wavefronts arrive
from the far field region.
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FIGURE 30.1: Propagating wavefront.

30.2.2 Spatial Sampling

In Fig. 30.1 it can be seen that the signal waveform experiences a time delay between crossing each
sensor, assuming that it does not arrive perpendicular to the array. The time delay, τ , of the waveform
striking the first and then second sensors in Fig. 30.1 may be calculated as

τ = d

c
sinθ (30.2)

where d is the sensor spacing, c is the speed of propagation of the given waveform for a particular
medium (i.e., 3 × 108 m/s for electromagnetic waves through air, 1.5 × 103 m/s for sound waves
through water, etc.), and θ is the angle of arrival of the wavefront. This time delay corresponds to a
shift in phase of the signal as observed by each sensor. The phase shift, φ, or electrical angle observed
at each sensor due to the angle of arrival of the wavefront may be found as

φ = 2πd

λo

sinθ = ωod

c
sinθ . (30.3)

Here, λo is the wavelength of the signal at frequency fo as defined by

λo = c

fo

. (30.4)

Hence, a signal x(k) that crosses the sensor array and exhibits a phase shift φ between uniformly
spaced, consequetive sensors can be characterized by the vector x(k), where:

x(k) = x(k)




1
e−jφ

e−2jφ

...

e−j (K−1)φ




. (30.5)

Uniform sensor spacing is assumed throughout the remainder of this article.
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30.2.3 Spatial Frequency

The angle of arrival of a wavefront defines a quantity known as the spatial frequency. Adaptive
arrays use information regarding the spatial frequency to suppress undesired signals that originate
from different locations than that of the target signal. The spatial frequency is determined from the
periodicity that is observed across an array of sensors due to the phase shift of a signal arriving at
some angle of arrival.

Signals that arrive perpendicular to the array (known as boresight) create identical waveforms at
each sensor. The spatial frequency of such signals is zero. Signals that do not arrive perpendicular to
the array will not create waveforms that are identical at each sensor assuming that there is no spatial
aliasing due to insufficiently spaced sensors. In general, as the angle increases, so does the spatial
frequency. It can also be deduced that retaining signals having an angle of arrival equal to zero degrees
while suppressing signals from other directions is equivalent to low pass filtering the spatial frequency.
This provides the motivation for conventional or fixed-weight beamforming techniques. Here, the
sensor values can be computed via a windowing technique, such as a rectangular, Hamming, etc.
to yield a fixed suppression of non-boresight signals. However, adaptive techniques can locate the
specific spatial frequency of an interfering signal and position a null in that exact location to achieve
greater suppression.

There are two types of beamforming, namely conventional, or “fixed weight”, beamforming and
adaptive beamforming. A conventional beamformer can be designed using windowing and FIR filter
theory. They utilize fixed weights and are appropriate in applications where the spatial locations of
noise sources are known and are not changing. Adaptive beamformers make no such assumptions
regarding the locations of the signal sources. The weights are adapted to accommodate the changing
signal environment.

Arrays that have a visible region of −90◦ to +90◦ (i.e., the azimuth range for signal reception)
require that the sensor spacing satisfy the relation

d ≤ λ

2
. (30.6)

The above relation for sensor spacing is analogous to the Nyquist sampling rate for frequency domain
analysis. For example, consider a signal that exhibits exactly oneperiodbetween consequetive sensors.
In this case, the output of each sensor would be equivalent, giving the false impression that the signal
arrives normal to the array. In terms of the antenna pattern, insufficient sensor spacing results in
grating lobes. Grating lobes are lobes other than the main lobe that appear in the visible region and
can amplify undesired directional signals.

The spatial frequency characteristics of signals enable numerous enhancement opportunities via
array processing algorithms. Array processing algorithms are typically realized through the imple-
mentation of narrowband or broadband arrays. These two arrays are discussed in the following
sections.

30.3 Narrowband Arrays

Narrowband adaptive arrays are used in applications where signals can be characterized by a single
frequency and thus occupy a relatively narrow bandwidth. A signal whose envelope does not change
during the time their wavefront is incident on the transducers is considered to be narrowband. A
narrowband adaptive array consists of an array of sensors followed by a set of adjustable gains, or
weights. Theoutputs of theweighted sensors are summed toproduce the arrayoutput. Anarrowband
array is shown in Fig. 30.2.

The input vector x(k) consists of the sum of the desired signal s(k) and noise n(k) vectors and is
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FIGURE 30.2: Narrowband array.

defined as

x(k) = s(k) + n(k) (30.7)

where k denotes the time instant of the input vector. The noise vector n(k) will generally consist of
thermal noise and directional interference. At each time instant, the input vector is multiplied with
the weight vector to obtain the array output, which is given as

y(k) = xT (k)w, x, w ∈ CK , (30.8)

where CK is the complex space of dimension K . The array output is then passed to the signal
processor which uses the previous value of the output and current values of the inputs to determine
the adjustment to make to the weights. The weights are then adjusted and multiplied with the new
input vector to obtain the next output. The output feedback loop allows the weights to be adjusted
adaptively, thus accommodating nonstationary environments.

In Eq. (30.8), it is desired to find a weight vector that will allow the output y to approximately
equal the true target signal. For the derivation of the weight update equations, it is necessary to know
what a priori information is being assumed. One form of a priori information could be the spatial
location of the target signal, also known as the “look-direction”. For example, many array processing
algorithms assume that the target signal arrives normal to the array, or else a steering vector is used
to make it appear as such. Another form of a priori information is to use a signal at the receiving end
that is correlated with the input signal, i.e., a pilot signal. Each of these criteria will be considered in
the following subsections.

30.3.1 Look-Direction Constraint

One of the first narrowband array algorithms was proposed by Applebaum [2]. This algorithm is
known as the sidelobe canceler and assumes that the direction of the target signal is known. The
algorithm does not attempt to maximize the signal gain, but instead adjusts the sidelobes so that
interfering signals coincide with the nulls of the antenna pattern. This concept is illustrated in
Fig. 30.3.

Applebaum derived the weight update equation via maximization of the signal to interference plus
thermal noise ratio (SINR). As derived in [2], this optimization results in the optimal weight vector
as given by Eq. (30.9):

wopt = µR−1
xx t . (30.9)
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FIGURE 30.3: Sidelobe canceling.

In Eq. (30.9), Rxx is the covariance matrix of the input, µ is a constant related to the signal gain,
and t is a steering vector that corresponds to the angle of arrival of the desired signal. This steering
vector is equivalent to the phase shift vector of Eq. (30.5). Note that if the angle of arrival of the
desired signal is zero, then the t vector will simply contain ones.

A discretized implementation of the Applebaum algorithm appears as follows:

w(j+1) = w(j) + α
(
wq − w(j)

)
− βx(k)y(k) . (30.10)

In Eq. (30.10), wq represents the quiescent weight vector (i.e., when no interference is present), the
superscript j refers to the iteration, α is a gain parameter for the steering vector, and β is a gain
parameter controlling the adaptation rate and variance about the steady state solution.

30.3.2 Pilot Signal Constraint

Another form of a priori information is to use a pilot signal that is correlated with the target signal.
This results in abeamformingalgorithmthatwill concentrateonmaintainingabeamdirected towards
the target signal, as opposed to, or in addition to, positioning the nulls as in the case of the sidelobe
canceler. One such adaptive beamforming algorithm was proposed by Widrow [20, 21]. The resulting
weight update equation is based on minimizing the quantity (y(k) − p(k))2 where p(k) is the pilot
signal. The resulting weight update equation is

w(j+1) = w(j) + µε(k)x(k) . (30.11)

This corresponds to the least means square (LMS) algorithm, where ε is the current error, namely
(y(k) − p(k)), and µ is a scaling factor.

30.4 Broadband Arrays

Narrowband arrays rely on the assumption that wavefronts normal to the array will create identical
waveforms at each sensor and wavefronts arriving at angles not normal to the array will create a
linear phase shift at each sensor. Signals that occupy a large bandwidth and do not arrive normal to
the array violate this assumption since the phase shift is a function of fo and varying frequency will
cause a varying phase shift. Broadband signals that arrive normal to the array will not be subject to
frequency dependent phase shifts at each sensor as will broadband signals that do not arrive normal
to the array. This is attributed to the coherent summation of the target signal at each sensor where
the phase shift will be a uniform random variable with zero mean. A modified array structure,
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however, is necessary to compensate the interference waveform inconsistencies that are caused by
variations about the center frequency. This can be achieved by having the weight for a sensor being
a function of frequency, i.e., a FIR filter, instead of just being a scalar constant as in the narrowband
case. Broadband adaptive arrays consist of an array of sensors followed by tapped delay lines, which
is the major implementation difference between a broadband and narrowband array. A broadband
array is shown in Fig. 30.4.

FIGURE 30.4: Broadband array.

Consider the transfer functions for a given sensor of the narrowband and broadband arrays, shown
by

Hnarrow(w) = w1 (30.12)

and
Hbroad(w) = w1 + w2e

−jwT + w3e
−2jwT + . . . + wJ e−j (J−1)wT . (30.13)

The narrowband transfer function has only a single weight that is constant with frequency. How-
ever, the broadband transfer function, which is actually a Fourier series expansion, is frequency
dependent and allows for choosing a weight vector that may compensate phase variations due to
signal bandwidth. This property of tapped delay lines provides the necessary flexibility for process-
ing broadband signals. Note that typically four or five taps will be sufficient to compensate most
bandwidth variances [14].

The broadband array shown in Fig. 30.4 obtains values at each sensor and then propagates these
values through the array at each time interval. Therefore, if the values x1 through xK are input at
time instant one, then at time instant two, xK+1 through x2K will have the values previously held by
x1 through xK , x2K+1 through x3K will have the values previously held by xK+1 through x2K , etc.
Also, at each time instant, a scalar value y will be calculated as the inner product of the input vector
x and the weight vector w. This array output is calculated as

y(k) = xT (k)w, x, w ∈ CJK , (30.14)

where CJK is the complex space of dimension JK .
Although not shown in Fig. 30.4, a signal processor exists as in the narrowband array, which uses

the previous output and current inputs to determine the adjustments to make to the weight vector
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w. The output signal y will approach the value of the desired signal as the interfering signals are
canceled until it converges to the desired signal in the least squares sense.

BroadbandarrayshavebeenanalyzedbyWidrow[20], Griffiths [10,12], andFrost [7]. Widrow[20]
proposed a LMS algorithm that minimizes the square of the difference between the observed output
and the expected output, which was estimated with a pilot signal. This approach assumes that the
angle of arrival and a pilot signal are available a priori. Griffiths [10] proposed a LMS algorithm that
assumes knowledge of the cross-correlation matrix between the input and output data instead of the
pilot signal. This method assumes that the angle of arrival and second order signal statistics are known
a priori. The methods proposed by Widrow and Griffiths are forms of unconstrained optimization.
Frost [7] proposed a LMS algorithm that assumes a priori knowledge of the angle of arrival and the
frequency band of interest. The Frost algorithm utilizes a constrained optimization technique, which
Griffiths later derived an unconstrained formulation that utilizes the same constraints [12]. The Frost
algorithm will be the focus of this section.

The Frost algorithm implements the look-direction and frequency response constraints as follows.
For the broadband array shown in Fig. 30.4, a target signal waveform propagating normal to the
array, or steered to appear as such, will create identical waveforms at each sensor. Since the taps in
each column, i.e., w1 through wK , see the same signal, this array may be collapsed to a single sensor
FIR filter. Hence, to constrain the frequency range of the target signal, one just has to constrain the
sum of the taps for each column to be equal to the corresponding tap in a FIR filter having J taps
and the desired frequency response for the target signal.

These look-direction and frequency response constraints can be implemented by the following
optimization problem:

minimize : wT Rxxw (30.15)

subject to : CT w = h (30.16)

where Rxx is the covariance matrix of the received signals, h is the vector of FIR filter coefficients
defining the desired frequency response, and CT is the constraint matrix given by

CT =




11 . . . 1 00 . . . 0 . . . 00 . . . 0
00 . . . 0 11 . . . 1 . . . 00 . . . 0
...

00 . . . 0 00 . . . 0 . . . 11 . . . 1


 .

The number of rows in CT is equal to the number of taps of the array and the number of ones in
each row is equal to the number of sensors. The optimal weight vector wopt will minimize the output
power of the noise sources subject to the constraint that the sum of each column vector of weights is
equal to a coefficient of a FIR filter defining the desired impulse response of the array.

The Frost algorithm [7] is a constrained LMS method derived by solving Eqs. (30.15) and (30.16)
via Lagrange Multipliers to obtain an expression for the optimum weight vector, Frost [7] derived
the constrained LMS algorithm for broadband array processing using Lagrange multipliers. The
function to be minimized may be defined as

H(w) = 1

2
wT Rxxw + λT

(
CT w − h

)
(30.17)

where λ is a Lagrange multiplier and F is a vector representative of the desired frequency response.
Minimizing the function H(w) with respect to w will obtain the following optimal weight vector:

wopt = R−1
xx C

(
CT R−1

xx C
)−1

h . (30.18)
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An iterative implementation of this algorithm was implemented via the following equations:

w(j+1) = P
[
w(j) − µRxxw(j)

]
+ C

(
CT C

)−1
h (30.19)

where µ is a step size parameter and

P = I − C
(
CT C

)−1
CT

w(0) = C
(
CT C

)−1
h

where I is the identity matrix and

h = [
h1 h2 . . . hJ

]
.

30.5 Inverse Formulations for Array Processing

The array processing algorithms discussed thus far have all been derived through statistical analysis
and/or adaptive filtering techniques. An alternative approach is to view the constraints as equations
that can be expressed in a matrix-vector format. This allows for a simple formulation of array
processing algorithms to which additional constraints can be easily incorporated. Additionally, this
formulation allows for efficient iterative matrix inversion techniques that can be used to adapt the
weights in real time.

30.5.1 Narrowband Arrays

Two algorithms were discussed for narrowband arrays, namely, the sidelobe canceler and pilot signal
algorithms. We will consider the sidelobe canceler algorithm here. The derivation of the sidelobe
canceler is based on the optimization of the SINR and yields an expression for the optimum weight
vector as a function of the input autocorrelation matrix. We will use the same constraints as the
sidelobe canceler to yield a set of linear equations that can be put in a matrix vector format.

Consider the narrowband array description provided in Section 30.3. In Eq. (30.7), s(k) is the
vector representing the desired signal whose wavefront is normal to the array and n(k) is the sum of
the interfering signals arriving from different directions. A weight vector is desired that will allow the
signal vector s(k) to pass through the array undistorted while nulling any contribution of the noise
vector n(k). An optimal weight vector wopt that satisfies these conditions is represented by:

wT
opts(k) = s(k) (30.20)

and
wT

optn(k) = 0 (30.21)

where s(k) is the scalar value of the desired signal. Since the sidelobe canceler does not have access
to s(k), an alternative approach must be taken to implement the condition of Eq. (30.20). One
method for finding this constraint is to minimize the expectation of the output power [7]. This
expectation can be approximated by the quantity y2, where y = xT (k)w. Minimizing y2 subject to
the look-direction constraint will tend to cancel the noise vector while maintaining the signal vector.
This criteria can be represented by the linear equation:

xT (k)w = 0 . (30.22)
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Note that Eq. (30.22) implies that the weight vector be orthogonal to the composite input vector
as opposed to just the noise component. However, the look-direction constraint imposed by the
following equation will maintain the desired signal

[
1 1 . . . 1

]
w = 1 . (30.23)

This equation satisfies the look-direction constraint that a signal arriving perpendicular to the array
will have unity gain in the output.

The constraints imposed by Eqs. (30.22) and (30.23) can be expressed in a matrix-vector form as
follows: [

x1(k) x2(k) . . . xK(k)

1 1 . . . 1

]
w =

[
0
1

]
(30.24)

or, equivalently,
Aw = b .

30.5.2 Broadband Arrays

The broadband array considered in this section will utilize the constraints considered by Frost [7],
namely the look-direction and frequency range of the target signal. The linear equations that rep-
resent the Frost algorithm are similar to those used for the narrowband formulation derived in the
previous section. Once again, the minimization of the cost function in Eq. (30.15) can be achieved
by Eq. (30.22), assuming that the target signal arrives normal to the array. The constraint for the
desired frequency response in the look direction can also be implemented in a similar fashion to that
of the narrowband array in Eq. (30.23). Instead of constraining the sum of the weights to be one, as
in the narrowband array, the broadband array implementation will constrain the sum of each column
of weights to be equal to a corresponding tap value in a FIR filter with the desired frequency response
for the target signal.

Hence, the broadband array problem represented by Eqs. (30.15) and (30.16) can be expressed
as a linear system of equations by creating a matrix that has the cost function given by Eq. (30.15)
augmented with the linear constraint equations given by Eq. (30.16). The problem can now be
expressed as:




x1 .. xK . . . x(J−1)K+1 .. xJK

1 .. 1 . . . 0 .. 0
0 .. 0 . . . 0 .. 0
...

0 .. 0 . . . 1 .. 1




.




w1
w2
...

wJK


 =




0
h1
...

hJ


 ,

or Aw = h′ (30.25)

where h′ is the vector of FIR filter coefficients augmented with a zero.

30.5.3 Row-Action Projection Method

Thematrix-vector formulation for thenarrowbandbeamformingproblem, as represented inEq. (30.24)
or the broadband array problem formulated in Eq. (30.25) can now be expressed as an inverse prob-
lem. For example, if A is n x n and rank[A|b] = rank[A], then a unique solution for w can be found
as

w = A−1b . (30.26)
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If instead, A is m x n, then a least squares solution can be implemented as

w =
(
AT A

)−1
AT b . (30.27)

Another solution can be obtained by using the Moore-Penrose generalized inverse, or pseudo-inverse,
of A via

w† = A†b (30.28)

whereA† andw† represent thepseudo-inverseofAand thepseudo-inverse solution forw, respectively.
These methods all provide an immediate solution for the weight vector, w, however, at the expense

of requiring a matrix inversion along with any instabilities that may be apparent if the matrix is
ill-conditioned. A more convenient approach to solve for the weights is to use an iterative approach.
The method that we shall use here is known as the row-action projection (RAP) algorithm. The
RAP algorithm is an iterative technique for solving a system of linear equations. The RAP method
has found numerous applications in digital signal processing [16] and is applied here to adaptive
beamforming.

The RAP method for iteratively solving the system in Eq. (30.24) is given by the update equation:

w(j+1) = w(j) + µ
εi

‖ai‖
aT
i

‖ai‖ (30.29)

where εi is the error term for the ith row defined as:

εi = bi − aiw
(k) . (30.30)

In Eqs. (30.29) and (30.30), the superscript j denotes the iteration, the subscript i refers to the row
number of the matrix or vector, and µ is a gain parameter, which is known to be stable for values
between zero and two. The choice of µ is important for performance characteristics and has the
tradeoff that a large µ will provide faster convergence, while a small µ will provide greater accuracy.
Also, note that choosing µ between one and two may, in some instances, prevent convergence to the
LMS solution.

The RAP method operates by creating orthogonal projections in the space defined by the data
matrix A in Eq. (30.24). A graphical representation of the RAP algorithm, as applied to a three sensor
beamforming array, is illustrated in Fig. 30.5.

In Fig. 30.5, the target signal subspace consists of the plane represented by the look-direction
constraint, namely w1 + w2 + w3 = 1. The input signal subspace, given by w1x1(k) + w2x2(k) +
w3x3(k) = 0, will consist of a different plane for each discrete time index k. The RAP method first
creates an orthogonal projection to the input subspace (i.e., satisfying wT x(k) = 0). A projection is
then made to the target signal subspace. This procedure will be repeated for the next input subspace,
etc. Intuitively, this procedure will find a solution as “orthogonal as possible” to the different input
subspaces, which lies in the target signal subspace. Since the RAP method consists of only row
operations, it is convenient for parallel implementations. This technique, described by Eqs. (30.24),
(30.29), and (30.30), comprises the RAP method for array processing.

30.6 Simulation Results

Several simulations were performed to compare the inverse formulation of the array processing
problem to the more traditional adaptive filtering approaches. These simulations compare the inverse
formulation to the sidelobe canceler implementation of the narrowband array and to the Frost
implementation of the broadband array.

c©1999 by CRC Press LLC



FIGURE 30.5: Orthogonal projections in weight space.

30.6.1 Narrowband Results

The sidelobe canceler application is evaluated with both the Applebaum algorithm and the inverse
formulation. Both arrays are simulated for a nine-sensor narrowband array. The RAP algorithm
for the inverse formulation uses a gain value of µ = 0.001 and the Applebaum array uses values
of α = 0.25 and β = 0.01. The signal environment for the scenario consists of unit amplitude
tones whose spectral and spatial characteristics are summarized by Table 30.1. The input spectrum
of the narrowband scenario is shown in Fig. 30.6. The input and output spectrums for the inverse
formulation and Applebaum algorithm are shown in Figs. 30.6 through 30.8. The inverse formulation
and Applebaum algorithms demonstrate similar performance for this example.

TABLE 30.1 Input Scenario for Narrowband

Experiment

Signal Angle (deg) Frequency (KHz)

Target signal 0 2.0
Interference 1 28 3.0
Interference 2 41 1.0
Interference 3 72 4.0

30.6.2 Broadband Results

The broadband array application is also evaluated with both the inverse formulation and Frost
algorithm. The algorithms are both evaluated for a broadband array that consists of nine sensors,
each followed by five taps. The signal environment used for the scenario consists of several signals
of varying spectral and spatial characteristics as summarized by Table 30.2.

The RAP algorithm used for the inverse has a gain value µ = 0.5 and the Frost algorithm uses the
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FIGURE 30.6: Narrowband input spectrum.

FIGURE 30.7: Output spectrum for inverse formulation.

c©1999 by CRC Press LLC



FIGURE 30.8: Output spectrum for Applebaum array.

FIGURE 30.9: Broadband input spectrum.

c©1999 by CRC Press LLC



FIGURE 30.10: Output spectrum for inverse array.

FIGURE 30.11: Output spectrum for Frost array.
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TABLE 30.2 Input Scenario for Broadband

Experiment

Signal Angle (deg) Frequency (KHz)

Target signal 0 3.0
Interference 1 27 1.5
Interference 2 41 4.0

gain value µ = 0.05. The h vector specifies a low pass frequency response with a passband up to
4 KHz. The input and output signal spectrums are shown in Figs. 30.9 through 30.11. The inverse
formulation and Frost algorithms again demonstrate similar performance.

The broadband array processing algorithms are also evaluated for a microphone array applica-
tion [5]. The simulation uses a microphone array with nine equispaced transducers each followed by
13 taps. The microphone spacing is chosen as 4.3 cm and the sampling rate for the speech signals is
16 KHz. The h vector contains coefficients for a low pass FIR filter designed with a Hamming window
for a passband of 0 to 4 KHz. The signal environment consists of two speech signals. The target
signal arrives normal to the array. The interfering signal is applied to the array at uniformly spaced
angles ranging from −90◦ to +90◦ in unit increments. The interference power is 2.6 dB greater than
the desired signal. The resulting interference suppression observed in the array output is illustrated
in Fig. 30.12. The maximum interference suppression (i.e., for interference arriving at ±90◦) is 11.0
dB for the RAP method and 11.2 dB for the Frost method.

FIGURE 30.12: Interference suppression.

30.7 Summary

This article has formulated the array processing problem as an inverse problem. Inverse formula-
tions for both narrowband and broadband arrays were discussed. Specifically, the sidelobe canceler
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algorithm for narrowband array processing and Frost algorithm for broadband array processing were
analyzed. The inverse formulations provide a flexible, intuitive implementation of the constraints
that are used by each algorithm. The inverse formulations were then solved through use of the RAP
method. The RAP method is a simple technique for creating orthogonal projections within a space
defined by a set of hyperplanes. The RAP method can easily be applied to unconstrained and con-
strained optimization problems whose solution lies in a convex set (i.e., no local maxima or minima).
Many array processing algorithms fall into this category and it has been shown that the RAP method
is a viable solution for this application. Since the RAP method only involves row operations, it is also
more convenient for parallel processing implementations such as systolic arrays [15].

These algorithms have also been simulated for both narrowband and broadband implementations.
The narrowband simulation consisted of a set of tones arriving at different spatial locations. The
broadband array was evaluated for a simulation of several signals with differing spatial locations
and bandwidths, in addition to a speech enhancement application. For all scenarios, the inverse
formulations were found to perform comparable to the traditional approaches.
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31.1 Introduction

In this article we examine the problem of communication channel equalization and how it relates
to the inversion of a linear system of equations. Channel equalization is the process by which the
effect of a band-limited channel may be diminished, i.e., equalized, at the sink of a communication
system. Although there are many ways to accomplish this, we will concentrate on linear filters and
adaptive filters. It is through the linear filter approach that the analogy to matrix inversion is possible.
Regularized inversion refers to a process in which noise dominated modes of the observed signal are
attenuated.

31.2 Discrete-Time Intersymbol Interference Channel Model

Intersymbol interference (ISI) is a phenomenon observed by the equalizer caused by frequency
distortion of the transmitted signal. This distortion is usually caused by the frequency selective
characteristics of the transmission medium. However, it can also be due to deliberate time dispersion
of the transmitted pulse to affect realizable implementations of the transmit filter. In any case, the
purpose of the equalizer is to remove deleterious effects of the ISI on symbol detection. The ISI
generation mechanism is described next with a description of equalization techniques to follow. The
information transmitted by a digital communication system is comprised of a set of discrete symbols.
Likewise, the ultimate form of the received information is cast into a discrete form. However, the
intermediate components of the digital communications system operate with continuous waveforms
which carry the information. The major portions of the communications link are the transmitter
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pulse shaping filter, the modulator, the channel, the demodulator, and the receiver filter. It will be
advantageous to transform the continuous part of the communication system into an equivalent
discrete time channel description for simulation purposes. The discrete formulation should be
transparent to both the information source and the equalizer when evaluating performance. The
equivalent discrete time channel model is attained by combining the transmit filter, p(t), the channel
filter, g(t), and the receive filter, w(t), into a single continuous filter, that is,

h(t) = w(t) ∗ g(t) ∗ p(t) (31.1)

Refer to Fig. 31.1. The effect of the sampler preceding the decision device is to discretize the aggre-

FIGURE 31.1: The signal flow block diagram for the equivalent channel description. The equalizer
observes x(nT ), a sampled version of the receive filter output x(t).

gate filter. The equivalent discrete time channel as a means to simulate the performance of digital
communications systems was advanced by Proakis [1] and has found subsequent use throughout the
communications literature [2, 3].

It has been shown that a bandpass transmitted pulse train has an equivalent low pass representa-
tion [1]

s(t) =
∞∑

n=0

Anp(t − nT ) (31.2)

where {An} is the information bearing symbol set, p(t) is the equivalent low pass transmit pulse
waveform, and T is the symbol rate. The observed signal at the input of the receiver is

r(t) =
∞∑

n=0

An

∫ +∞

−∞
p(t − nT )g(t − nT − τ)dτ + n(t) (31.3)

where g(t) is the equivalent low pass bandlimited impulse response of the channel and the channel
noise, n(t), is modeled as white Gaussian noise. The optimum receiver filter, w(t), is the matched
filter which is designed to give maximum correlation with the received pulse [4]. The output of the
receiver filter, that is, the signal seen by the sampler, can be written as

x(t) =
∞∑

n=0

Anh(t − nT ) + ν(t) (31.4)

h(t) =
∫ +∞

−∞

[∫ +∞

−∞
p(t − nT )g(t − nT − λ)dλ

]
w(t − τ)dτ (31.5)

ν(t) =
∫ +∞

−∞
n(t)w(t − τ)dτ (31.6)

where h(t) is the response of the receiver filter to the received pulse, representing the overall impulse
response between the transmitter and the sampler, and ν(t) = ∫ +∞

−∞ n(t)w(t − τ)dτ is a filtered
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version of the channel noise. The input to the equalizer is a sampled version of Eq. (31.4), that is,
sampling at times t = kT produces

x(kT ) =
∞∑

n=0

Anh(kt − nT ) + ν(kT ) (31.7)

as the input to the discrete time equalizer. By normalizing with respect to the sampling interval and
rearranging terms, Eq. (31.7) becomes

xk = h0Ak︸ ︷︷ ︸
desired symbol

+
∞∑
n=0
n6=k

Anhk−n

︸ ︷︷ ︸
intersymbol interference

+ νk (31.8)

31.3 Channel Equalization Filtering

31.3.1 Matrix Formulation of the Equalization Problem

The task of finding the optimum linear equalizer coefficients can be described by casting the problem
into a system of linear equations,




d̃1

d̃2
...

d̃L


 =




xT
1

xT
2
...

xT
L


 c +




e1
e2
...

eL


 (31.9)

xk = [
xk+N−1, . . . , xk−1

]T
(31.10)

where (·)T denotes the transpose operation. The received sample at time k is xk , which consists of the
channel output corrupted by additive noise. The elements of the N × 1 vector ck are the coefficients
of the equalizer filter at time k. The equalizer is said to be in decision directed mode when d̃k is taken
as the output of the nonlinear decision device. The equalizer is in training, or reference directed,
mode when d̃k is explicitly made identical to the transmitted sequence Ak . In either case, ek is the
error between the desired equalizer output, d̃k , and the actual equalizer output, xT

k c. We will assume

that d̃k = Ak+N , then the notation in Eq. (31.9) can be written in the compact form,

d = Xc + e (31.11)

by defining d =
[
d̃1, . . . , d̃L

]T

and by making the obvious associations with Eq. (31.9). Note that

the parameter L determines the number of rows of the time varying matrix X. Therefore, choosing
L is analogous to choosing an observation interval for the estimation of the filter coefficients.

31.4 Regularization

We seek a solution for the filter coefficients of the form c = Yd , where Y is in some sense an inverse
of the data matrix X. The least squares solution requires that

Y =
[
XT X

]−1
XT (31.12)
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where X# 4= [
XT X

]−1
XT represents the Moore-Penrose (M-P) inverse of X. If one or more of the

eigenvalues of the matrix XT X is zero, then the Moore-Penrose inverse does not exist.
To investigate the behavior of the inverse, we will decompose the data matrix into the form X =

XS + XN , where XS is the signal component and XN is the noise component. Generally, the noise
data matrix is full rank and the signal data matrix may be nearly rank deficient from the spectral
nulls in the transmission channel. This is illustrated by examining the smallest eigenvalue of XT

S XS

λmin = SR min + O
(
N−k

)
(31.13)

where SR is the continuous PSD of the received data xk , SR min is the minimum value of the PSD, k
is the number of non-vanishing derivatives of SR at SR min, and N is the equalizer filter length. Any
spectral loss in the signal caused by the channel is directly translated into a corresponding decrease
in the minimum eigenvalue of the received signal. If λmin becomes small, but nonzero, the data
correlation matrix XT X becomes ill-conditioned and its inversion becomes sensitive to the noise.
The sensitivity is expressed in the quantity

δ
4=

∥∥c̃ − c
∥∥

‖c‖ ≤ σ 2
n

λmin
+ O

(
σ 4

n

)
(31.14)

where the noiseless least squares filter coefficient vector solution, c, has been perturbed by adding a
white noise to the data with variance σ 2

n � 1, to produce the least squares solution c̃. Substituting
Eq. (31.13) into Eq. (31.14) yields

δ ≤ σ 2
n

SR min + O
(
N−k

) + O
(
σ 4

n

)
≈ σ 2

n

SR min
(31.15)

The relation in Eq. (31.15) is an indicator of the potential numerical problems in solving for the
equalizer filter coefficients when the data is spectrally deficient.

We see that direct inversion of the data matrix is not recommendable when the channel has severe
spectral nulls. This situation is equivalent to stating that the original estimation problem d = Xc

is ill-posed. That is, the equalizer is asked to reproduce components of the channel input that are
unobservable at the channel output or are obscured by noise. Thus, it is reasonable to ascertain the
modes of the input dominated by noise and give them little weight, relative to the signal dominated
components, when solving for the equalizer filter coefficients. This process of weighting is called
regularization.

Regularization can be described by relying on a generalization of the M-P inverse that depends on
the singular value decomposition (SVD) of the data matrix

X = U6V T (31.16)

where U is an L × N unitary matrix, V is an N × N unitary matrix, 6 = diag (σ1, σ2, . . . , σN) is a
diagonal matrix of singular values where σi ≥ 0, σ1 > σ2 > · · · > σN . It is assumed in Eq. (31.16)
that L > N , which is typical in the equalization problem.

We define the generalized pseudo-inverse of X as

X† = V 6†UT (31.17)

where 6† = diag
(
σ

†
1 , σ

†
2 , . . . , σ

†
N

)
and

σ
†
i =




σ−1
i σi 6= 0

0 σi = 0
(31.18)
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The M-P inverse can be reformulated using the SVD as follows

X# =
[
V 62V T

]−1
V 6UT = V 6−1UT (31.19)

Upon examination of Eq. (31.17) and Eq. (31.19), we note that X# = X† only if all the singular values
of X are nonzero, σi 6= 0. Another item to note is that V 62V T is the eigenvalue decomposition of
XT X, which implies that the eigenvalues of XT X are the squares of the singular values of X.

The generalized pseudo-inverse in Eq. (31.17) provides an eigenvalue spectral weighting given
by Eq. (31.18), which differs from the M-P inverse only when one or more of the eigenvalues of
XT X are identically zero. However, this form of regularization is rather restrictive since complete
annihilation of the spectral components is rarely encountered in practice. A more likely condition
for the eigenvalues of XT X is that a small band of signal eigen-modes are much smaller in magnitude
than the corresponding noise modes. Direct inversion of these eigen-modes, although well-defined
mathematically, leads to noise enhancement at the equalizer output and to noise sensitivity in the
filter coefficient solution. An alternative to the generalized pseudo-inverse is to use a regularized
inverse wherein the eigen-modes are weighted prior to inversion [5]. This approach leads to a trade-
off between the noise immunity of the equalizer filter weights and the signal fidelity at the equalizer
filter output. To demonstrate this trade-off, let

c = X†d (31.20)

be the least squares solution. Let the regularized inverse be Y n such that limn→∞ Y n = X†. The
regularized estimate for an observation perturbed by a random noise vector, n, is

cn = Y n (d + n) (31.21)

The effects of the regularized inverse and the noise vector are indicated by

‖cn − c‖ =
∥∥∥Y nn +

(
Y n − X†

)
d

∥∥∥ ≤ ‖Y nn‖ +
∥∥∥Y n − X†

∥∥∥ ‖d‖ (31.22)

The term ‖Y nn‖ is the part of the coefficient error due to the noise and is likely to increase as n → ∞.
The term

∥∥Y n − X†
∥∥ represents the contribution due to the regularization error in approximating

the pseudo-inverse. This error tends to zero as n → ∞. The trade-off between noise attenuation and
regularization error is evident upon inspection of Eq. (31.22), which also points out an idiosyncratic
property of the regularization process. At first, the equalizer output error tends to decrease, due to
decreasing regularization error,

∥∥Y n − X†
∥∥. Then, as n increases further, the output error is likely

to increase due to the noise amplification component, ‖Y nn‖. This behavior leads to the question
regarding the best choice for the parameter n. A widely accepted procedure is to use the discrepancy
principle, which states that n should satisfy

‖Xcn′ − (d + n)‖ = ‖n‖ (31.23)

Letting n > n′ usually results in noise amplification at the equalizer output.

31.5 Discrete-Time Adaptive Filtering

We will next examine three adaptive algorithms in terms of their regularization properties in deriving
the equalizer filter. These algorithms are the normalized least mean squares (NLMS) algorithm, the
recursive least squares (RLS) algorithm, and the block-iterative NLMS (BINLMS) algorithm. These
algorithms are representative of the wider class of adaptive algorithms of which they belong.
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31.5.1 Adaptive Algorithm Recapitulation

NLMS

The NLMS algorithm update is given by

cn = cn−1 + µ
(
dn − xT

n cn−1

) xn

‖xn‖2
(31.24)

for n = 1, . . . , L. This is rewritten as

cn =
(

I − µ
xnx

T
n

‖xn‖2

)
cn−1 + µ

dnxn

‖xn‖2
(31.25)

Define P n
4= (

I − µxnx
T
n / ‖xn‖2) and pn

4= µdnxn/ ‖xn‖2, then Eq. (31.25) becomes

cL = Qc0 + q (31.26)

where
Q = P LP L−1 · · ·P 1 (31.27)

and
q = [P L · · ·P 2] p1 + [P L · · ·P 3] p2 + · · · + P LpL−1 + pL (31.28)

BINLMS

The BINLMS algorithm relies on observing the entire block of filter vectors xn, 1 ≤ n ≤ L, in
Eq. (31.9). The BINLMS update procedure is

cn+1 = cn + µ
(
dj − xT

j cn

) xj∥∥xj

∥∥2
(31.29)

where j = nmodL. The update in Eq. (31.29) is related to the NLMS update by considering
Eq. (31.26). That is, Eq. (31.29) is equivalent to

cn·L = Qc(n−1)·L + q (31.30)

where L updates of Eq. (31.29) are compacted into a single update in Eq. (31.30). Note that only L

updates are possible using Eq. (31.24) compared to an arbitrary number of updates in Eq. (31.29).

RLS

The update procedure for the RLS algorithm is

gn = λ−1Y n−1xn

1 + λ−1xT
n Y n−1xn

(31.31)

en = dn − cT
n−1xn (31.32)

cn = cn−1 + engn (31.33)

Y n = λ−1
[
Y n−1 − gnx

T
n Y n−1

]
(31.34)

where gn is called the gain vector, Y n is the estimate of
[
XT

n Xn

]−1
using the matrix inversion lemma,

and Xn represents the first n rows of X in Eq. (31.9). The forgetting factor 0 < λ � 1allows the RLS
algorithm to weight more recent samples providing a tracking capability for time-varying channels.
The matrix inversion recursion is initialized with Y 0 = δ−1I , where 0 < δ � 1. The initialization
constant transforms the data correlation matrix into

XT
n 3nXn + λnδI (31.35)

where 3n = diag
(
1, λ, . . . , λn−1

)
.
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31.5.2 Regularization Properties of Adaptive Algorithms

In this section we examine how each of the adaptive algorithms achieve regularization of the equalizer
filter solution. We begin with the BINLMS and will subsequently take the NLMS as a special case.
The BINLMS update of Eq. (31.30) is equivalent to

cl = Qcl−1 + q (31.36)

where an increment in l is equivalent to L increments of n in Eq. (31.29). The recursion in Eq. (31.36)
is also equivalent to

cl = B ld (31.37)

where lim l→∞ B l = X†. Let σ̂k,l represent the singular values of B l , then the relationship among
the singular values of B l and the singular values of X is [6]

σ̂k,l =




1
σk

[
1 − (

1 − µ
N

σ 2
k

)l+1
]

, σk 6= 0

0 , σk = 0

(31.38)

The regularization property of the BINLMS depends on both µ and l. Since the step size parameter
µ is chosen to guarantee convergence, i.e., 0 <

(
1 − µ

N
σ 2

1

)
< 1, the regularization is primarily

controlled by the iteration index l. The regularization behavior of the BINLMS given by Eq. (31.38)
is that the signal dominant modes are inverted first, followed by the weaker noise dominant modes,
as the index l increases.

The regularization behavior of the NLMS algorithm is directly derived from the BINLMS by setting
l = 1 in Eq. (31.38). We see that the only control over the regularization for the NLMS algorithm is to
decrease the step size µ. However, this leads to a potentially undesirable reduction in the convergence
rate of the adaptive equalizer filter.

The RLS algorithm weighting of the singular values is derived upon inspection of Eq. (31.35). The
RLS equalizer filter coefficient estimate is

cLS =
[
XT 3LX + λLδI

]−1
XT

(
3

1/2
L

)T

d (31.39)

Let σ̂LS,k represent the singular values of the effective inverse used in the RLS algorithm, then

σ̂LS,k =
√

λkσk

λkσ
2
k + λLδ

(31.40)

There are several points to note about Eq. (31.40). In the absence of the forgetting factor, λ = 1, and
the initialization constant, δ = 0, the RLS algorithm provides the exact inverse of the singular values,
as expected. The constant δ prevents the dominator of Eq. (31.40) from getting too small. However,
this regularization is lost if λL → 0, which is the case when the observation interval L becomes large.

The behavior of the regularization functions (31.38) and (31.40) is illustrated in Fig. 31.2.

31.6 Numerical Results

A numerical example of the regularization characteristics of the adaptive equalization algorithms
discussed is now presented. A data matrix X X is constructed with dimensions L = 50and N = 11,
which has the singular value matrix 6 = diag (1.0, 0.9, . . . 0.1, 0.0). The step size µ = 0.2 is chosen.

Since the RLS algorithm computes an estimate of
[
XT X

]−1
, it is sensitive to the eigenvalues of
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FIGURE 31.2: The regularization functions of the NLMS, BINLMS, and RLS algorithms.

FIGURE 31.3: The regularization behavior of the NLMS, BINLMS, and the RLS adaptive algorithms
is shown. The BINLMS curves represent block iterations of 5, 10, 15, and 20. The RLS algorithm
uses λ = 1.0 and λ = 0.96.
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XT X . A graph similar to Fig. 31.2 is produced with the exception that the eigenvalue inverses of
XT X are plotted for the RLS algorithm. These results are shown in Fig. 31.3 using the eigenvalues
of X given by σ 2

i = (1 − (i − 1)/10)2 for 1 ≤ i ≤ 10 and σ 2
11 = 0. The RLS algorithm exhibits

large dynamic range in the eigenvalue inverse using the matrix inversion lemma, which may lead to
unstable operation of the adaptive equalizer filter.

31.7 Conclusion

A short introduction to the basic concepts of regularization analysis are presented in this article.
Some further development in the application of this analysis to decision-feedback equalization may
be found in [6]. The choice of which adaptive algorithm to use is application-dependent and each
one comes with its associated advantages and disadvantages. The LMS-type algorithms are low-
complexity solutions that have relatively slow convergence. The RLS-type algorithms have much
faster convergence but are typically plagued by stability problems associated with error propagation
and unregularized matrix inversion. Circumventing these stability problems tends to lead to more
complex algorithm implementation. The BINLMS algorithm is a trade-off between the convergence
speed of the RLS-type algorithms and the stability of the LMS-type algorithms. A disadvantage of
the BINLMS algorithm is that instantaneous throughput may be high due to the block-processing
required.
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32.1 Introduction: Dereverberation Using Microphone
Arrays

An acoustic enclosure usually reduces the intelligibility of the speech transmitted through it because
the transmission path is not ideal. Apart from the direct signal from the source, the sound is also
reflected off one or more surfaces (usually walls) before reaching the receiver. The resulting signal can
be viewed as the output of a convolution in the time domain of the speech signal and the room impulse
response. This phenomenon affects the quality of the transmitted sound in important applications
such as teleconferencing, cellular telephony, and automatic voice activated systems (speaker and
speech recognizers). Room reverberation can be perceptually separated into two broad classes. Early
room echoes are manifested as irregularities or “ripples” in the amplitude spectrum. This effect
dominates in small rooms, typically offices. Long-term reverberation is typically exhibited as an
echo “tail” following the direct sound [1].

If the transfer function G(z) of the system is known, it might be possible to remove the deleterious
multi-path effects by inverse filtering the output using a filter H(z) where

H(z) = 1

G(z)
. (32.1)

Typically G(z) is the transform of the impulse response of the room g(n). In general, the transfer
function of a reverberant environment is a non-minimum phase function, i.e., all the zeros of the
function do not necessarily lie inside |z| = 1. A minimum phase function has a stable causal inverse,
while the inverse of a non-minimum phase function is acausal and, in general, infinite in length.
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In general, G(z) can be expressed as a product of a minimum-phase function and a non-minimum
phase function:

G(z) = Gmin(z) · Gmax(z) . (32.2)

Many approaches have been proposed for dereverberating signals. The aim of all the compensation
schemes is to bring the impulse response of the system after dereverberation as close as possible to an
impulse function. Homomorphic filtering techniques were used to estimate the minimum phase part
of G(z) [2, 3]. In [2], the minimum phase component was estimated by zeroing out the cepstrum for
negative frequencies. Then the output signal was filtered by the inverse of the minimum phase transfer
function. But this technique still did not remove the reverberation contributed by the maximum-
phase part of the room response. In [3], the inverse of the maximum-phase part was also estimated
from the delayed and truncated version of the acausal inverse. But, the delay can be inordinate and
care must be taken to avoid temporal aliasing.

An alternate approach to dereverberation is to calculate, in some form, the least squares estimate
of the inverse of the transmission path, i.e., calculate the least squares solution of the equation

h(n) ∗ g(n) = d(n) , (32.3)

where d(n) is the impulse function and ∗ denotes convolution. Assuming that the system can be
modeled by an FIR filter, Eq. (32.3) can be expressed in matrix form as:



g(0)

g(1) g(0)
... g(1) · · · 0

g(m)
... · · · g(0)

0 g(m) · · · g(1)

0 0 · · · ...

g(m)







h(0)

h(1)
...

h(i)


 =




1
0
...

0


 , (32.4)

or,
GH = D , (32.5)

where D is the unity matrix and G, H and D are matrices of appropriate dimensions as shown in
Eq. (32.4). The least squares method finds an approximate solution given by

Ĥ (z) =
(
GT G

)−1
GT D . (32.6)

Thus, the error vector can be written as

ε = [D − GĤ ]
= [I − G

(
GT G

)−1
GT ]D

= ED ,

where E = [I − G(GT G)−1GT ]. The mean square error or the energy in the error vector is

||ε||2 = ||ED||2 ≤ |E|||D||2 ≤ λmax

λmin

||D||2 , (32.7)

where |E| is the norm of E and λmax and λmin are the maximum and minimum eigenvalues of
E. The ratio between the maximum and minimum eigenvalues is called the condition number of a
matrix and it specifies the noise amplification of the inversion process [4].
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FIGURE 32.1: Modeling a room with a microphone array as a multiple output FIR system.

Typically, the operation is done on the full-band signal. Sub-band approaches have been proposed
in [5, 7, 8]. All these approaches use a single microphone.

The amplitude spectrum of the room response has “ripples” which produce pronounced notches
in the signal output spectrum. As the location of the microphone in the room changes, the room
response for the same source changes and, as a result, the position of the notches in the amplitude
spectrum varies. This property was used to advantage in [1]. In this method, multiple microphones
were located in the room. Then, the output of each microphone was divided into multiple bands
of equal bandwidth. For each band, by choosing the microphone whose output has the maximum
energy, the ripples were reduced. In [9], the signals from all the microphones in each band were
first co-phased, and then weighted by a gain calculated from a normalized cross-correlation function
calculated based on the outputs of different microphones. Since the reverberation tails are uncorre-
lated, the cross-correlation-based gain turned off the tail of the signal. These techniques have had
modest success in combating reverberation.

In recent years, great progress has been made in the quality, availability, and cost of high perfor-
mance microphones. Fast digital signal processors that permit complex algorithms to operate in real
time have been developed. These advances have enabled the use of large microphone arrays that
deploy more sophisticated algorithms for dereverberation. Figure 32.1 shows a generic microphone
array system which can “invert” the room acoustics. Different choices of Hi(z) lead to different
algorithms, each with their own advantages and disadvantages. In this report, we shall discuss single
and multiple beamforming, matched filtering, and Diophantine inverse filtering through multiple
input-output (MINT) modeling. In all cases we assume that the source location and the room
configuration or, alternatively, the Gi(z)s, are known.

32.2 Simple Delay-and-Sum Beamformers

Arrays that form a single beam directed towards the source of the sound have been designed and
built [11]. In these simple delay-and-sum beamformers, the processing filter has the impulse response

hi(n) = δ(n − ni) , (32.8)

where ni = di/c, di is the distance of the ith microphone from the source and c is the speed of
sound in air. Sound propagation in the room can be modeled by a set of successive reflections
off the surfaces (typically the walls) [10]. Figure 32.2 illustrates the impulse response of a single
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beamformer. The delay at the output of each microphone coheres the sound that arrives at the
microphone directly from the source. It can be seen from Fig. 32.2 that in the resulting response,
the strength of the coherent pulse is N and there are N(K − 1) distributed pulses. So, ideally, the
signal-to-reverberant noise ratio (measured as the ratio of undistorted signal power to reverberant
noise power) is N2/N(K − 1) [13]. In a highly reverberant room, as the number of images K

increases towards infinity, the SNR improvement, N/K − 1, falls to zero.

FIGURE 32.2: A single beamformer. (Source: Flanagan, J.L., Surendran, A.C., and Jan, E.-E.,
Spatially selective sound capture for speech and audio processing, Speech Commun., 13: 207–222,
1993. With kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam,
The Netherlands).

The single-beamforming system reported in [11] can automatically determine the direction of the
source and rapidly steer the array. But, as the beam is steered away from the broadside, the system
exhibits a reduction in spatial discrimination because the beam pattern broadens [12]. Further,
beamwidth varies with frequency, so an array has an approximate “useful bandwidth” given by the
upper and lower frequencies [12]:

fupper = c

d| cosφ − cosφ′|max
, (32.9)

and

flower = fupper

N
, (32.10)

where c is the speed of sound in air, N is the number of sensors in the array, d is the sensor spacing,
φ′ is the steering angle measured with respect to the axis of the array, and φ is the direction of the
source.
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For example, consider an array with seven microphones and a sensor spacing of 6.5 cm. Further,
suppose the desired range of steering is ±30◦ from broadside. Then, | cosφ − cosφ′|max = 1.5 and
hence fupper ≈ 3500Hz and flower ≈ 500Hz. So, to cover the bandwidth of speech, say from 250
Hz to 7 kHz, three harmonically nested arrays of spacing 3.25, 6.5, and 13 cm can be used. Further,
the beamwidth also depends on the frequency of the signal as well as the steering direction. If the
beam is steered to an angle φ′, then the direction of the source for which the beam response falls to
half its power is [12]

φ3dB = cos−1
{

cosφ′ ± 2.8

Nωd

}
, (32.11)

where ω = 2πf and f is the frequency of the signal.
Equation 32.11 shows that the smaller the array, the wider the beam. Since most of the energy of

a typical room interfering noise lies at lower frequencies, it would be advantageous to build arrays
that have higher directivity (smaller beamwidth) at lower frequencies. This, combined with the fact
that the array spacing is larger for lower frequency bands, gives yet another reason to harmonically
nest arrays (see Fig. 32.3).

FIGURE 32.3: Harmonically nested array that covers three frequency ranges.

Just as linear one-dimensional arrays display significant fattening of the beams when steered to-
wards the axis of the array, two-dimensional arrays exhibit widening of the beams when steered at
angles acute to the plane of the array. Three-dimensional microphone arrays can be constructed [13]
that have essentially a constant beamwidth over 4π steradians. Multiple beamforming using three-
dimensional arraysof sensorsnotonlyprovides selectivity in azimuthandelevationbut also selectivity
in the direction of the beam, i.e., it provides range selectivity.

The performance of single beamformers can degrade severely in the presence of other interfering
noise sources, especially if they fall in the direction of the sidelobes. This problem can be mitigated
using adaptive arrays. Adaptive arrays are briefly discussed in the next section.

32.2.1 A Brief Look at Adaptive Arrays

Adaptive signal processing techniques can be used to form a beam at the desired source while si-
multaneously forming a null in the direction of the interfering noise source. Such arrays are called
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“adaptive arrays”. Though adaptive arrays are not effective under conditions of severe reverberation,
they are included here because problems in adaptive arrays can be formulated as inverse problems.
Hence, we shall discuss adaptive arrays briefly without providing a quantitative analysis of them.
Broadband arrays have been analyzed in [14, 15, 16, 17, 18, 19]. In all these methods, the direction
of arrival of the signal is assumed to be known.

Let the array have N sensors and M delay taps per sensor. If X(k) = [x1(k) . . . xi(k) . . . xNM(k)]T
(see Fig. 32.4) is the set of signals observed at the tap points, then X(k) = S(k) + N(k), where

FIGURE 32.4: General form of an adaptive filter.

S(k) is the contribution of the desired signal at the tap points and N(k) is the contribution of the
unknown interfering noise. The inputs to the sensors, x(jM+1)(k), j = 0, . . . , (N − 1), are the
noisy versions of g(k), the actual signal at the source. Now, the filter output y(k) = WT X(k), where
WT = [w11, . . . , w1M, w21, . . . , w2M, . . . , wN1, . . . , wNM ] is the set of weights at the tap points.
The goal of the system is to make the output y(k) as close as possible to the source g(k). One way of
doing this is to minimize the error E{(g(k) − y(k))2}. The weight W ∗ that achieves this least mean
square (LMS) error is also called the Weiner filter, and is given by

W ∗ = R−1
XXCgX , (32.12)

where RXX is the autocorrelation of X(k) and CgX is the set of cross-correlations between g(k) and
each element of X(k). If g(k) and N(k) are uncorrelated, then

CgX = E{g(k)X(k)} = E{g(k)S(k)} + E{g(k)N(k)}
= E{g(k)S(k)}

and

RXX = E{X(k)XT (k)} = E{(S(k) + N(k))(S(k) + N(k))T }
= RSS + RNN ,

where RSS and RNN are the autocorrelation matrices for the signal and noise.
Usually RNN is not known. In such cases, the exact inverse cannot be calculated and an iterative

approach to update the weights is needed. In Widrow’s approach [15], a known pilot-signal g(k)
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is injected into the array. Then, the weights are updated using the Widrow-Hopf algorithm that
increments the weight vector in the direction of the negative gradient of the error:

Wk+1 = Wk + µ[g(k) − y(k)]X(k),

where Wk+1 is the weight vector after the kth update and µ is the step size. Griffiths’ method also
uses the LMS approach, but minimizes the mean square error based on the autocorrelation and the
cross-correlation values between the input and the output, rather than the signals themselves. Since
the mean square error can be written as

E{(g(k) − y(k))2} = Rgg − 2CT
gSW + WT RXXW,

whereRgg is the auto-correlationmatrix ofg(k) andCgS is the set of cross-correlationmatrix between
g(k) and each element of S(k), the weight update can also be done by

Wk+1 = Wk + µ[CgS − RXXWk] (32.13)

= Wk + µ[CgS − X(k)XT (k)Wk] (32.14)

= Wk + µ[CgS − y(k)X(k)] . (32.15)

In the above methods, significant distortion is observed in the primary beam due to null-steering.
Constrained LMS techniques which place constraints on the performance of the main lobe can
be used to reduce distortion [18, 19]. By specifying the broad-band response and the array beam
characteristics as constraints, more robust beams can be formed. The problem now can be formulated
as an optimization technique that minimizes the output power of the system. Given that the output
power is

E
{
y2(k)

}
= E

{
WT X(k)XT (k)W

}
= WT RXXW

= WT RSSW + WT RNNW ,

if W can be chosen such that WT RNNW = 0, the noise can be eliminated. It was proposed [18]
that once the array is steered towards the source with appropriate delays, minimizing the output
power is equivalent to removing directional interference, since in-phase signals add coherently. In
an accurately steered array, the wavefronts arriving from the direction of steering generate identical
signals at each sensor. Hence, the array may be collapsed to a single sensor implementation which
is equivalent to an FIR filter [18], i.e., the columns of the broadband array sum to an FIR filter.
Additional constraints can be placed on this FIR filter. If the weights of the filters can be written as a
matrix:

Ŵ =



w11 w12 . . . w1M

...
...

...
...

wN1 wN2 . . . wNM


 ,

then it can be specified that
∑N

i=1 wij = fj , j = 1, . . . , M , where fj , j = 1, . . . , M are the
taps of an FIR filter that provides the desired filter response. Hence, using this method, directional
interference can be suppressed by minimizing the output power and spectral interference can be
suppressed by constraining the columns of the weight coefficients.

Thus, the problem can be formulated as

Minimize: WT RXXW (32.16)

subject to: CT W = F , (32.17)
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where F is the desired FIR filter and

C =




1 0 0 . . . 0 1 0 0 . . . 0 . . . 1 0 0 . . . 0
0 1 0 . . . 0 0 1 0 . . . 0 . . . 0 1 0 . . . 0

...
...

...
...

0 0 0 . . . 1 0 0 0 . . . 1 . . . 0 0 0 . . . 1


 . (32.18)

C has M rows with NM entries on each row. The first row of C in Eq. 32.18 has ones in positions
1, (M+1), . . . , (N−1)∗M+1; the second row has ones in positions 2, (M+2), . . . , (N−1)∗M+2,
etc. Equation 32.17 can be solved using Lagrange multipliers [18]. This optimization problem can
alternatively be posed as an inverse problem.

32.2.2 Constrained Adaptive Beamforming Formulated as an Inverse Problem

Using a similar cost function and the same constraint, the system can be formulated as an inverse
problem [19]. The function to be optimized, WT RXXW = 0, can be approximated by XT W = 0.
This, combined with the constraint in Eq. 32.17 is written as:




x1 . . . xM . . . x(N−1)∗M+1 . . . xN∗M

1 . . . 0 . . . 1 . . . 0
...

...
...

0 . . . 1 . . . 0 . . . 1


 ∗




w11
...

w1M

...

wN1
...

wNM




=




0
f1
...

fM


 , (32.19)

AW = F (32.20)

This equation can be solved with any technique that can invert a matrix. There are several problems
in solving Eq. 32.20. In general, the equation can be inconsistent. In addition, the system is rank
deficient. Further, traditional methods used to solve Eq. 32.20 are not robust to errors such as round-
off errors in digital computers, measurement inaccuracies, and noise corruption. In the least squares
solution (Eq. 32.6), the noise amplification is dictated by the condition number of the error matrix,
i.e., the ratio of the highest and the lowest eigenvalues of E. In the extreme case when λmin = 0, the
system is rank-deficient. In such cases, the pseudo-inverse solution can be used.
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Any matrix A can be written using the singular value decomposition as

A = UDV T ,

where

D =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σN


 ,

then,
A−1 = V D−1UT ,

where

D−1 =




1
σ1

0 . . . 0

0 1
σ2

. . . 0
...

...
. . .

...

0 0 . . . 1
σN


 .

σ 2
i , i = 1, . . . , N are the eigenvalues of AAT . The matrices U and V are made up of the eigenvectors

of AAT and AT A, respectively.
Extending this definition to rank-deficient matrices, the pseudo-inverse can be written as

A† = V D†UT ,

where

D† =




1
σ1

0 . . . 0

0 1
σ2

. . . 0

0 0 . . . 1
σr

. . .

0
0


 ,

where r is the rank of the matrix A.
The rank-deficient system has infinite number of solutions. The pseudo-inverse solution can be

shown to be the least squares solution with minimum energy. It can also be viewed as the projection
of the least squares solution in the range space of A. An iterative technique called the Row Action
Projection (RAP) algorithm [4, 19] can be used to solve Eq. 32.20.

Row Action Projection

An effective way to find a solution for Eq. 32.20 is to use the RAP method [4], which has been
shown to be effective in providing a fast and stable solution to a system of simultaneous equations.
Traditional least squares methods need a block of data to calculate the estimate. Most of these
methods demand a lot of memory and processing power. RAP operates on only one row at a time,
which makes it a useful sample-by-sample method in adaptive signal processing. Further, the matrix
A in Eq. 32.20 is a sparse matrix. RAP has been shown to be effective in solving systems with sparse
matrices [4].

For a given system of equations,

a01w1 + a02w2 + . . . + a0,NMwNM = f0

a11w1 + a12w2 + . . . + a1,NMwNM = f1

. . . = . . .

aM1w1 + aM2w2 + . . . + aM,NMwNM = fM ,
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each equation can be viewed as a “hyperplane” in NM dimensional space. If a unique solution
exists, then it is at the point of intersection of all the hyperplanes. If the equations are inconsistent
or ill-defined, then the solution set is a region in space.

The RAP method defines an iterative method to arrive at a point in the solution set and is as
follows: Starting from an initial guess W0, the algorithm iterates over all the equations by repeatedly
projecting the solution on the hyperplanes represented by the equations. At step i + 1 the weight
vector is updated as:

Wi+1 = Wi + λ
ei

||ap||2 ap (32.21)

where ap is the pth row of A, λ is the step size, and

ei = fp − aT
p Wi (32.22)

is the error at the ith iteration. At the ith iteration, we use the pth row, where p = i mod (M + 1),
i.e., we cycle over all the equations.

The RAP method is a special case of the Projection onto Convex Sets (POCS) algorithm.
The geometrical interpretation of the above algorithm is given in Fig. 32.5. Each equation is

modeled as a hyperplane in the solution space. Here, in the figure, it is shown as a line. The initial

FIGURE 32.5: Geometrical interpretation of RAP.

guess is projected onto the first hyperplane to obtain the second guess. This point is again projected
onto the next hyperplane to get the third guess. It can be shown that by repeated projection on to
the hyperplanes, the point converges to the solution [4]. λ (0 ≤ λ ≤ 1) is called the relaxation
parameter. It dictates how far we should proceed along the direction of the estimate. It is also a
measure of confidence in the estimate, i.e., if the measurements are noisy, then usually λ is given
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a small value; if the values are relatively less noisy, then a larger value of λ can be used to speed
up convergence. The algorithm is guaranteed to converge to the actual solution (if it exists). If a
solution does not exist, then the “guess” is guaranteed to converge to the pseudo-inverse solution.
The pseudo-inverse solution is the least squares solution which minimizes the energy in the solution
vector. The RAP method provides stable estimates at each iteration. Since the method uses only one
row at a time, the system can be made adaptive, i.e., as the source moves around in the room, the
system response can be varied.

For a detailed discussion of adaptive arrays, the reader is referred to [20].

32.2.3 Multiple Beamforming

In a highly reverberant environment, many images of the sound source fall along the bore of the
beam of a single beamformer. Hence, delay-and-sum single beamformers have limited success
in combating reverberation [13]. As shown earlier, the SNR improvement is poor under severe
reverberation. Instead of forming a single beam on the source, many beams can be formed, each
directed towards the source and its major images [13]. This is called multiple beamforming. In a

multiple beamformer (Fig. 32.6), the signal-to-reverberant-noise ratio is (BN)2

BN(K−1)
= BN

(K−1)
. As B,

the number of beams, approaches K , the number of images, the SNR approaches N , or the number
of microphones. Multiple beamforming, when B = K , can be shown to be equivalent to matched
filtering.

32.3 Matched Filtering

Matched filtering techniques can be applied to microphone arrays for dereverberation. In this
technique, each microphone output is filtered by a causal approximation of the time reverse of
the impulse response to that microphone [13]. Thus, if gi(n) is the impulse response to microphone
i, then

hi(n) = gi(n0 − n) , (32.23)

and

Hi(z) = z−n0Gi

(
1

z

)
. (32.24)

Since it is desirable for the delay n0 to be suitably small, the time-reversed response is typically
truncated. But careful choice of n0 leads to a good compromise between delay of the system and high
SNR. The matched filter can also be viewed as a special case of a multiple beamformer, when a beam
is directed at every image, and when the output of the ith microphone contributing to the beam
directed to the j th image is weighted by 1

dij
, where dij is the distance of the ith microphone from the

j th image. Figure 32.7 shows the principle of a matched filter. The SNR analysis of a matched filter
is similar to the multiple beamformer when B = K .

Thus, for a source s(n) located at the focal point, the output of the system is

o(n) = s(n) ∗
{

N∑
i=1

gi(n) ∗ gi(n0 − n)

}
(32.25)

and the output for a source away from the focus is

o(t) = s(t) ∗
{

N∑
i=1

g′
i (n) ∗ gi(n0 − n)

}
, (32.26)
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FIGURE 32.6: A multiple beamformer. (Source: Flanagan, J.L., Surendran, A.C., and Jan, E.-E.,
Spatially selective sound capture for speech and audio processing, Speech Commun., 13: 207–222,
1993. With kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam,
The Netherlands).
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FIGURE 32.7: Principle of a matched filter. (Source: Flanagan, J.L., Surendran, A.C., and Jan, E.-E.,
Spatially selective sound capture for speech and audio processing, Speech Commun., 13: 207–222,
1993. With kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam,
The Netherlands).
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where g′
i (n) is the impulse response for a source located away from the focus. So, additional to

mitigating reverberation, matched filters provide volume selectivity, i.e., a focal volume of retrieval,
which depends on the spatial correlation of the impulse responses gi(n). Using microphone arrays
instead of a single microphone provides not only a smoother frequency response [22], but also a
higher SNR improvement, which, even in the worst case, asymptotically approaches N , the number
of sensors used [13]. Since each individual matched filter seeks to smooth out the spectral minima
due to other matched filters, it is desirable that the matched filters at each microphone be as different
as possible. This is a motivation to use a random distribution of sensors [22].

The aim of the matched filter is to maximize the power of the output of the array for a source
located at the focus and minimize the power of off-focus sources. This is an important property,
which we shall contrast with the exact inverse discussed in the next section.

The power of matched filtering in mitigating reverberation and suppressing interfering noise is
demonstrated through examples in Section 32.5. Figure 32.11 shows the response of a matched filter
system. It is clear that the matched filter response is similar to, but cannot be exactly, an ideal impulse,
i.e., it cannot provide an exact inverse to the room transfer function. Next, we discuss a method that
can provide an exact inverse to the room transfer function.

32.4 Diophantine Inverse Filtering Using the Multiple
Input-Output (MINT) Model

Miyoshi and Kaneda [23] proposed a novel method to find the exact inverse of a point in a room by
using multiple inputs and outputs, each input-output pair modeled by an FIR system. For example,
a two-input single-output system is described by the two speaker-to-single-microphone responses,
G1(z) and G2(z). The inputs need to be pre-processed by the two FIR filters, H1(z) and H2(z), such
that

H1(z)G1(z) + H2(Z)G2(Z) = 1 . (32.27)

This is a Diophantine equation which has an infinite number of solutions. That is, if H1(z) and
H2(z) satisfy Eq. 32.27, then

H ′
1 = H1(z) + G2(z)K(z) (32.28)

H ′
2 = H2(z) − G1(z)K(z) , (32.29)

where K(z) is an arbitrary polynomial, is also a solution for Eq. 32.27. But, if G1(z) and G2(z) do
not have common zeros in the z-plane, and if the orders of H1(z) and H2(z) are less than that of
G2(z) and G1(z), respectively, by Euclid’s theorem, a unique solution is guaranteed to exist [23, 24].

The above system can be used with a microphone array for dereverberation (Fig. 32.1). The
problem is to find Hi(z), i = 1, 2, .., N such that

G1(z)H1(z) + G2(z)H2(z) + ... + GN(z)HN(z) = 1 . (32.30)

As the number of microphones in the array increases, the chances that all the Gi(z)s share a common
zero in the z-plane diminishes. This assures that the multiple microphone system yields a unique
and exact solution.

In time domain, the previous expression can be written as:

d(k) = g1(k) ∗ h1(k) + · · · + gN(k) ∗ hN(k) , (32.31)
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where N is the number of microphones. Now,




g1(0) gN(0)

g1(1) gN(1)
... · · · 0 · · · ... · · · 0

g1(m) · · · g1(0) · · · gN(l) · · · gN(0)

0 · · · g1(1) · · · 0 · · · gN(1)

0 · · · ... · · · 0 · · · ...

g1(m) gN(l)







h1(0)
...

h1(i)
...

hN(0)
...

hN(k)




=




1
0
...

0


 , (32.32)

(G1 · · · GN)




H1
...

HN


 = D (32.33)

Thus, 


H1
...

HN


 = (G1 · · · GN)−1D (32.34)

The RAP algorithm described on page 32-9 is an effective method to solve Eq. 32.34. In the MINT
modeling, even if the different Gi(z)s share a common zero, RAP can provide a stable inverse. Even
if the data are “noisy”, or if the system is ill-conditioned, the algorithm is guaranteed to converge.
From computer simulations, it can be shown that the solution converges very fast (see Fig. 32.8).
Hence, the system can adapt to the varying conditions without having to recalculate the FIR filters.

Figure 32.8 shows the rate of convergence of the RAP algorithm when the number of microphones
in the array is varied. The results suggest that increasing the number of microphones used in the
array increases the speed of convergence and also provides more accurate results.

32.5 Results

In this section, computer simulations are presented to demonstrate the effect of matched filtering
and the Diophantine inverse filtering method. A room (20× 16× 5 m in size) was simulated using
the image model [10]. The source was located at (14,9.5,1.7)m. 5th order images were assumed and
wall reflectivity was assumed to be α = 0.1. Sensor spacing was considered to be 40 cm. A large
spacing between sensors was chosen to make the impulse responses as dissimilar as possible.

The SNR of the output was calculated using the formula:

SNR(dB) = 10 log10

∑
s (n)2∑

(y(n) − s(n))2
(32.35)

where s(n) is the input speech signal and y(n) is the output speech signal. The two signals are
sufficiently staggered to account for the delay in the processing.

The signal-to-noise-ratios were calculated as follows:

No. of mics SNR

2 15 dB
3 27 dB
4 37 dB
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FIGURE 32.8: Rate of convergence of RAP for calculating the exact inverse filters.
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For comparison, the SNR gains of a single beamforming, multiple beamforming, and matched
filter linear arrays using five microphones are presented below. The multiple beamformer has one
beam directed at each image of the source.

Method SNR

Single beamformer -1 dB
Multiple beamformer 11 dB

Matched filter 13 dB

Figure 32.9 shows the impulse response of the room using an unsteered array system consisting
of four microphones. Figures 32.10 and 32.11 are the system responses of a single beamformer and
the matched filter. The matched filter system response is a much better approximation of an ideal
impulse than the single beamformer. But the tail of the response is still significant compared to the
exact inverse system (Fig. 32.12) whose final response is very close to an ideal impulse.

FIGURE 32.9: Impulse response of a room (images up to 5th order are used).

For obtaining the same SNR gain, the exact inverse requires a lesser number of microphones than
either the matched filter or the multiple beamformer. The Diophantine inverse filtering method
does not suffer from the effects of spatial aliasing that may affect traditional beamformers using
periodically spaced microphones. Finding the exact inverse is also more computationally intensive
than matched filtering or multiple beamforming.

32.5.1 Speaker Identification

A simple speaker identification experiment was done to test the acoustic fidelity of the exact inverse
system. The dimensions of the simulated room, the location of the source and the other conditions
was assumed to be identical to the experiment reported in the previous section. A part of the TIMIT
database with 38 speakers, all from the New England area, was used. Five sentences were used for
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FIGURE 32.10: Response of a single beamformer for a source located on the axis.

training and five were used for testing. Twelve cepstral vectors were used and a Learning Vector
Quantizer (LVQ) was used for identification [25].

Speaker identification accuracy for the exact inverse system:

Testing data

Training data CLS (%) One mic (%) Array output (%)

CLS 91.6 36.3 90

Array output 92.6

Speaker identification accuracy for the exact inverse system when an interfering Gaussian noise source at
15 dB signal-to-competing noise ratio is present:

Testing data

Training data CLS (%) One mic (%) Array output (%)

CLS 91.6 14.2 9.5

Array output 49

The identification accuracy when trained and tested on clean speech recorded through a close
talking microphone (CLS) was 91.6%. The performance dropped to 36.3% when the same system
was tested on a single microphone located at the center of the array. Once the Diophantine inverse
filtering was used to clean up the speech, the performance jumped back to 90%. The identification
accuracy when the system was trained and tested on the Diophantine inverse filtered output was
92.6%.

But the performance was poor even in the presence of modest interference. When a Gaussian
noise source at 15 dB signal-to-competing noise ratio levels was introduced at (3.0,5.0,1.0)m, the
performance on the output of the exact inverse filtering system (9.5%) was worse than the single
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FIGURE 32.11: Response of a matched filtering system for a source located at the focus.

microphone (14.2%). Under matched training and testing conditions, the performance of the exact
inverse system was significantly lower (49%).

Recently, speaker identification results were reported on the output of a matched-filtered sys-
tem [26]. The room dimensions and conditions were similar to the ones in this report and the data
sets used for training and testing were the same. The performance under matched conditions for
close talking microphone was 94.7% and for the matched filtered output was 88.4%. In the presence
of an interfering source producing Gaussian noise at 15 dB signal-to-competing noise ratio levels, the
performance when trained on close talking microphone and tested on the matched filtered output
was 80%; the performance when trained and tested on the matched filtered output in the presence
of noise was approximately 88% [26].

From these results, it is clear that though the exact inverse filtering outperforms the matched filter
under clean conditions, it performs significantly poorer when there are interfering noise sources.
This can be attributed to the fact that the exact inverse system attempts to maximize the signal-to-
reverberant noise ratio (SRNR) for a source at the focus. Though it maximizes the SRNR for a source
at the focus and lowers the SRNR for any source located away from the focus, it does not guarantee
that the contribution of interfering source to the output power will also be lowered. Figure 32.13
shows the impulse response of the exact inverse system for the location of the interfering noise source.
It is clear that the SNR of the source at this location would be poor (the effective response does not
look like an ideal impulse). But the signal is effectively amplified. On the other hand, the matched
filter maximizes the output power for a source located at the focus and minimizes the output power for
all other sources thus providing lower signal-to-noise ratio improvement, but higher levels of spatial
discrimination.
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FIGURE 32.12: Response of the Diophantine inverse filtering system (the delay involved is not
shown).

FIGURE 32.13: Response of the Diophantine inverse filtering system for a source located away from
the focus.
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32.6 Summary

Microphone arrays can be successfully used in “inverting” room acoustics. A simple single beam-
former is not effective in combating room reverberation, especially in the presence of interfering
noise sources. Adaptive algorithms that project a null in the direction of the interferer can be used,
but they introduce significant distortion in the main signal. Constrained adaptive arrays mitigate
this problem but they are of limited capability in severely reverberant environments. Processing
algorithms such as multiple beamforming and matched filtering, combined with three-dimensional
array of sensors, though only providing an approximation to the inverse, give robust dereverberant
systems that provide selectivity in a spatial volume and thus immunity from interfering noise sources.
An exact inverse using Diophantine inverse filtering using the MINT model can be found. Though
this method provides a higher signal-to-noise ratio for a source at the focus, it does not provide
immunity from noise interference that the matched filtering can offer. Speaker identification results
are provided that substantiate the performance analysis of these systems.
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33.1 Introduction

A synthetic aperture radar (SAR) is a radar sensor that provides azimuth resolution superior to that
achievablewith its real beamby synthesizinga longapertureusingplatformmotion. Thegeometry for
the production of the SAR image is shown in Fig. 33.1. The SAR is used to generate an electromagnetic
map of the surface of the earth from an airborne or spaceborne platform. This electromagnetic map
of the surface contains information that can be used to distinguish different types of objects that make
up the surface. The sensor is called a synthetic aperture radar because a synthetic aperture is used to
achieve the narrow beamwidth necessary to get a high cross-range resolution. In SAR imagery the
two dimensions are range (perpendicular to the sensor) and cross-range (parallel to the sensor). The
range resolution is achieved using a high bandwidth pulsed waveform. The cross-range resolution
is achieved by making use of the forward motion of the radar platform to synthesize a long aperture
giving a narrow beamwidth and high cross-range resolution. The pulse returns collected along this
synthetic aperture are coherently combined to create the high cross-range resolution image. A SAR
sensor is advantageous compared to an optical sensor because it can operate day and night through
clouds, fog, and rain, as well as at very long ranges. At very low nominal operating frequencies, less
than 1 GHz, the radar even penetrates foliage and can image objects below the tree canopy. The
resolution of a SAR ground map is also not fundamentally limited by the range from the sensor to
the ground. If a given resolution is desired at a longer range, the synthetic aperture can simply be
made longer to achieve the desired cross-range resolution.

A SAR image may contain “speckle” or coherent noise because it results from coherent processing of
the data. This speckle noise is a common characteristic of high frequency SAR imagery and reducing
speckle, or building algorithms that minimize speckle, is a major part of processing SAR imagery
beyond the image formation stage. Traditional techniques averaged the intensity of adjacent pixels,
resulting in a smoother but lower resolution image. Advanced SAR sensors can collect multiple
polarimetric and/or frequency channels where each channel contains unique information about the
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FIGURE 33.1: SAR imaging geometry.

surface. Recent systems have also used elevation angle diversity to produce 3-D SAR images using
interferometric techniques. In all of these techniques, some sort of averaging is employed to reduce
the speckle.

The largest consumers of SAR sensors and products are the defense and intelligence communities.
These communities use SAR to locate and target relocatable and fixed objects. Manmade objects,
especially ones with sharp corners, have very bright signals in SAR imagery, making these objects
particularly easy to locate with a SAR sensor. A technology similar to SAR is inverse synthetic aperture
radar (ISAR) which employs motion of the platform to image the target in cross-range. The ISAR
data can be collected from a fixed radar platform since the target motion creates the viewing angle
diversity necessary to achieve a given cross-range resolution. ISAR systems have been used to image
ships, aircraft, and ground vehicles.

In addition to the defense and intelligence applications of SAR, there are several commercial remote
sensing applications. Because a SAR sensor can operate day and night and in all weather, it provides
the ability to collect data at regular intervals uninterrupted by natural influences. This stable source
of ground mapping information is invaluable in tracking agriculture and other natural resources.
SAR sensors have also been used to track oil spills (oil-coated water has a different backscatter than
natural water), image underground rock formations (at some frequencies the radar will penetrate
some soils), track ice conditions in the Arctic, and collect digital terrain elevation data.

Radar is an abbreviation for RAdio Detection And Ranging. Radar was developed in the 1930s and
1940s to detect and track ships and aircraft. These surveillance and tracking radars were designed
so that a target was contained in a single resolution cell. The size of the resolution cell was a critical
design parameter. Smaller resolution cells allowed one to determine the location of a target more
accurately and increased the target-to-clutter ratio, improving the ability to detect a target. In the
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1950s it was observed that one could map the ground (an extended target that takes up more than
one resolution cell) by mounting the radar on the side of an aircraft and building a surface map from
the radar returns. High range resolution was achieved by using a short pulse or high bandwidth
waveform. The cross-range resolution was limited by the size of the antenna, with the cross-range
resolution roughly proportional to R/La where R is the range from the sensor to the ground and
La is the length of the antenna. The physical length of the antenna was constrained, limiting the
resolution. In 1951, Carl Wiley of the Goodyear Aircraft Corporation noted that the reflections from
two fixed targets in the antenna beam, but at different angular positions relative to the velocity vector
of the platform, could be resolved by frequency analysis of the along track (or cross-range) signal
spectrum. Wiley simply observed that each target had different Doppler characteristics because of its
relative position to the radar platform and that one could exploit the Doppler to separate the targets.
The Doppler effect is, of course, the change in frequency of a signal transmitted or received from a
moving platform discovered by Christian J. Doppler in 1853:

fd = ν/λ

where fd is the Doppler shift, ν is the radial velocity between the radar and target, and λ is the
radar wavelength. While the Doppler effect had been used in radar processing before the 1950s to
separate moving targets from stationary ground clutter, Wiley’s contribution was to discover that
with a side looking airborne radar (SLAR), Doppler could be used to improve the cross-range spatial
resolution of the radar. Other early work on SAR was done independently of Wiley at the University
of Illinois and the University of Michigan during the 1950s. The first demonstration of SAR mapping
was done in 1953 by the University of Illinois by performing frequency analysis of data collected by
a radar operating at a 3-cm wavelength from a C-46 aircraft. Much work has been accomplished
perfecting SAR hardware and processing algorithms since the first demonstration. For a much
more detailed description of the history of SAR including the development of focused SAR, phase
compensation techniques, calibration techniques, and autofocus, see the recent book by Curlander
and McDonough [1].

Before offering a brief description of some processing approaches for forming, enhancing, and
interpreting SAR imagery, we give two examples of existing SAR systems and their applications. The
first systemis theShuttle ImagingRadar (SIR)developedby theNASAJetPropulsionLaboratory (JPL)
and flown on several space shuttle missions. This system was designed for non-military collection
of geographic data. The second example is the Advanced Detection Technology Sensor (ADTS)
built by the Loral Corporation for the MIT Lincoln Laboratory. The ADTS sensor was designed to
demonstrate the capability of a SAR to detect and classify military targets. Table 33.1 contains the
basic parameters for the ADTS and SIR SAR systems along with details on several other SAR systems.

Figure 33.2 shows an example image formed from data collected by the SIR SAR. The JPL engineers
describe this image as follows:

This is a radar imageofMountRainier inWashington state... This imagewasacquired
by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-
SAR) aboard the space shuttle Endeavor on its 20th orbit on October 1, 1994. The area
shown in the image is approximately 59 kilometers by 60 kilometers (36.5 miles by 37
miles). North is toward the top left of the image, which was composed by assigning red
and green colors to the L-band, horizontally transmitted and vertically received, and
the L-band, horizontally transmitted and vertically received. Blue indicates the C-band,
horizontally transmitted and vertically received. In addition to highlighting topographic
slopes facing the space shuttle, SIR-C records rugged areas as brighter and smooth areas
as darker. The scene was illuminated by the shuttle’s radar from the northwest so that
northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested
regions are pale green in color; clear cuts and bare ground are bluish or purple; ice is

c©1999 by CRC Press LLC



TABLE 33.1 Example SAR Systems
Resolution Swath

Platform Bands polarization (m) width Interferometry

JPL AIRSAR C, L, P–Full 4 10–18 km Cross track L,C
Along track L,C

SIR-C/X-SAR C, L–Full, X - VV 30 × 30 15–90 Multi-pass

ERIM IFSARE X–HH 2.5 × 0.8 10 km Cross track

ERIM DCS X–Full < 1 1 km Cross track

MIT LL ADTS Ka (33 GHz)–Full 0.33 400 m Multi-pass

NORDEN G11 Ku–VV 1,3 5 km 3 Along track
3 Cross track
Phase centers

SRI UWB 100–300 MHz, 1 × 1 400–600 m None

FOLPEN 2 200–400 MHz,
300–500 MHz,
HH

LORAL UHF 500–800 MHz, 0.6 × 0.6 280 m None
MSAR Full

NAWC P-3 C, L, X–Full 1.5 × 0.7 5 km Along track X,C

NAWC P-3 600 MHz–Full 0.33 × 0.66 930 km None
UWB Upgrade tunable over 200–

900 MHz

Tier II+ UAV X 1 and 0.3 10 km None
SAR

dark green and white. The round cone at the center of the image is the 14,435-foot
(4,399-meter) active volcano, Mount Rainier. On the lower slopes is a zone of rock
ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The
western boundary of Mount Rainier National Park is seen as a transition from protected,
old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright
purple/blue) and partially regrown timber plantations (pale blue).

Figure 33.3 is an example image collected by the ADTS system. The ADTS system operates at a
nominal frequency of 33 GHz and collects fully polarimetric, 1-ft resolution data. This image was
formed using the polarimetric whitening filter (PWF) combination of three polarimetric channels
to reduce the speckle noise. The output of the PWF is an estimate of radar backscatter intensity. The
image displayed in Fig. 33.3 is based on a false color map which maps low intensity to black followed
by green, yellow, and finally white. The color map simply gives the non-color radar sensor output
false colors that make the low intensity shadows look black, the grass look green, the trees look yellow,
and bright objects look white. This sample image was collected near Stockbridge, New York, and is
of a house with an above ground swimming pool and several junked cars in the backyard. The radar
is at the top of the image looking down at a 20◦ depression angle. The scene contains large areas of
grass or crops and some foliage. Note the bright returns from the manmade objects, including the
circular above-ground swimming pool, and strong corner reflector scattering from some of the cars
in the backyard. Also note the relatively strong return from the foliage canopy. At this frequency the
radar does not penetrate the foliage canopy. Note the shadows behind the trees where there is no
radar illumination.

In this chapter on SAR algorithms, we give a brief introduction to the image formation process
in Section 33.2. We review a few simple algorithms for reducing speckle noise in SAR imagery
and automatic detection of manmade objects in Section 33.3. We review a few simple automatic
object classification algorithms for SAR imagery in Section 33.4. This brief introduction to SAR only
contains a few example algorithms. In the Section “Further Reading”, we recommend some starting
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FIGURE 33.2: SAR image of Mt. Rainier in Washington State taken from shuttle imaging radar.

points for further reading on SAR algorithms, and discuss several open issues under current research
in the SAR community.

33.2 Image Formation

In this section, we discuss some basic principles of SAR image formation. For more detailed infor-
mation about SAR image formation, the reader is directed to the references given at the end of this
chapter. One fundamental scenario under which SAR data is collected is shown in Fig. 33.1. An
aircraft flies in a straight path at a constant velocity and collects radar data at a boresight of 90◦. In
practice it is impossible for an aircraft to fly in a perfectly straight line at a constant velocity (at least
within a wavelength), so motion (phase) compensation of the received radar signal is needed to ac-
count for aircraft perturbations. The radar on the aircraft transmits a short pulsed waveform or uses
frequency modulation to achieve high range resolution imaging of the surface. The pulses collected
from several positions along the trajectory of the aircraft are coherently combined to synthesize a long
synthetic aperture in order to achieve a high cross-range resolution on the surface. In this section,
we first discuss SLAR where only range processing is performed. Next, we discuss unfocused SAR
where both range and cross-range processing are executed. Finally, we discuss focused SAR where
“focusing” is performed in addition to range and cross-range processing to achieve the highest reso-
lution and best image quality. At the end of this section we briefly mention several other important
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FIGURE 33.3: SAR image near Stockbridge, New York, collected by the ADTS.

SAR image formation topics such as phase compensation, clutter-lock, autofocus, spotlight SAR, and
ISAR. The details of these topics can be found in [1]–[3].

33.2.1 Side-Looking Airborne Radar (SLAR)

SLAR is the earliest radar system for remote surveillance of a surface. These radar systems could
only perform range processing to form the 2-D reflectivity map of the surface, so the cross-range
resolution is limited by the real antenna beamwidth. These SLAR systems typically operated at high
frequencies (microwave or millimeter-wave) to maximize the cross-range resolution. We cover SLAR
systems because SLAR performs the same range processing as SAR, and the limitations of a SLAR
motivate the need for SAR processing.

The resolution of a SLAR system is limited by the radar pulse width in the range dimension, and
the beamwidth and slant range in the cross-range dimension:

δr = cT /2 cosη

δcr = Rλ/La

where we represent the approximate 3-dB beamwidth of the antenna by λ/La, δr is the range resolu-
tion, δcr is the cross-range resolution, c is the speed of wave propagation, T is the compressed pulse
width, η is the angle between the radar beam and the surface, R is the slant range to the surface, λ is
the wavelength, and La is the length of the antenna.

The goal is to design the SLAR with a narrow beamwidth, short slant range, and a short pulsewidth
to achieve high resolution. In practice, the pulsewidth of the radar is limited by hardware constraints
and the amount of “energy on target” required to get sufficient signal-to-noise ratio to obtain a good
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image. To achieve a high range resolution without a short pulse, frequency modulation can be used
to synthesize an effectively short pulse. This process of generating a narrow synthetic pulsewidth is
called pulse compression. The approach is to introduce a modulation on the transmitted pulse, and
then pass the received signal through a filter matched to the transmit signal modulation. The most
common transmit waveforms used for pulse compression are linear FM (or chirp) and phase coded.
Some radars use a digital version of linear FM called a stepped frequency waveform.

We illustrate pulse compression with the ideal application of the linear FM waveform. The square
pulse is modulated by a linear FM signal, and the resulting transmit signal is

s(t) =



cos
(
ω0† − 1

2µ†2
)

|†| ≤ T/2

0 |†| > T/2

where the bandwidth (frequency deviation) introduced by the linear FM is

1f = T µ/2π

If this transmit pulse is perfectly reflected from a stationary point target, range losses are ignored, and
we shift in time to remove the two-way delay; the received signal is exactly the same as the transmitted
signal. The matched filter response for the transmitted signal is

h(t) =
(

2µ

π

)1/2

cos

(
ω0† + 1

2
µ†2

)

The output of the received signal applied to the matched filter is:

9(†) =
(

µT 2

2π

)1/2
sin(µT †/2)

(µT †/2)
Re

[
e
j
(
ω0†+ 1

2µ†2+π/4
)]

This output has a mainlobe that has a 4-dB beamwidth of 1/1f . The resulting compressed pulse
can be significantly narrower than the width of the transmitted pulse with a pulse compression ratio
of T 1f . The range resolution of the radar has been increased by this pulse compression factor and
is now given by:

δr ≈ c/21f cosη

Note that the range resolution in the ideal case is now completely independent of the physical width
of the transmitted pulse. Performing range compression against real radar targets that Doppler shift
the frequency of the receive signal introduces ambiguities resulting in additional signal processing
issues that must be addressed. There is a trade-off between the ability of a radar waveform to resolve
a target in range and frequency. The performance of a waveform in range-frequency space is given
by its ambiguity. The ambiguity function is the output of the matched filter for the signal for which
it is matched and for frequency shifted versions of that signal. The references contain a much more
detailed description of ambiguity functions and radar waveform design.

Using pulse compression, a SLAR system can achieve a very high range resolution on the order
of 1 ft or less, but the cross-range resolution of the SLAR is limited by the physical beamwidth of
the antenna, the operating frequency, and the slant range. This cross-range resolution limitation of
SLAR motivates the use of a synthetic array antenna to increase the cross-range resolution.

33.2.2 Unfocused Synthetic Aperture Radar

Figure 33.1 provides a good geometric description of SAR. As with SLAR, the radar platform moves
along a straight line collecting radar data from the surface. The SAR system goes one step further than
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SLAR by coherently combining pulses collected along the flight path to synthesize a long synthetic
array. The beamwidth of this synthetic aperture is significantly narrower than the physical beamwidth
(real beam) of the real antenna. The ideal synthetic beamwidth of this synthetic aperture is

θB = λ/2Lθ

The factor of two results from the two-way propagation from the moving platform. The unfocused
SAR can be implemented by performing FFT processing in the cross-range dimension for the samples
in each range bin. This is simply the conventional beamformer for an array antenna. The difference
between SAR and real beam radar is that the aperture samples that comprise the SAR are collected
at different times by a moving platform. There are several design constraints on a SAR system,
including:

• The speed of the platform and pulse repetition rate (PRF) of the radar must be mutually
selected so that the sample points of the synthetic array are separated by less than λ/2 to
avoid grating lobes.

• The PRF must be selected so that the swath width is unambiguously sampled.

• A point on the ground must be visible to the radar real beam across the entire length of the
synthetic array. This limits the size of the real beam antenna. This constraint leads to the
observation that with SAR, the smaller the real-beam antenna, the better the resolution,
whereas with SLAR the larger the real-beam antenna, the better the resolution.

• The SAR assumes that a ground target has an isotropic signal across the collection angle
of the radar platform as it flies along the synthetic array.

The resolution of the unfocused SAR is limited because the slant range to a scatterer at a fixed location
on the surface changes along the synthetic aperture. If we limit the synthetic aperture to a length so
that the range from every array point in the aperture to a fixed surface location differs by less than
λ/8, then the cross-range resolution of the unfocused SAR is limited to:

δcr = √
Rλ/2

33.2.3 Focused Synthetic Aperture Radar

The cross-range limitation of an unfocused SAR can be removed by focusing the data, as in optics.
The focusing procedure for the SAR involves adjusting the phase of the received signal for every
range sample in the image so that all of the points processed in cross-range through the synthetic
beamformer appear to be at the same range. The phase error at each range sample used to form the
SAR image is

1φ = 2π

λ

(
d2
n

R

)
radiar

where dn is the cross-range distance from the beam center, R is the slant range to the point on the
ground from the beam center, and λ is the wavelength. The range samples can be focused before
cross-range processing by removing this phase error from the phase history data. Note that each data
point has a different phase correction based on the along-track position of the sensor and the point’s
range from the sensor.

When focusing is performed, the resulting SAR image resolution is independent of the slant range
between the sensor and ground. This can be shown as follows:

δcr = Rθs
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where,

θs ≈ λ

2Le

and Le ≈ Rλ

La

therefore,
δcr ≈ La/2

The effective beamwidth of the synthetic aperture is approximately λ/2Le where the factor of two
comes from the two-way propagation of the energy (the exact effective beamwidth depends on the
synthetic array taper used to control sidelobes). The length of the effective aperture (Le) is limited
by the fact that a given scatterer on the surface must be in the mainbeam of the real radar beam for
every position along the synthetic aperture. The result is that the resolution of the SAR when the
data is focused is approximately La/2.

SAR processing can also be developed by considering the Doppler of the radar signal from the
surface as first done by Wiley in 1951. When the real beamwidth of the SAR is small, a point on
the surface has an approximately linearly decreasing Doppler frequency as it passes through the
main beam of the real SAR beamwidth. This time varying Doppler frequency has been shown to be
approximately:

fd(t) = 2ν2|t − t0|
λR

where ν is the velocity of the platform and t0 is the time that the point scatterer is in the center
of the main beam. The change in Doppler frequency as the point passes through the main beam is
2ν2Td/λR, andTd is the time that thepoint is in themainbeam. Aswith linearFMpulse compression,
covered in Section 33.2.1, this Doppler signal can be processed through a filter to produce a higher
cross-range resolution signal which is limited by the size of the real aperture just as with the synthetic
antenna interpretation (δcr = La/2). In a modern SAR system, typically both pulse compression
(synthetic rangeprocessing)anda synthetic aperture (synthetic cross-rangeprocessing)are employed.
In most cases, these transformations are separable where the range processing is referred to as “fast
time” processing and the cross-range processing is referred to as “slow-time” processing.

A modern SAR system requires several additional signal processing algorithms to achieve high
resolution imagery. In practice, the platform does not fly a straight and level path, so the phase
of the raw receive signal must be adjusted to account for aircraft perturbations, a procedure called
motion compensation. In addition, since it is difficult to exactly estimate the platform parameters
necessary to focus the SAR image, an autofocus algorithm is used. This algorithm derives the platform
parameters from the raw SAR data to focus the imagery. There is also an interpolation algorithm
that converts from polar to rectangular formats for the imagery display. Most modern SAR systems
form imagery digitally using either an FFT or a bank of matched filters. Typically, a SAR will operate
in either a stripmap or spotlight mode. In the stripmap mode, the SAR antenna is typically pointed
perpendicular to the flight path (although it may be squinted slightly to one side). A stripmap SAR
keeps its antenna position fixed and collects SAR imagery along a swath to one side of the platform.
A spotlight SAR can move its antenna to point at a position on the ground for a longer period of
time (thus actually achieving cross-range resolutions even greater than the aperture length over two).
Many SAR systems support both stripmap and spotlight modes, using the stripmap mode to cover
large areas of the surface in a slightly lower resolution mode, and spotlight modes to perform very
high resolution imaging of areas of high interest.

33.3 SAR Image Enhancement

In this section we review a few techniques for removing speckle noise from SAR imagery. Removing
the speckle can make it easier to extract information from SAR imagery and improves the visual
quality.
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Coherentnoiseor speckle canbeamajordistortion inhigh resolution, high frequencySAR imagery.
The speckle is caused when the intensity of a resolution cell results from the coherent combination
of many wavefronts resulting from randomly oriented clutter surfaces within a resolution cell. These
wavefronts can combine constructively or destructively resulting in intensity variations across the
image. When the number of wavefronts approaches infinity (i.e., large resolution cell collected by a
high frequency radar) the Rayleigh clutter model can be used to represent the speckle under the right
statistical assumptions. When the number of wavefronts is less than infinity, the K-distribution and
other product models do a better job of theoretically and empirically modeling the clutter.

When the combination of the radar system design and clutter properties results in images that
contain large amounts of speckle, it is desirable to perform additional processing to reduce the speckle.
One approach for speckle reduction is to noncoherently spatially average adjacent resolution cells,
sacrificing resolution for the speckle reduction. This spatial averaging can be performed as a part
of the image formation analogous to the Bartlett method of spectral estimation. Another approach
for reducing speckle is to average across polarimetric channels if multiple polarimetric channels are
available.

The polarimetric whitening filter (PWF) reduces the speckle content while preserving the image
resolution. The PWF was derived by Novak et al. [5] as a quadratic filter that minimizes a specific
speckle metric (defined as the ratio of the clutter standard deviation to its mean). The PWF first
whitens the polarimetric data with respect to the clutter’s polarimetric covariance, and then nonco-
herently averages across the polarimetric channels. This whitening filter essentially diagonalizes the
covariance matrix of the complex backscatter vector [HH, HV, V V ]T , such that the resulting new
linear polarization basis [HH ′, HV ′, V V ′]T has equal power in each component, where:


 HH ′

HV ′
V V ′


 =




HH
HV√

ε

V V −ρ∗√γHH√
γ (1−|ρ|2)


 (33.1)

where

ε = E
(|HV |2)

E
(|HH |2) , γ = E

(|W |2)
E

(|HH |2) , ρ = E (HH · W ∗)√
E

(|HH |2) · E
(|W |2) (33.2)

The polarization scattering matrix (using a linear-polarization basis) can then be expressed as

∑
= σHH

d 1 0 ρ
√

γ e
| 0 ε 0 |

b ρ∗√γ 0 γ c
(33.3)

The pixel intensity (power) is then derived through non-coherent averaging of the power in each of
the new polarization components,

Y = |HH |2 +
∣∣∣∣HV√

ε

∣∣∣∣
2

+
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W − ρ∗√γHH√

γ
(
1 − |p|2)

∣∣∣∣∣∣
2

(33.4)

yielding a minimal speckle image at the original image resolution. Novak et al. [5] have shown that
on the ADTS SAR data, the PWF reduces the clutter standard deviation by 2.0 to 2.7 dB compared
with the standard deviation of single-polarimetric-channel data. The PWF has a dramatic effect on
the visual quality of the SAR imagery and the performance of automatic detection and classification
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algorithms applied to SAR images. The PWF does not take into account the effect of the speckle
reduction operation on target signals. It only minimizes the clutter. There has been recent work on
polarimetric speckle reduction filters that both reduce the clutter speckle while preserving the target
signal. Fig. 33.4 shows the three polarimetric channels and the resulting PWF image for an ADTS
SAR chip of a target-like object.

FIGURE 33.4: Polarimetric processing of SAR data to reduce speckle.

33.4 Automatic Object Detection and Classification in
SAR Imagery

SAR algorithmic tasks of high interest to the defense and intelligence communities include automatic
target detection and recognition (ATD/R). Since SAR imagery has very different target and clutter
characteristics as compared with visual and infrared imagery, uniquely designed ATD/R algorithms
are required for SAR data. In this section, we describe a few basic ATD/R algorithms that have been
developed for high resolution, high frequency SAR imagery (10 GHz or above) [6, 7, 8].

Performing target detection and classification against remote sensing imagery and, in particular,
SAR imagery is very different from the classical pattern recognition problem. In the classical pattern
recognition problem, we have models defining N classes, and the goal is to design a classifier to
separate sensor data into one of the N classes. In SAR target classification, the imagery contains
regions of diffuse clutter which can be represented to some degree by models, but the imagery also
contains a possibly uncountable set of target-like discrete unknown and unmodelable objects. The
goal is to reject both the diffuse clutter and the unknown discrete objects and to classify the target
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objects. This need to handle the unknown object means that the classifier must have the unknown
class as a possible outcome of the classifier. Since the unknown class cannot be modeled, most SAR
ATR systems solve the problem by employing a distance metric to compare the sensor data with
models for each target of interest, and if the distance is too great, the data is classified as an unknown
object.

Another design issue for a SAR ATD/R system is the need to process hundreds of square kilometers
of data in near real-time to be of practical benefit. One widely used approach for solving this
computational problem is to use a simple focus-of-attention or pre-detection algorithm to reject
most of the diffuse clutter and pass only regions of interest (ROI), including all of the targets. These
ROIs are then processed through a set of computationally more complicated classifiers which classify
objects in the ROIs as one of the targets or as an unknown object.

In high frequency SAR imagery most target signatures have extremely bright peaks caused by
physical corners on the target. One effective pre-detection technique involves applying a single pixel
detector to find the bright pixels caused by corner reflectors on the targets. Since the background
clutter power is unknown and varies across the image, we cannot simply use a thresholding operation
to find these bright pixels. One approach for handling the unknown clutter power is to estimate it
from clutter samples surrounding a test pixel. This approach for target detection is referred to as a
constant false alarm rate (CFAR) detector because with the proper clutter and target models, it can
be shown that the output of the detector has a constant false alarm rate in the presence of unknown
clutter parameters. Fig. 33.5 depicts one design for a CFAR template. The clutter parameters are
estimated using the auxiliary samples along a box with a test sample in the center. This test sample
may or may not be on a target. The size of the box containing the auxiliary samples is sized so that
the auxiliary samples do not overlap a target when the test sample is on the target. We also need to
keep the size of the box containing the auxiliary samples as small as possible, so that we get a good
local estimate of the clutter parameters. With these design constraints, a good choice for the CFAR
template is just over twice the maximum dimension of the targets of interest.

FIGURE 33.5: CFAR template.

One of these CFAR algorithms, first developed by Goldstein [9], is referred to as the two parameter
CFAR or the log-t test:
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where x is the test sample, and y1, . . . , yN are the auxiliary samples. This test is performed for
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every pixel in the SAR scene and the output is thresholded with the threshold t . When N is large,
the test statistic is approximately Gaussian if the SAR data is log normally distributed. In this case,
Gaussian statistics can be used to determine the threshold for a given probability of false alarm. In
practice, it is much more accurate to determine the threshold with a set of training data. This is
primarily a corner reflector detector, and the output will almost always get more than one detection
per target. In practice, a simple clustering algorithm can be used based on the size of the targets
and the expected spacing of targets to get one detection per target and reduce the number of false
alarms which are usually also clustered. The two-parameter CFAR test is one example of a simple
SAR target detector. Researchers have also developed more sophisticated ordered statistic detectors,
multi-polarimetric channel detectors, and feature-based discriminators to get improved SAR target
detector performance [6, 7, 8].

This simple pre-detector gets a large number of false alarms (hundreds per square kilometer in
single polarimetric channel, one foot resolution imagery) [5]. In order to further reduce the false
alarm rate and classify the targets, further processing is necessary on the output of the pre-detector.
One widely used approach for performing this classification operation is to apply a linear filter bank
classifier to the ROIs identified by the pre-detector. Researchers have developed a large number
of approaches for designing these linear filter bank classifiers including spatial matched filters [7],
synthetic discriminant functions [7], and vector quantization/learning vector quantization [8]. The
simplest approach is to build the spatial matched filters by breaking the target into angle subclasses,
and averaging the training signatures in a given angle subclass to represent that subclass. In practice,
the templates must be normalized because the absolute energy of a given target signature is unknown.
The exact location of a target in the ROI is also unknown, so the matched filter must be applied for
every possible spatial position of the target. This is performed more efficiently in the frequency
domain as follows:

ρij = max
{
FFT −1 [

FFT
(
tij

) · FFT (x)∗
]}

where x is a ROI and tij is the spatial matched filter representing the ith target and the j th angle
subclass of that target. The ρij is computed for every angle subclass of every target, and the maximum
represents the estimate of the correct target and angle subclass. The output can be thresholded to
reject false alarms. In practice the level of the threshold is determined by testing on both target and
false alarm data.

In this section, we have reviewed a few basic concepts in SAR ATD/R. For a much more detailed
treatment of this topic, consult the references and the recommended further reading given below.
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Further Reading and Open Research Issues

Averybrief overviewofSARwitha fewexample algorithms is givenhere.The items in the reference list
give a more detailed treatment of the topics covered in this chapter. SAR is a very active research topic.
Articles on SAR algorithms are regularly published in many journals and conferences, including:

Journals

IEEE Transactions on Aerospace and Electronic Systems, IEEE Transactions on Geoscience and
Remote Sensing, IEEE Transactions on Antennas and Propagation, IEEE Transactions on Signal
Processing, and IEEE Transactions on Image Processing.

Conferences

IEEE National Radar Conference, IEEE International Radar Conference, and the International
Society for Optical Engineering (SPIE) has several SAR Conferences.

There are numerous open areas of research on SAR signal processing algorithms including:

• Still developing an understanding of the utility and applications of multi-polarimetric,
multi-frequency, and 3-D SAR.

• Performance/robustness of model-based image formation not completely understood.

• Performance/robustness of different detection, discrimination, and classification algo-
rithms given radar, clutter, and target parameters not completely understood.

• No fundamental theoretical understanding of performance limitations given radar, clut-
ter, and target parameters (i.e., no Shannon theory).
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34.1 Introduction

In this chapter we consider a class of iterative restoration algorithms. If y is the observed noisy and
blurred signal, D the operator describing the degradation system, x the input to the system, and n

the noise added to the output signal, the input-output relation is described by [3, 51]

y = Dx + n. (34.1)

Henceforth, boldface lower-case letters represent vectors and boldface upper-case letters represent a
general operator or a matrix. The problem, therefore, to be solved is the inverse problem of recovering
x from knowledge of y, D, and n. Although the presentation will refer to and apply to signals of any
dimensionality, the restoration of greyscale images is the main application of interest.

There are numerous imaging applications which are described by Eq. (34.1) [3, 5, 28, 36, 52].
D, for example, might represent a model of the turbulent atmosphere in astronomical observations
with ground-based telescopes, or a model of the degradation introduced by an out-of-focus imaging
device. D might also represent the quantization performed on a signal, or a transformation of it, for
reducing the number of bits required to represent the signal (compression application).
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The success in solving any recovery problem depends on the amount of the available prior infor-
mation. This information refers to properties of the original signal, the degradation system (which
is in general only partially known), and the noise process. Such prior information can, for example,
be represented by the fact that the original signal is a sample of a stochastic field, or that the signal
is “smooth,” or that the signal takes only nonnegative values. Besides defining the amount of prior
information, the ease of incorporating it into the recovery algorithm is equally critical.

After the degradation model is established, the next step is the formulation of a solution approach.
This might involve the stochastic modeling of the input signal (and the noise), the determination
of the model parameters, and the formulation of a criterion to be optimized. Alternatively it might
involve the formulation of a functional to be optimized subject to constraints imposed by the prior
information. In the simplest possible case, the degradation equation defines directly the solution
approach. For example, if D is a square invertible matrix, and the noise is ignored in Eq. (34.1),
x = D−1y is thedesiredunique solution. Inmost cases, however, the solutionofEq. (34.1) represents
an ill-posed problem [56]. Application of regularization theory transforms it to a well-posed problem
which provides meaningful solutions to the original problem.

There are a large number of approaches providing solutions to the image restoration problem. For
recent reviews of such approaches refer, for example, to [5, 28]. The intention of this chapter is to
concentrate only on a specific type of iterative algorithm, the successive approximation algorithm,
and its application to the signal and image restoration problem. The basic form of such an algorithm
is presented and analyzed first in detail to introduce the reader to the topic and address the issues
involved. More advanced forms of the algorithm are presented in subsequent sections.

34.2 Iterative Recovery Algorithms

Iterative algorithms form an important part of optimization theory and numerical analysis. They
date back at least to the Gauss years, but they also represent a topic of active research. A large
part of any textbook on optimization theory or numerical analysis deals with iterative optimization
techniques or algorithms [43, 44]. In this chapter we review certain iterative algorithms which have
been applied to solving specific signal recovery problems in the last 15 to 20 years. We will briefly
present some of the more basic algorithms and also review some of the recent advances.

Avery comprehensivepaperdescribing the various signal processing inverseproblemswhich canbe
solvedby the successive approximations iterative algorithmis thepaperbySchafer et al. [49]. Thebasic
idea behind such an algorithm is that the solution to the problem of recovering a signal which satisfies
certain constraints from its degraded observation can be found by the alternate implementation
of the degradation and the constraint operator. Problems reported in [49] which can be solved
with such an iterative algorithm are the phase-only recovery problem, the magnitude-only recovery
problem, the bandlimited extrapolation problem, the image restoration problem, and the filter design
problem [10]. Reviews of iterative restoration algorithms are also presented in [7, 25]. There are
certain advantages associated with iterative restoration techniques, such as [25, 49]: (1) there is no
need to determine or implement the inverse of an operator; (2) knowledge about the solution can
be incorporated into the restoration process in a relatively straightforward manner; (3) the solution
process can be monitored as it progresses; and (4) the partially restored signal can be utilized in
determining unknown parameters pertaining to the solution.

In the following we first present the development and analysis of two simple iterative restoration
algorithms. Such algorithms are based on a simpler degradation model, when the degradation is
linear and spatially invariant, and the noise is ignored. The description of such algorithms is intended
to provide a good understanding of the various issues involved in dealing with iterative algorithms.
We then proceed to work with the matrix-vector representation of the degradation model and the
iterative algorithms. The degradation systems described now are linear but not necessarily spatially
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invariant. The relation between the matrix-vector and scalar representation of the degradation
equation and the iterative solution is also presented. Various forms of regularized solutions and the
resulting iterations are briefly presented. As it will become clear, the basic iteration is the basis for
any of the iterations to be presented.

34.3 Spatially Invariant Degradation

34.3.1 Degradation Model

Let us consider the following degradation model

y(i, j) = d(i, j) ∗ x(i, j) , (34.2)

where y(i, j) and x(i, j) represent, respectively, the observed degraded and original image, d(i, j)

the impulse response of the degradation system, and ∗ denotes two-dimensional (2D) convolution.
We rewrite Eq. (34.2) as follows

8(x(i, j)) = y(i, j) − d(i, j) ∗ x(i, j) = 0. (34.3)

The restoration problem, therefore, of finding an estimate of x(i, j) given y(i, j) and d(i, j) becomes
the problem of finding a root of 8(x(i, j)) = 0.

34.3.2 Basic Iterative Restoration Algorithm

The following identity holds for any value of the parameter β

x(i, j) = x(i, j) + β8 (x(i, j)) . (34.4)

Equation (34.4) forms the basis of the successive approximation iteration by interpreting x(i, j) on
the left-hand side as the solution at the current iteration step and x(i, j) on the right-hand side as
the solution at the previous iteration step. That is,

x0(i, j) = 0

xk+1(i, j) = xk(i, j) + β8 (xk(i, j))

= βy(i, j) + (δ(i, j) − βd(i, j)) ∗ xk(i, j) , (34.5)

where δ(i, j) denotes the discrete delta function and β the relaxation parameter which controls the
convergence as well as the rate of convergence of the iteration. Iteration (34.5) is the basis of a
large number of iterative recovery algorithms, some of which will be presented in the subsequent
sections [1, 14, 17, 31, 32, 38]. This is the reason it will be analyzed in quite some detail. What
differentiates the various iterative algorithms is the form of the function 8(x(i, j)). Perhaps the
earliest reference to iteration (34.5) was by Van Cittert [61] in the 1930s. In this case the gain β was
equal to one. Jansson et al. [17] modified the Van Cittert algorithm by replacing β with a relaxation
parameter that depends on the signal. Also Kawata et al. [31, 32] used Eq. (34.5) for image restoration
with a fixed or a varying parameter β.
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34.3.3 Convergence

Clearly if a root of 8(x(i, j)) exists, this root is a fixed point of iteration (34.5), that is xk+1(i, j) =
xk(i, j). It is not guaranteed, however, that iteration (34.5) will converge even if Eq. (34.3) has
one or more solutions. Let us, therefore, examine under what conditions (sufficient conditions)
iteration (34.5) converges. Let us first rewrite it in the discrete frequency domain, by taking the 2D
discrete Fourier transform (DFT) of both sides. It should be mentioned here that the arrays involved
in iteration (34.5) are appropriately padded with zeros so that the result of 2D circular convolution
equals the result of 2D linear convolution in Eq. (34.2). The required padding by zeros determines
the size of the 2D DFT. Iteration (34.5) then becomes

X0(u, v) = 0

Xk+1(u, v) = βY(u, v) + (1 − βD(u, v)) Xk(u, v) , (34.6)

where Xk(u, v), Y (u, v), and D(u, v) represent respectively the 2D DFT of xk(i, j), y(i, j), and
d(i, j), and (u, v) the discrete 2D frequency lattice. We express next Xk(u, v) in terms of X0(u, v).
Clearly,

X1(u, v) = βY(u, v)

X2(u, v) = βY(u, v) + (1 − βD(u, v)) βY (u, v)

=
1∑

`=0

(1 − βD(u, v))` βY (u, v)

· · · · · · · · · · · ·
Xk(u, v) =

k−1∑
`=0

(1 − βD(u, u))` βY (u, v)

= 1 − (1 − βD(u, v))k

1 − (1 − βD(u, v))
βY (u, v)

= (1 − (1 − βD(u, v))k)X(u, v) (34.7)

if D(u, v) 6= 0. For D(u, v) = 0,

Xk(u, v) = k · βY(u, v) = 0, (34.8)

since Y (u, v) = 0 at the discrete frequencies (u, v) for which D(u, v) = 0. Clearly, from Eq. (34.7)
if

|1 − βD(u, v)| < 1 , (34.9)

then
lim

k→∞ Xk(u, v) = X(u, v) . (34.10)

Having a closer look at the sufficient condition for convergence, Eq. (34.9), it can be rewritten as

|1 − βRe{D(u, v)} − βIm{D(u, v)}|2 < 1

⇒ (1 − βRe{D(u, v)})2 + (βIm{D(u, v)})2 < 1 . (34.11)

Inequality (34.11) defines the region inside a circle of radius 1/β centered at c = (1/β, 0) in the
(Re{D(u, v)}, Im{D(u, v)}) domain, as shown in Fig. 34.1. From this figure it is clear that the left
half-plane is not included in the region of convergence. That is, even though by decreasing β the size
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FIGURE 34.1: Geometric interpretation of the sufficient condition for convergence of the basic
iteration, where c = (1/β, 0).

of the region of convergence increases, if the real part of D(u, v) is negative, the sufficient condition
for convergence cannot be satisfied. Therefore, for the class of degradations that this is the case, such
as the degradation due to motion, iteration (34.5) is not guaranteed to converge.

The following form of (34.11) results when Im{D(u, v)} = 0, which means that d(i, j) is sym-
metric

0 < β <
2

Dmax(u, v)
, (34.12)

where Dmax(u, v) denotes the maximum value of D(u, v) over all frequencies (u, v). If we now also
take into account that d(i, j) is typically normalized, i.e.,

∑
i,j d(i, j) = 1, and represents a low pass

degradation, then D(0, 0) = Dmax(u, v) = 1. In this case (34.11) becomes

0 < β < 2 . (34.13)

From the above analysis, when the sufficient condition for convergence is satisfied, the iteration
converges to theoriginal signal. This is also the inverse solutionobtaineddirectly fromthedegradation
equation. That is, by rewriting Eq. (34.2) in the discrete frequency domain

Y (u, v) = D(u, v) · X(u, v) , (34.14)

we obtain, for D(u, v) 6= 0,

X(u, v) = Y (u, v)

D(u, v)
. (34.15)

An importantpoint tobemadehere is that, unlike the iterative solution, the inverse solution (34.15)
can be obtained without imposing any requirements on D(u, v). That is, even if Eq. (34.2) or (34.14)
has a unique solution, that is, D(u, v) 6= 0 for all (u, v), iteration (34.5) may not converge if the
sufficient condition for convergence is not satisfied. It is not, therefore, the appropriate iteration
to solve the problem. Actually iteration (34.5) may not offer any advantages over the direct imple-
mentation of the inverse filter of Eq. (34.15) if no other features of the iterative algorithms are used,
as will be explained later. The only possible advantage of iteration (34.5) over Eq. (34.15) is that
the noise amplification in the restored image can be controlled by terminating the iteration before
convergence, which represents another form of regularization. The effect of noise on the quality
of the restoration has been studied experimentally in [47]. An iteration which will converge to the
inverse solution of Eq. (34.2) for any d(i, j) is described in the next section.
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34.3.4 Reblurring

The degradation Eq. (34.2) can be modified so that the successive approximations iteration converges
for a larger class of degradations. That is, the observed data y(i, j) are first filtered (reblurred)
by a system with impulse response d∗(−i, −j), where ∗ denotes complex conjugation [33]. The
degradation Eq. (34.2), therefore, becomes

ỹ(i, j) = y(i, j) ∗ d∗(−i, −j) = d∗(−i, −j) ∗ d(i, j) ∗ x(i, j)

= d̃(i, j) ∗ x(i, j) . (34.16)

If we follow the same steps as in the previous section substituting y(i, j) by ỹ(i, j) and d(i, j) by
d̃(i, j) the iteration providing a solution to Eq. (34.16) becomes

x0(i, j) = 0

xk+1(i, j) = xk(i, j) + βd∗(−i, −j) ∗ (y(i, j) − d(i, j) ∗ xk(i, j))

= βd∗(−i, −j) ∗ y(i, j) + (δ(i, j)

− βd∗(−i, −j) ∗ d(i, j)) ∗ xk(i, j) . (34.17)

Now, the sufficient condition for convergence, corresponding to condition (34.9), becomes

|1 − β|D(u, v)|2| < 1 , (34.18)

which can be always satisfied for

0 < β <
2

maxu,v |D(u, v)|2 . (34.19)

The presentation so far has followed a rather simple and intuitive path, hopefully demonstrating
some of the issues involved in developing and implementing an iterative algorithm. We move next to
the matrix-vector formulation of the degradation process and the restoration iteration. We borrow
results from numerical analysis in obtaining the convergence results of the previous section but also
more general results.

34.4 Matrix-Vector Formulation

What became clear from the previous sections is that in applying the successive approximations
iteration the restoration problem to be solved is brought first into the form of finding the root of
a function (see Eq. (34.3)). In other words, a solution to the restoration problem is sought which
satisfies

8(x) = 0 , (34.20)

where x ∈ RN is the vector representation of the signal resulting from the stacking or ordering
of the original signal, and 8(x) represents a nonlinear in general function. The row-by-row from
left-to-right stacking of an image x(i, j) is typically referred to as lexicographic ordering.

Then the successive approximations iteration which might provide us with a solution to Eq. (34.20)
is given by

x0 = 0

xk+1 = xk + β8(xk)

= 9(xk) . (34.21)
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Clearly if x∗ is a solution to 8(x) = 0, i.e., 8(x∗) = 0, then x∗ is also a fixed point to the above
iteration since xk+1 = xk = x∗. However, as was discussed in the previous section, even if x∗ is
the unique solution to Eq. (34.20), this does not imply that iteration (34.21) will converge. This
again underlines the importance of convergence when dealing with iterative algorithms. The form
iteration (34.21) takes for various forms of the function 8(x) will be examined in the following
sections.

34.4.1 Basic Iteration

From the degradation Eq. (34.1), the simplest possible form 8(x) can take, when the noise is ignored,
is

8(x) = y − Dx . (34.22)

Then Eq. (34.21) becomes

x0 = 0

xk+1 = xk + β(y − Dxk)

= βy + (I − βD)xk

= βy + G1xk , (34.23)

where I is the identity operator.

34.4.2 Least-Squares Iteration

A least-squares approach can be followed in solving Eq. (34.1). That is, a solution is sought which
minimizes

M(x) = ‖y − Dx‖2 . (34.24)

A necessary condition for M(x) to have a minimum is that its gradient with respect to x is equal to
zero, which results in the normal equations

DT Dx = DT y (34.25)

or

8(x) = DT (y − Dx) = 0 , (34.26)

where T denotes the transpose of a matrix or vector. Application of iteration (34.21) then results in

x0 = 0

xk+1 = xk + βDT (y − Dxk)

= βDT y + (I − βDT D)xk

= βDT y + G2xk . (34.27)

It is mentioned here that the matrix-vector representation of an iteration does not necessarily
determine the way the iteration is implemented. In other words, the pointwise version of the iteration
may be more efficient from the implementation point of view than the matrix-vector form of the
iteration.
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34.5 Matrix-Vector and Discrete Frequency Representations

WhenEqs. (34.22)and(34.26)areobtained fromEq. (34.2), the resulting iterations (34.23)and(34.27),
should be identical to iterations (34.5) and (34.17), respectively, and their frequency domain coun-
terparts. This issue, of representing a matrix-vector equation in the discrete frequency domain is
addressed next.

Any matrix can be diagonalized using its singular value decomposition. Finding, in general, the
singular values of a matrix with no special structure is a formidable task, given also the size of the
matrices involved in image restoration. For example, for a 256× 256image, D is of size 64K×64K.
The situation is simplified, however, if the degradation model of Eq. (34.2), which represents a special
case of the degradation model of Eq. (34.1), is applicable. In this case, the degradation matrix D is
block-circulant [3]. This implies that the singular values of D are the DFT values of d(i, j), and the
eigenvectors are the complex exponential basis functions of the DFT. In matrix form, this relationship
can be expressed by

D = WD̃W−1 , (34.28)

where D̃ is a diagonal matrix with entries the DFT values of d(i, j) and W the matrix formed by the
eigenvectors ofD. TheproductW−1z, wherez is any vector, providesuswith a vectorwhich is formed
by lexicographically ordering the DFT values of z(i, j), the unstacked version of z. Substituting D

from Eq. (34.28) into iteration (34.23) and premultiplying both sides by W−1, iteration (34.5) results.
The same way iteration (34.17) results from iteration (34.27). In this case, reblurring, as was named
when initially proposed, is nothing else than the least squares solution to the inverse problem. In
general, if in amatrix-vector equationallmatrices involvedareblock circulant, a 2Ddiscrete frequency
domain equivalent expression can be obtained. Clearly, a matrix-vector representation encompasses
a considerably larger class of degradations than the linear spatially-invariant degradation.

34.6 Convergence

In dealing with iterative algorithms, their convergence, as well as their rate of convergence, are very
important issues. Some general convergence results will be presented in this section. These results
will be presented for general operators, but also equivalent representations in the discrete frequency
domain can be obtained if all matrices involved are block circulant.

The contraction mapping theorem usually serves as a basis for establishing convergence of iterative
algorithms. According to it, iteration (34.21) converges to a unique fixed point x∗, that is, a point
such that 9(x∗) = x∗ for any initial vector if the operator or transformation 9(x) is a contraction.
This means that for any two vectors z1 and z2 in the domain of 9(x) the following relation holds

‖9(z1) − 9(z2)‖ ≤ η‖z1 − z2‖ , (34.29)

whereη is strictly less than one, and‖·‖denotes any norm. It is mentioned here that condition (34.29)
is norm dependent, that is, a mapping may be contractive according to one norm, but not according
to another.

34.6.1 Basic Iteration

For iteration (34.23) the sufficient condition for convergence (34.29) results in

‖I − βD‖ < 1, or ‖G1‖ < 1 . (34.30)

If the l2 norm is used, then condition (34.30) is equivalent to the requirement that

max
i

|σi(G1)| < 1 , (34.31)
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where |σi(G1)| is the absolute value of the i-th singular value of G1 [54].
The necessary and sufficient condition for iteration (34.23) to converge to a unique fixed point is

that
max

i
|λi(G1)| < 1, or max

i
|1 − βλi(D)| < 1 , (34.32)

where |λi(A)| represents themagnitudeof the i-th eigenvalueof thematrixA. Clearly for a symmetric
matrix D conditions (34.30) and (34.32) are equivalent. Conditions (34.29) to (34.32) are used in
defining the range of values of β for which convergence of iteration (34.23) is guaranteed.

Of special interest is the case when matrix D is singular (D has at least one zero eigenvalue), since
it represents a number of typical distortions of interest (for example, distortions due to motion,
defocusing, etc). Then there is no value of β for which conditions (34.31) or (34.32) are satisfied.
In this case G1 is a nonexpansive mapping (η in (34.29) is equal to one). Such a mapping may have
any number of fixed points (zero to infinitely many). However, a very useful result is obtained if we
further restrict the properties of D (this results in no loss of generality, as it will become clear in the
following sections). That is, if D is a symmetric, semi-positive definite matrix (all its eigenvalues are
nonnegative), then according to Bialy’s theorem [6], iteration (34.23) will converge to the minimum
norm solution of Eq. (34.1), if this solution exists, plus the projection of x0 onto the null space of
D for 0 < β < 2 · ‖D‖−1. The theorem provides us with the means of incorporating information
about the original signal into the final solution with the use of the initial condition.

Clearly, when D is block circulant the conditions for convergence shown above can be written in
the discrete frequency domain. More specifically, conditions (34.31) and (34.9) are identical in this
case.

34.6.2 Iteration with Reblurring

The convergence results presented above also holds for iteration (34.27), by replacing G1 by G2 in
expressions (34.30) to (34.32). If DT D is singular, according to Bialy’s theorem, iteration (34.27)
will converge to the minimum norm least squares solution of (34.1), denoted by x+, for 0 < β <

2 · ‖D‖−2, since DT y is in the range of DT D.
The rate of convergence of iteration (34.27) is linear. If we denote by D+ the generalized inverse of

D, that is, x+ = D+y, then the rate of convergence of (34.27) is described by the relation [26]

‖xk − x+‖
‖x+‖ ≤ ck+1 , (34.33)

where
c = max{ |1 − β‖D‖2|, |1 − β‖D+‖−2| } . (34.34)

Theexpression forc in (34.34)will alsobeused inSection34.8, wherehigherorder iterative algorithms
are presented.

34.7 Use of Constraints

Iterative signal restoration algorithms regained popularity in the 1970s due to the realization that
improved solutions can be obtained by incorporating prior knowledge about the solution into the
restoration process. For example, we may know in advance that x is bandlimited or space-limited,
or we may know on physical grounds that x can only have nonnegative values. A convenient way of
expressing such prior knowledge is to define a constraint operator C, such that

x = Cx , (34.35)
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if and only if x satisfies the constraint. In general, C represents the concatenation of constraint
operators. With the use of constraints, iteration (34.21) becomes [49]

x0 = 0,

x̃k = Cxk,

xk+1 = 9(x̃k) . (34.36)

The already mentioned recent popularity of constrained iterative restoration algorithms is also due
to the fact that solutions to a number of recovery problems, such as the bandlimited extrapolation
problem [48, 49] and the reconstruction from phase or magnitude problem [49, 57], were provided
with theuseofalgorithmsof the form(34.36)byappropriatelydescribing thedistortionandconstraint
operators. These operators are defined in the discrete spatial or frequency domains. A review of the
problems which can be solved by an algorithm of the form of (34.36) is presented by Schafer et al. [49].

The contraction mapping theorem can again be used as a basis for establishing convergence of
constrained iterative algorithms. The resulting sufficient condition for convergence is that at least
one of the operators C and 9 is contractive while the other is nonexpansive. Usually it is harder to
prove convergence and determine the convergence rate of the constrained iterative algorithm, taking
also into account that some of the constraint operators are nonlinear, such as the positivity constraint
operator.

34.7.1 The Method of Projecting Onto Convex Sets (POCS)

The method of POCS describes an alternative approach in incorporating prior knowledge about the
solution into the restoration process. It reappears in the engineering literature in the early 1980s [64],
and since then it has been successfully applied to the solution of different restoration problems (from
the reconstruction from phase or magnitude [52] to the removal of blocking artifacts [62, 63], for
example). According to the method of POCS the incorporation of prior knowledge into the solution
can be interpreted as the restriction of the solution to be a member of a closed convex set that is
defined as the set of vectors which satisfy a particular property. If the constraint sets have a nonempty
intersection, then a solution that belongs to the intersection set can be found by the method of POCS.
Indeed, any solution in the intersection set is consistent with the a priori constraints and, therefore,
it is a feasible solution.

More specifically, let Q1, Q2, · · · , Qm be closed convex sets in a finite dimensional vector space,
with P 1, P 2, · · · , P m their respective projectors. Then, the iterative procedure,

xk+1 = P 1P 2 · · ·P mxk , (34.37)

converges to a vector which belongs to the intersection of the sets Qi, i = 1, 2, · · · , m, for any starting
vector x0. It is interesting to note that the resulting set intersection is also a closed convex set.

Clearly, the application of a projection operator P and the constraint C, discussed in the previous
section, express the same idea. Projection operators represent nonexpansive mappings.

34.8 Class of Higher Order Iterative Algorithms

One of the drawbacks of the iterative algorithms presented in the previous sections is their linear rate
of convergence. In [26] a unified approach is presented in obtaining a class of iterative algorithms
with different rates of convergence, based on a representation of the generalized inverse of a matrix.
That is, the algorithm,

x0 = βDT y
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D0 = βDT D

�k+1 =
p−1∑
i=0

(I − Dk)
i

Dk+1 = �kDk

xk+1 = �kxk , (34.38)

converges to the minimum norm least squares solution of Eq. (34.1), with n = 0. If iteration (34.38)
is thought of as corresponding to iteration (34.27), then an iteration similar to (34.38) which corre-
sponds to iteration (34.23) has also been derived [26, 41].

Algorithm (34.38) exhibits a p-th order of convergence. That is, the following relation holds [26]

‖xk − x+‖
‖x+‖ ≤ cpk

, (34.39)

where the convergence factor c is described by Eq. (34.34).
It is observed that the matrix sequences {�k} and Dk can be computed in advance or off-line.

When D is block circulant, substantial computational savings result with the use of iteration (34.38)
over the linear algorithms. Questions dealing with the best order p of algorithm (34.38) to be used
in a given application, as well as comparisons of the trade-off between speed of computation and
computational load, are addressed in [26]. One of the drawbacks of the higher order algorithms is
that the application of constraints may lead to erroneous results. Combined adaptive or nonadaptive
linear and higher order algorithms have been proposed in overcoming this difficulty [11, 26].

34.9 Other Forms of 8(x)

34.9.1 Ill-Posed Problems and Regularization Theory

The two most basic forms of the function 8(x) have only been considered so far. These two forms are
represented by Eqs. (34.22) and (34.26), and are meaningful when the noise in Eq. (34.1) is not taken
into account. Without ignoring the noise, however, the solution of Eq. (34.1) represents an ill-posed
problem. If the image formation process is modeled in a continuous infinite dimensional space, D

becomes an integral operator and Eq. (34.1) becomes a Fredholm integral equation of the first kind.
Then the solution of Eq. (34.1) is almost always an ill-posed problem [42, 45, 59, 60]. This means
that the unique least-squares solution of minimal norm of (34.1) does not depend continuously on
the data, or that a bounded perturbation (noise) in the data results in an unbounded perturbation
in the solution, or that the generalized inverse of D is unbounded [42]. The integral operator D

has a countably infinite number of singular values that can be ordered with their limit approaching
zero [42]. Since the finite dimensional discrete problem of image restoration results from the dis-
cretization of an ill-posed continuous problem, the matrix D has (in addition to possibly a number
of zero singular values) a cluster of very small singular values. Clearly, the finer the discretization (the
larger the size of D) the closer the limit of the singular values is approximated. Therefore, although
the finite dimensional inverse problem is well posed in the least-squares sense [42], the ill-posedness
of the continuous problem translates into an ill-conditioned matrix D.

A regularization method replaces an ill-posed problem by a well-posed problem, whose solution
is an acceptable approximation to the solution of the given ill-posed problem [39, 56]. In general,
regularization methods aim at providing solutions which preserve the fidelity to the data but also
satisfy our prior knowledge about certain properties of the solution. A class of regularization methods
associatesboth the classof admissible solutions and theobservationnoisewith randomprocesses [12].
Another class of regularization methods regards the solution as a deterministic quantity. We give
examples of this second class of regularization methods in the following.
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34.9.2 Constrained Minimization Regularization Approaches

Most regularization approaches transform the original inverse problem into a constrained optimiza-
tion problem. That is, a functional needs to be optimized with respect to the original image and
possibly other parameters. By using the necessary condition for optimality, the gradient of the func-
tional with respect to the original image is set equal to zero, therefore determining the mathematical
form of 8(x). The successive approximations iteration becomes in this case a gradient method with
a fixed step (determined by β). We briefly mention next the general form of some of the commonly
used functionals.

Set Theoretic Formulation

With this approach the problem of solving Eq. (34.1) is replaced by the problem of searching
for vectors x which belong to both sets [21, 25, 27]

‖Dx − y‖ ≤ ε , (34.40)

and
‖Cx‖ ≤ E , (34.41)

where ε is an estimate on the data accuracy (noise norm), E a prescribed constant, and C a high-
pass operator. Inequality (34.41) constrains the energy of the signal at high frequencies, therefore
requiring that the restored signal is smooth. On the other hand, inequality (34.40) requires that the
fidelity to the available data is preserved.

Inequalities (34.40) and (34.41) can be respectively rewritten as [25, 27]

(
x − x+)T DT D

ε2

(
x − x+) ≤ 1 , (34.42)

and

xT CT C

E2
x ≤ 1 , (34.43)

where x+ = D+y. That is, each of them represents an N-dimensional ellipsoid, where N is the
dimensionality of the vectors involved. The intersection of the two ellipsoids (assuming it is not
empty) is also a convex set but not an ellipsoid. The center of one of the ellipsoids which bounds
the intersection can be chosen as the solution to the problem [50]. Clearly, even if the intersection is
not empty, the center of the bounding ellipsoid may not belong to the intersection, and, therefore, a
posterior test is required. The equation the center of one of the bounding ellipsoids is satisfying is
given by [25, 27]

8(x) =
(
DT D + αCT C

)
x − DT y = 0 , (34.44)

where α, the regularization parameter, is equal to (ε/E)2.

Projection Onto Convex Sets (POCS) Approach

Iteration(34.37)canalsobeapplied infindingasolutionwhichbelongs tobothellipsoids (34.42)
and (34.43). The respective projections P1x and P2x are defined by [25]

P1x = x + λ1(I + λ1D
T D)−1DT (y − Dx) (34.45)

P2x = [I − λ2(I + λ2C
T C)−1CT C]x, (34.46)

where λ1 and λ2 need to be chosen so that conditions (34.42) and (34.43) are satisfied, respectively.
Clearly, a number of other projection operators can be used in (34.37) which force the signal to
exhibit certain known a priori properties expressed by convex sets.
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A Functional Minimization Approach

The determination of the value of the regularization parameter is a critical issue in regularized
restoration. A number of approaches for determining its value are presented in [13]. If only one of
the parameters ε or E in (34.40) and (34.41) is known, a constrained least-squares formulation can be
followed [9, 15]. With it, the size of one of the ellipsoids is minimized, subject to the constraint that
the solution belongs to the surface of the other ellipsoid (the one defined by the known parameter).
Following the Lagrangian approach, which transforms the constrained optimization problem into
an unconstrained one, the following functional is minimized

M(α, x) = ‖Dx − y‖2 + α‖Cx‖2 . (34.47)

The necessary condition for a minimum is that the gradient of M(α, x) is equal to zero. That is, in
this case

8(x) = ∇xM(α, x) =
(
DT D + αCT C

)
x − DT y , (34.48)

which is identical to (34.44), with the only difference that α now is not known, but needs to be
determined.

Spatially Adaptive Iteration

Spatially adaptive image restoration is the next natural step in improving the quality of the
restored images. There are various ways to argue the introduction of spatial adaptivity, the most com-
monly used ones being the nonhomogeneity or nonstationarity of the image field and the properties
of the human visual system. In either case, the functional to be minimized takes the form [22, 23, 34]

M(α, x) = ‖Dx − y‖2
W 1

+ α‖Cx‖2
W 2

, (34.49)

in which case

8(x) = ∇xM(α, x) =
(
DT W T

1 W1D + αCT W T
2 W2C

)
x − DT W1y . (34.50)

The choice of the diagonal weighting matrices W1 and W2 can be justified in various ways.
In [16, 22, 23, 25] both matrices are determined by the noise visibility matrix V [2, 46]. That is,
W1 = V T V and W2 = I − V T V . The entries of V take values between 0 and 1. They are equal to
0 at the edges (noise is not visible), equal to 1 at the flat regions (noise is visible) and take values in
between at the regions with moderate spatial activity. A study of the mapping between the level of
spatial activity and the values of the visibility function appears in [11]. The weighting matrices can
also be defined by considering the relationship of the restoration approach presented here to the MAP
restoration approach [30]. Then, the weighting matrices W1 and W2 contain information about the
nonstationarity and/or the nonwhiteness of the high-pass filtered image and noise, respectively.

Robust Functionals

Robust functionals can be employed for the representation of both the noise and the signal
statistics. They allow for the efficient suppression of a wide variety of noise processes and permit the
reconstruction of sharper edges than their quadratic counterparts. In a robust set-theoretic set-up a
solution is sought by minimizing [65]

M(α, x) = Rn(y − Dx) + αRx(Cx) . (34.51)

Rn() and Rx() are referred to as the residual and stabilizing functionals, respectively, and they are
defined in terms of their kernel functions. The derivative of the kernel function is called the influence
function.
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8(x) in this caseequals thegradientofM(α, x) inEq. (34.51). A largenumberof robust functionals
have been proposed in the literature. The properties of potential functions to be used in robust
Bayesian estimation are listed in [35]. A robust maximum absolute entropy and a robust minimum
absolute-information functionals are introduced in [65]. Clearly since the functionals Rn() and Rx()

are typically nonlinear and may not be convex, the convergence analysis of iteration (34.21) or (34.36)
is considerably more complicated.

34.9.3 Iteration Adaptive Image Restoration Algorithms

As it has become clear by now there are various pieces of information needed by any regularization
algorithms in determining the unknown parameters. In the context of deterministic regularization,
the most commonly needed parameter is the regularization parameter. Its determination depends
on the noise statistics and the properties of the image. With the set theoretic regularization approach,
it is required that the original image is smooth, in which case a bound on the energy of the high-pass
filtered image is needed. This bound is proportional to the variance of the image in a stochastic
context. In addition, knowledge of the noise variance is also required. In a MAP framework such
parameters are called hyperparameters [8, 40]. Clearly, such parameters are not typically available
and need to be estimated from the available noisy and blurred data. Various techniques for estimating
the regularization parameter are discussed, for example, in [13].

In the following we briefly describe a new paradigm we have introduced in the context of iterative
image restoration algorithms [18, 19, 20, 29, 30]. According to it, the required information by
the deterministic regularization approach is updated at each restoration step, based on the partially
restored image.

Spatially Adaptive Algorithm

For the spatially adaptive algorithm we mentioned above, the proposed general form of the
weighted smoothing functional whose minimization will result in a restored image is written as

Mw (λw(x) , x) = ‖y − Dx‖2
A(x)

+ λw(x)‖Cx‖2
B(x)

= ‖n‖2
A(x)

+ λw(x)‖Cx‖2
B(x)

, (34.52)

where the weighting matrices A(x) and B(x), both functions of the original image, are used to
incorporate noise and image characteristics into the restoration process, respectively. The regular-
ization parameter, also a function of x, is defined in such a way as to make the smoothing functional
in (34.52) convex with a unique global minimizer.

One of the λw(x) we have proposed is given by

λw(x) =
‖y − Dx‖2

A(x)

(1/γ ) − ‖Cx‖2
B(x)

, (34.53)

where the parameter γ is determined from the convergence and convexity analyses.
The main objective with this approach is to employ an iterative algorithm to estimate the regu-

larization parameter and the proper weighting matrices at the same time with the restored image.
The available estimate of the restored image at each iteration step will be used for determining the
value of the regularization parameter. That is, the regularization parameter is defined as a function
of the original image (and eventually in practice of an estimate of it). Of great importance is the
form of this functional, so that the smoothing functional to be minimized preserves its convexity and
exhibits a global minimizer. λw(x) maps a vector x onto the positive real line. Its purpose is as before
to control the relative contribution of the error term ‖y − Dx‖2

A(x)
, which enforces “faithfulness”
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to the data, and the stabilizing functional ‖Cx‖2
B(x)

, which enforces smoothness on the solution.

Its dependency, however, on the original image, as well as the available data, is explicitly utilized.
This dependency on the other hand is implicitly utilized in the constrained least-squares approach,
according to which the minimization of Mw(λw(x), x) and the determination of the regularization
parameter λw(x) are completely separate steps. The desired properties of λw(x) and Mw(λw(x), x)

are analyzed in [20]. The relationship of the resulting forms to the hierarchical Bayesian approach
towards image restoration and estimation of the regularization parameters is explored in [40].

In this case, therefore, 8(x) = ∇xMw(λw(x), x). The successive approximations iteration after
some simplifications takes the form [20, 30]

xk+1 = xk +
[
DT A (xk) y −

(
DT A (xk) D + λw (xk) CT B (xk) C

)
xk

]
. (34.54)

The information required in defining the regularization parameter and the weights for introducing
the spatial adaptivity are defined based on the available information about the restored image at the
k-th iteration step. Clearly for all this to make sense the convergence of iteration (34.54) has to be
guaranteed. Furthermore, convergence to a unique fixed point, which removes the dependency of
the final result on the initial conditions, is also desired. These issues are addressed in detail in [20, 30].
A major advantage of the proposed algorithm is that the convexity of the smoothing functional and
the convergence of the resulting algorithm are guaranteed regardless of the choice of the weighting
matrices. Another advantageof this algorithm is that theproposedadaptive algorithmsimultaneously
determines the regularization parameter and the desirable weighting matrices based on the restored
image at each iteration step and restores the image, without any prior knowledge.

Frequency Adaptive Algorithm

Adaptivity is now introduced into the restoration process by using a constant smoothness
constraint, but by assigning a different regularization parameter at each discrete frequency location.
We can now “fine-tune” the regularization of each frequency component, thereby achieving improved
results andat the same time speedingup the convergenceof the iterative algorithm. The regularization
parameters areevaluatedsimultaneouslywith the restored imagebasedonthepartially restored image.

In this algorithm, the following two ellipsoids QEx and QEx/y are used

QEx = {
x| ‖Cx‖R ≤ ER

}
(34.55)

and

QEx/y = {
x| ‖y − Dx‖P ≤ εP

}
, (34.56)

where P and R are both block-circulant weighting matrices. Then a solution which belongs to the
intersection of QEx and QEx/y is given by

(
DT P T PD + λCT RT RC

)
x = DT P T Py , (34.57)

where λ = (εP/ER)2. Let us define P T P = B, R = PC and λCT C = A. Then Eq. (34.57) can be
written as

B
(
DT D + ACT C

)
x = BDT y , (34.58)

since all matrices are block-circulant and they therefore commute. The regularization matrix A is
defined based on the set theoretic regularization as

A = ‖y − Dx‖2[‖Cx‖2I + 1]−1 , (34.59)
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where 1 is a block-circulant matrix used to ensure convergence. B plays the role of the “shaping”
matrix [53] for maximizing the speed of convergence at every frequency component as well as for
compensating for the near-singular frequency components [19].

With the above formulation, therefore,

8(x) = B
((

DT D + ACT C
)

x − DT y
)

, (34.60)

and the successive approximations iteration (34.21) becomes

xk+1 = xk + B
[
DT y −

(
DT D + AkC

T C
)

xk

]
, (34.61)

where Ak = ‖y − Dxk‖2[‖Cxk‖2I + 1k]−1. It is mentioned here that iteration (34.61) can also be
derived from the regularized equation

(
DT D + ACT C

)
x = DT y , (34.62)

using the generalized Landweber’s iteration [53]. Since all matrices in iteration (34.61) are block-
circulant, the iteration can be written in the discrete frequency domain as

Xk+1(p) = Xk(p) + β(p)
[
D∗(p)Y (p) −

(
|D(p)|2 + λk(p)|C(p)|2

)
Xk(p)

]
, (34.63)

where p = (p1, p2), 0 ≤ p1 ≤ N − 1, 0 ≤ p2 ≤ N − 1, Xk+1(p) and Y (p) represent the 2D DFT
of the unstacked image estimate xk+1, and the noisy-blurred image y and D(p), C(p), β(p), and
λk(p) represent 2D DFTs of the 2D sequences which form the block-circulant matrices D, C, B, and
Ak , respectively. Since 1k is block-circulant λk(p) is given by

λk(p) =
∑

m |Y (m) − D(m)Xk(m)|2∑
n |C(n)Xk(n)|2 + δk(p)

, (34.64)

where δk(p) is the 2D DFT of the sequence which forms 1k .
The allowable range of each regularization and control parameter and the convergence analysis of

the iterative algorithm are developed in detail in [19]. It is shown that the algorithm has more than
two fixed points. The first fixed point is the inverse or generalized inverse solution of Eq. (34.58).
The second type of fixed points are regularized approximations to the original image. Since there
is more than one solution to iteration (34.63), the determination of the initial condition becomes
important. It has been verified experimentally [19] that if a “smooth” image is used for X0(p) almost
identical fixed points result independently of X0. The use of spectral filtering functions [53] is also
incorporated into the iteration, as shown in [19].

34.10 Discussion

In this chapter we briefly described the application of the successive approximations-based class
of iterative algorithms to the problem of restoring a noisy and blurred signal. We analyzed in
some detail the simpler forms of the algorithm, while making reference to work which deals with
more complicated forms of the algorithms. There are obviously a number of algorithms and issues
pertaining to such algorithms which have not been addressed at all. For example, iterative algorithms
with a varying relaxation parameter β, such as the steepest descent and conjugate gradient methods,
can be applied to the image restoration problem [4, 37]. The number of iterations also represents a
means for regularizing the restoration problem [55, 58]. Iterative algorithms which depend on more
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than one previous restoration steps (multi-step algorithms) have also been considered, primarily for
implementation reasons [24].

It is the hope and the expectation of the author that the material presented will form a good
introduction to the topic for the engineer or the graduate student who would like to work in this
area.
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A N IMPORTANT PROBLEM IN SIGNAL PROCESSING is the choice of how to represent a
signal. It is for this reason that importance is attached to the choice of bases for the linear
expansion of signals. That is, given a discrete-time signal x(n) how to find ai(n) and bi(n)

such that we can write
x(n) =

∑
i

< x(n), ai(n) > bi(n). (VIII.1)

If bi(n) = ai(n), then (VIII.1) is the familiar orthonormal basis expansion formula [1]. Otherwise,
the bi(n) are a set of biorthogonal functions with the property

< bj (n), ai(n) > = δi−j .

The function δ is defined such that δi−j = 0, unless i = j , in which case δ0 = 1. We shall consider
cases where the summation in (VIII.1) is infinite, but restrict our attention to the case where it is
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finite for the moment; that is, where we have a finite number N of data samples, and so the space is
finite dimensional.

We next set up the basic notation used throughout the chapter. Assume that we are operating in
CN , and that we have N basis vectors, the minimum number to span the space. Since the transform
is linear, it can be written as a matrix. That is, if the a∗

i are the rows of a matrix A, then

A · x =




< x(n), a0(n) >

< x(n), a1(n) >
...

< x(n), aN−2(n) >

< x(n), aN−1(n) >




(VIII.2)

and if bi are the columns of B then
x = B · A · x. (VIII.3)

Clearly B = A−1; if B = A∗ then A is unitary, bi(n) = ai(n) and we have that (VIII.1) is the
orthonormal basis expansion.

Clearly the construction of bases is not difficult: any nonsingular N × N matrix will do for this
space. Similarly, to get an orthonormal basis we need merely take the rows of any unitary N × N

matrix, for example the identity IN . There are many reasons for desiring to carry out such an
expansion. Much as Taylor or Fourier series are used in mathematics to simplify solutions to certain
problems, the underlying goal is that a cleverly chosen expansion may make a given signal processing
task simpler.

A major application is signal compression, where we wish to quantize the input signal in order
to transmit it with as few bits as possible, while minimizing the distortion introduced. If the input
vector comprises samples of a real signal, then the samples are probably highly correlated, and the
identity basis (where the ith vector contains 1 in the ith position and is zero elsewhere) with scalar
quantization will end up using many of its bits to transmit information which does not vary much
from sample to sample. If we can choose a matrix A such that the elements of A · x are much less
correlated than those of x, then the job of efficient quantization becomes a great deal simpler [2].
In fact, the Karhunen-Loève transform, which produces uncorrelated coefficients, is known to be
optimal in a mean squared error sense [2].

Since in (VIII.1) the signal is written as a superposition of the basis sequences bi(n), we can say that
if bi(n) has most of its energy concentrated around time n = n0, then the coefficient < x(n), ai(n) >

measures to somedegree the concentrationofx(n) at timen = n0. Equally, taking thediscreteFourier
transform of (VIII.1)

X(k) =
∑

i

< x(n), ai(n) > Bi(k).

Thus, if Bi(k) has most of its energy concentrated about frequency k = k0, then < x(n), ai(n) >

measures to some degree the concentration of X(k) at k = k0. This basis function is mostly localized
about the point (n0, k0) in the discrete-time discrete-frequency plane. Similarly, for each of the basis
functions bi(n) we can find the area of the discrete-time discrete-frequency plane where most of their
energy lies. All of the basis functions together will effectively cover the plane, because if any part were
not covered there would be a “hole” in the basis, and we would not be able to completely represent
all sequences in the space. Similarly the localization areas, or tiles, corresponding to distinct basis
functions should not overlap by too much, since this would represent a redundancy in the system.

Choosingabasis can thenbe loosely thoughtof as choosing some tilingof thediscrete-timediscrete-
frequency plane. For example, Fig. VIII.1 shows the tiling corresponding to various orthonormal
bases in C64. The horizontal axis represents discrete-time, and the vertical axis discrete-frequency.
Naturally, each of the diagrams contains 64 tiles, since this is the number of vectors required for a
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FIGURE VIII.1: Examples of tilings of the discrete-time discrete-frequency plane; time is the hori-
zontal axis, frequency the vertical. (a) The identity transform. (b) Discrete Fourier transform. (c)
Finite length discrete wavelet transform. (d) Arbitrary finite length transform.

basis, and each tile can be thought of as containing 64 points out of the total of 642 in this discrete-
time discrete-frequency plane. The first is the identity basis, which has narrow vertical strips as tiles,
since the basis sequences δ(n + k) are perfectly localized in time, but have energy spread equally at
all discrete frequencies. That is, the tile is one discrete-time point wide and 64 discrete-frequency
points long. The second, shown in Fig. VIII.1(b), corresponds to the discrete Fourier transform
basis vectors ej2πin/N ; these of course are perfectly localized at the frequencies i = 0, 1, · · ·N − 1,
but have equal energy at all times (i.e., 64 points wide, one point long). Figure VIII.1(c) shows
the tiling corresponding to a discrete orthogonal wavelet transform (or logarithmic subband coder)
operating over a finite length signal. Figure VIII.1(d) shows the tiling corresponding to a discrete
orthogonal wavelet packet transform operating over a finite length signal, with arbitrary splits in
time and frequency; construction of such schemes is discussed in Section 7.1. In Fig. VIII.1(c) and
(d), the tiles have varying shapes but still contain 64 points each.

It should be emphasized that the localization of the energy of a basis function to the area covered
by one of the tiles is only approximate. In practice, of course, we will always deal with real signals,
and in general we will restrict the basis functions to be real also. When this is so, B∗ = BT and the
basis is orthonormal provided AT A = I = AAT . Of the bases shown in Fig. VIII.1 only the discrete
Fourier transform will be excluded with this restriction. One can, however, consider a real transform
which has many properties in common with the DFT, for example the discrete Hartley transform [3].

While the above description was given in terms of finite-dimensional signal spaces, the interpre-
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tation of the linear transform as a matrix operation, and the tiling approach remains essentially
unchanged in the case of infinite length discrete-time signals. In fact, for bases with the structure
we desire, construction in the infinite-dimensional case is easier than in the finite-dimensional case.
The modifications necessary for the transition from RN to l2(R) are that an infinite number of basis
functions is required instead of N , the matrices A and B become doubly infinite, and the tilings are in
the discrete-time continuous-frequency plane (the time axis ranges over Z, the frequency axis goes
from 0 to π , assuming real signals).

Good decorrelation is one of the important factors in the construction of bases. If this were the
only requirement, we would always use the Karhunen-Loève transform, which is an orthogonal data-
dependent transform which produces uncorrelated samples. This is not used in practice, because
estimating the coefficients of the matrix A can be very difficult. Very significant also, however, is the
complexity of calculating the coefficients of the transform using (VIII.2), and of putting the signal
back togetherusing (VIII.3). Ingeneral, for example, using thebasis functions forRN , evaluating each
of the matrix multiplications in (VIII.2) and (VIII.3) will require O(N2) floating point operations,
unless the matrices have some special structure. If, however, A is sparse, or can be factored into
matrices that are sparse, then the complexity required can be dramatically reduced. This is the case,
for example, with the discrete Fourier transform, where there is an efficient O(N logN) algorithm
to do the computations, which has been responsible for its popularity in practice. This will also be
the case with the transforms that we consider, A and B will always have special structure to allow
efficient implementation.

References

[1] Gohberg, I. and Goldberg, S., Basic Operator Theory, Birkhäuser, Boston, MA, 1981.
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35.1 Filter Banks and Wavelets

The methods of designing bases that we will employ draw on ideas first used in the construction of
multirate filter banks. The idea of such systems is to take an input system and split it into subsequences
using banks of filters. This simplest case involves splitting into just two parts using a structure such
as that shown in Fig. 35.1. This technique has a long history of use in the area of subband coding:
first of speech [1, 2] and more recently of images [3, 4]. In fact, the most successful image coding
schemes are based on filter bank expansions [5, 6, 7]. Recent texts on the subject are [8, 9, 10]. We
will consider only the two-channel case in this section. If X̂(z) = X(z), then the filter bank has the
perfect reconstruction property.

FIGURE 35.1: Maximally decimated two-channel multirate filter bank.

It is easily shown that the output X̂(z) of the overall analysis/synthesis system is given by:

X̂(z) = 1

2
[G0(z) G1(z)]

[
H0(z)ψ H0(−z)
H1(z)ψ H1(−z)

] [
X(z)

X(−z)
]

(35.1)

= 1

2
[H0(z)G0(z)+H1(z)G1(z)] ·X(z)
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+ 1

2
[H0(−z)G0(z)+H1(−z)G1(z)] ·X(−z).

Call the above 2 × 2 matrix Hm(z). This gives that the unique choice for the synthesis filters is

[
G0(z)

G1(z)

]
=

[
H0(z) H0(−z)
H1(z) H1(−z)

]−1

·
[

2
0

]

= 2

1m(z)

[
H1(−z)

−H0(−z)
]
, (35.2)

where1m(z) = detHm(z).

Ifweobserve that1m(z) = −1m(−z)anddefineP(z) = 2·H0(z)H1(−z)/1m(z) = H0(z)G0(z),
it follows from (35.2) thatG1(z)H1(z) = 2 ·H1(z)H0(−z)/1m(−z) = P(−z). We can then write
that the necessary and sufficient condition for perfect reconstruction (35.1) is:

P(z)+ P(−z) = 2. (35.3)

Since this condition plays an important role in what follows, we will refer to any function having this
property as valid. The implication of this property is that all but one of the even-indexed coefficients
of P(z) are zero. That is

P(z)+ P(−z) =
∑
n

(p(n)z−n + p(n)(−z)−n)

=
∑
n

2 · p(2n)z−(2n+1).

For this to satisfy (35.3) requires p(2n) = δn; thus, one of the polyphase components of P(z)must
be the unit sample. By polyphase components we mean the set of even-indexed samples, and the set
of the odd-indexed samples. Such a function is illustrated in Fig. 35.2(a).

FIGURE 35.2: Zeros of the correlation functions. (a) Autocorrelation H0(−z)H0(z
−1). (b) Cross-

correlationH0(−z)H1(z
−1).

Constructing such a function is not difficult. In general, however, we will wish to impose additional
constraints on the filter banks. So, P(z) will have to satisfy other constraints in addition to (35.3).

Observe that as a consequence of (35.2) G0(z)H1(z), i.e., the cross-correlation of g1(n) and the
time-reversed filter h0(−n), andG1(z)H0(z), the cross-correlation of g1(n) and h0(−n), have only
odd-indexed coefficients, just as for the function in Fig. 35.2(b), that is:

< g0(n), h1(2k − n) > = 0, (35.4)
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< g1(n), h0(2k − n) > = 0, (35.5)

(note the time reversal in the inner product). Define now the matrix H0 as

H0 =



. . .

...
...

...
...

...
...

...

h0(L− 1) h0(L− 2) · · · · · · h0(0) 0 0
0 0 h0(L− 1) · · · h0(2) h0(1) h0(0)
...

...
...

...
...

...
...

. . .


 . (35.6)

which has as its kth row the elements of the sequence h0(2k−n). Pre-multiplying by H0 corresponds
to filtering byH0(z) followed by subsampling by a factor of 2. Also define

GT0 =



. . .

...
...

...
...

...
...

...

g0(0) g0(1) · · · · · · g0(L− 1) 0 0
0 0 g0(0) · · · g0(L− 3) g0(L− 2) g0(L− 1)
...

...
...

...
...

...
...

. . .


 , (35.7)

so G0 has as its kth column the elements of the sequence g0(n − 2k). Define H1 by replacing the
coefficients of h0(n) with those of h1(n) in (35.6) and G1 by replacing the coefficients of g0(n) with
those of g1(n) in (35.7).

We find that (35.4) gives that all rows of H1 are orthogonal to all columns of G0. Similarly we find,
from (35.5), that all of the columns of G1 are orthogonal to the rows of H0. So, in matrix notation:

H0G1 = 0 = H1G0. (35.8)

Now P(z) = G0(z)H0(z) = z−1H0(z)H1(−z) and P(−z) = G1(z)H1(z) are both valid and
have the form given in Fig. 35.2 (a). Hence, the impulse responses of gi(n) and hi(n) are orthogonal
with respect to even shifts

< gi(n), hi(2l − n) > = δl. (35.9)

In operator notation:
H0G0 = I = H1G1. (35.10)

Since we have a perfect reconstruction system we get:

G0H0 + G1H1 = I. (35.11)

Of course (35.11) indicates that no nonzero vector can lie in the column nullspaces of both G0 and
G1. Note that (35.10) implies that G0H0 and G1H1 are each projections (since GiHiGiHi = GiHi).
They project onto subspaces which are not, in general, orthogonal (since the operators are not self-
adjoint). Because of (35.4), (35.5), and (35.9) the analysis/synthesis system is termed biorthogonal.
If we interleave the rows of H0 and H1, much as was done in the orthogonal case, and form again a
block Toeplitz matrix

A =



. . .

...
...

...
...

...
...

...

h0(L− 1) h0(L− 2) · · · · · · h0(0) 0 0
h1(L− 1) h1(L− 2) · · · · · · h1(0) 0 0

0 0 h0(L− 1) · · · h0(2) h0(1) h0(0)
0 0 h1(L− 1) · · · h1(2) h1(1) h1(0)
...

...
...

...
...

...
...

. . .



, (35.12)

c©1999 by CRC Press LLC



we find that the rows of A form a basis for l2(Z). If we form B by interleaving the columns of G0 and
G1, we find

B · A = I.

In the special case where we have a unitary solution, one finds: G0 = HT
0 and G1 = HT

1 , and
(35.8) gives that we have projections onto subspaces which are mutually orthogonal. The system
then simplifies to the orthogonal case, where B = A−1 = AT .

A point that we wish to emphasize is that in the conditions for perfect reconstruction, (35.2) and
(35.3), the filtersH0(z) andG0(z) are related via their product P(z). It is the choice of the function
P(z) and the factorization taken that determines the properties of the filter bank. We conclude the
introduction with a proposition that sums up the foregoing.

PROPOSITION 35.1 To design a two-channel perfect reconstruction filter bank, it is necessary and
sufficient to find a P(z) satisfying (35.3), factor it P(z) = G0(z)H0(z) and assign the filters as given
in (35.2).

35.1.1 Deriving Continuous-Time Bases From Discrete-Time Ones

We have seen that the construction of bases from discrete-time signals can be accomplished easily
by using a perfect reconstruction filter bank as the basic building block. This gives us bases that
have a certain structure, and for which the analysis and synthesis can be efficiently performed. The
design of bases for continuous-time signals appears more difficult. However, it works out that we
can mimic many of the ideas used in the discrete-time case, when we go about the construction of
continuous-time bases.

In fact, there is a very close correspondence between the discrete-time bases generated by two-
channel filter banks, and dyadic wavelet bases. These are continuous-time bases formed by the
stretches and translates of a single function, where the stretches are integer powers of two:

{ψjk(x) = 2−j/2ψ(2−j x − k), j, k,∈ Z} (35.13)

This relation has been thoroughly explored in [11, 12].
To be precise, a basis of the form in (35.13) necessarily implies the existence of an underlying

two-channel filter bank. Conversely, a two-channel filter bank can be used to generate a basis as in
(35.13) provided that the lowpass filterH0(z) is regular. It is not our intention to go into the details
of this connection, but the generation of wavelets from filter banks goes briefly as follows:

Considering the logarithmic tree of discrete-time filters in Fig. 35.3, one notices that the lower
branch is a cascade of filters H0(z) followed by subsampling by 2. It is easily shown [12], that the
cascade of i blocks of filtering operations, followed by subsampling by 2, is equivalent to a filter

H
(i)
0 (z) with z-transform:

H
(i)
0 (z) =

i−1∏
l=0

H0(z
2l ), i = 1,2 · · · , (35.14)

followed by subsampling by 2i . We define H(0)
0 (z) = 1 to initialize the recursion. Now, in addition

to the discrete-time filter, consider the function f (i)(x) which is piecewise constant on intervals of
length 1/2i , and equal to:

f (i)(x) = 2i/2 · h(i)0 (n), n/2i ≤ x < (n+ 1)/2i . (35.15)

Note that the normalization by 2i/2 ensures that if
∑
(h
(i)
0 (n))

2 = 1 then
∫
(f (i)(x))2dx = 1 as well.

Also, it can be checked that ‖h(i)0 ‖2 = 1 when ‖h(i−1)
0 ‖2 = 1. The relation between the sequence
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H
(i)
0 (z) and the function f (i)(x) is clarified in Fig. 35.3, where the first three iterations of each is

shown for the simple case of a filter of length 4.

FIGURE 35.3: Iterations of the discrete-time filter ( 35.14) and the continuous-time function ( 35.15)
for the case of a length-4 filterH0(z). The length of the filterH(i)

0 (z) increases without bound, while
the function f (i)(x) actually has bounded support.

We are going to use the sequence of functions f (i)(x) to converge to the scaling function φ(x) of a
wavelet basis. Hence, a fundamental question is to find out whether and to what the function f (i)(x)
converges as i → ∞. First assume that the filter H0(z) has a zero at the half sampling frequency,
or H0(e

jπ ) = 0. This together with the fact that the filter impulse response is orthogonal to its
even translates is equivalent to

∑
h0(n) = H0(1) = √

2. Define M0(z) = 1/
√

2 · H0(z), that is
M0(1) = 1. Now factorM0(z) into its roots atπ (there is at least one by assumption) and a remainder
polynomialK(z), in the following way:

M0(z) = [(1 + z−1)/2]NK(z).

Note thatK(1) = 1 from the definitions. Now call B the supremum of |K(z)| on the unit circle:

B = sup
ω∈[0,2π ]

|K(ejω)|.

Then the following result from [11] holds:
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PROPOSITION 35.2 [Daubechies 1988] If B < 2N−1, and

∞∑
n=−∞

|k(n)|2|n|ε < ∞, for some ε > 0, (35.16)

then the piecewise constant function f (i)(x) defined in (35.15) converges pointwise to a continuous
function f (∞)(x).

This is a sufficient condition to ensure pointwise convergence to a continuous function, and can
be used as a simple test. We shall refer to any filter for which the infinite product converges as regular.

If we indeed have convergence, then we define

f (∞)(x) = φ(x)

as the analysis scaling function, and

ψ(x) = 2−1/2
∑

h1(n)φ(2x − n), (35.17)

as the analysis wavelet. It can be shown that if the filters h0(n) and h1(n) are from a perfect recon-
struction filter bank, then (35.13) indeed forms a continuous-time basis.

In a similar way we examine the cascade of i blocks of the synthesis filter g0(n)

G
(i)
0 (z) =

i−1∏
l=0

G0(z
2l ), i = 1,2 · · · . (35.18)

Again, define G(0)0 (z) = 1 to initialize the recursion, and normalize G0(1) = 1. From this define a
function which is piecewise constant on intervals of length 1/2i :

f̌ (i)(x) = 2i/2 · g(i)0 (−n), n/2i ≤ x < (n+ 1)/2i . (35.19)

We call the limit f̌ (∞)(x), if it exists, φ̌(x) the synthesis scaling function, and we find

φ̌(x) = 21/2 ·
L−1∑
n=0

g0(−n) · φ̌(2x − n) (35.20)

ψ̌(x) = 21/2 ·
L−1∑
n=0

g1(−n) · φ̌(2x − n). (35.21)

The biorthogonality properties of the analysis and synthesis continuous-time functions follow from
the corresponding properties of the discrete-time ones. That is, (35.9) leads to

< φ̌(x), φ(x − k) > = δk. (35.22)

and
< ψ̌(x), ψ(x − k) > = δk. (35.23)

Similarly

< φ̌(x), ψ(x − k) > = 0 (35.24)

< ψ̌(x), φ(x − k) > = 0, (35.25)
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come from (35.4) and (35.5), respectively.
We have shown that the conditions for perfect reconstruction on the filter coefficients lead to

functions that have the biorthogonality properties as shown above. Orthogonality across scales is
also easily verified:

< ψ̌(2j x), ψ(2ix − k) > = δi−j δk.

Thus, the set {ψ(2j x), ψ̌(2ix − k), i, j, k ∈ Z} is biorthogonal. That it is complete can be verified
as in the orthogonal case [13]. Hence, any function from L2(R) can be written:

f (x) =
∑
j

∑
l

< f (x),2−j/2ψ(2j x − l) > 2−j/2ψ̌(2j x − l).

Note that ψ(x) and ψ̌(x) play interchangeable roles.

35.1.2 Two-Channel Filter Banks and Wavelets

We have seen that the design of discrete-time bases is not difficult: using two-channel filter banks as
the basic building block they can be easily derived. We also know that, using (35.15) and (35.19), we
can generate continuous-time bases quite easily as well. If we were just interested in the construction
of bases, with no further requirements, we could stop here. However, for applications such as com-
pression, we will often be interested in other properties of the basis functions, for example, whether
or not they have any symmetry or finite support, and whether or not the basis is an orthonormal
one. We examine these three structural properties for the remainder of this section. Chapter 36 deals
with the design of the filters. Chapter 37 deals with time-varying filter banks, where the filters used,
or the tree structure employing them, varies over time. Chapter 38 deals with the case of Lapped
Transforms, a very important class of multirate filter banks that have achieved considerable success.

From the filter bank point of view, the properties we are most interested in are the following:

• Orthogonality:

< h0(n), h0(n+ 2k) > = δk = < h1(n), h1(n+ 2k) >, (35.26)

< h0(n), h1(n+ 2k) > = 0. (35.27)

• Linear phase: H0(z),H1(z),G0(z), andG1(z) are all linear phase filters.

• Finite support: H0(z),H1(z),G0(z), andG1(z) are all FIR filters.

The reason for our interest is twofold. First, these properties are possibly of value in perfect
reconstruction filter banks used in subband coding schemes. For example, orthogonality implies
that the quantization noise in the two channels will be independent; linear phase is possibly of
interest in very low bit-rate coding of images, and FIR filters have the advantage of having very simple
low-complexity implementations. Second, these properties are carried over to the wavelets that are
generated. So, if we design a filter bank with a certain set of properties, then the continuous-time
basis that it generates will also have these properties.

PROPOSITION 35.3 If the filters belong to an orthogonal filter bank, we shall have

< φ(x), φ(x + k) > = δk =< ψ(x), ψ(x + k) >,

< φ(x), ψ(x + k) > = 0.
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PROOF35.1 From the definition (35.15)f (0)(x) is just the indicator function on the interval [0,1);
so we immediately get orthogonality at the 0th level, that is: < f (0)(x − l), f (0)(x − k) > = δkl .

Now we assume orthogonality at the ith level:

< f (i)(x − l), f (i)(x − k) > = δkl, (35.28)

and prove that this implies orthogonality at the (i + 1)st level:

< f (i+1)(x − l), f (i+1)(x − k) > = 2
∑
n

∑
m

h0(n)h0(m)

< f (i)(2x − 2l − n), f (i)(2x − 2k −m) >
δn+2l−2k−m

2

=
∑
n

h0(n)h0(n+ 2l − 2k)

= δkl .

Hence, by induction (35.28) holds for all i. So in the limit i → ∞:

< φ(x − l), φ(x − k) > = δkl . (35.29)

The orthogonal case gives considerable simplification, both in the discrete-time and continuous-
time cases.

PROPOSITION 35.4 If the filters belong to an FIR filter bank, then φ(x), ψ(x), φ̌(x), and ψ̌(x)
will have support on some finite interval.

PROOF35.2 The filtersH(i)
0 (z) andG(i)0 (z)defined in (35.14) have respective lengths (2i−1)(La−

1)+1 and (2i −1)(Ls −1)+1whereLa andLs are the lengths ofH0(z) andG0(z). Hence, f (i)(x)
in (35.15) is supported on the interval [0, La − 1) and f̌ (i)(x) on the interval [0, Ls − 1). This
holds ∀ i; hence, in the limit i → ∞ this gives the support of the scaling functions φ(x) and φ̌(x).
That ψ(x) and ψ̌(x) have bounded support follow from (35.20) and (35.21).

PROPOSITION 35.5 If the filters belong to a linear phase filter bank, then φ(x), ψ(x), φ̌(x), and
ψ̌(x) will be symmetric or antisymmetric.

PROOF 35.3 The filter H(i)
0 (z) will have linear phase if H0(z) does. If H(i)

0 (z) has length (2i −
1)(La−1)+1, the point of symmetry is (2i −1)(La−1)/2which need not be an integer. The point
of symmetry for f (i)(x) will then be [(2i − 1)(La − 1)+ 1]/2i+1 or [(2i − 1)(La − 1)+ 2]/2i+1.
In either case, by taking the limit i → ∞ we find that φ(x) is symmetric about the point (La − 1)/2
and similarly for the other cases.

Thus having established the relation between wavelets and filter banks we can examine the structure
of filter banks in detail, and afterward use them to generate wavelets as described above. It should be
emphasized that we are speaking of the two-channel, one-dimensional case. Multidimensional filter
banks are a large subject in their own right [8, 10].
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35.1.3 Structure of Two-Channel Filter Banks

We saw already that it is the choice of the function P(z) and the factorization taken that determines
the properties of the filter bank. In terms of P(z), we give necessary and sufficient conditions for the
three properties mentioned above:

• Orthogonality: P(z) is an autocorrelation, andH0(z) andG0(z) are its spectral factors.

• Linear phase: P(z) is linear phase, andH0(z) andG0(z) are its linear phase factors.

• Finite support: P(z) is FIR, andH0(z) andG0(z) are its FIR factors.

Obviously the factorization is not unique in any of the cases above. The FIR case has been examined
in detail in [11, 12, 14, 15, 16] and the linear phase case in [12, 15, 17]. In the rest of this paper we
will present new results on the orthogonal case, but we shall also review the solutions that explicitly
satisfy simultaneous constraints.

PROPOSITION 35.6 To have an orthogonal filter bank it is necessary and sufficient that P(z) be
an autocorrelation, and thatH0(z) andG0(z) be its spectral factors.

PROPOSITION 35.7 To have a linear phase filter bank it is necessary and sufficient that P(z) be a
linear phase, and thatH0(z) andG0(z) be its linear phase factors.

PROPOSITION 35.8 To have an FIR filter bank it is necessary and sufficient that P(z) be FIR, and
thatH0(z) andG0(z) be its FIR factors.

Proofs can be found in [18]. Having seen that the design problem can be considered in terms of
P(z) and its factorizations, we consider the three conditions of interest from this point of view.

Orthogonality

In the case where the filter bank is to be orthogonal, we can obtain a complete constructive
characterization of the solutions, as given by the following theorem, taken from [18].

THEOREM 35.1 All orthogonal rational two channel filter banks can be formed as follows:

1. Choosing an arbitrary polynomial R(z), form:

P(z) = 2 · R(z)R(z−1)

R(z)R(z−1)+ R(−z)R(−z−1)
,

2. factor as P(z) = H(z)H(z−1),

3. form the filterH0(z) = A0(z)H(z), where A0(z) is an arbitrary allpass,

4. chooseH1(z) = z2k−1H0(−z−1)A1(z
2), where A1(z) is again an arbitrary allpass,

5. chooseG0(z) = H0(z
−1), andG1(z) = −H1(z

−1).

For a proof, see [18, 19].
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EXAMPLE 35.1:

Take R(z) = (1+ z−1)N as above andN = 7. It works out that in this case there is a closed form
factorization for the filters.

P(z) = (1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1) · z7

14z6 + 364z4 + 2002z2 + 3432+ 2002z−2 + 364z−4 + 14z−6

= E(z)E(z−1)

K(z)K(z−1)
,

where
E(z)

K(z)
= (1 + 7z−1 + 21z−2 + 35z−3 + 35z−4 + 21z−5 + 7z−6 + z−7)√

2 · (1 + 21z−2 + 35z−4 + 7z−6)
.

Note that we have used the following shorthand notation to list the coefficients of a causal FIR
sequence:

N−1∑
n=0

anz
−n = (a0, a1, a2, · · · aN−1).

So, using the description of the filters in Theorem 35.1, with the simplest caseA0(z) = A1(z) = 1
and k = 0 we find:

H0(z) = (1 + 7z−1 + 21z−2 + 35z−3 + 35z−4 + 21z−5 + 7z−6 + z−7)√
2 · (1 + 21z−2 + 35z−4 + 7z−6)

H1(z) = z−1 (1 − 7z1 + 21z2 − 35z3 + 35z4 − 21z5 + 7z6 − z7)√
2 · (1 + 21z2 + 35z4 + 7z6)

G0(z) = H0(z
−1) G1(z) = H1(z

−1).

In the notation of Proposition 35.2, B = 8< 26 so that for this choice ofH0(z) the left-hand side
of (35.15) converges to a continuous function. The wavelet, scaling function, and their spectra are
shown in Fig. 35.4.

Finite Impulse Response and Symmetric Solutions

In the case where the filters are to be FIR, we merely require thatP(z) be FIR; it is trivially easy
to design one. Similarly to have symmetric filters, we merely force P(z) to be symmetric. Obviously
any symmetric P(z) which is FIR and satisfies (35.3) can be used to give symmetric FIR filters. We
would like, in addition, that the lowpass filters are regular, so that we get symmetric bounded support
continuous-time basis functions.

One strategy would be to design a P(z) with the desired properties and then factor to find the
filters. Alternatively, we can choose one of the factors, and then find the other necessary to make the
product P(z) satisfy (35.3). We will use this approach and, to ensure regularity, choose one factor
to be (1 + z−1)2N . This can be done by solving a linear system of equations [12].

EXAMPLE 35.2:

If we choose N = 3 we must find the complement to (1 + z−1)6; so we solve the 3 by 3 system
found by imposing the constraints on the coefficients of the odd powers of z−1 of

P(z) = (k0 + k1z
−1 + k2z

−2 + k1z
−3 + k0z

−4)

·(1 + 6z−1 + 15z−2 + 20z−3 + 15z−4 + 6z−5 + z−6) · z5.
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FIGURE 35.4: Example of Butterworth orthogonal wavelet; here N = 7, and the closed form
factorization has been used. (a) The wavelet. (b) Spectrum of the wavelet. (c) Scaling function.
(d) Spectrum of the scaling function.

So we solve: 
 6 1 0

20 16 6
12 30 20





 k0
k1
k2


 =


 0

0
1


 ,

giving k6 = (3/2,−9,19)/128.

In general, therefore, we solve the system:

F2N · k2N = e2N, (35.30)

where F2N is theN ×N matrix, k2N = (k0, · · · , k(k−1)), and e2N is the length k vector (0,0, · · · ,1).
Having found the coefficients of K2N(z), we factor it into linear phase components and then

regroup these factors ofK2N(z) and the 2N zeros at z = −1 to form two filters: H0(z) andH1(−z),
both of which are to be regular.

c©1999 by CRC Press LLC



FIGURE 35.5: Biorthogonal wavelets generated by filters of length 18 given in [12]. (a) Analysis
wavelet function ψ(x). (b) Spectrum of analysis wavelet. (c) Synthesis wavelet function ψ̌(x).
(d) Spectrum of synthesis wavelet.

35.1.4 Putting the Pieces Together

An important consideration that is often encountered in the design of wavelets, or of the filter banks
that generate them, is the necessity of satisfying competing design constraints. This makes it necessary
to clearly understand whether desired properties are mutually exclusive.

Perfect reconstruction solutions, with the constraint that P(z) be rational with real coefficients,
must satisfy (35.3). Such general solutions, which do not necessarily have additional properties,
were given in [14].

The solutionsof setA,whereall of thefilters involvedareFIR,were studied in [14, 15]. SetBcontains
all orthogonal solutions, and has been the main focus of this paper. A complete characterization of
this set was given in Theorem 35.1. A very different characterization, based on lattice structures, is
given in [20]. Particular cases of orthogonal solutions were also given in [21]. Set C contains the
solutions where all filters are linear phase, first examined in [15].

The earliest examples of perfect reconstruction solutions [22, 23] were orthogonal and FIR; i.e.,
they were in A ∩ B. A constructive parametrization of A ∩ B was given in [24]. The construction
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and characterization of examples which converge to wavelets was first done in [11]. Filter banks
with FIR linear phase filters (i.e.,A∩C) were first given in [15], and also studied in terms of lattices
in [17, 25]. The construction of wavelet examples is given in [13] and [12]. Filter banks, which are
linear phase and orthogonal, were constructed in Chapter 36 and were presented in [18].

That there exist only trivial solutions which are linear phase, orthogonal and FIR is indicated by
the intersection A ∩ B ∩ C; the only solutions are two tap filters [11, 12, 26].

It warrants emphasis that Fig. 35.6 illustrates the filter bank solutions; if the filters are regular,
then they will lead to wavelets. Of the dyadic wavelet bases known to the authors, the only ones
based on filters where P(z) is not rational are those of Meyer [27], and the only ones where the filter
coefficients are complex are those of Lawton [28]. For the case of the Battle-Lemarié wavelets, while
the filters themselves are not rational, the P(z) function is; hence, the filters would belong to B ∩ C
in the figure.

FIGURE 35.6: Two channel perfect reconstruction filter banks. The Venn diagram illustrates which
competing constraints can be simultaneously satisfied. The setsA,B,C contain FIR, orthogonal, and
linearphase solutions, respectively. Solutions in the intersectionA∩B are examined in [11, 14, 23, 24];
those in the intersectionA∩C are detailed in [12, 13, 15, 17, 25]; solutions inB ∩C are constructed
in [18]. The intersection A ∩ B ∩ C contains only trivial solutions.

References

[1] Croisier, A., Esteban, D. and Galand, C., Perfect channel splitting by use of interpolation,
decimation, tree decomposition techniques, in Int. Conf. on Information Sciences/Systems,
(Patras), 443–446, Aug. 1976.

[2] Crochiere, R.E., Weber, S.A. and Flanagan, J.L., Digital coding of speech in subbands, Bell
System Technical J., 55, 1069–1085, Oct. 1976.

c©1999 by CRC Press LLC



[3] Vetterli, M., Multidimensional subband coding: Some theory and algorithms, Signal Proc., 6,
97–112, Feb. 1984.

[4] Woods, J.W. and O’Neil S.D., Subband coding of images, IEEE Trans. Acoust., Speech, Signal
Proc., 34(5), 1278–1288, 1986.

[5] Shapiro, J.M., Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on
Signal Proc., 41, 3445–3462, Dec. 1993.

[6] Said, A. and Pearlman, W.A., An image multiresolution representation for lossless and lossy
compression, IEEE Trans. on Image Proc., 5(9), 1303–1310, 1996.

[7] Xiong, Z., Ramchandran, K. and Orchard, M.T., Wavelet packet image coding using space-
frequency quantization, IEEE Trans. on Image Proc., submitted, 1996.

[8] Vaidyanathan, P.P., Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ,
1992.

[9] Malvar, H.S., Signal Processing with Lapped Transforms, Artech House, 1992.
[10] Vetterli, M. and Kovacevic, J., Wavelet and Subband Coding, Prentice-Hall, Englewood Cliffs,

NJ, 1995.
[11] Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications on Pure

and Applied Mathematics, XLI, 909–996, 1988.
[12] Vetterli, M. and Herley, C., Wavelets and filter banks: theory and design, IEEE Trans. on Signal

Proc., 40, 2207–2232, Sept. 1992.
[13] Cohen, A., Daubechies, I. and Feauveau, J.-C., Biorthogonal bases of compactly supported

wavelets, Commun. on Pure and Applied Mathematics, 45, 485–560, 1992.
[14] Smith, M.J.T. and Barnwell III, T.P., Exact reconstruction for tree-structured subband coders,

IEEE Trans. Acoust., Speech, Signal Proc., 34, 434–441, June 1986.
[15] Vetterli, M., Filter banks allowing perfect reconstruction, Signal Proc., 10(3), 219–244, 1986.
[16] Vaidyanathan, P.P., Multirate digital filters, filter banks, polyphase networks, and applications:

a tutorial, Proc. IEEE, 78, 56–93, Jan. 1990.
[17] Nguyen, T.Q. and Vaidyanathan, P.P., Two-channel perfect-reconstruction FIR QMF structures

whichyield linear-phase analysis and synthesis filters, IEEETrans.Acoust., Speech, Signal Proc.,
37, 676–690, May 1989.

[18] Herley, C. and Vetterli, M., Wavelets and recursive filter banks, IEEE Trans. on Signal Proc.,
41, 2536–2556, Aug. 1993.

[19] Herley, C., Wavelets and Filter Banks, Ph.D. thesis, Columbia University, New York,
April 1993. Available by anonymous ftp to: ftp.ctr.columbia.edu directory: CTR-
Research/advent/public/papers/PhD-theses/Herley.
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The interest in digital filter banks has grown dramatically over the last few years. Owing to the
trend toward lower cost, higher speed microprocessors, digital solutions are becoming attractive for
a wide variety of applications. Filter banks allow signals to be decomposed into subbands, often
facilitating more efficient and effective processing. They are particularly visible in the areas of image
compression, speech coding, and image analysis.

The desired characteristics of a subband decomposition will naturally vary from application to
application. Moreover, withinanygivenapplication, there are amyriadof issues toconsider. First, one
might considerwhether touseFIRor IIRfilters. IIRdesigns canoffer computational advantages, while
FIR designs can offer greater flexibility in filter characteristics. In this chapter we focus exclusively
on FIR design. Second, one might identify the time-frequency or space-frequency representation
that is most appropriate. Uniform decompositions and octave-band decompositions are particularly
popular at present. At the next level, characteristics of the analysis filters should be defined. This
involves imposing specifications on the analysis filter passband deviations, transition bands, and
stopband deviations. Alternately or in addition, time domain characteristics may be imposed, such
as limits on the step response ripples, and degree of regularity.

One can consider similar constraints for the synthesis filters. For coding applications, the charac-
teristics of the synthesis filters often have a dominant effect on the subjective quality of the output.
Finally, one should consider analysis-synthesis characteristics. That is, one has flexibility to specify
the overall behavior of the system. In most cases, one views having exact reconstruction as being ideal.
Occasionally, however, it may be possible to trade some small loss in reconstruction quality for signif-
icant gains in computation, speed, or cost. In addition to specifying the quality of reconstruction, it
is generally possible to control the overall delay of the system from end to end. In some applications,
such as two-way speech and video coding, latency represents a source of quality degradation. Thus,
having explicit control over the analysis-synthesis delay can lead to improvement in quality.

The intelligent design of applications-specific filter banks involves first identifying the relevant
parameters and optimizing the system with respect to them. As is typical, the filter bank analysis and
reconstruction equations lead to complex tradeoffs among complexity, system delay, filter quality,
filter length, and quality of performance. This chapter is devoted to presenting an introduction to
filter bank design. Filter bank design has reached a state of maturity in many regards. To cover all of
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FIGURE 36.1: Block diagram of an M-band analysis-synthesis filter bank.

FIGURE 36.2: Two-band analysis-synthesis filter bank.

the important contributions in any level of detail would be impossible in a single chapter. However,
it is possible to gain some insight and appreciation for general design strategies germane to this topic.
In addition to discussing design methodologies for linear analysis-synthesis systems, we also consider
the design of a couple of new nonlinear classes of filter banks that are currently receiving attention
in the literature. This discussion along with the referenced articles should provide a convenient
introduction to the design of many useful filter banks.

36.1 Filter Bank Equations

A broad class of linear filter banks can be represented by the block diagram shown in Fig. 36.1. This
is a linear time-varying system that decomposes the input into M-subbands, each one of which is
decimated by a factor of R. When R = M , the system is said to be critically sampled or maxi-
mally decimated. Maximally decimated systems are generally the ones of choice because they can be
information preserving, and are not data expansive.

The simplest filter bank of this class is the two-band system, an example of which is shown in
Fig. 36.2. Here, there are only two analysis filters: H0(z), a lowpass filter; and H1(z), a highpass filter.
Similarly, there are two synthesis filters: a lowpass G0(z), and a highpass G1(z). Let us consider this
two-band filter bank first. In the process, we will develop a design methodology that can be extended
to the more complex problem of M-band systems.

Examining the two-band filter bank in Fig. 36.2, we see that the input x[n] is lowpass and highpass
filtered, resulting in v0[n] and v1[n]. These signals are then downsampled by a factor of two, leading
to the analysis section outputs, y0[n] and y1[n]. The downsampling operation is time varying,
which implies a non-trivial relationship between vk[n] and yk[n] (where k = 0, 1). In general,
downsampling a signal vk[n] by an integer factor R is described in the time domain by the equation

yk[n] = vk[Rn].
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In the frequency domain, this relationship is given by

Yk

(
ejω

)
= 1

R

R−1∑
r=0

Vk

(
e
j
(

ω
R

+ 2πr
R

))
.

The equivalent equation in the z domain is

Yk(z) = 1

R

R−1∑
r=0

Vk

(
Wr

Rz
1
R

)
where Wr

R = e−j 2πr
R .

In the synthesis section, the subband signals y0[n] and y1[n] are upsampled to give s0[n] and s1[n].
They are then filtered by the lowpass and highpass filters, G0(z) and G1(z), respectively, before being
summed together. The upsampling operation (for an arbitrary positive integer R) can be defined by

sk[n] =
{

yk[n/R] for n = 0, ±R, ±2R, ±3R, . . .

0 otherwise

in the time domain, and

Sk

(
ejω

)
= Yk

(
ejRω

)
and Sk(z) = Yk

(
zR
)

in the frequency and z domains, respectively.
Using the expressions for the downsampling and upsampling operations, we can describe the

two-band filter bank in terms of z-domain equations. The outputs after analysis filtering are

Vk(z) = Hk(z)X(z), k = 0, 1.

After decimation and recognizing that W1
2 = −1, we obtain

Yk(z) = 1

2

[
Hk

(
z

1
2

)
X
(
z

1
2

)
+ Hk

(
−z

1
2

)
X
(
−z

1
2

)]
, k = 0, 1. (36.1)

Thus, Eq. (36.1) defines completely the input-output relationship for the analysis section in the z

domain.
In the synthesis section, the subbands are upsampled giving

Sk(z) = Yk(z
2), k = 0, 1.

This implies that

Sk(z) = 1

2
(Hk(z)X(z) + Hk(−z)X(−z)) , k = 0, 1.

Passing Sk(z) through the synthesis filters and then summing yields the reconstructed output

X̂(z) = 1

2
G0(z) [H0(z)X(z) + H0(−z)X(−z)]

+ 1

2
G1(z) [H1(z)X(z) + H1(−z)X(−z)] . (36.2)

For virtually any application for which one can conceive, the synthesis filters should allow the input
to be reconstructed exactly or with a minimal amount of distortion. In other words, ideally we want

X̂(z) = z−n0X(z) ,

where n0 is the integer system delay. An intuitive approach to handing this problem is to use the
AC-matrix formulation, which we introduce next.
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36.1.1 The AC Matrix

The aliasing component matrix (or AC matrix) represents a simple and intuitive idea originally
introduced in [6] for handling analysis and reconstruction. The analysis-synthesis equation (36.2)
for the two-band case can be expressed as

X̂(z) = 1

2
[H0(z)G0(z) + H1(z)G1(z)] X(z)

+ 1

2
[H0(−z)G0(z) + H1(−z)G1(z)] X(−z) .

The idea of the AC matrix is to represent the equations in matrix form. For the two-band system,
this results in

X̂(z) = 1

2
[X(z), X(−z)]

[
H0(z) H1(z)

H0(−z) H1(−z)

]
︸ ︷︷ ︸

AC matrix

[
G0(z)

G1(z)

]
,

where the AC matrix is as shown above. The AC matrix is so designated because it contains the
analysis filters and all the associated aliasing components. Exact reconstruction is then obtained
when [

H0(z) H1(z)

H0(−z) H1(−z)

] [
G0(z)

G1(z)

]
=
[

T (z)

0

]
where T (z) is required to be the scaled integer delay 2z−n0. The term T (z) is the transfer function
of the overall system. The zero term below T (z) determines the amount of aliasing present in the
reconstructed signal. Because this term is zero, all aliasing is explicitly removed.

With the equations expressed in matrix form, we can solve for the synthesis filters, which yields[
G0(z)

G1(z)

]
= 1

H0(z)H1(−z) − H0(−z)H1(z)

[
H1(−z) −H1(z)

−H0(−z) H0(z)

] [
T (z)

0

]
. (36.3)

Often for a variety of reasons, we would like both the analysis and synthesis filters to be FIR. This
means the determinant of the AC matrix should be a constant delay. The earliest solution to the FIR
filter bank problem was presented by Croisier et al. in 1976 [18]. Their solution was to let

H1(z) = H0(−z)

and

G0(z) = H0(z)

G1(z) = −H0(−z) .

This is the quadrature mirror filter (QMF) solution. From the equations in (36.3), it can be seen that
this solution cancels all the aliasing and results in a system transfer function

T (z) = H0(z)H1(−z) − H0(−z)H1(z) .

As it turns out, with careful design T (z) can be made to be close to a constant delay. However, some
amount of distortion will always be present. In 1980 Johnston designed a set of optimized QMFs
which are now widely used. The coefficient values may be found in several sources [16, 17, 19].

Interestingly, the equations in (36.3) imply that exact reconstruction is possible by forcing the
AC-matrix determinant to be a constant delay. The design of such exact reconstruction filters is
discussed in the next section.
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FIGURE 36.3: Example of a zero-phase half-band lowpass filter.

36.1.2 Spectral Factorization

The question at hand is how do we determine H0(z) and H1(z) such that T (z) is an integer delay z−n0.
A solution to this problem was introduced in 1984 [7], based on the observation that H0(z)H1(−z)

is a lowpass filter [which we denote F0(z)] and H0(−z)H1(z) is its corresponding frequency shifted
highpass filter. A unity transfer function can be constructed by forcing F0(z) and F0(−z) to be
complementary half-band lowpass and highpass filters. Many fine techniques are available for the
design of half-band lowpass filters, such as the Parks-McClellan algorithm, Kaiser window design,
Hamming window design, the eigenfilter method, and others. Zero-phase half-band filters have the
property that zeros occur in the impulse response at n = ±2, ±4, ±6, . . ., etc. An illustration is
shown in Fig. 36.3. Once designed, F0(z) can be factored into two lowpass filters, H0(z) and H1(−z).
The design procedure can be summarized as follows.

1. First design a (2N − 1)-tap half-band lowpass filter, using the Parks-McClellan algo-
rithm, for example. This can be done by constraining the passband and stopband cutoff
frequencies to be ωp = π −ωs , and using equal passband and stopband error weightings.
The resulting filter will have equal passband and stopband ripples, i.e., δp = δs = δ.

2. Add the value δ to the f [0] (center) tap value. This forces F(ejω) ≥ 0 for all ω.

3. Spectrally factor F(z) into two lowpass filters, H0(z) and H1(−z). Generally the best
way to factor F(z) is such that H1(−z) = H0(z

−1). Note that the factorization will not
be unique and the roots should be split so that if a particular root is assigned to H0(z),
its reciprocal should be given to H0(z

−1).

The result of the above procedure is that H0(z) will be a power complementary, even length, FIR
filter that will form the basis for a perfect reconstruction filter bank. Note that since H1(z) is just a
time-reversed, spectrally shifted version of H0(z),∣∣∣H0(e

jω)

∣∣∣ =
∣∣∣H1(−ejω)

∣∣∣ .

Smith and Barnwell designed and published a set of optimal exact reconstruction filters [1]. The
filter coefficients for H0(z) are given in Table 36.1. The analysis and synthesis filters are obtained
from H0(z) by

G0(z) = H0

(
z−1

)
G1(z) = H0(−z)

H1(z) = H0

(
−z−1

)
.

A complete discussion of this approach can be found in many references [1, 6, 7, 25, 27, 28].
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TABLE 36.1 CQF (Smith-Barnwell) Filter Bank

Coefficients with 40dB Attenuation
32-Tap filter 16-Tap filter

8.494372478233170D−03 2.193598203004352D−02
−9.617816873474045D−05 1.578616497663704D−03
−8.795047132402801D−03 −6.025449102875281D−02

7.087795490845020D−04 −1.189065962053910D−02
1.220420156035413D−02 0.137537915636625D+00

−1.762639314795336D−03 5.745450056390939D−02
−1.558455903573829D−02 −0.321670296165893D+00

4.082855675060479D−03 −0.528720271545339D+00
1.765222024089335D−02 −0.295779674500919D+00

−8.385219782884901D−03 2.043110845170894D−04
−1.674761388473688D−02 2.906699709446796D−02

1.823906210869841D−02 −3.533486088708146D−02
5.781735813341397D−03 −6.821045322743358D−03

−4.692674090907675D−02 2.606678468264118D−02
5.725005445073179D−02 1.033363491944126D−03
0.354522945953839D+00 −1.435930957477529D−02
0.504811839124518D+00
0.264955363281817D+00

−8.329095161140063D−02
−0.139108747584926D+00

3.314036080659188D−02
9.035938422033127D−02

−1.468791729134721D−02 8-Tap filter
−6.103335886707139D−02

6.606122638753900D−03 3.489755821785150D−02
4.051555088035685D−02 −1.098301946252854D−02

−2.631418173168537D−03 −6.286453934951963D−02
−2.592580476149722D−02 0.223907720892568D+00

9.319532350192227D−04 0.556856993531445D+00
1.535638959916169D−02 0.357976304997285D+00

−1.196832693326184D−04 −2.390027056113145D−02
−1.057032258472372D−02 −7.594096379188282D−02

For the M-channel case shown in Fig. 36.1, where the bands are assumed to be maximally deci-
mated, the same AC-matrix approach can be employed, leading to the equations

X̂(z) = 1

M

[
X(z), . . . , X(zWM−1

M )
]

︸ ︷︷ ︸
xT

H0(z) · · · HM−1(z)

H0(zW
1
M) · · · HM−1(zW

1
M)

...
...

H0(zW
M−1
M ) · · · HM−1(zW

M−1
M )


︸ ︷︷ ︸

H


G0(z)

G1(z)
...

GM−1(z)


︸ ︷︷ ︸

g

,

where WM = e−j 2π
M . This can be rewritten compactly as

X̂(z)
1

M
xT (z)H(z)g(z) ,

where x is the input vector, g is the synthesis filter vector, and H is the AC matrix. However, the AC-
matrix determinant for systems with M > 2 is typically too intricate for the spectral factorization
approach outlined above. An effective approach for handling the design of M-band systems was
introduced by Vaidyanathan in [30]. It is based on a lattice implementation structure and is discussed
next.
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FIGURE 36.4: Flow graph of a two-band lattice structure with three stages.

36.1.3 Lattice Implementations

In addition to the direct form structures shown in Figs. 36.1 and 36.2, filter banks can be implemented
using lattice structures. For simplicity, consider the two-band case first. An example of a lattice
structure for a two-band analysis system is shown in Fig. 36.4. It is composed of a cascade of criss-
cross elements, each of which has a set of coefficients associated with it. Conveniently, each section,
which we denote Rm, can be described by a matrix. For the two-band lattice, these matrices have the
form

Rm =
[

1 rm
−rm 1

]
.

Interspersed between the coefficient matrices are delay matrices, 3(z), having the form

3(z) =
[

1 0
0 z−1

]
.

It can be shown [27] that lattice filters can represent a wide class of exact reconstruction filter banks.
Two points regarding lattice filter banks are particularly noteworthy. First, the lattice structure
provides an efficient form of implementation. Moreover, the synthesis filter bank is directly related
to the analysis bank, since each matrix in the analysis cascade is invertible. Consequently, the
synthesis bank consists of the cascade of inverse section matrices. Second, the structure also provides
a convenient way to design the filter bank. Each lattice coefficient can be optimized using standard
minimization routines to minimize a passband-stopband error cost function for the filters. This
approach to design can be used for two-band as well as M-band filter banks [5, 27, 28].

36.1.4 Time-Domain Design

One of the most flexible design approaches is the time domain formulation proposed by Nayebi et
al. [3, 8]. This formulation has enabled the discovery of previously unknown classes of filter banks,
such as low and variable delay systems [12], time-varying filter banks [4], and block decimation
systems [9]. It is attractive because it enables the design of virtually all linear filter banks. The idea
underlying this approach is that the conditions for exact reconstruction can be expressed in the time
domain in a convenient matrix form. Let us explore this approach in the context of an M-band
filter bank. Because of the decimation operations, the overall M-band analysis-synthesis system is
periodically time-varying. Thus, we can view an arbitrary maximally decimated M-band system as
having M linear time invariant transfer functions associated with it. One can think of the problem
as trying to devise M subsampled systems, each one of which exactly reconstructs. This is equivalent
to saying that for each impulse input, δ[n − i], to the analysis-synthesis system, that impulse should
appear at the system output at time n = i + n0, where i = 0, 1, 2, . . . , M − 1 and n0 is the system
delay.

This amounts to setting up an overconstrained linear system AS = B, where the matrix A is
created using the analysis filter coefficients, the matrix B is the desired response of zeros except at
the appropriate delay points (i.e., δ[n − n0]) and S is a matrix containing synthesis filter coefficients.
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Particular linear combinations of analysis and synthesis filter coefficients occur at different points in
time for different input impulses. The idea is to make A, S, and B such that they describe completely
all M transfer functions that comprise the periodically time-varying system.

The matrix A is a matrix of filter coefficients and zeros that effectively describe the decimated con-
volution operations inherent in the filter bank. For convenience, we express the analysis coefficients
as a matrix h, where

h =


h0[0] h1[0] · · · hM−1[0]
h0[1] h1[1] · · · hM−1[1]

...
...

...

h0[N − 1] h1[N − 1] · · · hM−1[N − 1]

 .

The zeros are represented by an M ×M matrix of zeros, denoted OM. With these terms, we can write
the (2N − M) × N matrix A,

A =



 h[n]


OM
...

OM

OM h[n]


...

OM

· · ·
· · ·
· · ·
· · ·

· · ·

OM
...

OM h[n]




.

The synthesis filters S can be expressed most conveniently in terms of the M × M matrix

Qi =


g0[i] g0[i + 1] · · · g0[i + M − 1]
g1[i] g1[i + 1] · · · g1[i + M − 1]

...
...

...

gM−1[i] gM−1[i + 1] · · · gM−1[i + M − 1]

 ,

where i = 0, 1, . . . , L−1 and N is assumed to be equal to LM . The synthesis matrix S is then given
by

S =



Q0
QM

...

QiM

...

Q(L−1)M


.

Finally, to achieve exact reconstruction we want the impulse responses associated with each of the M

constituent transfer functions in the periodically time-varying system to be an impulse. Therefore, B
is a matrix of zero-element column vectors, each with a single “one” at the location of the particular
transfer function group delay. More specifically, the matrix has the form

B =



OM

OM
...

JM
...

OM

OM
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where JM is the M × M antidiagonal identity matrix

JM =


0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0

 .

It is important to mention here that the location of JM within the matrix B is a system design issue.
The case shown here, where it is centered within B, corresponds to an overall system delay of N − 1.
This is the natural case for systems with N-tap filters. There are many fine points associated with
these time domain conditions. For a complete discussion, the reader is referred to [3].

With the reconstruction equations in place, we now turn our attention to the design of the filters.
The problem here is that this is an over-constrained system. The matrix A is of size (2N − M) × N .
If we think of the synthesis filter coefficients as the parameters to be solved for, we find M(2N − M)

equations and MN unknowns. Clearly, the best we can hope for is to determine B in an approximate
sense. Using least-squares approximation, we let

S =
(
AT A

)−1
B .

Here, it is assumed that
(
AT A

)−1
exists. This is not automatically the case. However, if reasonable

lowpass and highpass filters are used as an initial starting point, there is rarely a problem.
This solution gives the best synthesis filter set for a particular analysis set and system delay N − 1.

The resulting matrix AS = B̂ will be close to B but not equal to it in general. The next step in
the design is to allow the analysis filter coefficients to vary in an optimization routine to reduce the

Frobenius matrix norm,
∣∣∣∣∣∣B̂ − B

∣∣∣∣∣∣2
F

. The locally optimal solution will be,

S =
(
AT A

)−1
B, such that

∣∣∣∣∣∣B̂ − B
∣∣∣∣∣∣2

F
is minimized .

Any number of routines may be used to find this minimum. A simple gradient search that
updates the analysis filter coefficients will suffice in most cases. Note that, as written, there are no
constraints on the analysis filters other than that they provide an invertible AT A matrix. One can
easily start imposing constraints relevant to system quality. Most often we find it appropriate to
include constraints on the frequency domain characteristics of the individual analysis filters. This
can be done conveniently by creating a cost function comprised of the passband and stopband filter
errors. For example, in the two-band case, inclusion of such filter frequency constraints gives rise to
the overall error function

ε =
∣∣∣∣∣∣B̂ − B

∣∣∣∣∣∣2
F

+
∫ πp

0

∣∣∣1 − H1(e
jω)

∣∣∣2 dω +
∫ π

πs

∣∣∣H0(e
jω)

∣∣∣2dω.

This reduces the overall system error of the filter bank while at the same time reducing the stopband
errors in analysis filters. Other options in constructing the error function can address control over
the step response of the filters, the width of the transition bands, and whether an l2 norm or an l∞
norm is used as an optimality criterion.

By properly weighting the reconstruction and frequency response terms in the error function, exact
reconstruction can be obtained, if such a solution exists. If an exact reconstruction solution does not
exist, the design algorithm will find the locally optimal solution subject to the specified constraints.
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Functionality of the Design Formulation

One of the distinct advantages of the time-domain design method is its flexibility. The discus-
sion above assumed that the system delay was N −1where N is the filter length. For the time-domain
formulation, the amount of overall system delay can be thought of as an input to the design algorithm.
In other words, one can pre-specify the desired system delay and then find the locally optimal set
of analysis and synthesis filters that reduce the cost function while maintaining the specified delay.
Control over the system delay is given by the position of JM in the matrix B. Placing JM at or near
the top of B lowers the system delay while positioning it at or near the bottom increases the system
delay. One consideration here is the effect on filter bank quality. Experiments have shown that as the
delay moves toward the extremes, the impact of the overconstrained equations is more severe. One is
forced to either tolerate poorer frequency response characteristics or perhaps allow a little distortion
in the reconstruction.

The cost function allows for an infinite variety of systems to be designed. The algorithm will con-
verge to a filter set that optimizes the cost function as it is given. This provides the freedom to tradeoff
among reconstruction error, frequency domain characteristics, and time domain characteristics. To
aid in finding a particular locally optimal solution, the cost function can be allowed to be “adaptive”.
If exact reconstruction is desired, a heavy weighting may be placed on the reconstruction term in the
cost function initially, until that term goes to zero. Then the cost function can be adjusted with new
weightings that address reducing the error associated with the remaining distortion components.

This time domain formulation has been used to design an unprecedented variety of filter banks,
including the first block decimation systems, the first time-varying systems, the first low delay systems,
cosine modulated filter banks, nonuniform band filter banks, and many others [3, 4, 9, 10, 11]. One of
the most important in this list is cosine modulated filter banks because they can be implemented very
efficiently by using FFT-class algorithms. Cosine modulated filter banks may be designed in a variety
of ways. Excellent discussions on this topic are given by Malvar [20, 24], Vaidyanathan [21, 27],
Vetterli [23], and many others.

Linear filter banks have proven to be effective in many applications. Perhaps their most widespread
use is in the area of coding. Subband coders for speech audio, image, and video signals tend to work
very well. However, at low bit rates, distortions can be detected. Thus, there is interest in designing
filter banks that are less prone to producing annoying distortions in these cases. Other nonlinear
classes of filter banks can be considered that display different forms of distortion at low bit rates. In
the remainder of this chapter, we discuss the design of two nonlinear filter banks that are presently
being studied.

36.2 Finite Field Filter Banks

A new and interesting variant of the classical analysis-synthesis system can be achieved by imposing
the explicit constraint that the discrete amplitude range of the subbands is confined. For conventional
filter banks, we assume the input signal has a finite number of amplitude values. For instance, in
the case of subband image coding, the input will typically contain 8 bits or 256 amplitude levels.
However, the subband outputs may contain millions of possible amplitude values. For a coding
application, we can think of the input as having a small alphabet (e.g., 256 unique values), and the
analysis filter output as having a large alphabet (millions). Conceivably, one might be able to improve
coding performance in some situations by designing a filter bank that constrains the output alphabet
to be small. With this as motivation, we consider the problem of designing exact reconstruction filter
banks with this constraint, an idea originally introduced by Vaidyanathan [37].

To begin our discussion, consider an input image with an alphabet size N (e.g., 256 gray levels).
The output is expanded to an alphabet size of M × N after subband filtering. The value of M is
governed by the length and coefficient values of the filter. M can be very large. The design task of
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interest here is to construct a filter bank where M is very small, ideally unity. In other words, we are
constraining the system to operate in a finite field of our choosing, e.g., GF(N). In order to meet this
finite field condition, an operational change is needed. Specifically, the finite field filter bank should
operate in an integer field. Consequently, the filters used should be perfect reconstruction filters
with integer coefficients. This modification makes it possible to perform wrap-around arithmetic.
Wrap-around arithmetic restricts outputs to a finite field by performing all operation modulo N .

The design of a finite field filter bank is relatively simple. The image is passed through analysis
filters using wrap-around arithmetic. This means that every operation is either modulo-N addition
or modulo-N multiplication. Hence, the subband outputs will have an integer alphabet of size N . To
reconstruct, the image is passed through the synthesis filters using the same wrap-around arithmetic
within the same finite integer field. The bands are then combined using modulo-N addition. As
it turns out, the resulting signal will not match the original. However, the signal can be corrected
by applying a mapping based on the gain of the filter banks, M , and the dynamic range, N . Let us
assume that the input is an image with N ′ discrete levels, and that all operations have been performed
modulo N . Each value of the output image is found in set B and can be mapped into set A, where

A = {0, 1, 2, ..., N ′ − 1} B = ((M × A))N .

The resulting output image x̂ will be, under certain conditions, an exact reconstruction of the input
image x.

There are two conditions that must be satisfied in order to obtain exact reconstruction. First, the
subband output alphabet size N must be equal to or greater than the input alphabet size N ′. This is
a necessary condition in order to unambiguously resolve all values of the input. Second, the system
gain M is constrained in relation to the subband output size N . The system gain is governed by the
analysis and synthesis filters in the following way:

M =
(∑

n

|h0[n]| ×
∑
n

|g0[n]|
)

+
(∑

n

|h1[n]| ×
∑
n

|g1[n]|
)

where h0[n] and h1[n] are the analysis filters and g0[n] and g1[n] are the synthesis filters. The
relation between M and N is crucial in obtaining perfect reconstruction. These two numbers must
be relatively prime. That is, M and N can have no common factors. For example, if M is two, any
odd value of N would be valid. Ideally, we might want N = N ′. However, to satisfy the last condition
M is determined by the system and N is adjusted slightly up from N ′. It is typically easier to adjust
N .

To illustrate the differences in outputs obtained from conventional and finite field filter banks,
consider the following comparison. For a conventional two-band system with two-tap Haar analysis
filters, an input of

x = 0, 0, 0, 4, 2, 3, 0, 1, 2, 0, 0, . . .

will yield the outputs

y0 = 0, 4, 5, 1, 2, . . .

y1 = 0, 4, 1, 1, −2, . . . .

However, for the equivalent finite field system (like the one shown in Fig. 36.5), the outputs are
noticeably different. For the finite field case, all operations are performed modulo N . Thus, for the
same input the outputs produced are

y0 = 0, 4, 0, 1, 2, . . .

y1 = 0, 4, 1, 1, 3 . . . .

c©1999 by CRC Press LLC



FIGURE 36.5: Block diagram of a two-band finite field filter bank.

Notice that the alphabet here is confined to the integers 0, 1, 2, 3, 4 because we have set N = 5. For
the reconstruction, the outputs shown in the figure will be

x̂0 = 0, 4, 4, 0, 0, 1, 1, 2, 2, . . .

x̂1 = 0, 1, 4, 4, 1, 4, 1, 2, 3, . . . .

Adding these together, modulo N gives

x̂p = 0, 0, 3, 4, 1, 0, 2, 4, 0 . . . .

Now unscrambling them in the post-mapping step shown in the figure gives

x̂ = 0, 0, 4, 2, 3, 0, 1, 2, 0 . . . = x .

It is interesting to compare the analysis section outputs of finite field and conventional filter banks
for the two-band case. The lower band output of a conventional filter bank has a dynamic range
that is usually much greater than the dynamic range of the input. The values in the lower band tend
to have a Gaussian distribution over the range. By constraining the alphabet size, the first-order
entropy can be reduced. The amount of the reduction depends on the size of M . The higher band
in the conventional filter bank has a dynamic range that might be larger than N ; however, the values
are clustered around zero. When modulo operations are performed, the negative values go to a high
value so not much overlap is obtained. Therefore, the alphabet constraint has little or no affect on the
higher bands. The finite field filter bank reduces the overall first-order entropy because the entropy
is reduced in the lower band. The degree by which the entropy is reduced is greatly dependent on
the image and the filter gains.

How do finite field filter banks affect input images with different dynamic ranges? This effect is
dependent on the same two components that have previously been discussed, the system gain M ,
and the subband output size N . Let us assume the subband output range N is set equal to the input
image range N ′. Now we can examine the effects of different system gains given N . For example, if
the image is binary (N = 2), the system gain must be odd. Examining the decomposition of such an
image, we can see that it appears very noisy. This is because the dynamic range of the system is small
and the gain is large. The image is essentially wrapping around on itself so many times it is difficult
to observe the original image in the bands. In a case where N > 2, a filter with a smaller gain is
more realizable. For example, if N = 255, we can choose a system gain of 2. In this decomposition
(Fig. 36.6), the lower band image is not what we are accustomed to observing in a conventional
decomposition. This case does have a lower first-order entropy than its conventional counterpart.
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FIGURE 36.6: A four-level octave band decomposition using finite field filter banks.

Finite field filter banks are still in their early phases of study. As a result of the constraints, filter
quality is limited. Thus, the net gains achievable in an application could be favorable or unfavorable.
One must pay careful attention to the subband output size, filter length, and coefficient values during
the design of the filter bank. Nonetheless, it seems that finite field filter banks are potentially attractive
in some applications.

36.3 Nonlinear Filter Banks

One of the driving forces for research in filter banks is image coding for low bit rate applications.
Presently, subband image coders represent the best approach known for image compression. As with
any coder, at low rates distortions occur. Subband coders based on conventional linear filter banks
suffer from ringing effects due to the Gibbs phenomenon. These ringing effects occur around edges
or high contrast regions. One way to eliminate ringing is to use nonlinear filter banks. There are
pros and cons regarding the utility of nonlinear filter banks. However, the design of the systems is
rather new and interesting.

Nonlinear filter banks can be constructed within a general two-band framework. A nonlinear
filter may be placed in the highpass analysis and in the lowpass synthesis block of the systems. The
condition for exact reconstruction will be discussed later. What type of nonlinear filter is an open
question. While there are many candidates, the constraints of the overall system restrict the design of
filters in terms of type and degrees of freedom in optimization. The most widely used nonlinear filter
is the rank-order filter. In this discussion, we consider rank-order filters, more specifically, median
filters. The performance of such filters is determined by the rank used and the region of support.
The popular N-point median filter has a rank of (N + 1)/2, where N is assumed to be odd. Egger
et al. [31] suggested a simple two-band nonlinear filter bank that upholds the exact reconstruction
property. The lowpass channel consists of direct downsampling, while the highpass channel involves
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FIGURE 36.7: A two-band polyphase nonlinear filter bank.

a median filter (differencing) operation to achieve a highpass representation for the other channel.
Because straight downsampling and median filtering are involve, there is an inherent finite field
constraining property built in to the system. Although these features seem attractive, the system is
severely limited by its lack of filtering power. Most notably, the lowpass channel has massive aliasing
since no filtering is performed. For many applications, aliasing of this type is not desirable. This
problem can be addressed somewhat by using the modified filter bank introduced by Florencio and
Schafer [32]. In the two-band system of Florencio and Schafer shown in Fig. 36.7, each channel can
be expressed as a filtered combination of the input. This structure can be recognized as a classical
polyphase implementation for a two-band filter bank. Here, however, we allow the polyphase filters
fij and gij to be nonlinear filters. Thus,

y0[n] = f00(x0[n]) + f01(x1[n])
y1[n] = f10(x0[n]) + f11(x1[n])

wherefij (·) are the linear or nonlinear polyphase analysis filters. To reconstruct the signal, the output
can be expressed as a filtered combination of the channels,

x̂0 = g00(y0) + g01(y1) x̂1 = g10(y0) + g11(y1)

where gij (·) are the linear or nonlinear polyphase synthesis filters. The perfect reconstruction
conditions are based on these different classes or structures. The Type I structure consists of
f00(·) = f11(·) = I (identity), and either f10(·) = 0 or f01(·) = 0. The other is any causal
transformation. To obtain perfect reconstruction, g00(·) = g11(·) = I , g10(·) = f10(·), and
g01(·) = −f01(·). The Type II structure consists of f10(·) = f01(·) = 0 and both f00(·) and f11(·)
being invertible functions. To obtain perfect reconstruction g01(·) = g10(·) = 0, g00(·) = f −1

00 (·),
and g11(·) = f −1

11 (·). The Type III structure consists of f10(·) = f01(·) = I and f00(·) = f11(·) = 0.
To obtain perfect reconstruction, g01(·) = g10(·) = I and g00(·) = g11(·) = 0.

Similar to linear filter banks, this nonlinear filter bank achieves an overall reduction in first-
order entropy. Since perfect reconstruction is achieved in the two-band decomposition, perfect
reconstruction can be maintained when used in tree structured systems for compression applications.
After quantization, coding, and reconstruction, different features will be affected in different ways.
The main advantage of nonlinear filtering is that the edges associated with high contrast features
are preserved well, and no “ringing” occurs. However, because of the nature of the sampling in
the lower band, texture regions are distorted. Using cascaded sections is a way to help preserve the
texture. As it turns out, sections can be cascaded in a way that preserves exact reconstruction. For

c©1999 by CRC Press LLC



FIGURE 36.8: Comparison of outputs from one linear and three nonlinear filter banks. (a) A
four-band linear decomposition using four-tap QMFs. (b) A four-band nonlinear decomposition
using the method of Egger and Li. (c) A four-band nonlinear decomposition using the two-stage
method of Florencio and Schafer. (d) The residual image obtained from subtracting the nonlinear
decomposition result in (b) from the result in (c).
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example, let the first stage of the filter contain f01(·) = 0, with f10(·) being a four-point median
filter. Let the second stage be defined by f10(·) = 0 with f01(·) being a four-point median filter
with a 0.5 gain (to maintain the dynamic range of the input). The resulting two bands are similar
to the bands of the comparable linear case but have the advantages of a nonlinear system. Most
notably, the lower band of the nonlinear case has a reduction in higher frequencies, very similar
to the linear case. These differences are illustrated in Fig. 36.8 for a four-band decomposition of
an image. A conventional QMF decomposition is shown in (a). Next to it in (b) and (c) are the
nonlinear decompositions obtained using the Egger and Li approach, and the two-stage approach of
Florencio and Schafer, respectively. All show similarities. However, more energy is contained in the
high frequency subbands of the nonlinear results. In comparing carefully the two nonlinear results,
we can observe that the two-stage approach of Florencio and Schafer has less aliasing in the lowest
band and more closely follows the linear result. The difference image between the two nonlinear
results is given in (d).

It is clear that there are many possibilities for constructing nonlinear filter banks. What is less
obvious at this point is the impact of these systems in practical situations. Given that development
related to these filter banks is only in the formative stages, only time will tell. Regardless of whether
conventional or nonlinear filter banks are ultimately employed, the variety of design options and
design techniques offer many useful solutions to engineering problems. More in-depth discussions
on applications can be found in the references.
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37.1 Introduction

Time-frequency representations (TFR) combine the time-domain and frequency-domain represen-
tations into a single framework to obtain the notion of time-frequency. TFR offer the time localization
vs. frequency localization tradeoff between two extreme cases of time-domain and frequency-domain
representations. The short-time Fourier transform (STFT) [1, 2, 3, 4, 5] and the Gabor transform [6]
are the classical examples of linear time-frequency transforms which use time-shifted and frequency-
shifted basis functions.

In conventional time-frequency transforms, the underlying basis functions are fixed in time and
define a specific tiling of the time-frequency plane. The term time-frequency tile of a particular
basis function is meant to designate the region in the plane that contains most of that function’s
energy. The short-time Fourier transform and the wavelet transform are just two of many possible
tilings of the time-frequency plane. These two are illustrated in Fig. 37.1(a) and (b), respectively. In
these figures, the rectangular representation for a tile is purely symbolic, since no function can have
compact support in both time and frequency. Other arbitrary tilings of the time-frequency plane are
possible such as the example shown in Fig. 37.1(c). In the discrete domain, linear time-frequency
transforms can be implemented in the form of filter bank structures.

It is well known that the time-frequency energy distribution of signals often changes with time.
Thus, in this sense, the conventional linear time-frequency transform paradigm is fundamentally
mismatched to many signals of interest. A more flexible and accurate approach is obtained if the
basis functions of the transform are allowed to adapt to the signal properties. An example of such
a time-varying tiling is shown in Figure 37.1(d). In this scenario, the time-frequency tiling of the
transform can be changed from good frequency localization to good time localization and vice versa.
Time-varying filter banks provide such flexible and adaptive time-frequency tilings.
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FIGURE 37.1: The time-frequency tiling for different time-frequency transforms: (a) The STFT, (b)
the wavelet transform, (c) an example of general tiling, and (d) an example of the time-varying tiling.

The concept of time varying (or adaptive) filter banks was originally introduced in [7] by Nayebi
et al. The ideas underlying their method were later developed and extended to a more general case
in which it was also shown that the number of frequency bands could also be made adaptive [8, 9,
10, 11]. De Queiroz and Rao [12] reported time-varying extended lapped transforms and Herley et
al. [13, 14, 15] introduced another time-domain approach for designing time-varying lossless filter
banks. Arrowood and Smith [16] demonstrated a method for switching between filter banks using
lattice structures. In [17], the authors presented yet another formulation for designing time-varying
filter banks using a different factorization of the paraunitary transform. Chen and Vaidyanathan [18]
reported a noncausal approach to time-varying filter banks by using time-reversed filters. Phoong
and Vaidyanathan [19] studied time-varying paraunitary filter banks using polyphase approach.
In [11, 20, 21, 22], the post filtering technique for designing time-varying filter bank was reported.
The design of multidimensional time-varying filter bank was addressed in [23, 24]. In this article,
we introduce the notion of the time-varying filter banks and briefly discuss some design methods.

37.2 Analysis of Time-Varying Filter Banks

Time-varying filter banks are analysis-synthesis systems in which the analysis filters, the synthesis
filters, thenumberofbands, thedecimation rates, and the frequency coverageof thebands are changed
(in part or in total) in time, as is shown in Fig. 37.2. By carefully adapting the analysis section to
the temporal properties of the input signal, better performance can be achieved in processing the
signal. In the absence of processing errors, the reconstructed output x̂(n) should closely approximate
a delayed version of the original signal x(n). When x̂(n − 1) = x(n) for some integer constant, 1,
then we say that the filter bank is perfectly reconstructing (PR). The intent of the design is to choose
the time-varying analysis and synthesis filters along with the time-varying down/up samplers so that
the system requirements are met subject to the constraint that the analysis-synthesis filter bank be
PR at all times.
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FIGURE 37.2: The time-varying filter bank structure with time-varying filters and time-dependent
down/up samplers.

One general method for analysis of time-varying filter banks is the time-domain formulation
reported in [10, 22]. In this method, the time-varying impulse response of the entire filter bank is
derived in terms of the analysis and synthesis filter coefficients.

Figure (37.3) shows the diagram of a time-varying filter bank. In this figure, the filter bank is
divided into three stages: the analysis filters, the down/up samplers, and the synthesis filters. The
signals x(n) and x̂(n) are the filter bank input and output at time n, respectively. The outputs
of the analysis filters are shown by v(n) = [v0(n), v1(n), . . . , vM(n)−1(n)]T , where vi(n) is the
output of the ith analysis filter at time n. The outputs of the down/up samplers at time n is called
w(n) = [w0(n), w1(n), . . . , wM(n)−1(n)]T .

FIGURE 37.3: Time-varying filter bank as a cascade of analysis filters, down/up samplers, and
synthesis filters.

The input/output relation of the analysis filters can be expressed by

v(n) = P(n)xN(n) . (37.1)

P(n) is an M(n) × N(n) matrix whose mth row is comprised of the coefficients of the mth analysis
filter at time n and xN(n) is the input vector of length N(n) at time n:

xN(n) = [x(n), x(n − 1), x(n − 2), . . . , x(n − N(n) + 1)]T . (37.2)

The input/output function of down/up samplers can be expressed in the form

w(n) = 3(n)v(n) (37.3)

where 3(n) is a diagonal matrix of size M(n) × M(n). The mth diagonal element of 3(n), at time
n, is 1 if the input and output of the mth down/up sampler are identical, otherwise it is zero.
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To write the input/output relationship of the synthesis filters, Q(n) is defined as

Q(n) =




g0(n, 0) g0(n, 1) g0(n, 2) . . . g0(n, N(n) − 1)

g1(n, 0) g1(n, 1) g1(n, 2) . . . g1(n, N(n) − 1)

g2(n, 0) g2(n, 1) g2(n, 2) . . . g2(n, N(n) − 1)
...

...
...

...
...

gM(n)−1(n, 0) gM(n)−1(n, 1) gM(n)−1(n, 2) . . . gM(n)−1(n, N(n) − 1)




= [
q0(n) q1(n) q2(n) . . . qN(n)−1(n)

]
(37.4)

where qi (n) = [g0(n, i), g1(n, i), g2(n, i), . . . , gM(n)−1(n, i)]T , is a vector of length M(n) and
gi(n, j) denotes the j th coefficient of the ith synthesis filter. At time n, the mth synthesis filter
is convolved with vector [wm(n), wm(n − 1), . . . , wm(n − N(n) + 1)]T and all outputs are added
together. Using Eq. (37.4), the output of the filter bank at time n can be written as:

x̂(n) =
N(n)−1∑

i=0

qT
i (n) w(n − i) . (37.5)

If s(n) and ŵ(n) are defined as

s(n) =
[
qT

0 (n), qT
1 (n), qT

2 , . . . , qT
N(n)−1(n)

]T

(37.6)

ŵ(n) =
[
wT (n), wT (n − 1), wT (n − 2), . . . , wT (n − N(n) + 1)

]T

, (37.7)

then Eq. (37.5) can be written in the form of one inner product,

x̂(n) = sT (n)ŵ(n) (37.8)

where s(n) and ŵ(n) are vectors of length N(n)M(n). Using Eqs. (37.1), (37.3), (37.7), and (37.8),
the input/output function of the filter bank can be written as:

x̂(n) = sT (n)




3(n) P(n) xN(n)

3(n − 1) P(n − 1) xN(n − 1)

3(n − 2) P(n − 2) xN(n − 2)
...

3(n − N(n) + 1) P(n − N(n) + 1) xN(n − N(n) + 1)


 . (37.9)

As the last N(n) − 1 elements of vector xN(n − i) are identical to the first N(n) − 1 elements of
vector xN(n − i − 1), the latter equation can be expressed by

x̂(n) = sT (n)




[
3(n) P(n)

]
O . . . . . . . . . . . . . . . O

O
[

3(n − 1) P(n − 1)
]

O . . . . . . . . . . . . . . O
O O

[
3(n − 2) P(n − 2)

]
O . . . . . . . . . . . O

. . .

O . . . . . . . . . . . . . . . . . . . . . . . . O
[

3(n − N(n) + 1) P(n − N(n) + 1)
]







x(n)

x(n − 1)

x(n − 2)

.

.

.

x(n − 2N(n) + 1)




(37.10)
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where O is the zero column vector with length M(n). Thus, the input/output function of a time-
varying filter bank can be expressed in the form of

x̂(n) = zT (n)xI (n) (37.11)

where xI (n) = [x(n), x(n − 1), . . . , x(n − I + 1)]T and I (n) = 2N(n) − 1 and z(n) is the time-
varying impulse response vector of the filter bank at time n:

z(n) = A(n) s(n). (37.12)

The matrix A(n) is the [2N(n) − 1] × [N(n) M(n)] matrix

A(n) =





 P(n)T 3(n)




OT

OT

.

.

.

OT

OT
 P(n − 1)T 3(n − 1)




OT

.

.

.

OT

. . .

OT

.

.

.

OT
 P(n − N(n) + 1)T 3(n − N(n) + 1)







.

(37.13)
For a perfect reconstruction filter bank with a delay of 1, it is necessary and sufficient that all elements
but the (1 + 1)th in z(n) be equal to zero at all times. The (1 + 1)th entry of z(n) must be equal to
one. If the ideal impulse response is b(n), the filter bank is PR if and only if

A(n) s(n) = b(n) for all n. (37.14)

37.3 Direct Switching of Filter Banks

Changing from one arbitrary filter bank to another independently designed filter bank without using
any intermediate filters is called direct switching. Direct switching is the simplest switching scheme
and does not require additional steps in switching between two filter banks. But such switching
will result in a substantial amount of reconstruction distortion during the transition period. This is
becauseduring the transition, noneof the synthesisfilters satisfies the exact reconstructionconditions.
Figure (37.4) shows an example of a direct switching filter bank. Figure (37.5) shows the time-varying
impulse response of the above system around the transition periods. In this figure, z(n, m) is the
response of the system at time n to the unit input at time m. For a PR system, z(n, m) has a height
of 1 along the diagonal and 0 everywhere else in the (m, n)-plane. As is shown, the time-varying
filter bank is PR before and after but not during the transition periods. In this case, each switching
operation generates a distortion with an 8-sample duration. One way to reduce the distortion is to
switch the synthesis filters with an appropriate delay with respect to the analysis switching time. This
delay may reduce the output distortion, but it can not eliminate it.

37.4 Time-Varying Filter Bank Design Techniques

The basic time-varying filter bank design methods are summarized in Table 37.1. These techniques
can be divided into two major approaches which are briefly described in the following sections.
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FIGURE 37.4: Block diagram of a time-varying analysis/synthesis filter bank that switches between
a two- and three-band decomposition.

TABLE 37.1 Comparison of Time-Varying Filter Bank Different Designing Methods
Intermediate Changing freq. Filter bank Computational

analysis resolution requirement complexity

Arrowood Lattice
Smith Yes Indirect structures Low

de Queiroz
Rao Yes Indirect ELT Low

Intermediate Gopinath
analysis Burrus Yes Indirect Paraunitary Low

synthesis Herley et. al Yes Direct Paraunitary Low

(IAS) Chen Noncausal
Vaidyanathan Yes Direct synthesis Low

Least square General
Instantaneous synthesis No Direct (not PR) Low

transform Redesigning
switching analysis No Direct General High

(ITS) Post
filtering No Direct General Low

37.4.1 Approach I: Intermediate Analysis-Synthesis (IAS)

In the first approach, both analysis and synthesis filters are allowed to change during the transition
period to maintain perfect reconstruction. We refer to this approach as the intermediate analysis-
synthesis (IAS) approach.

In [16], the authors have chosen to start with the lattice implementation of time-invariant two-
band filter banks, originally proposed by Vaidyanathan [25] for time-invariant case. Consider the
lattice structure shown in Fig. 37.6. Figure 37.6(a) represents a lossless two-band analysis filter bank,
consisting of J +1 lattice stages. The corresponding synthesis filter bank is shown in Fig. 37.6(b). As
is shown, for each stage in the analysis filter bank, there exists a corresponding stage in the synthesis
filter bank with similar, but inverse functionality. As long as each two corresponding lattice stages in
the analysis and synthesis sections are PR, the overall system is PR. To switch one filter bank to another,
the lattice stages of the analysis section are changed from one set to another. If the corresponding
lattice stages of the synthesis section are also changed according to the changes of the analysis section,
the PR property will hold during transition. Due to the existence of delay elements, any change in the
analysis section must be followed with the corresponding change in the synthesis section, but with
an appropriate delay. For example, the parameter αj of the analysis and synthesis filter banks can
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FIGURE 37.5: The time-varying impulse response for direct switching between the two- and the
three-band system. The filter bank is switched from the two-band to the three-band at time n = 0
and switched back at time n = 13. (a) Surface plot, (b) contour plot.

be changed instantaneously. But any change in parameter αj−1 in the analysis filter bank must be
followed with the similar change in the synthesis filter bank after one sample delay. Because of such
delays, switching between two PR filter banks can occur only by going through a transition period in
which both analysis and synthesis filter banks are changing in time.

In [12, 26], the design of time-varying extended lapped transform (ELT) [27, 28] was reported.
The extended lapped transform is a cosine-modulated filter bank with an additional constraint on
the filter lengths. Here, the design procedure is based on factorization of the time-domain transform
matrix into permutation and rotation matrices. As the ELT is paraunitary, the inverse transform
can be obtained by reversing the order of the matrix multiplication. Since any orthogonal transform
is a succession of plane rotations, any changes in these rotation angles result in changing the filter
bank without losing the orthogonality property. The authors derived a general frame work for M-
band ELT transforms compared to the two-band case approach in [16]. This method parallels the
lattice technique [16] except with the mild modification of imposing the additional ELT constraints.
In [17], the authors presented yet another formulation for designing time-varying filter banks. In
this paper, a different factorization of the paraunitary transform has been shown which is not based
on plane rotations unlike the ones in [12, 26]. Using this factorization, a paraunitary filter bank
can be implemented in the form of some cascade structures. Again, to switch one filter bank to
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FIGURE 37.6: The block diagram of a two-band paraunitary filter bank in lattice form: (a) analysis
lattice, (b) synthesis lattice.

another, the corresponding structures in the analysis and synthesis filter bank are changed similarly
but with an appropriate delay. If the orthogonality property in each cascade structure is maintained,
the time-varying filter bank remains PR. This formulation is very similar to the ones in [12, 16, 26],
but represent a more general form of factorization. In fact, all above procedures consider similar
frameworks of structures that inherently guarantee the exact reconstruction.

Herley et al. [13, 14, 15, 29] introduced a time-domain method for designing time-varying pa-
raunitary filter banks. In this approach, the time-invariant analysis transforms do not overlap. As a
simple example, consider the case of switching between two paraunitary time-invariant filter banks.
The analysis transform around the transition period can be written as

T =





 P1




[
PT

]
 P2







. (37.15)

The matrices P1 and P2 represent paraunitray transforms and therefore are unitary matrices. Their
nonzero columns also do not overlap with each other. The matrix PT represents the analysis filter
bank during the transition period. In order to find this filter bank, the matrix PT is initially replaced
with a zero matrix. Then, the null space of the transform T is found. Any matrix that spans this
subspace can be a candidate vector for PT . By choosing enough independent vectors of this null
space and applying the Gram-Schimidt procedure to them, an orthogonal transform can be selected
for PT . This method has also been applied to time-varying modulated lapped transforms [24] and
two-dimensional time-varying paraunitary filter banks [30].

The basic property of all above procedures is the use of intermediate analysis transforms in the
transition period. The characteristics of these analysis transforms are not easy to control and typically
the intermediate filters are not well-behaved.
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37.4.2 Approach II: Instantaneous Transform Switching (ITS)

In the second approach, the analysis filters are switched instantaneously and time-varying synthesis
filters are used in the transition period. We refer to this approach as the instantaneous transform
switching (ITS) approach. In the ITS approach, the analysis filter bank may be switched to another
set of analysis filters arbitrarily. This means that the basis vectors and the tiling of the time-frequency
plane can be changed instantaneously. To achieve PR at each time in the transition period, a new
synthesis section is designed to ensure proper reconstruction.

In the least squares (LS) method [10], for any given set of analysis filters, a LS solution of Eq. (37.14)
can be used to obtain the “best” synthesis filters of the corresponding system (in L2 norm):

s (n)LS =
(
A (n)T A(n)

)−1
A (n)T b(n) (37.16)

The advantage of the LS approach is that there is no limitation on the number of analysis filter banks
that can be used in the system. The disadvantage of the LS method is that it does not achieve PR.
However, experiments have shown that the reconstruction is significantly improved in this method
compared to direct switching [10].

In the LS solution, b(n) is projected onto the column space of A(n). For PR, the projection error
should be zero. Thus, to obtain time-varying PR filter banks, the reconstruction error, ||A(n)s(n) −
b(n)||2, can be brought to zero with an optimization procedure. The optimization operates on the
analysis filter coefficients and modifies the range space of A(n) until b(n) ∈ range(A(n)). Although
the s(n)’s at different states are independent of each other, since the A(n)’s have some common
elements, optimization procedures should be applied to all analysis sections at the same time. This
method is referred to as “redesigning analysis” [10].

The last ITS method, post filtering, uses conventional filter banks with time-varying coefficients
followed by a time-varying post filter. The post filter provides exact reconstruction during transition
periods, while it operates as a constant delay elsewhere. Assume at time n0 the time-varying filter
bank is switched from the first filter bank to the second. If the length of the transition period is L

samples, the output of the filter bank in the interval [n0, n0+L−1] is distorted because of switching.
The post filter removes this distortion. The block diagram of such a system is shown in Fig. (37.7).
In this figure, z(n) and y(n) are the analysis/synthesis filter bank and post filter impulse responses,

FIGURE 37.7: The block diagram of time-varying filter bank and post filter.

respectively. If the delays of the filter bank and the post filter are denoted 1 and 2, respectively, we
can write

x̂(n) =
{

Distorted if n0 ≤ n < n0 + L

x(n − 1) otherwise .
(37.17)

The desired output of the post filter is

x̃(n) = x(n − 2 − 1) (37.18)
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The input/output relation of the time-varying filter bank during the transition period can be written
as

x̂(n) = zT (n) xI (n) (37.19)

where xI (n) is the input vector at time n:

xI (n) = [x(n), x(n − 1), x(n − 2), . . . , x(n − I + 1)]T .

z(n) is a vector of length I and represents the time-varying impulse response of the filter bank at time
n. If the transition impulse response matrix is defined to be

Z =




[
z(n0 + L − 1)

]
O

O

.

.

.

O

O[
z(n0 + L − 2)

]
O

.

.

.

O

. . .

O

O

.

.

.

O[
z(n0)

]


, (37.20)

then the input/output relation of the filter bank in the transition period can be described as

x̂L(n0 + L − 1) = ZT xK(n0 + L − 1) (37.21)

where Z is a K × L matrix and K = I + L − 1. In Eq. (37.21), the I − 1 − 1 samples before and
1 samples after the transition period are used to evaluate the output. The above intervals are called
the tail and head of the transition period, respectively. Since the first and second filter banks are PR,
the tail and head samples are exactly reconstructed. We write xK(n0 + L − 1) as the concatenation
of three vectors:

xK(n0 + L − 1) =
[

xa

xt

xb

]
, (37.22)

where xa and xb are the input signals in the head and tail regions while xt represents the input samples
which are distorted during the transition period. Using this notation, Eq. (37.21) can be written as

x̂L(n0 + L − 1) = ZT
a xa + ZT

t xt + ZT
b xb (37.23)

where

Z =
[

Za

Zt

Zb

]
. (37.24)

By replacing vectors xb and xa with their corresponding output vectors x̂a and x̂b, xt of Eq. (37.23)
can be written as

xt = (ZT
t )−1(x̂t − ZT

a x̂a − ZT
b x̂b)

= YT x̂K. (37.25)

Equation (37.25) describes the post filter input-output relationship during the transition region. In
this equation, Y is the time-varying post filter impulse response which is defined as

Y =

 −ZaZ−1

t

Z−1
t

−ZbZ−1
t


 . (37.26)

From Eq. (37.25), it is obvious that the condition for causal post filtering is

2 ≥ L + 1 − 1 . (37.27)
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The post filter exists if Zt has an inverse. It can be shown that the transition response matrix Zt ,
can be described by a matrix, product of the form

Zt = 9L S (37.28)

where 9L is the analysis transform applied to those input samples that are distorted during the
transition period and S contains the synthesis filters during the transition period. In order for Zt to
be invertible, it is necessary (but not sufficient) that 9L and S be full rank matrices. The analysis
sections are defined by the required properties of the first and second filter banks and 9L is fixed.
Therefore, a filter bank is switchable to another filter bank if the corresponding 9L is a full rank
matrix. In this case, by proper design of the synthesis section, both S and Zt will be full rank. Two
methods to obtain proper synthesis filters are shown in [20, 22].

37.5 Conclusion

In this article, we briefly review some analysis and design methods of time-varying filter banks.
Time-varying filter banks can provide a more flexible and accurate approach in which the basis

functions of the time-frequency transform are allowed to adapt to the signal properties.
A simple form of time-varying filter bank is achieved by changing the filters of an analysis-synthesis

system among a number of choices. Even if all the analysis and synthesis filters are PR sets, exact
reconstruction will not normally be achieved during the transition periods. To eliminate all distortion
during a transition period, new time-varying analysis and/or synthesis sections are required for the
transition periods.

Two different approaches for the design were discussed here. In the first approach, both analysis
and synthesis filters are allowed to change during the transition period to maintain PR and so it is
called the intermediate analysis-synthesis (IAS) approach. In the second approach, the analysis filters
are switched instantaneously and time-varying synthesis filters are used in the transition period. This
approach is known as the instantaneous transform switching (ITS) approach.

In the IAS approach, both analysis and synthesis filters can change during the transitions rather
than only the synthesis filters in ITS approach. That implies that maintaining PR conditions is easier
in the IAS approach. Note that the analysis filters in the transition periods are designed only to satisfy
PR conditions and they do not usually meet the desired time and frequency characteristics.

In the ITS approach, only synthesis filters are allowed to be time-varying in the transition peri-
ods. These methods have the advantage of providing instantaneous switching between the analysis
transforms compared to IAS methods. But they have different drawbacks: the LS method does not
satisfy PR conditions at all times, the redesigning analysis method requires jointly optimization of the
time-invariant analysis section, and finally the post filtering method has the drawback of additional
computational complexity required for post filtering.

The analysis and design methods of the time-varying filter bank have been developed to design
adaptive time-frequency transforms. These adaptive transforms have many potential applications in
areas such as time-frequency representation, subband image and video coding, and speech and audio
coding. But since the developments of the time-varying filter bank theory is very new, its applications
have not been investigated yet.
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38.1 Introduction

The idea of a lapped transform (LT) maintaining orthogonality and non-expansion of the samples
was developed in the early 1980s at MIT by a group of researchers unhappy with the blocking artifacts
so common in traditional block transform coding of images. The idea was to extend the basis function
beyond the block boundaries, creating an overlap, in order to eliminate the blocking effect. This idea
was not new, but the new ingredient to overlapping blocks would be the fact that the number of
transform coefficients would be the same as if there was no overlap, and that the transform would
maintain orthogonality. Cassereau [1] introduced the lapped orthogonal transform (LOT), and
Malvar [5, 6, 7] gave the LOT its design strategy and a fast algorithm. The equivalence between an
LOT and a multirate filter bank was later pointed out by Malvar [9]. Based on cosine modulated
filter banks [15], modulated lapped transforms were designed [8, 25]. Modulated transforms were
generalized for an arbitrary overlap later creating the class of extended lapped transforms (ELT) [10]–
[13]. Recently a new class of LTs with symmetric bases was developed yielding the class of generalized
LOTs (GenLOT) [17, 19, 20]. As we mentioned, filter banks and LTs are the same, although studied
independently in the past. We, however, refer to LTs for paraunitary uniform FIR filter banks with
fast implementation algorithms based on special factorizations of the basis functions.

We assume a one-dimensional input sequence x(n) which is transformed into several coefficients
yi(n), whereyi(n)wouldbelong to the ith subband. Wealsowill use thediscrete cosine transform[23]
and another cosine transform variation, which we abbreviate as DCT and DCT-IV (DCT type 4),
respectively [23].

38.2 Orthogonal Block Transforms

In traditional block-transform processing, such as in image and audio coding, the signal is divided
into blocks of M samples, and each block is processed independently [2, 3, 12, 14, 22, 23, 24]. Let
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the samples in the mth block be denoted as

xT
m = [x0(m), x1(m), . . . , xM−1(m)] , (38.1)

for xk(m) = x(mM + k) and let the corresponding transform vector be

yT
m = [y0(m), y1(m), . . . , yM−1(m)] . (38.2)

For a real unitary transform A, AT = A−1. The forward and inverse transforms for the mth block
are

ym = Axm , (38.3)

and
xm = AT ym . (38.4)

The rows of A, denoted aT
n (0 ≤ n ≤ M − 1), are called the basis vectors because they form

an orthogonal basis for the M-tuples over the real field [24]. The transform vector coefficients
[y0(m), y1(m), . . . , yM−1(m)] represent the corresponding weights of vector xm with respect to this
basis.

If the input signal is represented by vector x while the subbands are grouped into blocks in vector
y, we can represent the transform T which operates over the entire signal as a block diagonal matrix:

T = diag {. . . , A, A, A, . . .} , (38.5)

where, of course, T is an orthogonal matrix.

38.2.1 Orthogonal Lapped Transforms

For lapped transforms [12], the basis vectors can have length L, such that L > M , extending
across traditional block boundaries. Thus, the transform matrix is no longer square and most of
the equations valid for block transforms do not apply to an LT. We will concentrate our efforts on
orthogonal LTs [12] and consider L = NM , where N is the overlap factor. Note that N , M , and hence
L are all integers. As in the case of block transforms, we define the transform matrix as containing
the orthonormal basis vectors as its rows. A lapped transform matrix P of dimensions M × L can
be divided into square M × M submatrices Pi (i = 0, 1, . . . , N − 1) as

P = [P0 P1 · · · PN−1] . (38.6)

The orthogonality property does not hold because P is no longer a square matrix and it is replaced
by other properties which we will discuss later.

If we divide the signal into blocks, each of size M , we would have vectors xm and ym such as in 38.1
and 38.2. These blocks are not used by LTs in a straightforward manner. The actual vector which
is transformed by the matrix P has to have L samples and, at block number m, it is composed of
the samples of xm plus L − M samples. These samples are chosen by picking (L − M)/2 samples
at each side of the block xm, as shown in Fig. 38.1, for N = 2. However, the number of transform
coefficients at each step is M , and, in this respect, there is no change in the way we represent the
transform-domain blocks ym.
The input vector of length L is denoted as vm, which is centered around the block xm, and is defined
as

vT
m =

[
x

(
mM − (N − 1)

M

2

)
· · · x

(
mM + (N + 1)

M

2
− 1

)]
. (38.7)
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FIGURE 38.1: The signal samples are divided into blocks of M samples. The lapped transform uses
neighboring block samples, as in this example for N = 2, i.e., L = 2M , yielding an overlap of
(L − M)/2 = M/2 samples on either side of a block.

Then, we have

ym = Pvm . (38.8)

The inverse transform is not direct as in the case of block transforms, i.e., with the knowledge of
ym we do not know the samples in the support region of vm, and neither in the support region of xm.
We can reconstruct a vector v̂m from ym, as

v̂m = PT ym . (38.9)

where v̂m 6= vm. To reconstruct the original sequence, it is necessary to accumulate the results
of the vectors v̂m, in a sense that a particular sample x(n) will be reconstructed from the sum of
the contributions it receives from all v̂m, such that x(n) was included in the region of support of
the corresponding vm. This additional complication comes from the fact that P is not a square
matrix [12]. However, the whole analysis-synthesis system (applied to the entire input vector) is
orthogonal, assuring the PR property using 38.9.

We can also describe the process using a sliding rectangular window applied over the samples of
x(n). As an M-sample, block ym is computed using vm, ym+1 is computed from vm+1 which is
obtained by shifting the window to the right by M samples, as shown in Fig. 38.2.

FIGURE 38.2: Illustration of a lapped transform with N = 2 applied to signal x(n), yielding
transform domain signal y(n). The input L-tuple as vector vm is obtained by a sliding window
advancing M samples, generating ym. This sliding is also valid for the synthesis side.

As the reader may have noticed, the region of support of all vectors vm is greater than the region
of support of the input vector. Hence, a special treatment has to be given to the transform at the
borders. We will discuss this fact later and assume infinite-length signals until then, or assume the
length is very large and the borders of the signal are far enough from the region to which we are
focusing our attention.
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If we denote by x the input vector and by y the transform-domain vector, we can be consistent
with our notation of transform matrices by defining a matrix T such that y = Tx and x̂ = TT y. In
this case, we have

T =




. . .

P
P

P
. . .




. (38.10)

where the displacement of the matrices P obeys the following

T =




. . .
. . .

. . .

P0 P1 · · · PN−1
P0 P1 · · · PN−1

. . .
. . .

. . .


 . (38.11)

T has as many block-rows as transform operations over each vector vm.
Let the rows of P be denoted by 1×L vectors pT

i (0 ≤ i ≤ M − 1), so that PT = [p0, · · · , pM−1].
In an analogy to the block transform case, we have

yi(m) = pT
i vm . (38.12)

The vectors pi are the basis vectors of the lapped transform. They form an orthogonal basis for an
M-dimensional subspace (there are only M vectors) of the L-tuples over the real field.

Assuming that theentire inputandoutput signals are representedby thevectorsxandy, respectively,
and that the signals have infinite length, then, from 38.10, we have

y = Tx (38.13)

and, if T is orthogonal,

x = TT y . (38.14)

The conditions for orthogonality of the LT are expressed as the orthogonality of T. Therefore,
the following equations are equivalent in a sense that they state the PR property along with the
orthogonality of the LT.

N−1−l∑
i=0

PiP
T
i+l =

N−1−l∑
i=0

PT
i Pi+l = δ(l)IM . (38.15)

TTT = TT T = I∞ (38.16)

It is worthwhile to reaffirm that orthogonal LTs are a uniform maximally decimated FIR filter
bank. Assume the filters in such a filter bank have L-tap impulse responses fi(n) and gi(n) (0 ≤
i ≤ M − 1,0 ≤ n ≤ L − 1), for the analysis and synthesis filters, respectively. If the filters originally
have a length smaller than L, one can pad the impulse response with 0s until L = NM . In other
words, we force the basis vectors to have a common length which is an integer multiple of the block
size. Assume the entries of P are denoted by {pij }. One can translate the notation from LTs to filter
banks by using

pkn = fk(L − 1 − n) = gk(n) (38.17)
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38.3 Useful Transforms

38.3.1 Extended Lapped Transform (ELT)

Cosine modulated filter banks are filter banks based on a low-pass prototype filter modulating a
cosine sequence. By a proper choice of the phase of the cosine sequence, Malvar developed the
modulated lapped transform (MLT) [8], which led to the so-called extended lapped transforms
(ELT) [10, 11, 12, 13]. The ELT allows several overlapping factors N , generating a family of LTs with
good filter frequency response and fast implementation algorithm.

In the ELTs, the filter lengthL is basically an even multiple of the block sizeM , asL = NM = 2kM .
The MLT-ELT class is defined by

pk,n = h(n) cos

[(
k + 1

2

) ((
n − L − 1

2

)
π

M
+ (N + 1)

π

2

)]
(38.18)

for k = 0, 1 . . . , M −1and n = 0, 1, . . . , L−1. h(n) is a symmetric window modulating the cosine
sequence and the impulse response of a low-pass prototype (with cutoff frequency at π/2M) which
is translated in frequency to M different frequency slots in order to construct the uniform filter bank.
The ELTs have as their major plus a fast implementation algorithm, which is depicted in Fig. 38.3
in an example for M = 8. The free parameters in the design of an ELT are the coefficients of the
prototype filter. Such degrees of freedom are translated in the fast algorithm as rotation angles.

For the case N = 4 there is a useful parameterized design [11, 12, 13]. In this design, we have:

θk0 = −π

2
+ µM/2+k (38.19)

θk1 = −π

2
+ µM/2−1−k (38.20)

where

µi =
[(

1 − γ

2M

)
(2k + 1) + γ

]
(38.21)

andγ is a control parameter, for 0 ≤ k ≤ (M/2)−1. γ controls the trade-off between the attenuation
and transition region of the prototype filter. For N = 4, the relation between angles and h(n) is:

h(k) = cos(θk0) cos(θk1) (38.22)

h(M − 1 − k) = cos(θk0) sin(θk1) (38.23)

h(M + k) = sin(θk0) cos(θk1) (38.24)

h(2M − 1 − k) = − sin(θk0) sin(θk1) (38.25)

for k = 0, 1, . . . , M/2 − 1. See [12] for optimized angles for ELTs. Further details on ELTs can be
found in [10, 11, 12, 13, 17].

38.3.2 Generalized Linear-Phase Lapped Orthogonal Transform
(GenLOT)

The generalized linear-phase lapped orthogonal transform (GenLOT) is also a useful family of LTs
possessing symmetric bases (linear-phase filters). The use of linear-phase filters is a popular require-
ment in image processing applications. Let

W = 1√
2

[
IM/2 IM/2
IM/2 −IM/2

]
and 9i =

[
Ui 0M/2

0M/2 Vi

]
, (38.26)
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FIGURE 38.3: Implementation flow-graph for the ELT with M = 8.

where Ui and Vi can be any M/2 × M/2 orthogonal matrices. Let the transform matrix P for the
GenLOT be constructed interactively. Let P(i) be the partial reconstruction of P after including up to
the ith stage. We start by setting P(0) = E0 where E0 is an orthogonal matrix with symmetric rows.
The recursion is given by:

P(i) = 9iWZ

[
WP(i−1) 0M

0M WP(i−1)

]
(38.27)

where

Z =
[

0M/2 0M/2 IM/2 0M/2
0M/2 IM/2 0M/2 0M/2

]
. (38.28)

At the final stage we set P = P(N−1). E0 is usually the DCT while the other factors (Ui and Vi)
are found through optimization routines. More details on GenLOTs and their design can be found
in [17, 19, 20]. The implementation flow-graph of a GenLOT with M = 8 is shown in Fig. 38.4.

38.4 Remarks

We hope this introductory work is helpful in understanding the basic concepts of lapped transforms.
Filter banks are covered in other parts of this book. An excellent book by Vaidyanathan [28] has
a thorough coverage of such subject. The interrelations of filter banks and LTs are well covered by
Malvar [12] and Queiroz [17]. For image processing and coding, it is necessary to process finite-
length signals. As we discussed, such an issue is not so straightforward in a general case. Algorithms
to implement LTs over finite-length signals are discussed in [7, 12, 16, 17, 18, 21]. These algorithms
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FIGURE 38.4: Implementation flow-graph for the GenLOT with M = 8, where β = 2N−1.

can be general or specific. The specific algorithms are generally targeted to a particular LT invariantly
seeking a very fast implementation. In general, Malvar’s book [12] is an excellent reference for lapped
transforms and their related topics.
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A S WE ENTER THE 21ST CENTURY, digital audio communications will have become nearly
as prevalent as digital speech communications. In particular, new technologies for audio
storage and transmission will make available music and wideband signals in a flexible variety

of standard formats.

The fundamental underpinning for these technologies is audio compression based on perceptually-
tuned shaping of the quantization noise. The next chapter in this section describes psychoacoustics
knowledge that suggests the general principles of perceptual audio coding. Succeeding chapters in this
section are devoted to descriptions of established examples of perceptual audio coders. These include
MPEG standards, and coders developed by Dolby, Sony, and Bell Laboratories.
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The dimensions of coder performance are quality, bit rate, delay, and complexity. The quality vs.
bit rate tradeoffs are particularly important.

Audio Quality

The three parameters of digital audio quality are signal bandwidth, fidelity and spatial realism.
Compact-disk (CD) signals have a bandwidth of 20–20,000 Hz, while traditional telephone speech

has a bandwidth of 200–3400 Hz. Intermediate bandwidths characterize various grades of wideband
speech and audio, including roughly defined ranges of quality referred to as AM radio and FM radio
quality (bandwidths on the order of 7–10 and 12–15 kHz, respectively).

In the context of digital coding, fidelity refers to the level of perceptibility of quantization or
reconstruction noise. The highest level of fidelity is one where the noise is imperceptible in formal
listening tests. Lower levels of fidelity are acceptable in some applications if they are not annoying,
although in general it is good practice to sacrifice some bandwidth in the interest of greater fidelity,
for a given bit rate in coding. Five-point scales of signal fidelity are common in both speech and
audio coding.

Spatial realism is generally provided by increasing the number of coded (and reproduced) spatial
channels. Common formats are 1-channel (mono), 2-channel (stereo), 5-channel (3 front, 2 rear),
5.1-channel (5-channel plus subwoofer) and 8-channel (6 front, 2 rear). For given constraints on
bandwidth and fidelity, the required bit rate in coding increases as a function of the number of
channels; but the increase is slower than linear, because of the presence of interchannel redundancy.
The notion of perceptual coding originally developed for exploiting the perceptual irrelevancies of a
single-channel audio signal extends also to the methods used in exploiting interchannel redundancy.

Bit Rate

The CD-stereo signal has a digital representation rate of 1406 kilobits per second (kb/s). Current
technology for perceptual audio coding reproduces CD-stereo with perfect fidelity at bit rates as low
as 128 kb/s, depending on the input signal. CD-like reproduction is possible at bit rates as low as
64 kb/s for stereo. Single-channel reproduction of FM-radio-like music is possible at 32 kb/s. Single-
channel reproduction of AM-radio-like music and wideband speech is possible at rates approaching
16 kb/s for all but the most demanding signals. Techniques for so-called “pseudo-stereo” can provide
additional enhancement of digital single-channel audio.

Applications of Digital Audio

The capabilities of audio compression have combined with increasingly affordable implementa-
tions on platforms for digital signal processing (DSP), native signal processing (NSP) in a computer’s
(native) processor, and application-specific integrated circuits (ASICs) to create revolutionary ap-
plications of digital audio. International and national standards have contributed immensely to this
revolution. Some of these standards only specify the bit-stream syntax and decoder, leaving room
for future, sometimes proprietary, enhancements of the encoding algorithm.

The domains of applications include transmission (for example, digital audio broadcasting), storage
(for example, the minidisk and the digital versatile disk, DVD), and networking (music preview,
distribution, and publishing). The networking applications will make digital audio communications
as commonplace as digital telephony.

The Future of Digital Audio

Remarkable as the capabilities and applications mentioned above are, there are even greater chal-
lenges and opportunities for the practitioners of digital audio technology. It is unlikely that we have
reached or even approached the fundamental limits of performance in terms of audio quality at
a given bit rate. Newer capabilities in this technology (in terms of audio fidelity, bandwidth, and
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spatial realism) will continue to lead to newer classes of applications in audio communications. New
technologies for embedded coding and universal coding will create interesting new options for digital
networking and seamless communication of speech and music signals. Finally, co-designs of audio
processing with image and video processing will lead to currently unavailable capabilities for multi-
media networking games, computer agents, and personal communication services. These scenarios
will call upon our best capabilities in signal compression as well as advances in the sister disciplines
of signal synthesis and recognition by machine.
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In this chapter we review properties of auditory perception that are relevant to the
design of coders for acoustic signals. The chapter begins with a general definition
of a perceptual coder, then considers what the “ideal” psychophysical model would
consist of and what use a coder could be expected to make of this model. We then
present some basic definitions and concepts. The chapter continues with a review of
relevant psychophysical data, including results on threshold, just-noticeable differences,
masking, and loudness. Finally, we attempt to summarize the present state of the art,
the capabilities and limitations of present-day perceptual coders for audio and speech,
and what areas most need work.

39.1 Introduction

A coded signal differs in some respect from the original signal. One task in designing a coder is to
minimize some measure of this difference under the constraints imposed by bit rate, complexity,
or cost. What is the appropriate measure of difference? The most straightforward approach is to
minimize some physical measure of the difference between original and coded signal. The designer
might attempt to minimize RMS difference between the original and coded waveform, or perhaps
the difference between original and coded power spectra on a frame-by-frame basis. However, if the
purpose of the coder is to encode acoustic signals that are eventually to be listened to1 by people,

1Perceptual coding is not limited to speech and audio. It can be applied also to image and video [16]. In this paper we
consider only coders for acoustic signals.
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these physical measures do not directly address the appropriate issue. For signals that are to be
listened to by people, the “best” coder is the one that sounds the best. There is a very clear distinction
between physical and perceptual measures of a signal (frequency vs. pitch, intensity vs. loudness,
for example). A perceptual coder can be defined as a coder that minimizes some measure of the
difference between original and coded signal so as to minimize the perceptual impact of the coding
noise. We can define the best coder given a particular set of constraints as the one in which the coding
noise is least objectionable.

It follows that the designer of a perceptual coder needs some way to determine the perceptual
quality of a coded signal. “Perceptual quality” is a poorly defined concept, and it will be seen that in
some sense it cannot be uniquely defined. We can, however, attempt to provide a partial answer to
the question of how it can be determined. We can present something of what is known about human
auditory perception from psychophysical listening experiments and show how these phenomena
relate to the design of a coder.

One requirement for successful design of a perceptual coder is a satisfactory model for the signal-
dependent sensitivity of the auditory system. Present-day models are incomplete, but we can attempt
to specify what the properties of a complete model would be. One possible specification is that, for
any given waveform (the signal), it accurately predicts the loudness, as a function of pitch and of time,
of any added waveform (the noise). If we had such a complete model, then we would in principle
be able to build a transparent coder, defined as one in which the coded signal is indistinguishable
from the original signal, or at least we would be able to determine whether or not a given coder
was transparent. It is relatively simple to design a psychophysical listening experiment to determine
whether the coding noise is audible, or equivalently, whether the subject can distinguish between
original and coded signal. Any subject with normal hearing could be expected to give similar results
to this experiment. While present-day models are far from complete, we can at least describe the
properties of a complete model.

There is a second requirement that ismoredifficult to satisfy. This is theneed tobeable todetermine
which of two coded samples, each of which has audible coding noise, is preferable. While a satisfactory
model for the signal-dependent sensitivity of the auditory system is in principle sufficient for the
design of a transparent coder, the question of how to build the best nontransparent coder does not
have a unique answer. Often, design constraints preclude building a transparent coder. Even the best
coder built under these constraints will result in audible coding noise, and it is under some conditions
impossible to specify uniquely how best to distribute this noise. One listener may prefer the more
intelligible version, while another may prefer the more natural sounding version. The preferences
of even a single listener might very well depend on the application. In the absence of any better
criterion, we can attempt to minimize the loudness of the coding noise, but it must be understood
that this is an incomplete solution.

Our purpose in this paper is to present something of what is known about human auditory
perception in a form that may be useful to the designer of a perceptual coder. We do not attempt
to answer the question of how this knowledge is to be utilized, how to build a coder. Present-day
perceptual coders for the most part utilize a feedforward paradigm: analysis of the signal to be coded
produces specifications for allowable coding noise. Perhaps a more general method is a feedback
paradigm, in which the perceptual model somehow makes possible a decision as to which of two
codedsignals is “better”. Thisdecisionprocess can thenbe iterated toarriveat someoptimumsolution.
It will be seen that for proper exploitation of some aspects of auditory perception the feedforward
paradigm may be inadequate and the potentially more time-consuming feedback paradigm may be
required. How this is to be done is part of the challenge facing the designer.
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39.2 Definitions

In this section we define some fundamental terms and concepts and clarify the distinction between
physical and perceptual measures.

39.2.1 Loudness

When we increase the intensity of a stimulus its loudness increases, but that does not mean that
intensity and loudness are the same thing. Intensity is a physical measure. We can measure the
intensity of a signal with an appropriate measuring instrument, and if the measuring instrument
is standardized and calibrated correctly anyone else anywhere in the world can measure the same
signal and get the same result. Loudness is perceptual magnitude. It can be defined as “that attribute
of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to
loud” ([23], p.47). We cannot measure it directly. All we can do is ask questions of a subject and
from the responses attempt to infer something about loudness. Furthermore, we have no guarantee
that a particular stimulus will be as loud for one subject as for another. The best we can do is assume
that, for a particular stimulus, loudness judgments for one group of normal-hearing people will be
similar to loudness judgments for another group.

There are two commonly used measures of loudness. One is loudness level (unit phon) and the
other is loudness (unit sone). These two measures differ in what they describe and how they are
obtained. The phon is defined as the intensity, in dB SPL, of an equally loud 1-kHz tone. The sone
is defined in terms of subjectively measured loudness ratios. A stimulus half as loud as a one-sone
stimulus has a loudness of 0.5 sones, a stimulus ten times as loud has a loudness of 10 sones, etc. A
1-kHz tone at 40 dB SPL is arbitrarily defined to have a loudness of one sone.

The argument can be made that loudness matching, the procedure used to obtain the phon scale,
is a less subjective procedure than loudness scaling, the procedure used to obtain the sone scale. This
argument would lead to the conclusion that the phon is the more objective of the two measures and
that the sone is more subject to individual variability. This argument breaks down on two counts:
first, for dissimilar stimuli even the supposedly straightforward loudness-matching task is subject to
large and poorly understood order and bias effects that can only be described as subjective. While
loudness matching of two equal-frequency tone bursts generally gives stable and repeatable results,
the task becomes more difficult when the frequencies of the two tone bursts differ. Loudness matching
between two dissimilar stimuli, as for example between a pure tone and a multicomponent complex
signal, is even more difficult and yields less stable results. Loudness-matching experiments have to be
designed carefully, and results from these experiments have to be interpreted with caution. Second,
it is possible to measure loudness in sones, at least approximately, by means of a loudness-matching
procedure. Fletcher [6] states that under some conditions loudness adds. Binaural presentation of a
stimulus results in loudness doubling; and two equally-loud stimuli, far enough apart in frequency
that they do not mask each other, are twice as loud as one. If loudness additivity holds, then it follows
that the sone scale can be generated by matching loudness of a test stimulus to binaural stimuli or
to pairs of tones. This approach must be treated with caution. As Fletcher states, “However, this
method [scaling] is related more directly to the scale we are seeking (the sone scale) than the two
preceding ones (binaural or monaural loudness additivity)” ([6], p. 278). The loudness additivity
approach relies on the assumption that loudness summation is perfect, and there is some more recent
evidence [28, 33] that loudness summation, at least for binaural vs. monaural presentation, is not
perfect.
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39.2.2 Pitch

The American Standards Association defines pitch as “that attribute of auditory sensation in which
sounds may be ordered on a musical scale”. Pitch bears much the same relationship to frequency
as loudness does to intensity: frequency is an objective physical measure, while pitch is a subjective
perceptual measure. Just as there is not a one-to-one relationship between intensity and loudness, so
also there is not a one-to-one relationship between frequency and pitch. Under some conditions, for
example, loudness can be shown to decrease with decreasing frequency with intensity held constant,
and pitch can be shown to decrease with increasing intensity with frequency held constant ([40], p.
409).

39.2.3 Threshold of Hearing

Since the concept of threshold is basic to much of what follows, it is worthwhile at this point to
discuss it in some detail. It will be seen that thresholds are determined not only by the stimulus and
the observer but also by the method of measurement. While this discussion is phrased in terms of
threshold of hearing, much of what follows applies as well to differential thresholds (just-noticeable
differences) discussed in the next subsection.

By the simplest definition, the threshold of hearing (equivalently, auditory threshold) is the lowest
intensity that the listener can hear. This definition is inadequate because we cannot directly measure
the listener’s perception. A first-order correction, therefore, is that the threshold of hearing is the
lowest intensity that elicits from the listener the response that the sound is audible. Given this
definition, we can present a stimulus to the listener and ask whether he or she can hear it. If we
do this, we soon find that identical stimuli do not always elicit identical responses. In general, the
probability of a positive response increases with increasing stimulus intensity and can be described
by a psychometric function such as that shown for a hypothetical experiment in Fig. 39.1. Here the
stimulus intensity (in dB) appears on the abscissa and the probability P(C) of a positive response
appears on the ordinate. The yes-no experiment could be described by a psychometric function that
ranges from zero to one, and threshold could be defined as the stimulus intensity that elicits a positive
response in 50% of the trials.

FIGURE 39.1: Idealized psychometric functions for hypothetical yes-no experiment (zero to one)
and for hypothetical two-interval forced-choice experiment (0.5 to one).
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A difficulty with the simple yes-no experiment is that we have no control over the subject’s criterion
level. The subject may be using a strict criterion (“yes” only if the signal is definitely present) or a lax
criterion (“yes” if the signal might be present). The subject can respond correctly either by a positive
response in the presence of a stimulus (hit) or by a negative response in the absence of a stimulus
(correct rejection). Similarly the subject can respond incorrectly either by a negative response in the
presence of a stimulus (miss) or by a positive response in the absence of a stimulus (false alarm).
Unless the experimenter is willing to use an elaborate and time-consuming procedure that involves
assigning rewards to correct responses and penalties to incorrect responses, the criterion level is
uncontrolled.

The field of psychophysics that deals with this complication is called detection theory. The field of
psychophysical detection theory is highly developed [12] and a complete description is far beyond
the scope of this paper. Very briefly, the subject’s response is considered to be based on an internal
decision variable, a random variable drawn from a distribution with mean and standard deviation
that depend on the stimulus. If we assume that the decision variable is normally distributed with a
fixed standard deviation σ and a mean that depends only on stimulus intensity, then we can define
an index of sensitivity d′ for a given stimulus intensity as the difference between m0 (the mean in
the absence of the stimulus) and ms (the mean in the presence of the stimulus), divided by σ . An
ideal observer (a hypothetical subject who does the best possible job for the task at hand) gives a
positive response if and only if the decision variable exceeds an internal criterion level. An increase
in criterion level decreases the probability of a false alarm and increases the probability of a miss.

A simple and satisfactory way to deal with the problem of uncontrolled criterion level is to use a
criterion-free experimental paradigm. The simplest is perhaps the two-interval forced choice (2IFC)
paradigm, in which the stimulus is presented at random in one of two observation intervals. The
subject’s task is to determine which of the two intervals contained the stimulus. The ideal observer
selects the interval that elicits the larger decision variable, and criterion level is no longer a factor.
Now the subject has a 50% chance of choosing the correct interval even in the absence of any stimulus,
so the psychometric function goes from 0.5 to 1.0 as shown in Fig. 39.1. A reasonable definition of
threshold is P(C) = 0.75, halfway between the chance level of 0.5 and one. If the decision variable is
normally distributed with a fixed standard deviation, it can be shown that this definition of threshold
corresponds to a d ′ of 0.95.

The number of intervals can be increased beyond two. In this case, the ideal observer responds
correctly if the decision variable for the interval containing the stimulus is larger than the largest of
the N-1 decision variables for the intervals not containing the stimulus. A common practice is, for
an N-interval forced choice paradigm (NIFC), to define threshold as the point halfway between the
chance level of 1/N and one. This is a perfectly acceptable practice so long as it is recognized that the
measured threshold is influenced by the number of alternatives. For a 3IFC paradigm this definition
of threshold corresponds to a d ′ of 1.12 and for a 4IFC paradigm it corresponds to a d ′ of 1.24.

39.2.4 Differential Threshold

The differential threshold is conceptually similar to the auditory threshold discussed above, and many
of the same comments apply. The differential threshold, or just-noticeable difference (JND), is the
amount by which some attribute of a signal has to change in order for the observer to be able to
detect the change. A tone burst, for example, can be specified in terms of frequency, intensity, and
duration, and a differential threshold for any of these three attributes can be defined and measured.

The first attempt to provide a quantitative description of differential thresholds was provided by
the German physiologist E. H. Weber in the first half of the 19th century. According to Weber’s law,
the just-noticeable difference 1I is proportional to the stimulus intensity I , or 1I/I = K , where the
constant of proportionality 1I/I is known as the Weber fraction. This was supposed to be a general
description of sensitivity to changes of intensity for a variety of sensory modalities, not limited just
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to hearing, and it has since been applied to perception of nonintensive variables such as frequency.
It was recognized at an early stage that this law breaks down at near-threshold intensities, and in the
latter half of the 19th century the German physicist G. T. Fechner suggested the modification that is
now known as the modified Weber law, 1I/(I + I0) = K , where I0 is a constant. While Weber’s law
provides a reasonable first-order description of intensity and frequency discrimination in hearing,
in general it does not hold exactly, as will be seen below.

As with the threshold of hearing, the differential threshold can be measured in different ways, and
the result depends to some extent on how it is measured. The simplest method is a same-different
paradigm, in which two stimuli are presented and the subject’s task is to judge whether or not they
are the same. This method suffers from the same drawback as the yes-no paradigm for auditory
threshold: we do not have control over the subject’s criterion level.

If the physical attribute being measured is simply related to some perceptual attribute, then the
differential threshold can be measured by requiring the subject to judge which of two stimuli has
more of that perceptual attribute. A just-noticeable difference for frequency, for example, could be
measured by requiring the subject to judge which of two stimuli is of higher pitch; or a just noticeable
difference for intensity could be measured by requiring the subject to judge which of two stimuli is
louder. As with the 2IFC paradigm discussed above for auditory threshold, this method removes the
problem of uncontrolled criterion level.

There are more general methods that do not assume a knowledge of the relationship between
the physical attribute being measured and a perceptual attribute. The most useful, perhaps, is the
N-interval forced choice method: N stimuli are presented, one of which differs from the other N-1
along the dimension being measured. The subject’s task is to specify which one of the N stimuli is
different from the other N-1.

Note that there is a close parallel between the differential threshold and the auditory threshold
described in the previous subsection. The auditory threshold can be regarded as a special case of the
just-noticeable difference for intensity, where the question is by how much the intensity has to differ
from zero in order to be detectable.

39.2.5 Masked Threshold

The masked threshold of a signal is defined as the threshold of that signal (the probe) in the presence
of another signal (the masker). A related term is masking, which is the elevation of threshold of the
probe by the masker: it is the difference between masked and absolute threshold. More generally,
the reduction of loudness of a supra-threshold signal is also referred to as masking. It will be seen
that masking can appear in many forms, depending on spectral and temporal relationships between
probe and masker.

Many of the comments that applied to measurement of absolute and differential thresholds also
apply to measurement of masked threshold. The simplest method is to present masker plus probe
and ask the subject whether or not the probe is present. Once again there is a problem with criterion
level. Another method is to present stimuli in two intervals and ask the subject which one contains
the probe. This method can give useful results but can, under some conditions, give misleading
results. Suppose, for example, that the probe and masker are both pure tones at 1 kHz, but that the
two signals are 180◦ out of phase. As the intensity of the probe is increased from zero, the intensity
of the composite signal will first decrease, then increase. The two signals, masker alone and masker
plus probe, may be easily distinguishable, but in the absence of additional information the subject
has no way of telling which is which.

A more robust method for measuring masked threshold is the N-interval forced choice method
described above, in which the subject specifies which of the N stimuli differs from the other N-1.
Subjective percepts in masking experiments can be quite complex and can differ from one observer
to another. In the N-interval forced choice method the observer has the freedom to base judgments
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on whatever attribute is most easily detected, and it is not necessary to instruct the observer what to
listen for.

Note that the differential threshold for intensity can be regarded as a special case of the masked
threshold in which the probe is an intensity-scaled version of the masker.

A note on terminology: suppose two signals, x1(t) and [x1(t) + x2(t)] are just distinguishable.
If x2(t) is a scaled version of x1(t), then we are dealing with intensity discrimination. If x1(t) and
x2(t) are two different signals, then we are dealing with masking, with x1(t) the masker and x2(t)

the probe. In either case, the difference can be described in several ways. These ways include (1) the
intensity increment between x1(t) and [x1(t) + x2(t)], 1I ; (2) the intensity increment relative to
x1(t), 1I/I ; (3) the intensity ratio between x1(t) and [x1(t) + x2(t)], (I + 1I)/I ; (4) the intensity
increment in dB, 10× log10(1I/I); and (5) the intensity ratio in dB, 10× log10[(I +1I)/I ]. These
ways are equivalent in that they show the same information, although for a particular application
one way may be preferable to another for presentation purposes. Another measure that is often used,
particularly in the design of perceptual coders, is the intensity of the probe x2(t). This measure is
subject to misinterpretation and must be used with caution. Depending on the coherence between
x1(t) and x2(t), a given probe intensity can result in a wide range of intensity increments 1I . The
resulting ambiguity has been responsible for some confusion.

39.2.6 Critical Bands and Peripheral Auditory Filters

The concepts of critical bands and peripheral auditory filters are central to much of the auditory
modeling work that is used in present-day perceptual coders. Scharf, in a classic review article [33],
defines the empirical critical bandwidth as “that bandwidth at which subjective responses rather
abruptly change”. Simply put, for some psychophysical tasks the auditory system behaves as if it
consisted of a bank of bandpass filters (the critical bands) followed by energy detectors. Examples of
critical-band behavior that are particularly relevant for the designer of a coder include the relationship
between bandwidth and loudness (Fig. 39.5) and the relationship between bandwidth and masking
(Fig. 39.10). Another example of critical-band behavior is phase sensitivity: in experiments measur-
ing the detectability of amplitude and of frequency modulation, the auditory system appears to be
sensitive to the relative phase of the components of a complex sound only so long as the components
are within a critical band [9, 45].

The concept of the critical band was introduced more than a half-century ago by Fletcher [6], and
since that time it has been studied extensively. Fletcher’s pioneering contribution is ably documented
by Allen [1], and Scharf ’s 1970 review article [33] gives references to some later work. More recently,
Moore and his co-workers have made extensive measurements of peripheral auditory filters [24].

The value of critical bandwidths has been the subject of some discussion, because of questions
of definition and method of measurement. Figure 39.2 ([31], Fig. 1) shows critical bandwidth as a
function of frequency for Scharf ’s empirical definition (the bandwidth at which subjective responses
undergo some sort of change). Results from several experiments are superimposed here, and they
are in substantial agreement with each other. Moore and Glasberg [26] argue that the bandwidths
shown in Fig. 39.2 are determined not only by the bandwidth of peripheral auditory filters but also
by changes in processing efficiency. By their argument, the bandwidth of peripheral auditory filters
is somewhat smaller than the values shown in Fig. 39.2 at frequencies above 1 kHz and substantially
smaller, by as much as an octave, at lower frequencies.

39.3 Summary of Relevant Psychophysical Data

In Section 39.2, we introduced some basic concepts and definitions. In this section, we review some
relevant psychophysical results. There are several excellent books and book chapters that have been
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FIGURE 39.2: Empirical critical bandwidth. (Source: Scharf, B., Critical bands, ch. 5 in Foundations
of Modern Auditory Theory, Vol. 1, Tobias, J.V., ed., Academic Press, NY, 1970. With permission).

written on this subject, and we have neither the space nor the inclination to duplicate material found
in these other sources. Our attempt here is to make the reader aware of some relevant results and to
refer him or her to sources where more extensive treatments may be found.

39.3.1 Loudness

Loudness Level and Frequency

For pure tones, loudness depends on both intensity and frequency. Figure 39.3 (modified
from [37], p. 124) shows loudness level contours. The curves are labeled in phons and, in parentheses,
sones. These curves have been remeasured many times since, with some variation in the results, but
the basic conclusions remain unchanged. The most sensitive region is around 2-3 kHz. The low-
frequency slope of the loudness level contours is flatter at high loudness levels than at low. It follows
that loudness level grows more rapidly with intensity at low frequencies than at high. The 38- and
48-phon contours are (by definition) separated by 10 dB at 1 kHz, but they are only about 5 dB apart
at 100 Hz.

This figure also shows contours that specify the dynamic range of hearing. Tones below the 8-phon
contour are inaudible, and tones above the dotted line are uncomfortable. The dynamic range of
hearing, the distance between these two contours, is greatest around 2 to 3 kHz and decreases at
lower and higher frequencies. In practice, the useful dynamic range is substantially less. We know
today that extended exposure to sounds at much lower levels than the dotted line in Fig. 39.3 can
result in temporary or permanent damage to the ear. It has been suggested that extended exposure
to sounds as low as 70 to 75 dB(A) may produce permanent high-frequency threshold shifts in some
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individuals [39].

FIGURE 39.3: Loudness level contours. Parameters: phons (sones). The bottom curve (8 phons)
is at the threshold of hearing. The dotted line shows Wegel’s 1932 results for “threshold of feeling”.
This line is many dB above levels that are known today to produce permanent damage to the auditory
system. (Modified from Stevens, S.S. and Davis, H.W., Hearing, John Wiley & Sons, New York, 1938).

Loudness and Intensity

Figure 39.4 (modified from [32], Fig. 5) shows loudness growth functions, the relationship
between stimulus intensity in dB SPL and loudness in sones, for tones of different frequencies. As
can be seen in Fig. 39.4, the loudness growth function depends on frequency. Above about 40 dB SPL
for a 1-kHz tone the relationship is approximately described by the power law L(I) = (I/I0)

1/3, so
that if the intensity I is increased by 9 dB the loudness L is approximately doubled.2 The relationship
between loudness and intensity has been modeled extensively [1, 6, 46].

Loudness and Bandwidth

The loudness of a complex sound of fixed intensity, whether a tone complex or a band of noise,
depends on its bandwidth, as is shown in Fig. 39.5 ([48], Fig. 3). For sounds well above threshold,
the loudness remains more or less constant so long as the bandwidth is less than a critical band. If the
bandwidth is greater than a critical band, the loudness increases with increasing bandwidth. Near
threshold the trend is reversed, and the loudness decreases with increasing bandwidth.3

2This power-law relationship between physical and perceptual measures of a stimulus was studied in great detail by S. S.
Stevens. This relationship is now commonly referred to as Stevens’ Law. Stevens measured exponents for many sensory
modalities, ranging from a low of 0.33 for loudness and brightness to a high of 3.5 for electric shock produced by a 60-Hz
electric current delivered to the skin.
3These data were obtained by comparing the loudness of a single 1-kHz tone and the loudness of a four-tone complex of
the specified bandwidth centered at 1 kHz. The systematic difference between results when the tone was adjusted (“T”
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FIGURE 39.4: Loudness growth functions. (Modified from Scharf, B., Loudness, ch. 6 in Handbook
of Perception, Vol. IV, Hearing, Carterette, E.C. and Friedman M.P., eds., Academic Press, New York,
1978. With permission).

These phenomena have been modeled successfully by utilizing the loudness growth functions
shown in Fig. 39.4 in a model that calculates total loudness by summing the specific loudness per
critical band [49]. The loudness growth function is very steep near threshold, so that dividing the
total energy of the signal into two or more critical bands results in a reduction of total loudness. The
loudness growth function well above threshold is less steep, so that dividing the total energy of the
signal into two or more critical bands results in an increase of total loudness.

Loudness and Duration

Everything we have talked about so far applies to steady-state, long-duration stimuli. These
results are reasonably well understood and can be modeled reasonably well by present-day models.
However, there is a host of psychophysical data having to do with aspects of temporal structure of
the signal that are less well understood and less well modeled. The subject of temporal dynamics of
auditory perception is an area where there is a great deal of room for improvement in models for
perceptual auditory coders. One example of this subject is the relationship between loudness and
duration discussed here. Other examples appear in a later section on temporal aspects of masking.

There is general agreement that, for fixed intensity, loudness increases with duration up to stimulus
durationsof a fewhundredmilliseconds. (Other factors, usuallydiscussedunder the termsadaptation

symbol) and when the complex was adjusted (“C” symbol) is an example of the bias effects mentioned in section 39.2.1
(Loudness).
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FIGURE 39.5: Loudness vs. bandwidth of tone complex. (Source: Zwicker, E. et al., Critical
bandwidth in loudness summation, J. Acoust. Soc. Am., 29: 548-557, 1957. With permission).

FIGURE 39.6: Frequency JND as a function of frequency and intensity (Modified from Wier, C.C.
et al., Frequency discrimination as a function of frequency and sensation level, J. Acoust. Soc. Am.,
61: 178-184, 1977. With permission).
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or fatigue, come into play for longer durations of many seconds or minutes. We will not discuss these
factors here.) The duration below which loudness increases with increasing duration is sometimes
referred to as the critical duration. Scharf [32] provides an excellent summary of studies of the
relationship between loudness and duration. In his survey, he cites values of critical duration ranging
from 10 msec to over 500 msec. About half the studies in Scharf ’s survey show that the total energy
(intensity x duration) stays constant below the critical duration for constant loudness, while the
remaining studies are about evenly split between total energy increasing and total energy decreasing
with increasing duration.

One possible explanation for this confused state of affairs is the inherent difficulty of making
loudness matches between dissimilar stimuli, discussed above in Section 39.2.1 (Loudness). Two
stimuli of different durations differ by more than “loudness”, and depending on a variety of poorly-
understood experimental or individual factors what appears to be the same experiment may yield
different results in different laboratories or with different subjects.

Some support for this explanation comes from the fact that studies of threshold intensity as a
function of duration are generally in better agreement with each other than studies of loudness as a
function of duration. As discussed above in Section 39.2.3 (Threshold of Hearing) measurements
of auditory threshold depend to some extent on the method of measurement, but it is still possible
to establish an internally-consistent criterion-free measure. The exact results depend to some extent
on signal frequency, but there is reasonable agreement among various studies that total energy at
threshold remains approximately constant between about 10 msec and 100 msec. (See [41] for a
survey of studies of threshold intensity as a function of duration.)

39.3.2 Differential Thresholds

Frequency

Figure 39.6 shows frequency JND as a function of frequency and intensity as measured in
the most recent comprehensive study [43]. The frequency JND generally increases with increasing
frequency and decreases with increasing intensity, ranging from about 1 Hz at low frequency and
moderate intensity to more than 100 Hz at high frequency and low intensity.

The results shown in Fig. 39.6 are in basic agreement with results from most other studies of fre-
quency JND’s with the exception of the earliest comprehensive study, by Shower and Biddulph ([43],
p. 180). Shower and Biddulph [35] found a more gradual increase of frequency JND with frequency.
As we have noted above, the results obtained in experiments of this nature are strongly influenced by
details of the method of measurement. Shower and Biddulph measured detectability of frequency
modulation of a pure tone; most other experimenters measured the ability of subjects to correctly
identify whether one tone burst was of higher or lower frequency than another. Why this difference
in procedure should produce this difference in results, or even whether this difference in procedure
is solely responsible for the difference in results, is unclear.

The Weber fraction 1f/f , where 1f is the frequency JND, is smallest at mid frequencies, in the
region from 500 Hz to 2 kHz. It increases somewhat at lower frequencies, and it increases very
sharply at high frequencies above about 4 kHz. Wier et al. [43] in their Fig. 1, reproduced here as
our Fig. 39.6, plotted log 1f against

√
f . They found that this choice of axes resulted in the closest

fit to a straight line. It is not clear that this choice of axes has any theoretical basis; it appears simply
to be a choice that happens to work well. There have been extensive attempts to model frequency
selectivity. These studies suggest that the auditory system uses the timing of individual nerve impulses
at low frequencies, but that at high frequencies above a few kHz this timing information is no longer
available and the auditory system relies exclusively on place information from the mechanically tuned
inner ear.

Rosenblith and Stevens [30] provide an interesting example of the interaction between method of
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measurement and observed result. They compared frequency JNDs using two methods. One was
an “AX” method, in which the subject judged whether the second of a pair of tone bursts was of
higher or lower frequency than the first of the pair. The other was an “ABX” method, in which the
subject judged whether the third of three tone bursts, at the same frequency as one of the first two
tone bursts, was more similar to the first or to the second burst. They found that frequency JNDs
measured using the AX method were approximately half the size of frequency JNDs measured using
the ABX method, and they concluded that “... it would be rather imprudent to postulate a “true” DL
(difference limen), or to infer the behavior of the peripheral organ from the size of a DL measured
under a given set of conditions”. They discussed their results in terms of information theory, an active
topic at the time, and were unable to reach any definite conclusion. An analysis of their results in
terms of detection theory, which at that time was in its infancy, predicts their results almost exactly.4

Intensity

The Weber fraction 1I/I for pure tones is not constant but decreases slightly as stimulus
intensity increases. This change has been termed the near miss to Weber’s law. In most studies, the
Weber fraction has been found to be independent of frequency. An exception is Riesz’s study [29],
in which the Weber fraction was at a minimum at approximately 2 kHz and increased at higher and
lower frequencies.

Typical results are summarized in Fig. 39.7 ([18], Fig. 4). The solid straight line is a good fit to
Jesteadt’s intensity JND data at frequencies from 200 Hz to 8 kHz. The Weber fraction decreases
from about 0.44 at 5 dB SL (decibels above threshold) to about 0.12 at 80 dB SL. These results are
in substantial agreement with most other studies with the exception of Riesz’s study. Riesz’s data are
shown in Fig. 39.7 as the curves identified by symbols. There is a larger change of intensity JND with
intensity, and the intensity JND depends on frequency.

There is an interesting parallel between the results for intensity JND and the results for frequency
JND. In both cases, results from most studies are in agreement with the exception of one study:
Shower and Biddulph for frequency JND, and Riesz for intensity JND. In both cases, most studies
measured the ability of subjects to correctly identify the difference between two tone bursts. Both
of the outlying studies measured, instead, the ability of subjects to identify modulation of a tone:
Shower and Biddulph used frequency modulation and Riesz used amplitude modulation. It appears
that a modulated continuous tone may give different results than a pair of tone bursts. Whether this
is a real effect, and, if it is, whether it is due to stimulus artifact or to properties of the auditory system,
is unclear. The subject merits further investigation.

The Weber fraction for wideband noise appears to be independent of intensity. Miller [21] mea-
sured detectability of intensity increments in wide-band noise and found that the Weber fraction
1I/I was approximately constant at 0.099 above 30 dB SL. It increased below 30 dB SL, which led
Miller to revive Fechner’s modification of Weber’s law as discussed above in Section 39.2.4 (Differ-
ential Threshold).

39.3.3 Masking

No aspect of auditory psychophysics is more relevant to the design of perceptual auditory coders than
masking, since the basic objective is to use the masking properties of speech to hide the coding noise.

4Assume RV’s A, B, and X are drawn independently from normal distributions with means mA, mB and mX , respectively,
and equal standard deviations σ . It can be shown that the relevant decision variable in the AX experiment has mean
mA −mX and standard deviation

√
2×σ , while the relevant decision variable in the ABX experiment has mean mA −mB

and standard deviation
√

6 × σ , a value almost twice as large.
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FIGURE 39.7: Summary of intensity JNDs for pure tones. Jesteadt et al. [18] found that the Weber
fraction 1I/I was independent of frequency (straight line). Riesz [29], using a different procedure,
found a dependence (connected points). (Source: Jesteadt, W. et al., Intensity Discrimination as a
function of frequency and sensation level, J. Acoust. Soc. Am., 61: 169-177, 1977. With permission).

It will be seen that while we can use present-day knowledge of masking to great advantage, there is
still much to be learned about properties of masking if we are to fully exploit it. Since some of the
major unresolved problems in modeling masking are related to the relative bandwidth of masker and
probe, our approach here is to present masking in terms of this relative bandwidth.

Tone Probe, Tone Masker

Atone time, perhapsbecauseof thedemonstratedpowerof theFourier transform in the analysis
of linear time-invariant systems, the sine wave was considered to be the “natural” signal to be used in
studies of human hearing. Much of the earliest work on masking dealt with the masking of one tone
by another [42]. Typical results are shown in Fig. 39.8 ([3], Fig. 1). Similar results appear in Wegel
and Lane [42]. The abscissa is probe frequency and the ordinate is masking in dB, the elevation of
masked over absolute threshold (15 dB SPL for 400-Hz tone). Three curves are shown, for 400-Hz
maskers at 40, 60, and 80 dB SPL.

Masking is greatest for probe frequencies slightly above or below the masker frequency of 400 Hz.
Maximum probe-to-masker ratios are −19 dB for an 80 dB SPL masker (probe intensity elevated 46
dB above the absolute threshold of 15 dB SPL), −15 dB for a 60 dB SPL masker, and −14 dB for a 40
dB SPL masker.

Masking decreases as probe frequency gets closer to 400 Hz. The probe frequencies closest to 400
Hz are 397 and 403 Hz, and at these frequencies the threshold probe-to-masker ratio is −26 dB for
an 80 dB SPL masker, −23 dB for a 60 dB SPL masker, and −21 dB for a 40 dB SPL masker.

Masking also decreases as probe frequency gets further away from masker frequency. For the 40 dB
SPL masker this selectivity is nearly symmetric in log frequency, but as the masker intensity increases
the masking becomes more and more asymmetric so that the 400-Hz masker produces much more
masking at higher frequencies than at lower.

The irregularities seen near probe frequencies of 400, 800, and 1200 Hz are the result of interactions
between masker and probe. When masker and probe frequencies are close, beating results. Even when
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FIGURE 39.8: Masking of tones by a 400-Hz tone at 40, 60, and 80 dB SPL. (Source: Egan, J.P. and
Hake, H.W., On the masking pattern of a simple auditory stimulus, J. Acoust. Soc. Am., 22: 622-630,
1950).

their frequencies are far apart, nonlinear effects in the auditory system result in complex interactions.
These irregularities provided incentive to use narrow bands of noise, rather than pure tones, as
maskers.

Tone Probe, Noise Masker

Fletcher and Munson [8] were among the first to use bands of noise as maskers. Figure 39.9 ([3],
Fig. 2) shows typical results. The conditions are similar to those for Fig. 39.8 except that now the
masker is a band of noise 90 Hz wide centered at 410 Hz. The maximum probe-to-masker ratios
occur for probe frequencies slightly above the center frequency of the masker, and they are much
greater than they were for the tone maskers shown in Fig. 39.8. Maximum probe-to-masker ratios are
−4 dB for an 80 dB SPL masker and −3 dB for 60 and 40 dB SPL maskers. The frequency selectivity
and upward spread of masking seen in Fig. 39.8 appear in Fig. 39.9 as well, but the irregularities seen
at harmonics of the masker frequency are greatly reduced.

An important effect that occurs in connection with masking of a tone probe by a band of noise
is the relationship between masker bandwidth and amount of masking. This relationship can be
presented in many ways, but the results can be described to a reasonable degree of accuracy by saying
that noise energy within a narrow band of frequencies surrounding the probe contributes to masking
while noise energy outside this band of frequencies does not. This is one manifestation of the critical
band described in Section 39.2.6 (Critical Bands and Peripheral Auditory Filters).

Figure 39.10 ([2], Fig. 6) shows results from a series of experiments designed to determine the
widths of critical bands. We are most concerned here with the closed symbols and the associated solid
and dotted straight lines. These show an expanded and elaborated repeat of a test Fletcher reported
in 1940 to measure the width of critical bands, and the results shown here are similar to Fletcher’s
results ([7], Fig. 124). The closed symbols show threshold level of probe signals at frequencies
ranging from 500 Hz to 8 kHz in dB relative to the intensity of a masking band of noise centered at
the frequency of the test signal and with the bandwidth shown on the abscissa. The intensity of the
masking noise is 60 dB SPL per 1/3 octave. Note that for narrow-band maskers the probe-to-masker
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FIGURE 39.9: Masking of tones by a 90-Hz wide band of noise centered at 410 Hz at 40, 60, and 80
dB SPL (Source: Egan, J.P. and Hake, H.W., On the masking pattern of a simple auditory stimulus,
J. Acoust. Soc. Am., 22: 622-630, 1950).

ratio is nearly independent of bandwidth, while for wide-band maskers the probe-to-masker ratio
decreases at approximately 3 dB per doubling of bandwidth. This result indicates that above a certain
bandwidth, approximated in this figure as the intersection of the asymptotic narrow-band horizontal
line and the asymptotic wide-band sloping lines, noise energy outside of this band does not contribute
to masking.

The results shown in Fig. 39.10 are from only one of many studies of masking of pure tones by
noise bands of varying bandwidths that lead to similar conclusions. The list includes Feldtkeller and
Zwicker [5] and Greenwood [13]. Scharf [33] provides additional references.

Noise Probe, Tone or Noise Masker

Maskingof bandsofnoise, either by toneornoisemaskers, has received relatively little attention.
This is unfortunate for the designer who is concerned with masking wide-band coding noise. Masking
of noise by tones is touched on in Zwicker [47], but the earliest study that gives actual data points
appears to be Hellman [15]. The threshold probe-to-masker ratios for a noise probe approximately
one critical band wide were −21 dB for a 60 dB SPL masker and −28 dB for a 90 dB SPL masker.
Threshold probe-to-masker ratios for an octave-band probe were −55 dB for 1-kHz maskers at 80
and 100 dB SPL. A 1-kHz masker at 90 dB SPL produced practically no masking of a wide-band
probe.

Hall [34] measured threshold intensity for noise bursts one-half, one, and two critical bands wide
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FIGURE 39.10: Threshold level of probe signals from 500 Hz to 8 kHz relative to overall level of noise
masker at bandwidth shown on the abscissa. (Modified from Bos, C.E. and de Boer, E., Masking and
discrimination, J. Acoust. Soc. Am., 39: 708-715, 1966. With permission).

with various center frequencies in the presence of 80 dB SPL pure-tone maskers ranging from an
octave below to an octave above the center frequency. Figure 39.11 shows results for a critical-band
1-kHz probe. The threshold probe-to-masker ratio for a 1-kHz masker is −24 dB, in agreement with
Hellman’s results, and the figure shows the same upward spread of masking that appears in Figs. 39.8
and 39.9. (Note that in Figs. 39.8 and 39.9 the masker is fixed and the abscissa is probe frequency,
while in Fig. 39.11 the probe is fixed and the abscissa is masker frequency.) A tone below 1 kHz
produces more masking than a tone above 1 kHz.

Masking of noise by noise is confounded by the question of phase relationships between probe
and masker. If masker and probe are identical in bandwidth and phase, then as we saw in Sec-
tion 39.2.5 (MaskedThreshold) the masked threshold becomes identical to the differential threshold.
Miller’s [21] Weber fraction 1I/I of 0.099 for intensity discrimination of wide-band noise, phrased
in terms of intensity of the just-detectable increment, leads to a probe-to-masker ratio of −26.3 dB.

More recently, Hall [14] measured threshold intensity for various combinations of probe and
masker bandwidths. These experiments differ from earlier experiments in that phase relationships
between probe and masker were controlled: all stimuli were generated by adding together equal-
amplitude random phase sinusoidal components, and components common to probe and masker
had identical phase. Results for one subject are shown in Fig. 39.12. Masker bandwidth appears
on the abscissa, and the parameter is probe bandwidth: A ⇒ 0 Hz, B ⇒ 4 Hz, C ⇒ 16 Hz, and
D ⇒ 64 Hz. All stimuli were centered at 1 kHz and the overall intensity of the masker was 70 dB
SPL.
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FIGURE 39.11: Threshold intensity for a 923-1083 Hz band of noise masked by an 80-dB SPL tone
at the frequency shown on the abscissa. (Source: Schroeder, M.R. et al., Optimizing digital speech
coders by exploiting masking properties of the human ear, J. Acoust. Soc. Am., 66: 1647-1652, 1979.
With permission).

This figure differs from Figs. 39.8 through 39.11 in that the vertical scale shows intensity in-
crement between masker alone and masker plus just-detectable probe rather than intensity of the
just-detectable probe, and the results look quite different. For all probe bandwidths shown, the
intensity increment varies only slightly so long as the masker is at least as wide as the probe. The
intensity increment decreases when the probe is wider than the masker.

Asymmetry of Masking

Inspection of Figs. 39.8– 39.11 reveals large variation of threshold probe-to-masker intensity
ratios depending on the relative bandwidth of probe and masker. Tone maskers produce threshold
probe-to-masker ratios of −14 to −26 dB for tone probes, depending on the intensity of the masker
and the frequency of the probe (Fig. 39.8), and threshold probe-to-masker ratios of −21 to −28 dB
for critical-band noise probes ([15]; also Fig. 39.11). On the other hand, a tone masked by a band of
noise is audible only at much higher probe-to-masker ratios, in the neighborhood of 0 dB (Figs. 39.9
and 39.10). This asymmetry of masking (the term is due to Hellman, [15]) is of central importance in
the design of perceptual coders because of the different masking properties of noise-like and tone-like
portions of the coded signal [19]. Current perceptual models do not handle this asymmetry well, so
it is a subject we must examine closely.

The logical conclusion to be drawn from the numbers in the preceding paragraph at first appears
to be that a band of noise is a better masker than a tone, for both noise and tone probes. In fact, the
correct conclusion may be completely different. It can be argued that so long as the masker bandwidth
is at least as wide as the probe bandwidth, tones or bands of noise are equally effective maskers and
the psychophysical data can be described satisfactorily by current energy-based perceptual models,
properly applied. It is only when the bandwidth of the probe is greater than the bandwidth of the
masker that energy-based models break down and some criterion other than average energy must be
applied.

Figure 39.13 shows Egan and Hake’s results for 80 dB SPL tone and noise maskers superimposed
on each other. Results for the tone masker are shown as a solid curve and results for the noise masker
are shown as a dashed curve. (These curves are not identical to the corresponding curves in Figs. 39.8
and 39.9: They are average results from five subjects, while Figs. 39.8 and 39.9 were for a single
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FIGURE 39.12: Intensity increment between masker alone and masker plus just-detectable probe.
Probe bandwidth 0 Hz (A); 4 Hz (B); 16 Hz (C); 64 Hz (D). Frequency components common to probe
and masker have identical phase. (Source: Hall, J.L., Asymmetry of masking revisited: generalization
of masker and probe bandwidth, J. Acoust. Soc. Am., 101: 1023–1033, 1997. With permission).

subject.) The maximum amount of masking produced by the band of noise is 61 dB, while the tone
masker produces only 37 dB of masking for a 397-Hz probe.

The difference between tone and noise maskers may be more apparent than real, and for masking of
a tone the auditory system may be similarly affected by tone and noise maskers. What is plotted in this
figure is the elevation in threshold intensity of the probe tone by the masker, but the discrimination
the subject makes is in fact between masker alone and masker plus probe. As was discussed above
in Section 39.2.5 (Masked Threshold), since coherence between tone probe and masker depends on
the bandwidth of the masker, a probe tone of a given intensity can produce a much greater change in
intensity of probe plus masker for a tone masker than for a noise masker.

The stimulus in the Egan and Hake experiment with a 400-Hz masker and a 397-Hz probe is
identical to the stimulus Riesz used to measure intensity JND (see Section 47 DifferentialThresholds:
Intensity, above). As Egan and Hake observe “... When the frequency of the masked stimulus is 397
or 403 c.p.s. [Hz], the amount of masking is evidently determined by the value of the differential
threshold for intensity at 400 c.p.s.” ([3], p. 624). Specifically, for the results shown in Fig. 39.13, the
threshold intensity of a 397-Hz tone is 52 dB SPL. This leads to a Weber fraction 1I/I (power at
envelope maximum minus power at envelope minimum, divided by power at envelope minimum)
of 0.17, which is only slightly higher than values obtained by Riesz and by Jesteadt et al. shown in
Fig. 39.7.

The situation with noise masker is more difficult to analyze because of the random nature of the
masker. The effective intensity increment between masker alone and masker plus probe depends on
the phase relationship between probe and 400-Hz component of the masker, which are uncontrolled
in the Egan and Hake experiment, and also on the effective time constant and bandwidth of the
analyzing auditory filter, which are unknown. However, for the experiment shown in Fig. 39.12 the
maskers were computer-generated repeatable stimuli, so that the intensity of masker plus probe could
be computed. The results shown in Fig. 39.12 lead to a Weber fraction 1I/I of 0.15 for tone masked
by tone and 0.10 for tone masked by 64-Hz wide noise. Results are similar for noise masked by noise,
so long as the masker is at least as wide as the probe. Weber fractions for the 64-Hz wide masker in
Fig. 39.12 range from 0.18 for a 4-Hz wide probe to 0.15 for a 64-Hz wide probe.

Our understanding of the factors leading to the results shown in Fig. 39.12 is obviously very limited,
but these results appear to be consistent with the view that to a first-order approximation the relevant
variable for masking is the Weber fraction 1I/I , the intensity of masker plus probe relative to the
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FIGURE 39.13: Masking produced by a 400-Hz masker at 80 dB SPL and a 90-Hz wide band of
noise centered at 410 Hz. (Source: Egan, J.P. and Hake, H.W., On the masking pattern of a simple
auditory stimulus, J. Acoust. Soc. Am., 22: 622-630, 1950).

intensity of the masker, so long as the masker is at least as wide as the probe. This is true for both tone
and noise maskers. Because of changes in coherence between probe and masker as masker bandwidth
changes, the corresponding probe intensity at threshold can be much lower for a tone masker than
for a probe masker, as is shown in Fig. 39.13.

The asymmetry that Hellman was primarily concerned with in her 1972 paper is the striking
difference between the threshold of a band of noise masked by a tone and of a tone masked by a band
of noise. It appears that this is a completely different effect than the asymmetry shown in Fig. 39.13
and one that cannot be accounted for by current energy-based models of masking. The difference
between the −5 to +5 dB threshold probe-to-masker ratios seen in Figs. 39.9 and 39.10 for tones
masked by noise and the −21 to −28 dB threshold probe-to-masker ratios for noise masked by tone
reported by Hellman and seen in Fig. 39.11 is due in part to the random nature of the noise masker
and to the change in coherence between masker and probe that we have already discussed. Even
when these factors are controlled, as in Fig. 39.12, decrease of masker bandwidth for a 64-Hz wide
band of noise results in a decrease of threshold intensity increment. (The situation is complicated by
the possibility of off-frequency listening. As we have already seen, neither a tone nor a noise masker
masks remote frequencies effectively. The 64-Hz band is narrow enough that off-frequency listening
is not a factor.) These and similar results lead to the conclusion that present-day models operating on
signal power are inadequate and that some envelope-based measure, such as the envelope maximum
or ratio of envelope maximum to minimum, must be considered [10, 11, 38].

Temporal Aspects of Masking

Up until now, we have discussed masking effects with simultaneous masker and probe. In order
to be able to deal effectively with a dynamically varying signal such as speech, we need to consider
nonsimultaneous masking as well. When the probe follows the masker, the effect is referred to as
forward masking. When the masker follows the probe, it is referred to as backward masking. Effects
have also been measured with a brief probe near the beginning or the end of a longer-duration masker.
These effects have been referred to as forward or backward fringe masking, respectively ([44], p. 162).

The various kinds of simultaneous and non-simultaneous masking are nicely illustrated in
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FIGURE 39.14: Masking of tone by ongoing wide-band noise with silent interval of 25, 50, 200, or
500 msec. This figure shows simultaneous, forward, backward, forward fringe, and backward fringe
masking. (Source: Elliott, L.L., Masking of tones before, during, and after brief silent periods in
noise, J. Acoust. Soc. Am., 45: 1277-1279, 1969. With permission).

Fig. 39.14 ([4], Fig. 1). The masker was wideband noise at an overall level of 70 dB SPL and the probe
was a brief 1.9-kHz tone burst. The masker was on continuously except for a silent interval of 25, 50,
200, or 500 msec. beginning at the 0-msec point on the abscissa. The four sets of data points show
thresholds for probes presented at various times relative to the gap for the four gap durations. Probe
thresholds in silence and in continuous noise are indicated on the ordinate by the symbols “Q” and
“CN”.

Forward masking appears as the gradual drop of probe threshold over a duration of more than
100 msec following the cessation of the masker. Backward masking appears as the abrupt increase
of masking, over a duration of a few tens of msec, immediately before the reintroduction of the
masker. Forward fringe masking appears as the more than 10-dB overshoot of masking immediately
following the reintroduction of the masker, and backward fringe masking appears as the smaller
overshoot immediately preceding the cessation of the masker. Backward masking is an important
effect for the designer of coders for acoustic signals because of its relationship to audibility of pre-
echo. It is a puzzling effect, because it is caused by a masker that begins only after the probe has been
presented. Stimulus-related electrophysiological events can be recorded in the cortex several tens
of msec after presentation of the stimulus, so there may be some physiological basis for backward
masking. It is an unstable effect, and there is some evidence that backward masking decreases with
practice [20], ([23], p. 119).

Forward masking is a more robust effect, and it has been studied extensively. It is a complex
function of stimulus parameters, and we do not have a comprehensive model that predicts amount
of forward masking as a function of frequency, intensity, and time course of masker and of probe.
The following two examples illustrate some of its complexity.

Figure 39.15 ([17], Fig. 1) is from a study of the effects of masker frequency and intensity on forward
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FIGURE 39.15: Forward masking with identical masker and probe frequencies, as a function of
frequency, delay, and masker level (Source: Jesteadt, W. et al., Forwarding masking as a function of
frequency, masker level, and signal delay, J. Acoust. Soc. Am., 71: 950-962, 1982. With permission).

masking. Masker and probe were of the same frequency. The left and right columns show the same
data, plotted on the left against probe delay with masker intensity as a parameter and plotted on the
right against masker intensity with probe delay as a parameter. The amount of masking depends
in an orderly way on masker frequency, masker intensity, and probe delay. Jesteadt et al. were
able to fit these data with a single equation with three free constants. This equation, with minor
modification, was later found to give a satisfactory fit to data obtained with forward masking by
wide-band noise [25].

Striking effects can be observed when probe and masker frequencies differ. Figure 39.16 (modified
from [22], Fig. 8) superimposes simultaneous (open symbols) and forward (filled symbols) masking
curves for a 6-kHz probe at 36 dB SPL, 10 dB above the absolute threshold of 26 dB SPL. Rather than
showing the amount of masking for a fixed masker, this figure shows masker level, as a function of
masker frequency, sufficient to just mask the probe. It is clear that simultaneous and forward masking
differ, and that the difference depends on the relative frequency of masker and probe. Results such
as those shown in Fig. 39.16 are of interest to the field of auditory physiology because of similarities
between forward masking results and frequency selectivity of primary auditory neurons.
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FIGURE 39.16: Simultaneous (open symbols) and forward (closed symbols) masking of a 6-kHz
probe tone at 36 dB SPL. Masker frequency appears on the abscissa, and masker intensity just sufficient
to mask the probe appears on the abscissa. (Modified from Moore, B.C.J., Psychophysical tuning
curves measured in simultaneous and forward masking, J. Acoust. Soc. Am., 63: 524-532, 1978. With
permission).

39.4 Conclusions

Notwithstanding the successes obtained to date with perceptual coders for speech and audio [16, 19,
27, 36], there is still a great deal of room for further advancement. The most widely applied perceptual
models today apply an energy-based criterion to some critical-band transformation of the signal and
arrive at a prediction of acceptable coding noise. These models are essentially refinements of models
first described by Fletcher and his co-workers and further developed by Zwicker and others [34].
These models do a good job describing masking and loudness for steady-state bands of noise, but
they are less satisfactory for other signals. We can identify two areas in which there seem to be great
room for improvement. One of these areas presents a challenge jointly to the designer of coders and
to the auditory psychophysicist, and the other area presents a challenge primarily to the auditory
psychophysicist.

One area for additional research has to do with asymmetry of masking. Noise is a more effective
masker than tones, and this difference is not handled well by present-day perceptual models. Present-
day coders first compute a measure of tonality of the signal and then use this measure empirically to
obtain an estimate of masking. This empirical approach has been applied successfully to a variety of
signals, but it is possible that an approach that is less empirical and more based on a comprehensive
model of auditory perception would be more robust.

As discussed in Section 39.3.3 (Masking: Asymmetry of Masking), there is evidence that there are
two separate factors contributing to this asymmetry of masking. The difference between noise and
tone maskers for narrow-band coding noise appears to result from problems with signal definition
rather than a difference in processing by the auditory system, and it may be that an effective way of
dealing with it will result not from an improved understanding of auditory perception but rather
from changes in the coder. A feedforward prediction of acceptable coding noise based on the energy
of the signal does not take into account phase relationships between signal and noise. What may be
required is a feedback, analysis-by-synthesis approach, in which a direct comparison is made between
the original signal and the proposed coded signal. This approach would require a more complex
encoder but leave the decoder complexity unchanged [27]. The difference between narrow-band
and wide-band coding noise, on the other hand, appears to call for a basic change in models of
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auditory perception. For largely historical reasons, the idea of signal energy as a perceptual measure
is deeply ingrained in present-day perceptual models. There is increasing realization that under some
conditions signal energy is not the relevant measure but that some envelope-based measure may be
required.

A second area in which additional research may prove fruitful is in the area of temporal aspects of
masking. As is discussed in Section 39.3.3 (Masking: Temporal Aspects of Masking), the situation
with time-varying signal and noise is more complex than the steady-state situation. There is an
extensive body of psychophysical data on various aspects of nonsimultaneous masking, but we are
still lacking a satisfactory comprehensive perceptual model. As is the case with asymmetry of mask-
ing, present-day coders deal with this problem at an empirical level, in some cases very effectively.
However, as with asymmetry of masking, an approach based on fundamental properties of auditory
perception would perhaps be better able to deal with a wide variety of signals.
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40.1 Introduction

PCM Bit Rates

Typical audio signal classes are telephone speech, wideband speech, and wideband audio, all
of which differ in bandwidth, dynamic range, and in listener expectation of offered quality. The
quality of telephone-bandwidth speech is acceptable for telephony and for some videotelephony and
video-conferencing services. Higher bandwidths (7 kHz for wideband speech) may be necessary to
improve the intelligibility and naturalness of speech. Wideband (high fidelity) audio representation
including multichannel audio needs bandwidths of at least 15 kHz.

The conventional digital format for these signals is PCM, with sampling rates and amplitude
resolutions (PCM bits per sample) as given in Table 40.1.

The compact disc (CD) is today’s de facto standard of digital audio representation. On a CD with
its 44.1 kHz sampling rate the resulting stereo net bit rate is 2 × 44.1 × 16 × 1000 ≡ 1.41 Mb/s
(see Table 40.2). However, the CD needs a significant overhead for a runlength-limited line code,
which maps 8 information bits into 14 bits, for synchronization and for error correction, resulting in
a 49-bit representation of each 16-bit audio sample. Hence, the total stereo bit rate is 1.41×49/16 =
4.32Mb/s. Table 40.2 compares bit rates of the compact disc and the digital audio tape (DAT).
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TABLE 40.1 Basic Parameters for Three Classes of Acoustic Signals
Frequency range in Sampling rate PCM bits per PCM bit rate

Hz in kHz sample in kb/s

Telephone speech 300 - 3,400a 8 8 64
Wideband speech 50 - 7,000 16 8 128

Wideband audio (stereo) 10 - 20,000 48b 2 × 16 2 × 768
a Bandwidth in Europe; 200 to 3200 Hz in the U.S.
b Other sampling rates: 44.1 kHz, 32 kHz.

TABLE 40.2 CD and DAT Bit Rates
Storage device Audio rate (Mb/s) Overhead (Mb/s) Total bit rate (Mb/s)

Compact disc (CD) 1.41 2.91 4.32
Digital audio tape (DAT) 1.41 1.05 2.46

Note: Stereophonic signals, sampled at 44.1 kHz; DAT supports also sampling rates of 32 kHz and
48 kHz.

For archiving and processing of audio signals, sampling rates of at least 2×44.1kHz and amplitude
resolutions of up to 24 b per sample are under discussion. Lossless coding is an important topic in
order not to compromise audio quality in any way [1]. The digital versatile disk (DVD) with its
capacity of 4.7 GB is the appropriate storage medium for such applications.

Bit Rate Reduction

Although high bit rate channels and networks become more easily accessible, low bit rate coding
of audio signals has retained its importance. The main motivations for low bit rate coding are the
need to minimize transmission costs or to provide cost-efficient storage, the demand to transmit over
channels of limited capacity such as mobile radio channels, and to support variable-rate coding in
packet-oriented networks.

Basic requirements in the design of low bit rate audio coders are first, to retain a high quality of the
reconstructed signal with robustness to variations in spectra and levels. In the case of stereophonic
and multichannel signals spatial integrity is an additional dimension of quality. Second, robustness
against random and bursty channel bit errors and packet losses is required. Third, low complexity
and power consumption of the codecs are of high relevance. For example, in broadcast and playback
applications, the complexity and power consumption of audio decoders used must be low, whereas
constraints on encoder complexity are more relaxed. Additional network-related requirements are
low encoder/decoder delays, robustness against errors introduced by cascading codecs, and a graceful
degradation of quality with increasing bit error rates in mobile radio and broadcast applications.
Finally, in professional applications, the coded bit streams must allow editing, fading, mixing, and
dynamic range compression [1].

Wehave seen rapidprogress inbit rate compression techniques for speechandaudio signals [2]–[7].
Linear prediction, subband coding, transform coding, as well as various forms of vector quantization
and entropy coding techniques have been used to design efficient coding algorithms which can achieve
substantially more compression than was thought possible only a few years ago. Recent results in
speech and audio coding indicate that an excellent coding quality can be obtained with bit rates of 1 b
per sample for speech and wideband speech and 2 b per sample for audio. Expectations over the next
decade are that the rates can be reduced by a factor of four. Such reductions shall be based mainly
on employing sophisticated forms of adaptive noise shaping controlled by psychoacoustic criteria.
In storage and ATM-based applications additional savings are possible by employing variable-rate
coding with its potential to offer a time-independent constant-quality performance.

Compressed digital audio representations can be made less sensitive to channel impairments than
analog ones if source and channel coding are implemented appropriately. Bandwidth expansion
has often been mentioned as a disadvantage of digital coding and transmission, but with today’s
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data compression and multilevel signaling techniques, channel bandwidths can be reduced actually,
compared with analog systems. In broadcast systems, the reduced bandwidth requirements, together
with the error robustness of the coding algorithms, will allow an efficient use of available radio and
TV channels as well as “taboo” channels currently left vacant because of interference problems.

MPEG Standardization Activities

Of particular importance for digital audio is the standardization work within the International
Organization for Standardization (ISO/IEC), intended to provide international standards for audio-
visual coding. ISO has set up a Working Group WG 11 to develop such standards for a wide range
of communications-based and storage-based applications. This group is called MPEG, an acronym
for Moving Pictures Experts Group.

MPEG’s initial effort was the MPEG Phase 1 (MPEG-1) coding standards IS 11172 supporting bit
rates of around 1.2 Mb/s for video (with video quality comparable to that of today’s analog video
cassette recorders) and 256 kb/s for two-channel audio (with audio quality comparable to that of
today’s compact discs) [8].

The more recent MPEG-2 standard IS 13818 provides standards for high quality video (including
High Definition TV) in bit rate ranges from 3 to 15 Mb/s and above. It provides also new audio
features including low bit rate digital audio and multichannel audio [9].

Finally, the current MPEG-4 work addresses standardization of audiovisual coding for applications
ranging from mobile access low complexity multimedia terminals to high quality multichannel sound
systems. MPEG-4 will allow for interactivity and universal accessibility, and will provide a high degree
of flexibility and extensibility [10].

MPEG-1, MPEG-2, and MPEG-4 standardization work will be described in Sections 40.3 to 40.5
of this paper. Web information about MPEG is available at different addresses. The official MPEG
Web site offers crash courses in MPEG and ISO, an overview of current activities, MPEG require-
ments, workplans, and information about documents and standards [11]. Links lead to collec-
tions of frequently asked questions, listings of MPEG, multimedia, or digital video related products,
MPEG/Audio resources, software, audio test bitstreams, etc.

40.2 Key Technologies in Audio Coding

First proposals to reduce wideband audio coding rates have followed those for speech coding. Differ-
ences between audio and speech signals are manifold; however, audio coding implies higher sampling
rates, better amplitude resolution, higher dynamic range, larger variations in power density spectra,
stereophonic and multichannel audio signal presentations, and, finally, higher listener expectation
of quality. Indeed, the high quality of the CD with its 16-b per sample PCM format has made digital
audio popular.

Speech and audio coding are similar in that in both cases quality is based on the properties of
human auditory perception. On the other hand, speech can be coded very efficiently because a
speech production model is available, whereas nothing similar exists for audio signals.

Modest reductions in audio bit rates have been obtained by instantaneous companding (e.g., a con-
version of uniform 14-bit PCM into a 11-bit nonuniform PCM presentation) or by forward-adaptive
PCM (block companding) as employed in various forms of near-instantaneously companded audio
multiplex (NICAM) coding [ITU-R, Rec. 660]. For example, the British Broadcasting Corporation
(BBC) has used the NICAM 728 coding format for digital transmission of sound in several European
broadcast television networks; it uses 32-kHz sampling with 14-bit initial quantization followed by
a compression to a 10-bit format on the basis of 1-ms blocks resulting in a total stereo bit rate of
728 kb/s [12]. Such adaptive PCM schemes can solve the problem of providing a sufficient dynamic
range for audio coding but they are not efficient compression schemes because they do not exploit
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statistical dependencies between samples and do not sufficiently remove signal irrelevancies.
Bit rate reductions by fairly simple means are achieved in the interactive CD (CD-i) which supports

16-bit PCM at a sampling rate of 44.1 kHz and allows for three levels of adaptive differential PCM
(ADPCM) with switched prediction and noise shaping. For each block there is a multiple choice
of fixed predictors from which to choose. The supported bandwidths and b/sample-resolutions are
37.8 kHz/8 bit, 37.8 kHz/4 bit, and 18.9 kHz/4 bit.

In recent audio coding algorithms four key technologies play an important role: perceptual coding,
frequency domain coding, window switching, and dynamic bit allocation. These will be covered
next.

40.2.1 Auditory Masking and Perceptual Coding

Auditory Masking

The inner ear performs short-term critical band analyses where frequency-to-place transforma-
tions occur along the basilar membrane. The power spectra are not represented on a linear frequency
scale but on limited frequency bands called critical bands. The auditory system can roughly be de-
scribed as a bandpass filterbank, consisting of strongly overlapping bandpass filters with bandwidths
in the order of 50 to 100 Hz for signals below 500 Hz and up to 5000 Hz for signals at high frequencies.
Twenty-five critical bands covering frequencies of up to 20 kHz have to be taken into account.

Simultaneous masking is a frequency domain phenomenon where a low-level signal (the maskee)
can be made inaudible (masked) by a simultaneously occurring stronger signal (the masker), if
masker and maskee are close enough to each other in frequency [13]. Such masking is greatest in the
critical band in which the masker is located, and it is effective to a lesser degree in neighboring bands.
A masking threshold can be measured below which the low-level signal will not be audible. This
masked signal can consist of low-level signal contributions, quantization noise, aliasing distortion,
or transmission errors. The masking threshold, in the context of source coding also known as
threshold of just noticeable distortion (JND) [14], varies with time. It depends on the sound pressure
level (SPL), the frequency of the masker, and on characteristics of masker and maskee. Take the
example of the masking threshold for the SPL = 60 dB narrowband masker in Fig. 40.1: around
1 kHz the four maskees will be masked as long as their individual sound pressure levels are below
the masking threshold. The slope of the masking threshold is steeper towards lower frequencies,
i.e., higher frequencies are more easily masked. It should be noted that the distance between masker
and masking threshold is smaller in noise-masking-tone experiments than in tone-masking-noise
experiments, i.e., noise is a better masker than a tone. In MPEG coders both thresholds play a role
in computing the masking threshold.

Without a masker, a signal is inaudible if its sound pressure level is below the threshold in quiet
which depends on frequency and covers a dynamic range of more than 60 dB as shown in the lower
curve of Figure 40.1.

The qualitative sketch of Fig. 40.2 gives a few more details about the masking threshold: a critical
band, tones below this threshold (darker area) are masked. The distance between the level of the
masker and the masking threshold is called signal-to-mask ratio (SMR). Its maximum value is at the
left border of the critical band (point A in Fig. 40.2), its minimum value occurs in the frequency range
of the masker and is around 6 dB in noise-masks-tone experiments. Assume a m-bit quantization of
an audio signal. Within a critical band the quantization noise will not be audible as long as its signal-
to-noise ratio SNR is higher than its SMR. Noise and signal contributions outside the particular critical
band will also be masked, although to a lesser degree, if their SPL is below the masking threshold.

Defining SNR(m) as the signal-to-noise ratio resulting from an m-bit quantization, the perceivable
distortion in a given subband is measured by the noise-to-mask ratio

NMR (m) = SMR − SNR (m) (in dB).
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FIGURE 40.1: Threshold in quiet and masking threshold. Acoustical events in the shaded areas will
not be audible.

The noise-to-mask ratio NMR(m) describes the difference in dB between the signal-to-mask ratio
and the signal-to-noise ratio to be expected from an m-bit quantization. The NMR value is also the
difference (in dB) between the level of quantization noise and the level where a distortion may just
become audible in a given subband. Within a critical band, coding noise will not be audible as long
as NMR(m) is negative.

We have just described masking by only one masker. If the source signal consists of many simulta-
neous maskers, each has its own masking threshold, and a global masking threshold can be computed
that describes the threshold of just noticeable distortions as a function of frequency.

In addition to simultaneous masking, the time domain phenomenon of temporal masking plays an
important role in human auditory perception. It may occur when two sounds appear within a small
interval of time. Depending on the individual sound pressure levels, the stronger sound may mask
the weaker one, even if the maskee precedes the masker (Fig. 40.3)!

Temporal masking can help to mask pre-echoes caused by the spreading of a sudden large quantiza-
tion error over the actual coding block. The duration within which pre-masking applies is significantly
less than one tenth of that of the post-masking which is in the order of 50 to 200 ms. Both pre- and
postmasking are being exploited in MPEG/Audio coding algorithms.

Perceptual Coding

Digital coding at high bit rates is dominantly waveform-preserving, i.e., the amplitude-vs.-
time waveform of the decoded signal approximates that of the input signal. The difference signal
between input and output waveform is then the basic error criterion of coder design. Waveform
coding principles have been covered in detail in [2]. At lower bit rates, facts about the production
and perception of audio signals have to be included in coder design, and the error criterion has to
be in favor of an output signal that is useful to the human receiver rather than favoring an output
signal that follows and preserves the input waveform. Basically, an efficient source coding algorithm
will (1) remove redundant components of the source signal by exploiting correlations between its
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FIGURE 40.2: Masking threshold and signal-to-mask ratio (SMR). Acoustical events in the shaded
areas will not be audible.

samples and (2) remove components that are irrelevant to the ear. Irrelevancy manifests itself as
unnecessary amplitude or frequency resolution; portions of the source signal that are masked do not
need to be transmitted.

The dependence of human auditory perception on frequency and the accompanying perceptual
tolerance of errors can (and should) directly influence encoder designs; noise-shaping techniques can
emphasize coding noise in frequency bands where that noise perceptually is not important. To this
end, the noise shifting must be dynamically adapted to the actual short-term input spectrum in
accordance with the signal-to-mask ratio which can be done in different ways. However, frequency
weightings based on linear filtering, as typical in speech coding, cannot make full use of results from
psychoacoustics. Therefore, in wideband audio coding, noise-shaping parameters are dynamically
controlled in a more efficient way to exploit simultaneous masking and temporal masking.

Figure 40.4 depicts the structure of a perception-based coder that exploits auditory masking. The

FIGURE 40.3: Temporal masking. Acoustical events in the shaded areas will not be audible.
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encoding process is controlled by the SMR vs. frequency curve from which the needed amplitude
resolution (and hence the bit allocation and rate) in each frequency band is derived. The SMR is
typically determined from a high resolution, say, a 1024-point FFT-based spectral analysis of the audio
block to be coded. Principally, any coding scheme can be used that can be dynamically controlled by
such perceptual information. Frequency domain coders (see next section) are of particular interest
because they offer a direct method for noise shaping. If the frequency resolution of these coders is
high enough, the SMR can be derived directly from the subband samples or transform coefficients
without running a FFT-based spectral analysis in parallel [15, 16].

FIGURE 40.4: Block diagram of perception-based coders.

If the necessary bit rate for a complete masking of distortion is available, the coding scheme will
be perceptually transparent, i.e., the decoded signal is then subjectively indistinguishable from the
source signal. In practical designs, we cannot go to the limits of just noticeable distortion because
postprocessing of the acoustic signal by the end-user and multiple encoding/decoding processes in
transmission links have to be considered. Moreover, our current knowledge about auditory masking
is very limited. Generalizations of masking results, derived for simple and stationary maskers and for
limited bandwidths, may be appropriate for most source signals, but may fail for others. Therefore, as
an additional requirement, we need a sufficient safety margin in practical designs of such perception-
based coders. It should be noted that the MPEG/Audio coding standard is open for better encoder-
located psychoacoustic models because such models are not normative elements of the standard (see
Section 40.3).

40.2.2 Frequency Domain Coding

As one example of dynamic noise-shaping, quantization noise feedback can be used in predictive
schemes [17, 18]. However, frequency domain coders with dynamic allocations of bits (and hence
of quantization noise contributions) to subbands or transform coefficients offer an easier and more
accurate way to control the quantization noise [2, 15].

In all frequency domain coders, redundancy (the non-flat short-term spectral characteristics of
the source signal) and irrelevancy (signals below the psychoacoustical thresholds) are exploited to
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reduce the transmitted data rate with respect to PCM. This is achieved by splitting the source spectrum
into frequency bands to generate nearly uncorrelated spectral components, and by quantizing these
separately. Two coding categories exist, transform coding (TC) and subband coding (SBC). The
differentiation between these two categories is mainly due to historical reasons. Both use an analysis
filterbank in the encoder to decompose the input signal into subsampled spectral components.
The spectral components are called subband samples if the filterbank has low frequency resolution,
otherwise they are called spectral lines or transform coefficients. These spectral components are
recombined in the decoder via synthesis filterbanks.

In subband coding, the source signal is fed into an analysis filterbank consisting of M bandpass filters
which are contiguous in frequency so that the set of subband signals can be recombined additively to
produce the original signal or a close version thereof. Each filter output is critically decimated (i.e.,
sampled at twice the nominal bandwidth) by a factor equal to M, the number of bandpass filters. This
decimation results in an aggregate number of subband samples that equals that in the source signal.
In the receiver, the sampling rate of each subband is increased to that of the source signal by filling
in the appropriate number of zero samples. Interpolated subband signals appear at the bandpass
outputs of the synthesis filterbank. The sampling processes may introduce aliasing distortion due to
the overlapping nature of the subbands. If perfect filters, such as two-band quadrature mirror filters
or polyphase filters, are applied, aliasing terms will cancel and the sum of the bandpass outputs equals
the source signal in the absence of quantization [19]–[22]. With quantization, aliasing components
will not cancel ideally; nevertheless, the errors will be inaudible in MPEG/Audio coding if a sufficient
number of bits is used. However, these errors may reduce the original dynamic range of 20 bits to
around 18 bits [16].

In transform coding, a block of input samples is linearly transformed via a discrete transform into a
set of near-uncorrelated transform coefficients. These coefficients are then quantized and transmitted
in digital form to the decoder. In the decoder, an inverse transform maps the signal back into the
time domain. In the absence of quantization errors, the synthesis yields exact reconstruction. Typical
transforms are the Discrete Fourier Transform or the Discrete Cosine Transform (DCT), calculated
via an FFT, and modified versions thereof. We have already mentioned that the decoder-based
inverse transform can be viewed as the synthesis filterbank, the impulse responses of its bandpass
filters equal the basis sequences of the transform. The impulse responses of the analysis filterbank
are just the time-reversed versions thereof. The finite lengths of these impulse responses may cause
so-called block boundary effects. State-of-the-art transform coders employ a modified DCT (MDCT)
filterbank as proposed by Princen and Bradley [21]. The MDCT is typically based on a 50% overlap
between successive analysis blocks. Without quantization they are free from block boundary effects,
have a higher transform coding gain than the DCT, and their basis functions correspond to better
bandpass responses. In the presence of quantization, block boundary effects are deemphasized due
to the doubling of the filter impulse responses resulting from the overlap.

Hybrid filterbanks, i.e., combinations of discrete transform and filterbank implementations, have
frequently been used in speech and audio coding [23, 24]. One of the advantages is that different fre-
quency resolutions can be provided at different frequencies in a flexible way and with low complexity.
A high spectral resolution can be obtained in an efficient way by using a cascade of a filterbank (with
its short delays) and a linear MDCT transform that splits each subband sequence further in frequency
content to achieve a high frequency resolution. MPEG-1/Audio coders use a subband approach in
layers I and II, and a hybrid filterbank in layer III.

40.2.3 Window Switching

A crucial part in frequency domain coding of audio signals is the appearance of pre-echoes, similar to
copyingeffectsonanalog tapes. Consider thecase that a silentperiod is followedbyapercussive sound,
such as from castanets or triangles, within the same coding block. Such an onset (“attack”) will cause
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comparably large instantaneous quantization errors. In TC, the inverse transform in the decoding
process will distribute such errors over the block; similarly, in SBC, the decoder bandpass filters
will spread such errors. In both mappings pre-echoes can become distinctively audible, especially
at low bit rates with comparably high error contributions. Pre-echoes can be masked by the time
domain effect of pre-masking if the time spread is of short length (in the order of a few milliseconds).
Therefore, they can be reduced or avoided by using blocks of short lengths. However, a larger
percentage of the total bit rate is typically required for the transmission of side information if the
blocks are shorter. A solution to this problem is to switch between block sizes of different lengths as
proposed by Edler (window switching) [25], typical block sizes are between N = 64 and N = 1024. The
small blocks are only used to control pre-echo artifacts during nonstationary periods of the signal,
otherwise the coder switches back to long blocks. It is clear that the block size selection has to be
based on an analysis of the characteristics of the actual audio coding block. Figure 40.5 demonstrates
the effect in transform coding: if the block size is N = 1024 [Fig. 40.5(b)] pre-echoes are clearly
(visible and) audible whereas a block size of 256 will reduce these effects because they are limited to
the block where the signal attack and the corresponding quantization errors occur [Fig. 40.5(c)]. In
addition, pre-masking can become effective.

FIGURE 40.5: Window switching. (a) Source signal, (b) reconstructed signal with block size N =
1024, and (c) reconstructed signal with block size N = 256. (Source: Iwadare, M., Sugiyama, A.,
Hazu, F., Hirano, A., and Nishitani, T., IEEE J. Sel. Areas Commun., 10(1), 138-144, Jan. 1992.)
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40.2.4 Dynamic Bit Allocation

Frequency domain coding significantly gains in performance if the number of bits assigned to each
of the quantizers of the transform coefficients is adapted to short-term spectrum of the audio coding
blockonablock-by-blockbasis. In themid-1970s, Zelinski andNoll introduceddynamicbit allocation
and demonstrated significant SNR-based and subjective improvements with their adaptive transform
coding (ATC, see Fig. 40.6 [15, 27]). They proposed a DCT mapping and a dynamic bit allocation
algorithm which used the DCT transform coefficients to compute a DCT-based short-term spectral
envelope. Parameters of this spectrum were coded and transmitted. From these parameters, the
short-term spectrum was estimated using linear interpolation in the log-domain. This estimate was
then used to calculate the optimum number of bits for each transform coefficient, both in the encoder
and decoder.

FIGURE 40.6: Conventional adaptive transform coding (ATC).

That ATC had a number of shortcomings, such as block boundary effects, pre-echoes, marginal
exploitation of masking, and insufficient quality at low bit rates. Despite these shortcomings, we find
many of the features of the conventional ATC in more recent frequency domain coders.

MPEG/Audio coding algorithms, described in detail in the next section, make use of the above key
technologies.

40.3 MPEG-1/Audio Coding

The MPEG-1/Audio coding standard [8], [28]–[30] is about to become a universal standard in many
application areas with totally different requirements in the fields of consumer electronics, professional
audio processing, telecommunications, and broadcasting [31]. The standard combines features of
MUSICAM and ASPEC coding algotithms [32, 33]. Main steps of development towards the MPEG-
1/Audio standard have been described in [30, 34]. The MPEG-1/Audio standard represents the state
of the art in audio coding. Its subjective quality is equivalent to CD quality (16-bit PCM) at stereo
rates given in Table 40.3 for many types of music. Because of its high dynamic range, MPEG-1/audio
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has potential to exceed the quality of a CD [31, 35].

TABLE 40.3 Approximate MPEG-1 Bit Rates for Transparent

Representations of Audio Signals and Corresponding

Compression Factors (Compared to CD Bit Rate)
Approximate stereo bit rates Compression

MPEG-1 audio coding for transparent quality factor

Layer I 384 kb/s 4
Layer II 192 kb/s 8
Layer III 128 kb/sa 12

a Average bit rate; variable bit rate coding assumed.

40.3.1 The Basics

Structure

The basic structure follows that of perception-based coders (see Fig. 40.4). In the first step, the
audio signal is converted into spectral components via ananalysis filterbank; layers I and IImakeuseof
a subband filterbank, layer III employs a hybrid filterbank. Each spectral component is quantized and
coded with the goal to keep the quantization noise below the masking threshold. The number of bits
for each subbandanda scalefactor aredeterminedonablock-by-blockbasis, eachblockhas12 (layer I)
or 36 (layers II and III) subband samples (see Section 40.2). The number of quantizer bits is obtained
from a dynamic bit allocation algorithm (layers I and II) that is controlled by a psychoacoustic model
(see below). The subband codewords, scalefactor, and bit allocation information are multiplexed
into one bitstream, together with a header and optional ancillary data. In the decoder, the synthesis
filterbank reconstructs a block of 32 audio output samples from the demultiplexed bitstream.

MPEG-1/Audio supports sampling rates of 32, 44.1, and 48 kHz and bit rates between 32 kb/s
(mono) and 448 kb/s, 384 kb/s, and 320 kb/s (stereo; layers I, II, and III, respectively). Lower
sampling rates (16, 22.05, and 24 kHz) have been defined in MPEG-2 for better audio quality at
bit rates at, or below, 64 kb/s per channel [9]. The corresponding maximum audio bandwidths are
7.5, 10.3, and 11.25 kHz. The syntax, semantics, and coding techniques of MPEG-1 are maintained
except for a small number of parameters.

Layers and Operating Modes

The standard consists of three layers I, II, and III of increasing complexity, delay, and subjective
performance. From a hardware and software standpoint, the higher layers incorporate the main
building blocks of the lower layers (Fig. 40.7). A standard full MPEG-1/Audio decoder is able to
decode bit streams of all three layers. The standard also supports MPEG-1/Audio layer X decoders
(X = I, II, or III). Usually, a layer II decoder will be able to decode bitstreams of layers I and II, a
layer III decoder will be able to decode bitstreams of all three layers.

Stereo Redundancy Coding

MPEG-1/Audio supports four modes: mono, stereo, dual with two separate channels (useful for
bilingual programs), and joint stereo. In the optimal joint stereo mode, interchannel dependencies
are exploited to reduce the overall bit rate by using an irrelevancy reducing technique called intensity
stereo. It is known that above 2 kHz and within each critical band, the human auditory system bases
its perception of stereo imaging more on the temporal envelope of the audio than on its temporal
fine structure. Therefore, the MPEG audio compression algorithm supports a stereo redundancy
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FIGURE 40.7: Hierarchy of layers I, II, and III of MPEG-1/Audio.

coding mode called intensity stereo coding which reduces the total bit rate without violating the spatial
integrity of the stereophonic signal.

In intensity stereo mode, the encoder codes some upper-frequency subband outputs with a single
sum signal L + R (or some linear combination thereof) instead of sending independent left (L) and
right (R) subband signals. The decoder reconstructs the left and right channels based only on the
single L + R signal and on independent left and right channel scalefactors. Hence, the spectral shape
of the left and right outputs is the same within each intensity-coded subband but the magnitudes are
different [36]. The optional joint stereo mode will only be effective if the required bit rate exceeds
the available bit rate, and it will only be applied to subbands corresponding to frequencies of around
2 kHz and above.

Layer III has an additional option: in the mono/stereo (M/S) mode the left and right channel
signals are encoded as middle (L + R) and side (L − R) channels. This latter mode can be combined
with the joint stereo mode.

Psychoacoustic Models

We have already mentioned that the adaptive bit allocation algorithm is controlled by a psy-
choacoustic model. This model computes SMR taking into a account the short-term spectrum of
the audio block to be coded and knowledge about noise masking. The model is only needed in
the encoder which makes the decoder less complex; this asymmetry is a desirable feature for audio
playback and audio broadcasting applications.

Thenormativepartof the standarddescribes thedecoderand themeaningof theencodedbitstream,
but the encoder is not standardized thus leaving room for an evolutionary improvement of the
encoder. In particular, different psychoacoustic models can be used ranging from very simple (or none
at all) to very complex ones based on quality and implementability requirements. Information about
the short-term spectrum can be derived in various ways, for example, as an accurate estimate from
an FFT-based spectral analysis of the audio input samples or, less accurate, directly from the spectral
components as in the conventional ATC [15]; see also Fig. 40.6. Encoders can also be optimized for
a certain application. All these encoders can be used with complete compatibility with all existing
MPEG-1/Audio decoders.

The informative part of the standard gives two examples of FFT-based models; see also [8, 30,
37]. Both models identify, in different ways, tonal and non-tonal spectral components and use
the corresponding results of tone-masks-noise and noise-masks-tone experiments in the calculation
of the global masking thresholds. Details are given in the standard, experimental results for both
psychoacoustic models are described in [37]. In the informative part of the standard a 512-point
FFT is proposed for layer I, and a 1024-point FFT for layers II and III. In both models, the audio
input samples are Hann-weighted. Model 1, which may be used for layers I and II, computes for
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each masker its individual masking threshold, taking into account its frequency position, power, and
tonality information. The global masking threshold is obtained as the sum of all individual masking
thresholds and the absolute masking threshold. The SMR is then the ratio of the maximum signal
level within a given subband and the minimum value of the global masking threshold in that given
subband (see Fig. 40.2).

Model 2, which may be used for all layers, is more complex: tonality is assumed when a simple
prediction indicates a high prediction gain, the masking thresholds are calculated in the cochlea
domain, i.e., properties of the inner ear are taken into account in more detail, and, finally, in case of
potential pre-echoes the global masking threshold is adjusted appropriately.

40.3.2 Layers I and II

MPEG layer I and II coders have very similar structures. The layer II coder achieves a better perfor-
mance, mainly because the overall scalefactor side information is reduced exploiting redundancies
between the scalefactors. Additionally, a slightly finer quantization is provided.

Filterbank

Layer I and II coders map the digital audio input into 32 subbands via equally spaced bandpass
filters (Figs. 40.8 and 40.9). A polyphase filter structure is used for the frequency mapping; its filters
have 512 coefficients. Polyphase structures are computationally very efficient because a DCT can be
used in the filtering process, and they are of moderate complexity and low delay. On the negative side,
the filters are equally spaced, and therefore the frequency bands do not correspond well to the critical
band partition (see Section 40.2.1). At 48-kHz sampling rate, each band has a width of 24000/32
= 750 Hz; hence, at low frequencies, a single subband covers a number of adjacent critical bands.
The subband signals are resampled (critically decimated) at a rate of 1500 Hz. The impulse response
of subband k, hsub(k)(n), is obtained by multiplication of the impulse response of a single prototype
lowpass filter, h(n), by a modulating function which shifts the lowpass response to the appropriate
subband frequency range:

hsub(k)(n) = h(n) cos

[
(2k + 1)πn

2M
+ ϕ(k)

]
;

M = 32 ; k = 0, 1, . . . , 31 ; n = 0, 1, . . . , 511

The prototype lowpass filter has a 3-dB bandwidth of 750/2 = 375Hz, and the center frequencies
are at odd multiples thereof (all values at 48 kHz sampling rate). The subsampled filter outputs exhibit
a significant overlap. However, the design of the prototype filter and the inclusion of appropriate
phase shifts in the cosine terms result in an aliasing cancellation at the output of the decoder synthesis
filterbank. Details about the coefficients of the prototype filter and the phase shifts ϕ(k) are given in
the ISO/MPEG standard. Details about an efficient implementation of the filterbank can be found
in [16] and [37], and, again, in the standardization documents.

Quantization

The number of quantizer levels for each spectral component is obtained from a dynamic bit
allocation rule that is controlled by a psychoacoustic model. The bit allocation algorithm selects one
uniform midtread quantizer out of a set of available quantizers such that both the bit rate requirement
and the masking requirement are met. The iterative procedure minimizes the NMR in each subband.
It starts with the number of bits for the samples and scalefactors set to zero. In each iteration step, the
quantizer SNR(m) is increased for the one subband quantizer producing the largest value of the NMR
at the quantizer output. (The increase is obtained by allocating one more bit). For that purpose,
NMR(m) = SMR − SNR(m) is calculated as the difference (in dB) between the actual quantization
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FIGURE 40.8: Structure of MPEG-1/Audio encoder and decoder, layers I and II.

noise level and the minimum global masking threshold. The standard provides tables with estimates
for the quantizer SNR(m) for a given m.

Block companding is used in the quantization process, i.e., blocks of decimated samples are formed
and divided by a scalefactor such that the sample of largest magnitude is unity. In layer I blocks of 12
decimated and scaled samples are formed in each subband (and for the left and right channel) and
there is one bit allocation for each block. At 48-kHz sampling rate, 12 subband samples correspond
to 8 ms of audio. There are 32 blocks, each with 12 decimated samples, representing 32× 12 = 384
audio samples.

In layer II in each subband a 36-sample superblock is formed of three consecutive blocks of 12
decimated samples corresponding to 24 ms of audio at 48 kHz sampling rate. There is one bit
allocation for each 36-sample superblock. All 32 superblocks, each with 36 decimated samples,
represent, altogether, 32×36 = 1152audio samples. As in layer I, a scalefactor is computed for each
12-sample block. A redundancy reduction technique is used for the transmission of the scalefactors:
depending on the significance of the changes between the three consecutive scalefactors, one, two, or
all three scalefactors are transmitted, together with a 2-bit scalefactor select information. Compared
with layer I, the bit rate for the scalefactors is reduced by around 50% [30]. Figure 40.9 indicates the
block companding structure.

The scaled and quantized spectral subband components are transmitted to the receiver together
with scalefactor, scalefactor select (layer II), and bit allocation information. Quantization with block
companding provides a very large dynamic range of more than 120 dB. For example, in layer II
uniform midtread quantizers are available with 3, 5, 7, 9, 15, 31, . . . , 65535levels for subbands of
low index (low frequencies). In the mid and high frequency region, the number of levels is reduced
significantly. For subbands of index 23 to 26 there are only quantizers with 3, 5, and 65535 (!)
levels available. The 16-bit quantizers prevent overload effects. Subbands of index 27 to 31 are not
transmitted at all. In order to reduce the bit rate, the codewords of three successive subband samples
resulting from quantizing with 3-, 5, and 9-step quantizers are assigned one common codeword. The
savings in bit rate is about 40% [30].

Figure 40.10 shows the time-dependence of the assigned number of quantizer bits in all subbands
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FIGURE 40.9: Block companding in MPEG-1/Audio coders.

for a layer II encoded high quality speech signal. Note, for example, that quantizers with ten or more
bits resolution are only employed in the lowest subbands, and that no bits have been assigned for
frequencies above 18 kHz (subbands of index 24 to 31).

FIGURE 40.10: Time-dependence of assigned number of quantizer bits in all subbands for a layer II
encoded high quality speech signal.

Decoding

Thedecoding is straightforward: the subband sequences are reconstructedon thebasis of blocks
of 12 subband samples taking into account the decoded scalefactor and bit allocation information.
If a subband has no bits allocated to it, the samples in that subband are set to zero. Each time the
subband samples of all 32 subbands have been calculated, they are applied to the synthesis filterbank,
and 32 consecutive 16-bit PCM format audio samples are calculated. If available, as in bidirectional
communications or in recorder systems, the encoder (analysis) filterbank can be used in a reverse
mode in the decoding process.
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40.3.3 Layer III

Layer III of the MPEG-1/Audio coding standard introduces many new features (see Fig. 40.11), in
particular a switched hybrid filterbank. In addition, it employs an analysis-by-synthesis approach, an
advanced pre-echo control, and nonuniform quantization with entropy coding. A buffer technique,
called bit reservoir, leads to further savings in bit rate. Layer III is the only layer that provides
mandatory decoder support for variable bit rate coding [38].

FIGURE 40.11: Structure of MPEG-1/Audio encoder and decoder, layer III.

Switched Hybrid Filterbank

In order to achieve a higher frequency resolution closer to critical band partitions, the 32
subband signals are subdivided further in frequency content by applying, to each of the subbands,
a 6- or 18-point modified DCT block transform, with 50% overlap; hence, the windows contain,
respectively, 12 or 36 subband samples. The maximum number of frequency components is 32×
18 = 576 each representing a bandwidth of only 24000/576 = 41.67 Hz. Because the 18-point
block transform provides better frequency resolution, it is normally applied, whereas the 6-point
block transform provides better time resolution and is applied in case of expected pre-echoes (see
Section 40.2.3). In principle, a pre-echo is assumed, when an instantaneous demand for a high
number of bits occurs. Depending on the nature of potential, all pre-echoes or a smaller number of
transforms are switched. Two special MDCT windows, a start window and a stop window, are needed
in case of transitions between short and long blocks and vice versa to maintain the time domain alias
cancellation feature of the MDCT [22, 25, 37]. Figure 40.12 shows a typical sequence of windows.

Quantization and Coding

The MDCT output samples are nonuniformly quantized thus providing both smaller mean-
squared errors and masking because larger errors can be tolerated if the samples to be quantized
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FIGURE 40.12: Typical sequence of windows in adaptive window switching.

are large. Huffman coding, based on 32 code tables, and additional run-length coding are applied
to represent the quantizer indices in an efficient way. The encoder maps the variable wordlength
codewords of the Huffman code tables into a constant bit rate by monitoring the state of a bit reservoir.
The bit reservoir ensures that the decoder buffer neither underflows nor overflows when the bitstream
is presented to the decoder at a constant rate.

In order to keep the quantization noise in all critical bands below the global masking threshold
(noise allocation) an iterative analysis-by-synthesis method is employed whereby the process of scaling,
quantization, and coding of spectral data is carried out within two nested iteration loops. The
decoding follows that of the encoding process.

40.3.4 Frame and Multiplex Structure

Frame Structure

Figure 40.13 shows the frame structure of MPEG-1/Audio coded signals, both for layer I
and layer II. Each frame has a header; its first part contains 12 synchronisation bits, 20 bit system
information, and an optional 16-bit cyclic redundancy check code. Its second part contains side
information about the bit allocation and the scalefactors (and, in layer II, scalefactor information).
As main information, a frame carries a total of 32×12subband samples (corresponding to 384 PCM
audio input sample — equivalent to 8 ms at a sampling rate of 48 kHz) in layer I, and a total of 32×36
subband samples in layer II (corresponding to 1152 PCM audio input samples — equivalent to 24 ms
at a sampling rate of 48 kHz). Note that the layer I and II frames are autonomous: each frame contains
all information necessary for decoding. Therefore, each frame can be decoded independently from
previous frames, it defines an entry point for audio storage and audio editing applications. Please
note that the lengths of the frames are not fixed, due to (1) the length of the main information field,
which depends on bit-rate and sampling frequency, (2) the side information field which varies in
layer II, and (3) the ancillary data field, the length of which is not specified.

FIGURE 40.13: MPEG-1 frame structure and packetization. Layer I: 384 subband samples; layer II:
1152 subband samples; packets P: 4-byte header; 184-byte payload field (see also Fig. 40.14).
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Multiplex Structure

We have already mentioned that the systems part of the MPEG-1 coding standard IS 11172
defines a packet structure for multiplexing audio, video, and ancillary data bitstreams in one stream.
The variable-length MPEG frames are broken down into packets. The packet structure uses 188-byte
packets consisting of a 4-byte header followed by 184 bytes of payload (see Fig. 40.14). The header

FIGURE 40.14: MPEG packet delivery.

includes a sync byte, a 13-bit field called packet identifier to inform the decoder about the type of data,
and additional information. For example, a 1-bit payload unit start indicator indicates if the payload
starts with a frame header. No predetermined mix of audio, video, and ancillary data bitstreams is
required, the mix may change dynamically, and services can be provided in a very flexible way. If
additional header information is required, such as for periodic synchronization of audio and video
timing, a variable-length adaptation header can be used as part of the 184-byte payload field.

Although the lengths of the frames are not fixed, the interval between frame headers is constant
(within a byte) throughout the use of padding bytes. The MPEG systems specification describes how
MPEG-compressed audio and video data streams are to be multiplexed together to form a single data
stream. The terminology and the fundamental principles of the systems layer are described in [39].

40.3.5 Subjective Quality

The standardization process included extensive subjective tests and objective evaluations of param-
eters such as complexity and overall delay. The MPEG (and equivalent ITU-R) listening tests were
carried out under very similar and carefully defined conditions with around 60 experienced listeners,
approximately 10 test sequences were used, and the sessions were performed in stereo with both loud-
speakers and headphones. In order to detect even small impairments, the 5-point ITU-R impairment
scale was used in all experiments. Details are given in [40] and [41]. Critical test items were chosen
in the tests to evaluate the coders by their worst case (not average) performance. The subjective eval-
uations, which have been based on triple stimulus/hidden reference/double blind tests, have shown
very similar and stable evaluation results. In these tests the subject is offered three signals, A,B, and
C (triple stimulus). A is always the unprocessed source signal (the reference). B and C, or C and B,
are the reference and the system under test (hidden reference). The selection is neither known to the
subjects nor to the conductors(s) of the test (double blind test). The subjects have to decide if B or
C is the reference and have to grade the remaining one.

The MPEG-1/Audio coding standard has shown an excellent performance for all layers at the
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rates given in Table 40.3. It should be mentioned again that the standard leaves room for encoder-
based improvements by using better psychoacoustic models. Indeed, many improvements have been
achieved since the first subjective results had been carried out in 1991.

40.4 MPEG-2/Audio Multichannel Coding

A logical further step in digital audio is the definition of a multichannel audio representation sys-
tem to create a convincing, lifelike soundfield both for audio-only applications and for audiovisual
systems, including video conferencing, videophony, multimedia services, and electronic cinema.
Multichannel systems can also provide multilingual channels and additional channels for visually
impaired (a verbal description of the visual scene) and for hearing impaired (dialog with enhanced
intelligibility). ITU-R has recommended a five-channel loudspeaker configuration, referred to as
3/2-stereo, with a left and a right channel (L and R), an additional center channel C, two side/rear
surround channels (LS and RS) augmenting the L and R channels, see Fig. 40.15 [ITU-R Rec. 775].
Such a configuration offers an improved realism of auditory ambience with a stable frontal sound
image and a large listening area.

Multichannel digital audio systems support p/q presentations with p front and q back channels,
and also provide the possibilities of transmitting two independent stereophonic programs and/or a
number of commentary or multilingual channels. Typical combinations of channels include.

• 1 channel 1/0-configuration: centre (mono)

• 2 channels 2/0-configuration: left, right (stereophonic)

• 3 channels 3/0-configuration: left, right, centre

• 4 channels: 3/1-configuration left, right, centre, mono-surround

• 5 channels: 3/2-configuration: left, right, centre, surround left, surround right

FIGURE 40.15: 3/2 Multichannel loudspeaker configuration.

ITU-R Recommendation 775 provides a set of downward mixing equations if the number of
loudspeakers is to be reduced (downward compatibility). An additional low frequency enhancement
(LFE-or subwoofer-) channel is particularly useful for HDTV applications, it can be added, optionally,
to any of the configurations. The LFE channel extends the low frequency content between 15 and
120 Hz in terms of both frequency and level.
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One or more loudspeakers can be positioned freely in the listening room to reproduce this LFE
signal. (Film industry uses a similar system for their digital sound systems).1

In order to reduce the overall bit rate of multichannel audio coding systems, redundancies and
irrelevancy, such as interchannel dependencies and interchannel masking effects, respectively, may be
exploited. In addition, stereophonic-irrelevant components of the multichannel signal, which do not
contribute to the localization of sound sources, may be identified and reproduced in a monophonic
format to further reduce bit rates. State-of-the-art multichannel coding algorithms make use of such
effects. A careful design is needed, otherwise such joint coding may produce artifacts.

40.4.1 MPEG-2/Audio Multichannel Coding

The second phase of MPEG, labeled MPEG-2, includes in its audio part two multichannel audio
coding standards, one of which is forward- and backward-compatible with MPEG-1/Audio [8], [42]–
[45]. Forward compatibility means that an MPEG-2 multichannel decoder is able to properly decode
MPEG-1 mono or stereophonic signals, backward compatibility (BC) means that existing MPEG-1
stereo decoders, which only handle two-channel audio, is able to reproduce a meaningful basic 2/0
stereo signal from a MPEG-2 multichannel bit stream so as to serve the need of users with simple
mono or stereo equipment. Non-backward compatible (NBC) multichannel coders will not be able
to feed a meaningful bit stream into a MPEG-1 stereo decoder. On the other hand, NBC codecs have
more freedom in producing a high quality reproduction of audio signals.

With backward compatibility, it is possible to introduce multichannel audio at any time in a smooth
way without making existing two-channel stereo decoders obsolete. An important example is the
European Digital Audio Broadcast system, which will require MPEG-1 stereo decoders in the first
generation but may offer multichannel audio at a later point.

40.4.2 Backward-Compatible (BC) MPEG-2/Audio Coding

BC implies the use of compatibility matrices. A down-mix of the five channels (“matrixing”) delivers
a correct basic 2/0 stereo signal, consisting of a left and a right channel, LO and RO, respectively. A
typical set of equations is

LO = α (L + β ·C + δ·LS)

α = 1
1+√

2
; β = δ = √

2

RO = α (R + β ·C + δ·RS)

Other choices are possible, including LO = L and RO = R. The factors α, β, and δ attenuate
the signals to avoid overload when calculating the compatible stereo signal (LO, RO). The signals
LO and RO are transmitted in MPEG-1 format in transmission channels T 1 and T 2. Channels
T 3, T 4, and T 5 together form the multichannel extension signal (Fig. 40.16). They have to be chosen
such that the decoder can recompute the complete 3/2-stereo multichannel signal. Interchannel
redundancies and masking effects are taken into account to find the best choice. A simple example
is T 3 = C, T 4 = LS, and T 5 = RS. In MPEG-2 the matrixing can be done in a very flexible and
even time-dependent way.

BC is achieved by transmitting the channels LO and RO in the subband-sample section of the
MPEG-1 audio frame and all multichannel extension signals T 3, T 4, and T 5 in the first part of the
MPEG-1/Audio frame reserved for ancillary data. This ancillary data field is ignored by MPEG-1

1A 3/2-configuration with five high-quality full-range channels plus a subwoofer channel is often called a 5.1 system.
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FIGURE 40.16: Compatibility of MPEG-2 multichannel audio bit streams.

decoders (see Fig. 40.17). The length of the ancillary data field is not specified in the standard. If
the decoder is of type MPEG-1, it uses the 2/0-format front left and right down-mix signals, LO ′
and RO ′, directly (see Fig. 40.18). If the decoder is of type MPEG-2, it recomputes the complete
3/2-stereo multichannel signal with its components L′, R′, C′, LS′, and RS′ via “dematrixing” of
LO ′, RO ′, T 3′, T 4′, and T 5′ (see Fig. 40.16).

FIGURE 40.17: Data format of MPEG audio bit streams. a.) MPEG-1 audio frame; b.) MPEG-2
audio frame, compatible with MPEG-1 format.

Matrixing is obviously necessary to provide BC; however, if used in connection with perceptual
coding, “unmasking” of quantization noise may appear [46]. It may be caused in the dematrixing
process when sum and difference signals are formed. In certain situations, such a masking sum or
difference signal component can disappear in a specific channel. Since this component was supposed
to mask the quantization noise in that channel, this noise may become audible. Note that the
masking signal will still be present in the multichannel representation but it will appear on a different
loudspeaker. Measures against “unmasking” effects have been described in [47].

MPEG-1 decoders have a bit rate limitation (384 kb/s in layer II). In order to overcome this
limitation, the MPEG-2 standard allows for a second bit stream, the extension part, to provide
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FIGURE 40.18: MPEG-1 stereo decoding of MPEG-2 multichannel bit stream.

compatible multichannel audio at higher rates. Figure 40.19 shows the structure of the bit stream
with extension.

FIGURE 40.19: Data format of MPEG-2 audio bit stream with extension part.

40.4.3 Advanced/MPEG-2/Audio Coding (AAC)

A second standard within MPEG-2 supports applications that do not request compatibility with
the existing MPEG-1 stereo format. Therefore, matrixing and dematrixing are not necessary and
the corresponding potential artifacts disappear (see Fig. 40.20). The advanced multichannel coding
mode will have the sampling rates, audio bandwidth, and channel configurations of MPEG-2/Audio,
but shall be capable of operating at bit rates from 32kb/s up to a bit rate sufficient for high quality
audio.

The last two years have seen extensive activities to optimize and standardize a MPEG-2 AAC
algorithm. Many companies around the world contributed advanced audio coding algorithms in a
collaborative effort to come up with a flexible high quality coding standard [44]. The MPEG-2 AAC
standard employs high resolution filter banks, prediction techniques, and Huffman coding.

Modules

The MPEG-2 AAC standard is based on recent evaluations and definitions of basic modules
each having been selected from a number of proposals. The self-contained modules include:

• optional preprocessing

• time-to-frequency mapping (filterbank)
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FIGURE 40.20: Non-backward-compatible MPEG-2 multichannel audio coding (advanced audio
coding).

• psychoacoustic modeling

• prediction

• quantization and coding

• noiseless coding

• bit stream formatter

Profiles

In order to serve different needs, the standard will offer three profiles:

1. main profile

2. low complexity profile

3. sampling-rate-scaleable profile

Forexample, in itsmainprofile, thefilterbank is amodifieddiscrete cosine transformofblocklength
2048 or 256, it allows for a frequency resolution of 23.43 Hz and a time resolution of 2.6 ms (both
at a sampling rate of 48 kHz). In the case of the long blocklength, the window shape can vary
dynamically as a function of the signal; a temporal noise shaping tool is offered to control the time
dependence of the quantization noise; time domain prediction with second order backward-adaptive
linear predictors reduces the bit rate for coding subsequent subband samples in a given subband;
iterative non-uniform quantization and noiseless coding are applied.

The low complexity profile does not employ temporal noise shaping and time domain prediction,
whereas in the sampling-rate-scaleable profile a preprocessing module is added that allows for samplig
rates of 6, 12, 18, and 24 kHz. The default configurations of MPEG-2 AAC include 1.0, 2.0, and 5.1
(mono, stereo, and five channel with LFE-channel). However, 16 configurations can be defined in
the encoder. A detailed description of the MPEG-2 AAC multichannel standard can be found in the
literature [44].

The above listed selected modules define the MPEG-2/AAC standard which became International
Standard in April 1997 as an extension to MPEG-2 (ISO/MPEG 13818 - 7). The standard offers
high quality at lowest possible bit rates between 320 and 384 kb/s for five channels, it will find many
applications, both for consumer and professional use.

40.4.4 Simulcast Transmission

If bit rates are not of high concern, a simulcast transmission may be employed where a full MPEG-
1 bitstream is multiplexed with the full MPEG-2 AAC bit stream in order to support BC without
matrixing techniques (Fig. 40.21).
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FIGURE 40.21: BC MPEG-2 multichannel audio coding (simulcast mode).

40.4.5 Subjective Tests

First subjective tests, independently run at German Telekom and BBC (UK) under the umbrella of
the MPEG-2 standardization process had shown a satisfactory average performance of NBC and BC
coders. The tests had been carried out with experienced listeners and critical test items at low bit
rates (320 and 384 kb/s). However, all codecs showed deviations from transparency for some of
the test items [48, 49]. Very recently [50], extensive formal subjective tests have been carried out
to compare MPEG-2 AAC coders, operating, respectively, at 256 and 320 kb/s, and a BC MPEG-2
layer II coder,2 operating at 640 kb/s. All coders showed a very good performance, with a slight
advantage of the 320 kb/s MPEG-2 AAC coder compared with the 640 kb/s MPEG-2 layer II BC
coder. The performances of those coders are indistinguishable from the original in the sense of the
EBU definition of indistinguishable quality [51].

40.5 MPEG-4/Audio Coding

Activities within MPEG-4 aim at proposals for a broad field of applications including multimedia.
MPEG-4 will offer higher compression rates, and it will merge the whole range of audio from high
fidelity audio coding and speech coding down to synthetic speech and synthetic audio. In order to
represent, integrate, and exchange pieces of audio-visual information, MPEG-4 offers standard tools
which can be combined to satisfy specific user requirements [52]. A number of such configurations
may be standardized. A syntactic description will be used to convey to a decoder the choice of tools
made by the encoder. This description can also be used to describe new algorithms and download
their configuration to the decoding processor for execution. The current toolset supports audio and
speech compression at monophonic bit rates ranging from 2 to 64 kb/s. Three core coders are used:

1. a parametric coding scheme for low bit rate speech coding

2. an analysis-by-synthesis coding scheme for medium bit rates (6 to 16 kb/s)

3. a subband/transform-based coding scheme for higher bit rates.

These three coding schemes have been integrated into a so-called verification model that describes the
operationsbothof encoders anddecoders, and that is used to carryout simulations andoptimizations.

2A 1995 version of this latter coder was used, therefore its test results do not reflect any subsequent enhancements.
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In the end, the verification model will be the embodiment of the standard [52]. Let us also note that
MPEG-4 will offer new functionalities such as time scale changes, pitch control, edibility, database
access, and scalibility, which allows extraction from the transmitted bitstream of a subset sufficient
to generate audio signals with lower bandwidth and/or lower quality depending on channel capacity
or decoder complexity. MPEG-4 will become an international standard in November 1998.

40.6 Applications

MPEG/Audio compression technologies will play an important role in consumer electronics, pro-
fessional audio, telecommunications, broadcasting, and multimedia. A few, but typical application
fields are described in the following.

Main applications will be based on delivering digital audio signals over terrestrial and satellite-
based digital broadcast and transmission systems such as subscriber lines, program exchange links,
cellular mobile radio networks, cable-TV networks, local area networks, etc. [53]. For example, in
narrowband Integrated Services Digital Networks (ISDN) customers have physical access to one or
two 64-kb/s B channels and one 16-kb/s D channel (which supports signaling but can also carry user
information). Other configurations are possible including p × 64 kb/s (p = 1, 2, 3, . . .) services.
ISDN rates offer useful channels for a practical distribution of stereophonic and multichannel audio
signals.

Because ISDN is a bidirectional service, it also provides upstream paths for future on-demand
and interactive audiovisual just-in-time audio services. The backbone of digital telecommunication
networks will be broadband (B-) ISDN with its cell-oriented structure. Cell delays and cell losses are
sources of distortions to be taken into account in designs of digital audio systems [54].

Lower bit rates than those given by the 16-bit PCM format are mandatory if audio signals are
to be stored efficiently on storage media—although the upcoming digital versatile disk (DVD) with
its capacity of 4.7 GB relieves the pressure for extreme compression factors. In the field of digital
storage on digital audio tape and (re-writeable) disks, a number of MPEG-based consumer products
have recently reached the audio market. Of these products, Philips Digital Compact Cassette (DCC)
essentially makes use of layer I of the MPEG-1/Audio coder employing its 384 kb/s stereo rate; its
audio coding algorithm is called PASC (Precision Audio Subband Coding) [16]. The DCC encoder
obtains an estimate of the short-term spectrum directly from the 32 subbands.

In the movie theater world, a 7.1-channel configuration is becoming popular due to an improved
front-back stability of the stereo image and an improved impression of spaciousness. A scalable
7.1-channel reproduction is applied in the digital video disc (DVD). It is based on the MPEG-1 and
MPEG-2 standards by down-mixing the 7-channel signal into a 5-channel signal, and a subsequent
down-mixing of the latter one into a 2-channel signal [55]. The 2-channel signal, three contributions
from the 5-channel signal, and two contributions from the 7-channel signal can then be transmitted
or stored. The decoder uses the 2-channel signal directly, or it employs matrixing to reconstruct 5-
or 7-channel signals. Other formats are possible, such as storing a 5-channel signal and an additional
stereo signal in simulcast mode, without down-mixing the stereo signal from the multichannel signal.

A further example is solid state audio playback systems (e.g., for announcements) with the com-
pressed data stored on chip-based memory cards or smart cards. One example is NEC’s prototype
Silicon Audio Player which uses a one-chip MPEG-1/Audio layer II decoder and offers 24 min of
stereo at its recommended stereo bit rate of 192 kb/s [56].

A number of decisions concerning the introduction of digital audio broadcast (DAB) and digital
video broadcast (DVB) services have been made recently. In Europe, a project group named Eureka
147 has worked out a DAB system able to cope with the problems of digital broadcasting [57]–[59].
ITU-R has recommended the MPEG-1/Audio coding standard after it had made extensive subjective
tests. Layer II of this standard is used for program emission, the Layer III version is recommended
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for commentary links at low rates. The sampling rate is 48 kHz in all cases, the ancillary data field
is used for program associated data (PAD information). The DAB system has a significant bit rate
overhead for error correction based on punctured convolutional codes in order to support source-
adapted channel coding, i.e., an unequal error protection that is in accordance with the sensitivity of
individual bits or a group of bits to channel errors [60]. Additionally, error concealment techniques
will be applied to provide a graceful degradation in case of severe errors. In the U.S. a standard has
not yet been defined. Simulcasting analog and digital versions of the same audio program in the FM
terrestrial band (88 to 108 MHz) is an important issue (whereas the European solution is based on
new channels) [61].

As examples of satellite-based digital broadcasting, we mention the Hughes DirecTV satellite
subscription television system and ADR (Astra Digital Radio) both of which make use of MPEG-1
layer II. As a further example, the Eutelsat SaRa system will be based on layer III coding.

Advanced digital TV systems provide HDTV delivery to the public by terrestrial broadcasting and a
variety of alternate media and offer full-motion high resolution video and high quality multichannel
surround audio. The overall bit rate may be transmitted within the bandwidth of an analog UHF
television channel. The U.S. Grand Alliance HDTV system and the European Digital Video Broadcast
(DVB) system both make use of the MPEG-2 video compression system and of the MPEG-2 transport
layer which uses a flexible ATM-like packet protocol with headers/descriptors for multiplexing audio
and video bit streams in one stream with the necessary information to keep the streams synchronized
when decoding. The systems differ in the way the audio signal is compressed: the Grand Alliance
system will use Dolby’s AC-3 transform coding technique [62]–[64], whereas the DVB system will
use the MPEG-2/Audio algorithm.

40.7 Conclusions

Low bit rate digital audio is applied in many different fields, such as consumer electronics, professional
audioprocessing, telecommunications, andbroadcasting. Perceptual coding in the frequencydomain
has paved the way to high compression rates in audio coding. ISO/MPEG-1/Audio coding with its
three layers has been widely accepted as an international standard. Software encoders, single DSP
chip implementations, and computer extensions are available from a number of suppliers.

In the area of broadcasting and mobile radio systems, services are moving to portable and handheld
devices, and new, third generation mobile communication networks are evolving. Coders for these
networks must not only operate at low bit rates but must be stable in burst-error and packet- (cell-)
loss environments. Error concealment techniques will play a significant role. Due to the lack of
available bandwidth, traditional channel coding techniques may not be able to sufficiently improve
the reliability of the channel.

MPEG/Audio coders are controlled by psychoacoustic models which may be improved thus leaving
room for an evolutionary improvement of codecs. In the future, we will see new solutions for
encoding. A better understanding of binaural perception and of stereo presentation will lead to new
proposals.

Digital multichannel audio improves stereophonic images and will be of importance both for
audio-only and multimedia applications. MPEG-2/audio offers both BC and NBC coding schemes
to serve different needs. Ongoing research will result in enhanced multichannel representations by
making better use of interchannel correlations and interchannel masking effects to bring the bit rates
further down. We can also expect solutions for special presentations for people with impairments of
hearing or vision which can make use of the multichannel configurations in various ways.

Emerging activities of the ISO/MPEG expert group aim at proposals for audio coding which will
offer higher compression rates, and which will merge the whole range of audio from high fidelity
audio coding and speech coding down to synthetic speech and synthetic audio (ISO/IEC MPEG-4).
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Because the basic audio quality will be more important than compatibility with existing or upcoming
standards, this activity will open the door for completely new solutions.
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41.1 Overview

In order to more efficiently transmit or store high-quality audio signals, it is often desirable to reduce
the amount of information required to represent them. In the case of digital audio signals, the
amount of binary information needed to accurately reproduce the original pulse code modulation
(PCM) samples may be reduced by applying compression algorithm. A primary goal of audio
compression algorithms is to maximally reduce the amount of digital information (bit-rate) required
for conveyance of an audio signal while rendering differences between the original and decoded
signals inaudible.

Digital audio compression is useful wherever there is an economic benefit realized by reducing the
bit-rate. Typical applications are in satellite or terrestrial audio broadcasting, delivery of audio over
electrical or optical cables, or storage of audio on magnetic, optical, semiconductor, or other storage
media. One application which has received considerable attention in the United States is digital
television (DTV). Audio and video compression are both necessary in DTV to meet the requirement
that one high-definition DTV channel fit within the 6 MHz transmission bandwidth occupied by one
preexisting NTSC (analog) channel. In December 1996, the United States Federal Communications
Commission adopted the ATSC standard for DTV which is consistent with a consensus agreement
developed by a broad cross-section of parties, including the broadcasting and computer industries.
The audio technology used in the ATSC digital audio compression standard [1] is Dolby AC-3.

Dolby AC-3 is an audio compression technology capable of encoding a range of audio channel
formats into a bit stream ranging from 32 kb/s to 640 kb/s. AC-3 technology is primarily targeted
toward delivery of multiple discrete channels intended for simultaneous presentation to consumers.
Channel formats range from 1 to 5.1 channels, and may include a number of associated audio
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services. The 5.1 channel format consists of five full bandwidth (20 kHz) channels plus an optional
low frequency effects (lfe or subwoofer) channel.

A typical application of the algorithm is shown in Fig. 41.1. In this example, a 5.1 channel audio
program is converted from a PCM representation requiring more than 5 Mbps (6 channels × 48 kHz
× 18 bits = 5.184 Mbps) into a 384 kbps serial bit stream by the AC-3 encoder. Satellite transmission
equipment converts this bit stream to an RF transmission which is directed to a satellite transponder.
The amount of bandwidth and power required by the transmission has been reduced by more than
a factor of 13 by the AC-3 digital compression. The signal received from the satellite is demodulated
back into the 384 kbps serial bit stream, and decoded by the AC-3 decoder. The result is the original
5.1 channel audio program.

FIGURE 41.1: Example application of satellite transmission using AC-3.

There are a diverse set of requirements for a coder intended for widespread application. While
the most critical members of the audience may be anticipated to have complete 6-speaker multi-
channel reproduction systems, most of the audience may be listening in mono or stereo, and still
others will have three front channels only. Some of the audience may have matrix-based (e.g., Dolby
Surround) multi-channel reproduction equipment without discrete channel inputs, thus requiring
a dual-channel matrix-encoded output from the AC-3 decoder. Most of the audience welcomes a
restricted dynamic range reproduction, while a few in the audience will wish to experience the full
dynamic range of the original signal. The visually and hearing impaired wish to be served. All of
these and other diverse needs were considered early in the AC-3 design process. Solutions to these
requirements have been incorporated from the beginning, leading to a self-contained and efficient
system.

As an example, one of the more important listener features built-in to AC-3 is dynamic range
compression. This feature allows the program provider to implement subjectively pleasing dynamic
range reduction formostof the intendedaudience, while allowing individualmembersof the audience
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the option to experience more (or all) of the original dynamic range. At the discretion of the program
originator, the encoder computes dynamic range control values and places them into the AC-3 bit
stream. The compression is actually applied in the decoder, so the encoded audio has full dynamic
range. It is permissible (under listener control) for the decoder to fully or partially apply the dynamic
range control values. In this case, some of the dynamic range will be limited. It is also permissible
(again under listener control) for the decoder to ignore the control words, and hence reproduce
full-range audio. By default, AC-3 decoders will apply the compression intended by the program
provider.

Other user features include decoder downmixing to fewer channels than were present in the bit
stream, dialog normalization, and Dolby Surround compatibility. A complete description of these
features and the rest of the ATSC Digital Audio Compression Standard is contained in [1].

AC-3 achieves high coding gain (the ratio of the encoder input bit-rate to the encoder output bit-
rate) by quantizing a frequency domain representation of the audio signal. A block diagram of this
process is shown in Fig. 41.2. The first step in the encoding process is to transform the representation
of audio from a sequence of PCM signal sample blocks into a sequence of frequency coefficient blocks.
This is done in the analysis filter bank as follows. Signal sample blocks of length 512 are multiplied by
a set of window coefficients and then transformed into the frequency domain. Each sample block is
overlappedby256 sampleswith the twoadjoiningblocks. Due to theoverlap, everyPCMinput sample
is represented in two adjacent transformed blocks. The frequency domain representation includes
decimation by an extra factor of two so that each frequency block contains only 256 coefficients.
The individual frequency coefficients are then converted into a binary exponential notation as a
binary exponent and a mantissa. The set of exponents is encoded into a coarse representation of the
signal spectrum which is referred to as the spectral envelope. This spectral envelope is processed by
a bit allocation routine to calculate the amplitude resolution required for encoding each individual
mantissa. The spectral envelope and the quantized mantissas for 6 audio blocks (1536 audio samples)
are formatted into one AC-3 synchronization frame. The AC-3 bit stream is a sequence of consecutive
AC-3 frames.

FIGURE 41.2: The AC-3 Encoder.

The decoding process is essentially a mirror-inverse of the encoding process. The decoder, shown in
Fig. 41.3, must synchronize to the encoded bit stream, check for errors, and deformat the various types
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of data such as the encoded spectral envelope and the quantized mantissas. The spectral envelope
is decoded to reproduce the exponents. The bit allocation routine is run and the results used to
unpack and dequantize the mantissas. The exponents and mantissas are recombined into frequency
coefficients, which are then transformed back into the time domain to produce decoded PCM time
samples. Figs. 41.2 and 41.3 present a somewhat simplified, high-level view of an AC-3 encoder and
decoder.

FIGURE 41.3: The AC-3 Decoder.

Table 41.1 presents the different channel formats that are accommodated by AC-3. The three-bit
control variable acmod is embedded in the bit stream to convey the encoder channel configuration
to the decoder. If acmod is ‘000’, then two completely independent program channels (dual mono)
are encoded into the bit stream (referenced as Ch1, Ch2). The traditional mono and stereo formats
are denoted when acmod equals ‘001’ and ‘010’, respectively. If acmod is greater than ‘100’, the bit
stream format includes one or more surround channels. The optional lfe channel is enabled/disabled
by a separate control bit called lfeon.

TABLE 41.1 AC-3 Audio Coding Modes
Number of full

Audio coding bandwidth Channel array
acmod mode channels ordering

‘000’ 1 + 1 2 Ch1, Ch2
‘001’ 1/0 1 C
‘010’ 2/0 2 L, R
‘011’ 3/0 3 L, C, R
‘100’ 2/1 3 L, R, S
‘101’ 3/1 4 L, C, R, S
‘110’ 2/2 4 L, R, SL, SR
‘111’ 3/2 5 L, C, R, SL, SR

Table 41.2 presents the different bit-rates that are accommodated by AC-3. The six-bit control
variable frmsizecod is embedded in the bit stream to convey the encoder bit-rate to the decoder.
In principle, it is possible to use the bit-rates in Table 41.2 with any of the channel formats from
Table 41.1. However, in high-quality applications employing the best known encoder, the typical
bit-rate for 2 channels is 192 kb/s, and for 5.1 channels is 384 kb/s. As AC-3 encoding technologies
mature in the future, these bit-rates can be expected to drop farther.
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TABLE 41.2 AC-3 Audio Coding Bit-Rates
Nominal bit- Nominal bit- Nominal bit-

frmsizecod rate (kb/sec) frmsizecod rate (kb/sec) frmsizecod rate (kb/sec)

0 32 14 112 28 384
2 40 16 128 30 448
4 48 18 160 32 512
6 56 20 192 34 576
8 64 22 224 36 640
10 80 24 256
12 96 26 320

41.2 Bit Stream Syntax

An AC-3 serial coded audio bit stream is composed of a contiguous sequence of synchronization
frames. A synchronization frame is defined as the minimum-length bit stream unit which can be
decoded independently of any other bit stream information. Each synchronization frame represents
a time interval corresponding to 1536 samples of digital audio (for example, 32 ms at a sampling rate
of 48 kHz). All of the synchronization codes, preamble, coded audio, error correction, and auxiliary
information associated with this time interval is completely contained within the boundaries of one
audio frame.

Figure 41.4 presents the various bit stream elements within each synchronization frame. The
five different components are: SI (Synchronization Information), BSI (Bit Stream Information), AB
(Audio Block), AUX (Auxiliary Data Field), and CRC (Cyclic Redundancy Code). The SI and CRC
fields are of fixed-length, while the length of the other four depends upon programming parameters
such as the number of encoded audio channels, the audio coding mode, and the number of optionally-
conveyed listener features. The length of the AUX field is adjusted by the encoder such that the CRC
element falls on the last 16-bit word of the frame. A summary of the bit stream elements and their
purpose is provided in Table 41.3.

FIGURE 41.4: AC-3 synchronization frame.

The number of bits in a synchronization frame (frame length) is a function of sampling rate
and total bit-rate. In a conventional encoding scenario, these two parameters are fixed, resulting
in synchronization frames of constant length. However, AC-3 also supports variable-rate audio
applications, as will be discussed shortly.

Each Audio Block contains coded information for 256 samples from each input channel. Within
one synchronization frame, the AC-3 encoder can change the relative size of the six Audio Blocks
depending on audio signal bit demand. This feature is particularly useful when the audio signal is
non-stationary over the 1536-sample synchronization frame. Audio Blocks containing signals with
a high bit demand can be weighted more heavily than others in the distribution of the available bits
(bit pool) for one frame. This feature provides one mechanism for local variation of bit-rate while
keeping the overall bit-rate fixed.
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TABLE 41.3 AC-3 Bit Stream Elements
Bit stream
element Purpose Length (bits)

SI Synchronization information — Header at the beginning of each frame containing
information needed to acquire and maintain bit stream synchronization.

40

BSI Bit stream information — Preamble following SI containing parameters describing the
coded audio service, e.g., number of input channels (acmod), dynamic compression
control word (dynrng), and program time codes (timecod1, timecod2).

Variable

AB Audio block — Coded information pertaining to 256 quantized samples of audio from all
input channels. There are six audio blocks per AC-3 synchronization frame.

Variable

Aux Auxiliary data field — Block used to convey additional information not already defined in
the AC-3 bit stream syntax.

Variable

CRC Frame error detection field — Error check field containing a CRC word for error detection.
An additional CRC word is located in the SI header, the use of which is optional.

17

In applications such as digital audio storage, an improvement in audio quality can often be achieved
by varying the bit-rate on a long-term basis (more than one synchronization frame). This can also be
realized in AC-3 by adjusting the bit-rate of different synchronization frames on a signal-dependent
basis. In regions where the audio signal is less bit-demanding (for example, during quiet passages),
the frame bit-rate (frmsizecod) is reduced. As the audio signal becomes more demanding, the frame
bit-rate is increased so that coding distortion remains inaudible. Frame-to-frame bit-rate changes
selected by the encoder are automatically tracked by the decoder.

41.3 Analysis/Synthesis Filterbank

The design of an analysis/synthesis filterbank is fundamental to any frequency-domain audio coding
system. The frequency and time resolution of the filterbank play critical roles in determining the
achievable coding gain. Of significant importance as well are the properties of critical sampling
and overlap-add reconstruction. This section discusses these properties in the context of the AC-
3 multichannel audio coding system.

Of the many considerations involved in filterbank design, two of the most important for audio
coding are the window shape and the impulse response length. The window shape affects the ability
to resolve frequency components which are in close proximity, and the impulse response length
affects the ability to resolve signal events which are short in time duration. For transform coders, the
impulse response length is determined by the transform block length.

A long transform length is most suitable for input signals whose spectrum remains stationary, or
varies only slowly with time. A long transform length provides greater frequency resolution, and
hence improved coding performance for such signals. On the other hand, a shorter transform length,
possessing greater time resolution, is more effective for coding signals that change rapidly in time.
The best of both cases can be obtained by dynamically adjusting the frequency/time resolution of
the transform depending upon spectral and temporal characteristics of the signal being coded. This
behavior is very similar to that known to occur in human hearing, and is embodied in AC-3.

The transform selected for use in AC-3 is based on a 512-point Modified Discrete Cosine Transform
(MDCT) [2]. In the encoder, the input PCM block for each successive transform is constructed by
taking 256 samples from the last half of the previous audio block and concatenating 256 new samples
from the current block. Each PCM block is therefore overlapped by 50% with its two neighbors.
In the decoder, each inverse transform produces 512 new PCM samples, which are subsequently
windowed, 50% overlapped, and added together with the previous block. This approach has the
desirable property of crossfade reconstruction, which reduces waveform discontinuities (and audible
distortion) at block boundaries.

c©1999 by CRC Press LLC



41.3.1 Window Design

To achieve perfect-reconstruction with a unity-gain MDCT transform filterbank, the shape of the
analysis and synthesis windows must satisfy two design constraints. First of all, the analysis/synthesis
windows for two overlapping transform blocks must be related by:

ai(n + N/2)si(n + N/2) + ai+1(n)si+1(n) = 1, n = 0, . . . , N/2 − 1 (41.1)

where ai(n) is the analysis window, si(n) is the synthesis window, n is the sample number, N is the
transform block length, and i is the transform block index. This is the well-known condition that
the analysis/synthesis windows must add so that the result is flat [3]. The second design constraint
is:

ai(N/2 − n − 1)si(n) − ai(n)si(N/2 − n − 1) = 0, n = 0, . . . , N/2 − 1 (41.2)

This constraint must be satisfied so that the time-domain alias distortion introduced by the forward
transform is completely canceled during synthesis.

To design the window used in AC-3, a convolution technique was employed which guarantees that
the resultant window satisfies Eq. (41.1). Equation (41.2) is then satisfied by choosing the analysis
and synthesis windows to be equal. The procedure consists of convolving an appropriately chosen
symmetric kernel window with a rectangular window. The window obtained by taking the square
root of the result satisfies Eq. (41.1). Tradeoffs between the width of the window main-lobe and the
ultimate rejection can be made simply by choosing different kernel windows. This method provides a
means for transforming a kernel window having desirable spectral analysis properties (such as in [4])
into one satisfying the MDCT window design constraints.

The window generation technique is based on the following equation:

ai(n) = si(n) =

√√√√√√√√√√√

M∑
j=L

[w(j)r(n − j)]

K∑
j=0

[w(j)]
for n = 0, ..., N − 1, where (41.3)

L =
{

0 0 ≤ n < N − K

n − N + K + 1 N − K ≤ n < N

M =
{

n 0 ≤ n < K

K K ≤ n < N

In this equation, w(n) is the kernel window of length K +1, r(n) is a rectangular window of length
N −K, N is the transform sample block length, and K is the width of the (non-flat) transition region
in the resulting window (note that K must satisfy 0 ≤ K ≤ N/2). The rectangular window is defined
as:

r(n) =
{

0 0 ≤ n < (N/2 − K)/2 and (3N/2 − K)/2 ≤ n < N − K

1 (N/2 − K)/2 ≤ n < (3N/2 − K)/2
(41.4)

The rectangular window is defined to contain (N/2−K)/2 zeros, followed by N/2unity samples,
followed by another (N/2− K)/2 zeros. The AC-3 window uses K = N/2, implying the transition
region length is one-half the total window length.

The Kaiser-Bessel window is used as the kernel in designing the AC-3 analysis/synthesis windows
because of its near-optimal transition band slope and good ultimate rejection characteristic. A scalar
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parameter α in the Kaiser-Bessel window definition can be adjusted to vary this ratio. The AC-3
window uses α = 5.

The selection of the Kaiser-Bessel window function and alpha factor used for the AC-3 algorithm
is determined by considering the shape of masking template curves. A useful criterion is to use a
filter response which is at or below the worst-case combination of all masking templates [5]. Such
a filter response is advantageous in reducing the number of bits required for a given level of audio
quality. When the filter response is at or below the worst-case combination of all masking templates,
the number of bits assigned to transform coefficients adjacent to each tonal component is reduced.

41.3.2 Transform Equations

The transform employed in AC-3 is an extension of the oddly-stacked TDAC (OTDAC) filter bank
reported by Princen and Bradley [2]. The extension involves the capability to switch transform block
length from N = 512to 256 for audio signals with rapid amplitude changes. As originally formulated
by Princen, the filter bank operates with a time-invariant block-length, and therefore has constant
time/frequency resolution. An adaptive time/frequency resolution transform can be implemented
by changing the time offset of the transform basis functions during short blocks. The time offset
is selected to preserve critical sampling and perfect reconstruction before, during, and following
transform length changes.

Prior to transforming the audio signal from time to frequency dimension, the encoder performs an
analysis of the spectral and/or temporal nature of the input signal and selects the appropriate block
length. A one-bit code per channel per Audio Block is embedded in the bit stream which conveys
length information: (blksw = 0 or 1 for 512 or 256 samples, respectively). The decoder uses this
information to deformat the bit stream, reconstruct the mantissa data, and apply the appropriate
inverse transform equations.

Transforming a long block (512 samples) produces 256 unique transform coefficients. Short blocks
are constructed starting with 512 windowed audio samples and splitting them into two abutting
subblocks of length 256. Each subblock is transformed independently, producing 128 unique non-
zero transform coefficients. Hence, the total number of transform coefficients produced in the
short-block mode is identical to that produced in long-block mode, but with doubly improved
temporal resolution. Transform coefficients from the two subblocks are interleaved together on a
coefficient-by-coefficient basis. This block is quantized and transmitted identically to a single long
block.

A similar, mirror image procedure is applied in the decoder. Quantized transform coefficients for
the two short transforms arrive in the decoder interleaved in frequency. The decoder processes the
interleaved sequences identically to long-block sequences, except during the inverse transformation
as described below.

A definition of the AC-3 forward transform equation for long and short blocks is:

X(k) = 1/N

N−1∑
n=0

x(n) cos((2π/N)(k + 1/2)(n + n0)), k = 0, 1, . . . , N − 1 , (41.5)

where n is the sample index, k is the frequency index, x(n) is the windowed sequence of N audio
samples, and X(k) is the resulting sequence of transform coefficients.

The corresponding inverse transform equation for long and short blocks is:

y(n) =
N−1∑
k=0

X(k) cos((2π/N)(k + 1/2)(n + n0)), n = 0, 1, . . . , N − 1 (41.6)
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Parameter n0 represents a time offset of the modulator basis vectors used in the transform kernel.
For long blocks, and for the second of each short block pair, n0 = 257/2. For the first short block,
n0 = 1/2.

When x(n) in Eq. (41.5) is real, X(k) is odd-symmetric for the MDCT. Therefore, only N/2
unique non-zero transform coefficients are generated for each new block of N samples. Accordingly,
some information is lost during the transform, which ultimately leads to an alias component in y(n).
However, with an appropriate choice of n0, and in the absence of transform coefficient quantization,
the aliasing is completely canceled during the window/overlap/add procedure following the inverse
transform. Hence, the AC-3 filterbank has the properties of critical sampling and perfect recon-
struction. A fundamental advantage of this approach is that 50% frame overlap is achieved without
increasing the required bit-rate. Any non-zero overlap used with conventional transforms (such as
the DFT or standard DCT) precludes critical sampling, generally resulting in a higher bit-rate for the
same level of subjective quality.

Several memory and computation-efficient techniques are available for implementing the AC-3
forward and inverse transforms (for example, see [6]). The most efficient ones can be derived by
rewriting Eqs. (41.5) and (41.6) in the form of an N-point DFT and IDFT, respectively, combined
with two complex vector multiplies. The DFT and IDFT can be efficiently computed using an FFT
and IFFT, respectively. Two properties further reduce the fast transform length. First, the input signal
is real, and second, the N-length sequence y(n) contains only N/2 unique samples. When these two
properties are combined, the result is an N/4-point complex FFT or IFFT. The AC-3 decoder filter
bank computation rate is about 13 multiply-accumulate operations per sample per channel, including
the window/overlap/add. This computation rate remains virtually unchanged during block length
changes.

41.4 Spectral Envelope

The most basic form of audio information conveyed by an AC-3 bit stream consists of quantized
frequency coefficients. The coefficients are delivered in floating-point form, whereby each consists
of an exponent and a mantissa. The exponents from one audio block provide an estimate of the
overall spectral content as a function of frequency. This representation is often termed a spectral en-
velope. This section describes spectral envelope coding strategies in AC-3, and explores an important
relationship between exponent coding and mantissa bit allocation.

Due to the inherent variety of audio spectra within one frame, the AC-3 spectral envelope coding
scheme contains significant degrees of freedom. In essence, the six spectral envelopes contained in
one frame represent a two-dimensional signal, varying in time (block index) and frequency. AC-
3 spectral envelope coding provides for variable coarseness of representation in both dimensions.
In the frequency dimension, either one, two, or four mantissas can be shared by one floating-point
exponent. In the time dimension, any two or more consecutive audio blocks from one frame can
share common set of exponents.

The concepts of spectral envelope coding and bit allocation are closely linked in AC-3. More
specifically, the effectiveness with which mantissa bits are utilized can depend greatly upon the
encoder’s choice of spectral envelope coding. To see this, note that the dominant contributors to the
total bit-rate for a frame are the audio exponents and mantissas. Sharing exponents in either the
time or frequency dimension, or both, reduces the total cost of exponent transmission for one frame.
More liberal use of exponent sharing therefore frees more bits for mantissa quantization. Conversely,
retransmitting exponents increases the total cost of exponent transmission for one frame relative to
mantissa quantization. Furthermore, the block positions at which exponents are retransmitted can
significantly alter the effectiveness of mantissa bit assignments among the various audio blocks. As
will be seen later in Section 41.6, bit assignments are derived in part from the coded spectral envelope.
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In summary, the encoder decisions regarding when to use frequency or time exponent sharing, and
when to retransmit exponents depend upon signal conditions. Collectively, these decisions are called
exponent strategy.

For short-term stationary signals, the signal spectrum remains substantially invariant from block-
to-block. In this case, the AC-3 encoder transmits exponents once in audio block 0, and then typically
reuses them for blocks 1-5. The resulting bit allocation would generally be identical for all 6 blocks,
which is appropriate for these signal conditions.

For short-term non-stationary signals, the signal spectrum changes significantly from block-to-
block. In this case, the AC-3 encoder transmits exponents in block 0 and typically in one or more
other blocks as well. In this case, exponent retransmission produces a time trajectory of coded
spectral envelopes which better matches dynamics of the original signal. Ultimately, this results in a
quality improvement if the cost of exponent retransmission is less than the benefit of redistributing
mantissa bits among blocks.

Exponent strategy decisions can be based, for example, on a cost-benefit analysis for each frame.
The objective of such an analysis would be to minimize a cost-benefit ratio by considering encoding
parameters such as total available bit-rate, audibility of quantization noise (noise-to-mask ratio),
exponent coding mode for each audio block (reuse, D15, D25, or D45), channel coupling on/off, and
reconstructed audio bandwidth.

The block(s) at which bit assignment updates occur is governed by several different parameters,
but primarily by the exponent strategy fields. AC-3 bit streams contain coded exponents for up to
five independent channels, and for the coupling and low frequency effects channels (when enabled).
The respective exponent strategy fields are called chexpstr[ch], cplexpstr, and lfeexpstr. Bit allocation
updates are triggered if the state of any one or more strategy flags is D15, D25, or D45; however,
updates can be triggered in between shared exponent block boundaries as well.

Exponents are 5-bit values which indicate the number of leading zeros in the binary representa-
tion of a frequency coefficient. For the D15 exponent strategy, the unsigned integer exponent e(i)

represents a scale factor for the ith mantissa, equal to 2−e(i). Frequency coefficients are normalized
in the encoder by multiplying by 2e(i), and denormalized in the decoder by multiplying by 2−e(i).
Exponent values are allowed to range from 0 (for the largest value coefficients with no leading zeros)
to 24. Exponents for coefficients which have more than 24 leading zeros are fixed at 24, and the
corresponding mantissas are allowed to have leading zeros. Exponents require 5 bits in order to
represent all allowed values.

AC-3 exponent transmission employs differential coding, in which the exponents for a channel
are differentially coded across frequency. The first exponent of a full bandwidth or lfe channel is
always sent as a 4-bit absolute value, ranging from 0-15. The value indicates the number of leading
zeros of the first (DC term) transform coefficient. Successive exponents (ascending in frequency) are
sent as differential values which must be added to the prior exponent value in order to form the next
absolute value.

The differential exponents are combined into groups in the audio block. The grouping is done
by one of three methods, D15, D25, or D45. The number of grouped differential exponents placed
in the audio block for a particular channel depends on the exponent strategy and on the frequency
bandwidth information for that channel. The number of exponents in each group depends only on
the exponent strategy.

Exponent strategy information for every channel is included in every AC-3 audio block. Infor-
mation is never shared across frames, so block 0 will always contain a strategy indication for each
channel.

The three exponent strategies provide a tradeoff between bit-rate required for exponents, and their
frequency resolution. The overall exponent bit-rate for a frame depends on the exponent strategy, the
number of blocks over which the exponents are shared, and the audio signal bandwidth. Table 41.4
presents the per-coefficient bit-rate required to transmit the spectral envelope for each strategy, and
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for each block share interval. The D15 mode provides the finest frequency resolution (one exponent
per frequency coefficient), while the D45 mode consumes the lowest per-coefficient bit-rate.

TABLE 41.4 Exponent Bit-Rate for Different

Exponent Strategies
Exponent
strategy Share interval (number of audio blocks)

1 2 3 4 5 6
D15 2.33 1.17 0.78 0.58 0.47 0.39
D25 1.17 0.58 0.39 0.29 0.23 0.19
D45 0.58 0.29 0.19 0.15 0.12 0.10

Note: Bits per frequency coefficient

Theabsolute exponents found in thebit streamat thebeginningof thedifferentially codedexponent
sets are sent as 4-bit values which have been limited in either range or resolution in order to save one
bit. For full bandwidth and lfe channels, the initial 4-bit absolute exponent represents a value from
0 to 15. Exponent values larger than 15 are limited to a value of 15. For the coupled channel, the
5-bit absolute exponent is limited to even values, and the least significant bit is not transmitted. The
resolution has been limited to valid values of 0, 2, 4,..., 24. Each differential exponent can take on
one of five values: −2, −1, 0, +1, +2. This allows deltas of up to ±2 (±12dB) between exponents.
These five values are mapped into the values 0, 1, 2, 3, 4 before being grouped, as shown in Table 41.5.

TABLE 41.5 Mapping of

Differential Exponent Values
Differential
exponent Mapped value, Mi

+2 4
+1 3
0 2

−1 1
−2 0

In D15 mode, the above mapping is applied to each individual differential exponent for coding into
the bit stream. In D25 mode, each pair of differential exponents is represented by a single mapped
value in the bit stream. In this mode, the differential exponent is used once to compute an exponent
that is shared between two consecutive frequency coefficients.

The D45 mode is similar to D25 mode except that quadruplets of differential exponents are rep-
resented by a single mapped value. Again, the differential exponent is used once to compute an
exponent that is shared between four consecutive frequency coefficients.

For all modes, sets of three adjoining (in frequency) mapped values (M1, M2 and M3) are grouped
together and coded as a 7-bit unsigned integer I according to the following relation:

I = 25M1 + 5M2 + M3 . (41.7)

Following the exponent strategy fields in the bit stream is a set of 6-bit channel bandwidth codes,
chbwcod[ch]. These are only present for independent channels (not in coupling) that have new
exponents in the current block. The channel bandwidth code defines the end mantissa bin number
for that channel according to the following:

endmant[ch] = ((chbwcod[ch] + 12)3) + 37 (41.8)
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Exponent strategy for each full bandwidth channel and the lfe channel can be updated indepen-
dently. Lfe channel exponents are restricted only to reuse or D15 mode. If a full bandwidth channel
is in coupling, exponents up to the start coupling frequency are transmitted. If the full bandwidth
channel is not in coupling, exponents up to the channel bandwidth code are transmitted. If coupling
is on for any full bandwidth channel, a separate and independent set of exponents is transmitted for
the coupling channel. Coupling start and end frequencies are transmitted as 4-bit indices.

41.5 Multichannel Coding

In the context of AC-3, multichannel audio is defined as two or more full bandwidth channels that
are intended for simultaneous presentation to a listener. Multichannel audio coding offers new
opportunities in bit-rate reduction beyond those commonly employed in monophonic coders. The
goal of multichannel coding is to compress an audio program by exploiting redundancy between the
channels and irrelevancy in the signal while preserving both sound clarity and spatial characteristics
of the original program. AC-3 achieves this goal by preserving listener cues which affect perceived
directionality of hearing (localization).

The motivation for multichannel audio coding is provided by an understanding of how the ear
extracts directional information from an incident sound wave. Hearing research suggests that the
auditory system does not evaluate every detail of the complicated interaural signal differences, but
rather derives what information is needed from definite, easily recognizable attributes [7]. For
example, localization of signals are generally distinguished by:

1. Interaural time differences (ITD)

2. Interaural level differences (ILD)

The ITD cues are caused by the difference between the time of arrival of a sound at both ears. ILD
cues are sound pressure level differences caused by a different acoustic transfer functions from the
acoustic source to the two ears. Most authors agree ITD is the most important attribute of the
audio signal relating to the formation of lateral displacements [7]. For tones below about 800 Hz,
perceived lateral displacement is approximately linear as a function of the difference in the time of
arrival for the two ears, up to an ITD of 600 µsec. Full lateral displacement is obtained with an ITD
of approximately 630 µsec. At any given time, the auditory event corresponding to the shorter time
of arrival is dominant.

The ear is able to evaluate spectral components of the ear input signals individually with respect to
ITD. Lateral displacement of the auditory event attainable for pure tones is most perceptible below
800 Hz. However, for some non-tonal signals above 800 Hz, such as narrowband noise, the ear is
still able to detect ITDs. In this case, the interaural temporal displacement of the energy envelope of
the signal is generally regarded as the criterion involved. Experiments have indicated that the ITD of
the signal’s fine temporal structure contributes negligibly to localization; instead, the ear evaluates
only the energy envelopes. The processing occurs individually in each of a multiplicity of spectral
bands. The spectrum is dissected to a degree determined by the finite spectral resolution of the
inner ear. Then, the envelopes of the separate spectral components are evaluated individually. These
experimental results form the basis for the use of channel coupling in AC-3.

41.5.1 Channel Coupling

Channel coupling is a method for reducing the bit-rate of multichannel programs by summing two
or more correlated channel spectra in the encoder. Frequency coefficients for the single combined
(coupled) channel are transmitted in place of the individual channel spectra, together with additional
side information. The side information consists of a unique set of coupling coefficients for each
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channel. In the decoder, frequency coefficients for each output channel are computed by multiplying
the coupled channel frequency coefficients by the coupling coefficients for that channel. Coupling
coefficients are computed in the encoder in a manner which preserves the short-time energy envelope
of the original signals, thereby preserving spatialization cues used by the listener.

Coupling is active only above the coupling start frequency; below this boundary, frequency coeffi-
cients are coded independently. The coupling start frequency can be changed from one audio block
to the next, and coupling can be disabled if desired. Any combination of two or more full bandwidth
channels can be coupled; each channel has an associated channel-in-coupling bit to indicate if it has
been included in the coupling channel.

Channel coupling is intended for use only when independent channel coding at the given bit-rate
and desired audio bandwidth would result in audible artifacts. As the audio bit-rate is lowered with
a fixed bandwidth of 20 kHz, a point is eventually reached where audible coding errors will occur for
critical signals. In these circumstances, channel coupling reduces the need for encoders to take more
drastic measures to eliminate artifacts, such as lowering the audio bandwidth.

A diagram depicting the encoder coupling procedure for the case of three input channels is depicted
in Fig. 41.5. The coupling channel is formed as the vector summation of frequency coefficients from
all channels in coupling. An optional signal-dependent phase adjustment is applied to the frequency
coefficients prior to summation so that phase cancellation does not occur. For each input channel in
coupling, the AC-3 encoder then calculates the power of the original signal and the coupled signal.
The power summation is performed individually on a number of bands. For the simplified case
of Fig. 41.5, there are two such bands. In a typical application the number of bands is 14, but can
vary between 1 and 18. Next, the power ratio between the original signal and the coupled channel
is computed for each input channel and each band. Denoted a coupling coordinate, these ratios are
quantized and transmitted to the decoder.

FIGURE 41.5: Block diagram of encoder coupling for three input channels.

To reconstruct the spectral coefficients corresponding to one channel’s worth of transform data,
quantizedspectral coefficients representing theuncoupledportionof the transformblockareprepended
to a set of scaled coupling channel spectral coefficients. The scaled coupling channel coefficients are
generated for each channel by multiplying the coupling coordinates for each band by the received
coupling channel coefficients, as shown in Fig. 41.6.
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FIGURE 41.6: Block diagram of decoder coupling for three input channels.

Coupling parameters, such as the coupling start/end frequencies and which channels are in cou-
pling, are always transmitted in block 0. They are also optionally transmitted in blocks 1 through 5.
Typically only channels with similar spectral shapes are coupled. Level differences between channels
are accounted for by the coupling coefficients. It is noteworthy that if in-band spectral differences
between coupled input channels are due to level only, the original input channels can still be recovered
exactly in the decoder, in the absence of frequency coefficient quantization.

The coupling coefficient dynamic range is −132 to +18 dB, with step sizes varying between 0.28
and 0.53 dB. The lowest coupling start frequency is 3.42 kHz at a 48 kHz sampling frequency.

41.5.2 Rematrixing

Rematrixing in AC-3 is a channel combining technique in which sum and difference signals of highly
correlated channels are coded rather than the original channels themselves. That is, rather than code
and pack left and right (L and R) in a two channel coder, the encoder constructs:

L′ = (L + R)/2

R′ = (L − R)/2 . (41.9)

The usual quantization and data packing operations are then performed on L′ and R′.
In the decoder, the original L and R signals are reconstructed using the inverse equations:

L = L′ + R′

R = L′ − R′ . (41.10)

Clearly, if the original stereo signal were identical in both channels (i.e., two-channel mono), L′
is identical to L and R, and R′ is identically zero. Therefore, the R′ channel can be coded with very
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few bits, increasing accuracy in the more important L′ channel. Rematrixing is only applicable in
the 2/0 encoding mode (acmod = ‘010’).

Rematrixing is particularly important when conveying Dolby Surround encoded programs. Con-
sider again a two channel mono source signal. A Dolby Pro Logic decoder will steer all in-phase
information to the center channel, and all out-of-phase information to the surround channel. With-
out rematrixing, the Pro Logic decoder will receive the signals:

Q(L) = L + n1

Q(R) = R + n2 (41.11)

where n1 and n2 are uncorrelated quantization noise sequences added by the process of bit-rate
reduction. The Pro Logic decoder will then construct the center and surround channels as:

C = ((L + n1) + (R + n2))/2

S = ((L + n1) − (R + n2))/2 (41.12)

In the case of the center channel, n1 and n2 add, but remain masked by, the dominant L + R signal.
In the surround channel, however, L − R cancels to zero, and the surround speakers reproduce the
difference in the quantization noise sequences (n1 − n2).

If rematrixing is active, the left and right channels will be reproduced as:

L = (L′ + n3) + (R′ + n4) ∼= L + n3

R = (L′ + n3) − (R′ + n4) ∼= R + n3 , (41.13)

where the approximation is made since the quantization noise n3 >> n4. More importantly, the
center and surround channels will be more faithfully reproduced as:

C ∼= ((L + n3) + (R + n3))/2 = (L + R)/2 + n3

S ∼= ((L + n3) − (R + n3))/2 = (L − R)/2 . (41.14)

In this case, the quantization noise in the surround channel is much lower in level.
In AC-3, rematrixing is performed independently in separate frequency bands. There are two to

four contiguous bands with boundary locations dependent on coupling information. At a sampling
rate of 48 kHz, bands 0 and 1 start at 1.17 and 2.30 kHz, respectively. Bands 2 and 3 start at 3.42 and
5.67 kHz. If coupling is not in use, band 3 stops at a frequency given by the channel bandwidth code.
The band boundaries scale proportionally for other sampling frequencies.

Rematrixing is never used in the coupling channel. If coupling and rematrixing are simultaneously
in use, the highest rematrixing band ends at the coupling start frequency.

41.6 Parametric Bit Allocation

The process of distributing a finite number of bits B to a block of M frequency bands so as to
minimize a suitable distortion criterion is called bit allocation. The result is a bit assignmentb(k), k =
0, 1, ..., M − 1, which defines the word length of the frequency coefficient(s) transmitted in the kth
band. The bit assignment is performed subject to the constraint:

M−1∑
k=0

b(k) = B . (41.15)

B is determined from the transmission channel capacity, expressed in bits/sec, the block length, and
other parameters as well. Performance gains may be realized by allowing B to vary from block to
block depending on signal characteristics.
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41.6.1 Bit Allocation Strategies

In applications such as digital audio broadcasting and high definition television, one encoder typ-
ically distributes programs to many decoders. In these situations, it is advantageous to make the
encoder as flexible as possible. If quality improvements are possible even after the decoder design is
standardized, the useful life of the coding algorithm can be extended. The bit allocation strategy is a
natural candidate for improvement because it plays a crucial role in determining the ultimate quality
achievable by a coding algorithm.

One approach to achieving flexibility is to use a forward-adaptive bit allocation strategy, in which
the bit assignment b(k) for all bands is explicitly conveyed in the bit stream as side information. A
second strategy is termed backward-adaptive allocation, in which b(k) is computed in the encoder
and then recomputed in the decoder. Since the computation is based upon quantized information
which is transmitted to the decoder anyway, the side information to convey b(k) is not required. The
bits that are saved can be used to encode the frequency coefficients themselves.

AC-3 employs an alternative approach [8]. Called parametric bit allocation, the technique com-
bines the advantages of forward and backward-adaptive strategies. It employs a hearing model
combining elements from [9] with new features based on more recent psychoacoustic experiments.
The term “parametric” refers to the notion that the model is defined by several key variables that in-
fluence the masking curve shape and amplitude, and hence the bit assignment. A difference between
AC-3 and previous coders is that both the encoder and decoder contain the model, eliminating the
need to transmit b(k) explicitly. Only the essential model parameters (psychoacoustic features) are
conveyed to the decoder. These parameters can be transmitted with significantly fewer bits than b(k)

itself. Furthermore, an improvement path is provided since the specific parameter values are selected
by the encoder.

Equally significant, the parametric approach provides latitude for the encoder to adjust the time
and frequency resolution of b(k). Bit allocation updates are always present in block 0, and are
optionally transmitted in blocks 1 through 5. The frequency resolution of b(k) can be adjusted from
2.7 to 10.7 bands/kHz (one bit assignment every 94 to 375 Hz). The AC-3 encoder typically makes
these adjustments in accordance with spectral and temporal changes in the audio signal itself, in a
manner similar to the human ear.

Secondary strategy information which also affects block-to-block changes in bit assignment is the
bit allocation information, coupling strategy, and SNR offset. This information is always transmitted
in block 0, and is optionally transmitted in each subsequent audio block. The presence/absence of
the information is controlled by the respective “exists” bits baie, cplstre, and snroffste. The exists bits
are set to 1 in blocks 1 to 5 only when a change in strategy results in better audio quality than would
be obtained by reusing parameters from the preceding block.

Signal conditions may arise in which the masking curve, and therefore b(k), cannot be sufficiently
optimized using the built-in parametric model. Therefore, AC-3 encoders contain a provision for
adjusting the masking curve in accordance with an independent psychoacoustic analysis. This is
accomplished by transmitting additional bit stream codes, designated as deltas, which convey differ-
ences between the two masking curves.

41.6.2 Spreading Function Shape

In Schroeder’s model for computing a masking threshold [9], one of the key variables influencing the
degree of masking of one spectral component by another is the shape of the spreading function. If the
spreading function is a unit impulse, the excitation function (and therefore the masking curve) will
be identical in shape to the input signal spectrum. This corresponds to the case where no masking
whatsoever is assumed, with the result that all frequency coefficients receive the same bit assignment,
and the quantization noise spectrum will conform in shape to the input signal spectrum. As the
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spreading function is broadened, progressively greater degrees of masking are modeled. This yields
a noise spectrum which, in general, contains peaks and valleys that are aligned with features of the
input signal spectrum, but broadened in character. As the spreading function is flattened further,
eventually a limit is reached where the noise spectrum will be white, corresponding to the minimum
mean-square error bit assignment. This noise shaping behavior is identical to the concept of [10, 11].

Since the spreading function strongly influences the level and extent of assumed masking, a para-
metric description is provided in AC-3. The parametric spreading function is one mechanism
available to an AC-3 encoder for making compatible adjustments to the masking model.

The rangeof spreading functionparametervariationwasobtainedbydistillinga familyofprototype
functions from the available masking data [8]. The variation in shape of the four composite masking
curves for 0.5, 1, 2, and 4 kHz tones is shown in Fig. 41.7. We have approximated the envelope of
upward masking for each composite curve by two linear segments. The spreading function is defined
as the point-by-point maximum of the two segments across frequency. In the example shown in
Fig. 41.7, the composite curves can be reasonably approximated by choosing an appropriate slope
and vertical offset for each linear segment. Hence, four parameters are transmitted in the bit stream
to define the spreading function shape.

41.6.3 Algorithm Description

The AC-3 bit allocation strategy places the majority of computation in the encoder. For example,
the encoder can trade off reconstructed signal bandwidth vs. quantization noise power, change the
degree of upward masking of one spectral component by another, modify the bit assignment as a
function of acoustic signal level, and adaptively control total harmonic distortion. The bit assignment
can also be adjusted according to an arbitrary second masking model, as outlined later in the section
describing “Delta Bit Allocation”. The encoder iteratively converges on an optimal solution. On the
other hand, the decoder makes only one pass through the received parameters and exponent data,
and is therefore considerably simpler. The bit assignment is reconstructed in the decoder using only
basic two’s complement operators: add, compare, arithmetic left/right shift, and table lookup.

Frequency Banding

Thefirst step in themaskingcurve computation is to convert ablockofpower spectrumsamples,
taken at equidistant frequency intervals, into a Bark spectrum. This is accomplished by subdividing
the power spectrum into multiple frequency bands and then integrating the spectrum samples within
each band. The bands are non-uniform in width and derived from the critical-bandwidths defined
by Zwicker [12]. The psychoacoustic basis for this procedure is that each critical band corresponds
to a fixed distance along the basilar membrane, and therefore to a constant number of auditory nerve
fibers.

The summationof thepower spectrumsamplesduring linear toBark frequency conversion requires
a linear summation. However, the logarithm of those quantities is most readily available in AC-3.
Therefore, a log-adder is employed. The log-addition of two quantities log(a) and log(b) is computed
using the relation:

log(a + b) = max(log(a), log(b)) + log(1 + ed) (41.16)

where e is the logarithm base, and

d = | log(a) − log(b)| . (41.17)

The second term on the right side of the equation is implemented as a subtraction log(a) − log(b),
followed by absolute value and a table lookup. The contents of the table at address d is: log(1 +
ed). Therefore, the complete log-addition is performed with only add, compare, and table lookup
instructions.
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FIGURE 41.7: Comparison between 500 Hz to 4 kHz masking templates and the two slope spreading
function.

Masking Convolution

The technique for modeling masking effects developed by Schroeder specifies convolution. At
every frequency point, masking contributions from all other spectral components are weighted and
summed. Theoutputof a linear recursive (e.g., IIR)filtermayalsobe viewedas aweighted summation
of input samples. Therefore, the convolution of the spreading function with the linear-amplitude
critical band density in Schroeder’s model can be approximated by applying a time-varying linear
recursive filter to the spectral components. Upward masking is modeled by filtering the frequency
samples from low to high frequency. Downward masking is modeled by filtering input samples in the
reverse order. The filter order and coefficients are determined from the desired spreading function.
To compute the excitation function using the logarithmic-amplitude critical band density used in AC-
3, the linear recursive filter is replaced with an equivalent filter which processes logarithmic spectral
samples.

The conversion of the linear recursive filter to an equivalent log-domain filter is straightforward.
By writing out the difference equation for an IIR filter and taking the logarithm of both sides of
the equation, an expression relating the log excitation function with the log power spectrum can be
derived. The multiplies and additions of the IIR filter are replaced with additions and log-additions,
respectively, in the log domain filter. To implement the two-slope spreading function, two filters
are connected in parallel. Each filter implements the characteristic of one of the segments, and the
overall excitation value E(k) at band k is computed as the larger of the two filter output samples.
The log-domain equations for computing E(k) are:

x0 = (x0 − d0) ⊕ (P (k) − g0)

x1 = (x1 − d1) ⊕ (P (k) − g1)

E(k) = max(x0, x1) (41.18)

where P(k) is the log-amplitude power spectrum, d0 and d1 are the dB spreading function decay
values for the first and second segment, respectively, g0 and g1 are the dB offsets of the two spreading
function segments, and the ⊕ symbol denotes log-addition as defined previously. For each of 50
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bands, the value of two accumulators x0 and x1 is computed by performing a log-addition of the
previous accumulator value, decayed by d0 or d1, and the current power spectrum value scaled by
the gain g0 or g1. In AC-3, log-addition is replaced by a maximum operator to reduce computation.
This is also more conservative in that additive masking is not assumed.

Compensation for Decoder Selectivity

One basis for determining the bit assignments b(k) in a perception-based allocation strategy is
to compute the difference between the signal spectrum and the predicted masking curve. An implicit
assumption of this technique is that quantization noise in one particular band is independent of bit
assignments in neighboring bands. This is not always a reasonable assumption because the finite
frequency selectivity and the high degree of overlap between bands in the decoder filter bank cause
localized spreading of the error spectrum (leakage from one band into neighboring bands). The
effect is predominant at low frequencies where the slope of the masking curve can equal or exceed
the slope of the filter bank transition skirts. Hence, under some conditions, a basis other than the
difference between the signal spectrum and masking curve is warranted.

As discussed in [8], decoder selectivity compensation has been found to improve subjective coding
performance at low frequencies. Accordingly, the AC-3 masking model employs a straightforward,
recursive algorithm for applying compensation from 0 to 2.3 kHz. Although the compensation is a
filter bank response correction, not a psychoacoustic effect of human hearing, it can be incorporated
into the computation of the excitation curve.

Parameter Variation

The masking computation primarily represents the backward-adaptive portion of the bit allo-
cation strategy. However a number of parameters defining the masking model are transmitted in the
compressed data stream. These represent part of the forward-adaptive portion of the bit allocation
strategy. As discussed earlier, the shape of the prototype spreading function is controlled by four
parameters, where a pair of parameters correspond to each segment. The first linear segment slope
is adjustable between −2.95 to −5.77 dB per band, with offsets ranging from −6 to −48 dB. The
second segment slope can be adjusted between −0.70 to −0.98 dB per band, with offsets ranging
from −49 to −63 dB. The syntax of AC-3 allows the first segment to be controlled independently for
each channel. Parameters for the second segment are common to all channels. There are 512 unique
spreading function shapes available to an AC-3 encoder.

Delta Bit Allocation

Another forward-adaptive component of the bit allocation strategy is a parametric adjustment
that is optionally made to the masking curve computed by the masking model. This adjustment
is conveyed to the decoder with the delta bit allocation. For each channel, the encoder can specify
nearly arbitrary adjustments to the computed masking curve at a certain cost in bit-rate that otherwise
would be used directly to code audio data. Delta bit allocation is used by the encoder to specify a
masking curve, and hence a bit assignment, that cannot be generated by the parametric model alone.
This feature is useful, for example, if future research points to masking behavior which cannot be
simulated by the existing model. In this case, benefits of any new research can be added to an AC-3
encoder by augmenting the parametric model with the improved one.

Determination of the desired delta bit allocation function is straightforward. In an encoder,
both the standard AC-3 masking model and the improved one are run in parallel to determine two
masking curves. The desired delta bit allocation function is equal to the difference between the
masking curves. It may be advantageous to only approximate the desired difference to reduce the
required data expenditure. Note that an encoder should first exhaust the flexibility granted by the
non-delta parameters before committing any bits to delta bit allocation. The other parameters are
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less expensive in terms of bit-rate as they must be transmitted periodically in any case.

Thedelta function is constrained tohavea“stair step” shape. Each treadof the stair stepcorresponds
to the masking level adjustment for an integral number of adjoining one-half Bark bands. Taken
together, the stair steps comprise a number of non-overlapping, variable-length segments. The
segments are run-length coded for efficient transmission.

41.7 Quantization and Coding

All mantissas are quantized to a fixed level of precision indicated by the corresponding bit allocation
pointer (bap). Mantissas quantized to 15 or fewer levels use symmetric quantization. Mantissas
quantized to more than 15 levels use asymmetric quantization (a conventional two’s complement
representation).

Some quantized mantissa values are grouped together and encoded into a common codeword. In
the case of the 3-level quantizer, 3 quantized values are grouped together and represented by a 5-bit
codeword in the data stream. In the case of the 5-level quantizer, 3 quantized values are grouped
and represented by a 7-bit codeword. For the 11-level quantizer, 2 quantized values are grouped and
represented by a 7-bit codeword. Groups are filled in the order that the mantissas are processed. If
the number of mantissas in an exponent set does not fill an integral number of groups, the groups are
shared across exponent sets. The next exponent set in the block continues filling the partial groups.

In the encoder, each frequency coefficient is normalized by applying a left-shift equal to its asso-
ciated exponent (0 to 24). The mantissa is then quantized to a number of levels indicated by the
corresponding bap.

Table 41.6 indicates the assignment between bap number and number of quantizer levels. If a bap
equals 0, no bits are sent for the mantissa. For more efficient bit utilization, grouping is used for bap
values of 1, 2, and 4 (3, 5, and 11 level quantizers).

TABLE 41.6 Quantizer Levels and

Mantissa Bits vs. bap
Quantizer Mantissa bits

bap levels (group bits / num in group)

0 0 0
1 3 1.67 (5/3)
2 5 2.33 (7/3)
3 7 3
4 11 3.5 (7/2)
5 15 4
6 32 5
7 64 6
8 128 7
9 256 8
10 512 9
11 1024 10
12 2048 11
13 4096 12
14 16,384 14
15 65,536 16

For bit allocation pointer values between 6 and 15, inclusive, asymmetric fractional two’s comple-
ment quantization is used. No grouping is employed for asymmetrically quantized mantissas.

For bap values of 1 through 5, inclusive, the mantissas are represented by coded values. The
coded values are converted to standard 2’s complement fractional binary words. The number of bits
indicated by a mantissa’s bap are extracted from the bit stream and right justified. This coded value
is treated as a table index and is used to look up the quantized mantissa value. The resulting mantissa
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value is right shifted by the corresponding exponent to generate the transform coefficient value.
The AC-3 decoder may use random noise (dither) values instead of quantized values when the

number of bits allocated to a mantissa is zero (bap = 0). The decoder substitution of random values
for the quantized mantissas with bap = 0 is conditional on the value of a bit conveyed in the bit
stream (dithflag). There is a separate dithflag bit for each transmitted channel. When dithflag = 1,
the random noise value is used. When dithflag = 0, a true zero value is used.

41.8 Error Detection

There are several ways in which the AC-3 data may determine that errors are contained within a frame
of data. The decoder may be informed of that fact by the transport system which has delivered the
data. Data integrity may be checked using the embedded Cyclic Redundancy Check (CRCs) words.
Also, some simple consistency checks on the received data can indicate that errors are present. The
decoder strategy when errors are detected is user definable. Possible responses include muting, block
repeats, frame repeats, or more elaborate schemes based on waveform interpolation to “fill in” missing
PCM samples. The amount of error checking performed, and the behavior in the presence of errors
are not specified in the AC-3 ATSC standard, but are left to the application and implementation.

Each AC-3 frame contains two 16-bit CRC words. As discussed in Section 41.2, crc1 is the second
16-bit word of the frame, immediately following the synchronization word. crc2 is the last 16-bit
word of the frame, immediately preceding the synchronization word of the following frame. crc1
applies to the first 5/8 of the frame, not including the synchronization word. crc2 provides coverage
for the last 3/8 of the frame as well as for the entire frame (not including the synchronization word).
Decoding of CRC word(s) allows errors to be detected.

The following generator polynomial is used to generate both of the 16-bit CRC words in the
encoder:

x16 + x15 + x2 + 1 . (41.19)

The CRC calculation may be implemented by one of several standard techniques. A convenient
hardware implementation is a linear feedback shift register. Details of this technique are presented
in [1].
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PAC is a perceptual audio coder that is flexible in format and bitrate, and provides high-
quality audio compression over a variety of formats from 16 kb/s for a monophonic
channel to 1024 kb/s for a 5.1 format with four or six auxiliary audio channels, and
provisions for an ancillary (fixed rate) and auxiliary (variable rate) side data channel.
In all of its forms it provides efficient compression of high-quality audio. For stereo
audio signals, it provides near compact disk (CD) quality at about 56 to 64 kb/s, with
transparent coding at bit rates approaching 128 kb/s.
PAC has been tested both internally and externally by various organizations. In the 1993
ISO-MPEG-2 5-channel test, PAC demonstrated the best decoded audio signal quality
available from any algorithm at 320 kb/s, far outperforming all algorithms, including the
layer II and layer III backward compatible algorithms. PAC is the audio coder in most
of the submissions to the U.S. Digital Audio Radio (DAR) standardization project, at bit
rates of 160 kb/s or 128 kb/s for two-channel audio compression. It has been adapted by
various vendors for the delivery of high quality music over the Internet as well as ISDN
links. Over the years PAC has evolved considerably. In this paper we present an overview
for the PAC algorithm including some recently introduced features such as the use of a
signal adaptive switched filterbank for efficient encoding of non-stationary signals.

42.1 Introduction

With the overwhelming success of the compact disc (CD) in the consumer audio marketplace, the
public’s notion of “high quality audio” has become synonymous with “compact disc quality”. The
CD represents stereo audio at a data rate of 1.4112 Mbps (mega bits per second). Despite continued
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growth in the capacity of storage and transmission systems, many new audio and multi-media
applications require a lower data rate.

In compression of audio material, human perception plays a key role. The reason for this is
that source coding, a method used very successfully in speech signal compression, does not work
nearly as well for music. Recent U.S. and international audio standards work (HDTV, DAB, MPEG-
1, MPEG-2, CCIR) therefore has centered on a class of audio compression algorithms known as
perceptual coders. Rather than minimizing analytic measures of distortion, such as signal-to-noise
ratio, perceptual coders attempt to minimize perceived distortion. Implicit in this approach is the
idea that signal fidelity perceived by humans is a better quality measure than “fidelity” computed by
traditional distortion measures. Perceptual coders define “compact disc quality” to mean “listener
indistinguishable from compact disc audio” rather than “two channel of 16-bit audio sampled at
44.1 kHz”.

PAC, the Perceptual Audio Coder [10], employs source coding techniques to remove signal redun-
dancy and perceptual coding techniques to remove signal irrelevancy. Combined, these methods
yield a high compression ratio while ensuring maximal quality in the decoded signals. The result is
a high quality, high compression ratio coding algorithm for audio signals. PAC provides a 20 Hz to
20 kHz signal bandwidth and codes monophonic, stereophonic, and multichannel audio. Even for
the most difficult audio material it achieves approximately ten to one compression while rendering
the compression effects inaudible. Significantly higher level of compression, e.g., 22 to 1, is achieved
with only a little loss in quality.

The PAC algorithm has its roots in a study done by Johnston [7, 8] on the perceptual entropy (PE)
vs. the statistical entropy of music. Exploiting the fact that the perceptual entropy (the entropy of
that portion of the music signal above the masking threshold) was less than the statistical entropy
resulted in the perceptual transform coder (PXFM) [8, 16]. This algorithm used a 2048 point real
FFT with 1/16 overlap, which gave good frequency resolution (for redundancy removal) but had
some coding loss due to the window overlap.

The next-generation algorithm was ASPEC [2], which used the modified discrete-cosine trans-
form (MDCT) filterbank [15] instead of the FFT, and a more elaborate bit allocation and buffer
control mechanism as a means of generating constant-rate output. The MDCT is a critically sam-
pled filterbank, and so does not suffer the 1/16 overlap loss that the PXFM coder did. In addition,
ASPEC employed an adaptive window size of 1024 or 256 to control noise spreading resulting from
quantization. However, its frequency resolution was half that of PXFM’s resulting in some loss in the
coding efficiency (c.f., Section 42.3).

PAC as first proposed in [10] is a third-generation algorithm learning from ASPEC and PXFM-
Stereo [9]. In its current form, it uses a long transform window size of 2048 for better redundancy
removal together with window switching for noise spreading control. It adds composite stereo coding
in a flexible and easily controlled form, and introduces improvements in noiseless compression and
threshold calculation methods as well. Additional threshold calculations are made for stereo signals
to eliminate the problem of binaural noise unmasking.

PAC supports encoders of varying complexity and quality. Broadly speaking, PAC consists of a
core codec augmented by various enhancement. The full capability algorithm is sometimes also
referred to as Enhanced PAC (or EPAC). EPAC is easily configurable to (de)activate some or all of
the enhancements depending on the computational budget. It also provides a built-in scheduling
mechanism so that some of the enhancements are automatically turned on or off based on averaged
short term computational requirement.

One of the major enhancements in the EPAC codec is geared towards improving the quality at
lower bit rates of signals with sharp attacks (e.g., castanets, triangles, drums, etc.). Distortion of
attacks is a particularly noticeable artifact at lower bit rates. In EPAC, a signal adaptive switched
filterbank which switches between a MDCT and a wavelet transform is employed for analysis and
synthesis [18]. Wavelet transform offer natural advantages for the encoding of transient signals and
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the switched filterbank scheme allows EPAC to merge this advantage with the advantages of MDCT
for stationary audio segments.

Real-time PAC encoder and decoder hardware have been provided to standards bodies, as well
as business partners. Software implementation of real time decoder algorithm is available on PCs
and workstations, as well as low cost general-purpose DSPs, making it suitable for mass-market
applications. The decoder typically consumes only a fraction of the CPU processing time (even
on a 486-PC). Sophisticated encoders run on current workstations and RISC-PCs; simpler real-
time encoders that provide moderate compression or quality are realizable on correspondingly less
inexpensive hardware.

In the remainder of this paper we present a detailed overview of the various elements of PACs, its
applications, audio quality, and complexity issues. The organization of the chapter is as follows. In
Section 42.2, some of applications of PAC and its performance on formalized audio quality evaluation
tests is discussed. In Section 42.3, we begin with a look at the defining blocks of a perceptual coding
scheme followed by the description of the PAC structure and its key components (i.e., filterbank,
perceptual model, stereo threshold, noise allocation, etc.). In this context we also describe the
switched MDCT/wavelet filterbank scheme employed in the EPAC codec. Section 42.4 focuses on
the multichannel version of PAC. Discussions on bitstream formation and decoder complexity are
presented in Sections 42.5 and 42.6, respectively, followed by concluding remarks in Section 42.7.

42.2 Applications and Test Results

In the most recent test of audio quality [4] PAC was shown to be the best available audio quality
choice [4] for audio compression applications concerning 5-channel audio. This test evaluated both
backward compatible audio coders (MPEG Layer II, MPEG Layer III) and non-backward compatible
coders, including PAC. The results of these tests showed that PAC’s performance far exceeded that of
the next best coder in the test.

Among the emerging applications of PAC audio compression technology, the Internet offers one
of the best opportunities. High quality audio on demand is increasingly popular and promises both
to make existing Internet services more compelling as well as open avenues for new services. Since
most Internet users connect to the network using as low bandwidth modem (14.4 to 28.8 kb/s) or at
best an ISDN link, high quality low bit rate compression is essential to make audio streaming (i.e.,
real time playback) applications feasible. PAC is particularly suitable for such applications as it offers
near CD quality stereo sound at the ISDN rates and the audio quality continues to be reasonably good
for bit rates as low as 12 to 16 kb/s. PAC is therefore finding increasing acceptance in the Internet
world.

Another application currently in the process of standardization is digital audio radio (DAR). In
the U.S. this may have one of several realizations: a terrestrial broadcast in the existing FM band,
with the digital audio available as an adjunct to the FM signal and transmitted either coincident
with the analog FM, or in an adjacent transmission slot; alternatively, it can be a direct broadcast via
satellite (DBS), providing a commercial music service in an entirely new transmission band. In each
of the above potential services, AT&T and Lucent Technologies have entered or partnered with other
companies or agencies, providing PAC audio compression at a stereo coding rate of 128 to 160 kb/s
as the audio compression algorithm proposed for that service.

Some other applications where PAC has been shown to be the best audio compression quality
choice is compression of the audio portion of television services, such as high-definition television
(HDTV) or advanced television (ATV).

Still other potential applications of PAC that require compression but are broadcast over wired
channels or dedicated networks are DAR, HDTV or ATV delivered via cable TV networks, public
switched ISDN, or local area networks. In the last case, one might even envision an “entertainment
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bus” for the home that broadcasts audio, video, and control information to all rooms in a home.
Another application that entails transmitting information from databases of compressed audio

are network-based music servers using LAN or ISDN. This would permit anyone with a networked
decoder to have a “virtual music catalog” equal to the size of the music server. Considering only
compression, one could envision a “CD on a chip”, in which an artist’s CD is compressed and stored
in a semiconductor ROM and the music is played back by inserting it into a robust, low-power
palm-sized music player. Audio compression is also important for read-only applications such as
multi-media (audio plus video/stills/text) on CD-ROM or on a PC’s hard drive. In each case, video or
image data compete with audio for the limited storage available and all signals must be compressed.

Finally, there are applications in which point-to-point transmission requires compression. One
is radio station studio to transmitter links, in which the studio and the final transmitter amplifier
and antenna may be some distance apart. The on-air audio signal might be compressed and carried
to the transmitter via a small number of ISDN B-channels. Another application is the creation of a
“virtual studio” for music production. In this case, collaborating artists and studio engineers may
each be in different studio, perhaps very far apart, but seamlessly connected via audio compression
links running over ISDN.

42.3 Perceptual Coding

PAC, as already mentioned, is a “Perceptual Coder” [6], as opposed to a source modelling coder. For
typical examples of source, perceptual, and combined source and perceptual coding, see Figs. 42.1,
42.2, and 42.3. Figure 42.1 shows typical block diagrams of source coders, here exemplified by DPCM,
ADPCM, LPC, and transform coding [5]. Figure 42.2 illustrates a basic perceptual coder. Figure 42.3
shows a combined source and perceptual coder.

“Source model” coding describes a method that eliminates redundancies in the source material in
the process of reducing the bit rate of the coded signal. A source coder can be either lossless, providing
perfect reconstruction of the input signal or lossy. Lossless source coders remove no information from
the signal; they remove redundancy in the encoder and restore it in the decoder. Lossy coders remove
information from (add noise to) the signal; however, they can maintain a constant compression ratio
regardless of the information present in a signal. In practice, most source coders used for audio
signals are quite lossy [3].

The particular blocks in source coders, e.g., Fig. 42.1, may vary substantially, as shown in [5], but
generally include one or more of the following.

• Explicit source model, for example an LPC model.

• Implicit source model, for example DCPM with a fixed predictor.

• Filterbank, in other words a method of isolating the energy in the signal.

• Transform, which also isolates (or “diagonalizes”) the energy in the signal.

All of these methods serve to identify and potentially remove redundancies in the source signal.
In addition, some coders may use sophisticated quantizers and information-theoretic compression
techniques to efficiently encode the data, and most if not all coders use a bitstream formatter in order
to provide data organization. Typical compression methods do not rely on information-theoretic
coding alone; explicit source models and filterbanks provide superior source modeling for audio
signals.

All perceptual coders are lossy. Rather than exploit mathematical properties of the signal or attempt
to understand the producer, perceptual coders model the listener, and attempt to remove irrelevant
(undetectable) parts of the signal. In some sense, one could refer to it as a “destination” rather than
“source” coder. Typically, a perceptual coder will have a lower SNR than an equivalent rate source
coder, but will provide superior perceived quality to the listener.
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FIGURE 42.1: Block diagrams of selected source-coders.

The perceptual coder shown in Fig. 42.2 has the following functional blocks.

• Filterbank — Converts the input signal into a form suitable for perceptual processing.

• Perceptual model — Determines the irrelevancies in the signal, generating a perceptual
threshold.

• Quantization — Applies the perceptual threshold to the output of the filterbank, thereby
removing the irrelevancies discovered by the perceptual model.

• Bit stream former — Converts the quantized output and any necessary side information
into a form suitable for transmission or storage.

The combined source and perceptual coder shown in Fig. 42.3 has the following functional blocks.

FIGURE 42.2: Block diagrams of a simple perceptual coder.
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FIGURE 42.3: Block diagrams of an integrated source-perceptual coder.

• Filterbank — Converts the input signal into a form that extracts redundancies and is
suitable for perceptual processing.

• Perceptual model — Determines the irrelevancies in the signal, generates a perceptual
threshold, and relates the perceptual threshold to the filterbank structure.

• Fitting of perceptual model to filtering domain — Converts the outputs of the perceptual
model into a form relevant to the filter bank.

• Quantization – Applies the perceptual threshold to the output of the filterbank, thereby
removing the irrelevancies discovered by the perceptual model.

• Information-theoretic compression—Removes redundancy fromtheoutputof thequan-
tizer.

• Bit stream former — Converts the compressed output and any necessary side information
into a form suitable for transmission or storage.

Most coders referred to as perceptual coders are combined source and perceptual coders. Com-
bining a filterbank with a perceptual model provides not only a means of removing perceptual
irrelevancy, but also, by means of the filterbank, provides signal diagonalization, ergo source coding
gain. A combined coder may have the same block diagram as a purely perceptual coder; however,
the choice of filterbank and quantizer will be different. PAC is a combined coder, removing both
irrelevancy and redundancy from audio signals to provide efficient compression.

42.3.1 PAC Structure

Figure 42.4 shows a more detailed block diagram of the monophonic PAC algorithm, and illustrates
the flow of data between the algorithmic blocks. There are five basic parts.

FIGURE 42.4: Block diagram of monophonic PAC encoder.
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1. Analysis filterbank — The filterbank converts the time domain audio signal to the short-
term frequency domain. Each block is selectably coded by 1024 or 128 uniformly spaced
frequency bands, depending on the characteristics of the input signal. PAC’s filterbank is
used for source coding and cochlear modeling (i.e., perceptual coding).

2. Perceptual model — The perceptual model takes the time domain signal and the output
of the filterbank and calculates a frequency domain threshold of masking. A threshold of
masking is a frequency dependent calculation of the maximum noise that can be added
to the audio material without perceptibly altering it. Threshold values are of the same
time and frequency resolution as the filterbank.

3. Noise allocation — Noise is added to the signal in the process of quantizing the filter
bank outputs. As mentioned above, the perceptual threshold is expressed as a noise level
for each filterbank frequency; quantizers are adjusted such that the perceptual thresholds
are met or exceeded in a perceptually gentle fashion. While it is always possible to meet
the perceptual threshold in a unlimited rate coder, coding at high compression ratios
requires both overcoding (adding less noise to the signal than the perceptual threshold
requires) and undercoding (adding more noise to the signal than the perceptual threshold
requires). PAC’s noise allocation allows for some time buffering, smoothing local peaks
and troughs in the bitrate demand.

4. Noiseless compression — Many of the quantized frequency coefficients produced by the
noise allocator are zero; the rest have a non-uniform distribution. Information-theoretic
methods are employed to provide an efficient representation of the quantized coefficients.

5. Bitstream former — Forms the bitstream, adds any transport layer, and encodes the entire
set of information for transmission or storage.

As an example, Fig. 42.5 shows the perceptual threshold and spectrum for a typical (trumpet)
signal. The staircase curve is the calculated perceptual threshold, and the varying curve is the short-
term spectrum of the trumpet signal. Note that a great deal of the signal is below the perceptual
threshold, and therefore redundant. This part of the signal is what we discard in the perceptual coder.

FIGURE 42.5: Example of masking threshold and signal spectrum.
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42.3.2 The PAC Filterbank

Thefilterbanknormallyused inPACis referred toas themodifieddiscretecosine transform(MDCT)[15].
It may be viewed as a modulated, maximally decimated perfect reconstruction filterbank. The sub-
band filters in a MDCT filterbank are linear phase FIR filters with impulse responses twice as long as
the number of subbands in the filterbank. Equivalently, MDCT is a lapped orthogonal transform with
a 50% overlap between two consecutive transform blocks; i.e., the number of transform coefficients
is equal to one half the block length. Various efficient forms of this algorithm are detailed in [11].
Previously, Ferreira [10] has created an alternate form of this filterbank where the decimation is done
by dropping the imaginary part of an odd-frequency FFT, yielding and odd-frequency FFT and an
MDCT from the same calculations.

In an audio coder it is quite important to appropriately choose the frequency resolution of the
filterbank. During the development of the PAC algorithm, a detailed study of the effect of filterbank
resolution for a variety of signals was examined. Two important considerations in perceptual coding,
i..e, coding gain and non-stationarity within a block, were examined as a function of block length.
In general the coding gain increases with the block length indicating a better signal representation
for redundancy removal. However, increasing non-stationarity within a block forces the use of more
conservative perceptual masking thresholds to ensure the masking of quantization noise at all times.
This reduces the realizable or net coding gain. It was found that for a vast majority of music samples
the realizable coding gain peaks at the frequency resolution of about 1024 lines or subbands, i.e., a
window of 2048 points (this is true for sampling rates in the range of 32 to 48 kHz). PAC therefore
employs a 1024 line MDCT as the normal “long” block representation for the audio signal.

In general, some variation in the time frequency resolution of the filterbank is necessary to adapt
to the changes in the statistics of the signal. Using a high frequency resolution filterbank to encode
a signal segment with a sharp attack leads to significant coding inefficiencies or pre-echo conditions.
Pre-echos occur when quantization errors are spread over the block by the reconstruction filter. Since
pre-masking by an attack in the audio signal lasts for only about 1 msec (or even less for stereo signals),
these reconstruction errors are potentially audible as pre-echos unless significant readjustments in
the perceptual thresholds are made resulting in coding inefficiencies.

PAC offers two strategies for matching the filterbank resolution to the signal appropriately. A lower
computational complexity version is offered in the form of window switching approach whereby the
MDCT filterbank is switched to a lower 128 line spectral resolution in the presence of attacks. This
approach isquite adequate for the encodingof attacks atmoderate tohigherbit rates (96kbpsorhigher
for a stereo pair). Another strategy offered as an enhancement in the EPAC codec is the switched
MDCT/wavelet filterbank scheme mentioned earlier. The advantages of using such a scheme as well
as its functional details are presented below.

42.3.3 The EPAC Filterbank and Structure

The disadvantage of the window switching approach is that the resulting time resolution is uniformly
higher for all frequencies. In other words, one is forced to increase the time resolution at the lower
frequencies to increase it to the necessary extent at higher frequencies. The inefficient coding of
lower frequencies becomes increasingly burdensome at lower bit rates, i.e., 64 kbps and lower. An
ideal filterbank for sharp attacks is a non-uniform structure whose subband matches the critical
band scale. Moreover, it is desirable that the high frequency filters in the bank be proportionately
shorter. This is achieved in EPAC by employing a high spectral resolution MDCT for stationary
portions of the signal and switching to a non-uniform (tree structured) wavelet filterbank (WFB)
during non-stationarities.

WFBs are quite attractive for the encoding of attacks [17]. Besides the fact that wavelet representa-
tion of such signals is more compact than the representation derived from a high resolution MDCT,
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wavelet filters have desirable temporal characteristics. In a WFB, the high frequency filters (with a
suitable moment condition as discussed below) typically have a compact impulse response. This
prevents excessive time spreading of quantization errors during synthesis.

The overview of an encoder based on the switched filterbank idea is illustrated in Fig. 42.6. This
structure entails the design of a suitable WFB which is discussed next.

FIGURE 42.6: Block diagram of the switched filterbank audio encoder.

The WFB in EPAC consists of a tree structured wavelet filterbank which approximates the critical
band scale. The tree structure has the natural advantage that the effective support (in time) of the
subband filters is progressively smaller with increasing center frequency. This is because the critical
bands are wider at higher frequency so fewer cascading stages are required in the tree to achieve
the desired frequency resolution. Additionally, proper design of the prototype filters used in the
tree decomposition ensures (see below) that the high frequency filters in particular are compactly
localized in time.

The decomposition tree is based on sets of prototype filterbanks. These provide two or more bands
of split and are chosen to provide enough flexibility to design a tree structure that approximates the
critical band partition closely. The three filterbanks were designed by optimizing parametrized
para-unitary filterbanks using standard optimization tools and an optimization criterion based on
weighted stopband energy [20]. In this design, the moment condition plays an important role in
achieving desirable temporal characteristics for the high frequency filters. An M band para-unitary
filterbank with subband filters {Hi}i=M

i=1 is said to satisfy a P th order moment condition if Hi(e
jw)

for i = 2, 3, . . . M has a P th order zero at ω = 0 [20]. For a given support for the filters, K , requiring
P > 1 in the design yields filters for which the “effective” support decreases with increasing P . In the
other words, most of the energy is concentrated in an interval K ′ < K and K ′ is smaller for higher
P (for a similar stopband error criterion). The improvement in the temporal response of the filters
occurs at the cost of an increased transition band in the magnitude response. However, requiring at
least a few vanishing moments yields filters with attractive characteristics.

The impulse response of a high frequency wavelet filter (in a 4-band split) is illustrated in Fig. 42.7.
For comparison, the impulse response of a filter from a modulated filterbank with similar frequency
characteristics is also shown. It is obvious that the wavelet filter offers superior localization in time.
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FIGURE 42.7: High frequency wavelet and cosine-modulated filters.

Switching Mechanism

The MDCT is a lapped orthogonal transform. Therefore, switching to a wavelet filterbank
requires orthogonalization in the overlap region. While it is straightforward to set up a general
orthogonalization problem, the resulting transform matrix is inefficient computationally. The or-
thogonalization algorithm can be simplified by noting that a MDCT operation over a block of 2∗ N

samples is equivalent to a symmetry operation on the windowed data (i.e., outer N/2 samples from
either end of the window are folded into the inner N/2 samples) followed by an N point orthogonal
block transform Q over these N samples. Perfect reconstruction is ensured irrespective of the choice
of a particular block orthogonal transform Q. Therefore, Q may be chosen to be a DCT for one
block and a wavelet transform matrix for the subsequent or any other block. The problem with this
approach is that the symmetry operation extends the wavelet filter ( or its translates) in time and also
introduces discontinuities in these filters. Thus, it impairs the temporal as well as frequency charac-
teristics of the wavelet filters. In the present encoder, this impairment is mitigated by the following
two steps: (1) start and stop windows are employed to switch between MDCT and WFB (this is
similar to the window switching scheme in PAC), and (2) the effective overlap between the transition
and wavelet windows is reduced by the application of a new family of smooth windows [19]. The
resulting switching sequence is illustrated in Fig. 42.8.

The next design issue in the switched filterbank scheme is the design of a N ×N orthogonal matrix
QWFB based on the prototype filters and the chosen tree structure. To avoid circular convolutions,
we employ transition filters at the edge of the blocks. Given a subband filter, ck , of length K a total
of K1 = (K/M) − 1 transition filters are needed at the two ends of the block. The number at
a particular end is determined by the rank of a K × (K1 + 1) matrix formed by the translations
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FIGURE 42.8: A filterbank switching sequence.

of ck . The transition filters are designed through optimization in a subspace constrained by the
pre-determined rows of QWFB .

42.3.4 Perceptual Modeling

Current versions of PAC utilize several perceptual models. Simplest is the monophonic model
which calculates an estimated JND in frequency for a single channel. Others add MS (i.e., sum
and difference) thresholds and noise-imaging protected thresholds for pairs of channels as well, as
“global thresholds” for multiple channels. In this section we discuss the calculation of monophonic
thresholds, MS thresholds, and noise-imaging protected thresholds.

Monophonic Perceptual Model

The perceptual model in PAC is similar in method to the model shown as “Psychoacoustic
Model II” in the MPEG-1 audio standard annexes [14]. The following steps are used to calculate the
masking threshold of a signal.

• Calculate the power spectrum of the signal in 1/3 critical band partitions.

• Calculate the tonal or noiselike nature of the signal in the same partitions, called the
tonality measure.

• Calculate the spread of masking energy, based on the tonality measure and the power
spectrum.

• Calculate the time domain effects on the masking energy in each partition.

• Relate the masking energy to the filterbank outputs.
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Application of Masking to the Filterbank

Since PAC uses the same filterbank for perceptual modeling and source coding, converting
masking energy into terms meaningful to the filterbank is straightforward. However, the noise
allocator quantizes filterbank coefficients in fixed blocks, called coder bands, which differ from the
1/3 critical band partitions used in perceptual modeling. Specifically, 49 coder bands are used for the
1024-line filterbank, and 14 for the 128-line filterbank. Perceptual thresholds are mapped to coder
bands by using the minimum threshold that overlaps the band.

In EPAC additional processing is necessary to apply the threshold to the WFB. The thresholds for
the quantization of wavelet coefficients are based on an estimate of time-varying spread energy in
each of the subbands and a tonality measure as estimated above. The spread energy is computed by
considering the spread of masking across frequency as well as time. In other words, an inter-frequency
as well as a temporal spreading function is employed. The shape of these spreading functions may
be derived from the cochlear filters [1]. The temporal spread of masking is frequency dependent
and is roughly determined by the (inverse of) bandwidth of the cochlear filter at that frequency. A
fixed temporal spreading function for a range of frequencies (wavelet subbands) is employed. The
coefficients in a subband are grouped in a coder band as above and one threshold value per coderband
is used in quantization. The coderband span ranges from 10 msec in the lowest frequency subband
to about 2.5 msec in the highest frequency subband.

Stereo Threshold Calculation

Experiments have demonstrated that the monaural perceptual model does not extend trivially
to the binaural case. Specifically, even if one signal is masked by both the L (left) and R (right) signals
individually, it may not be masked when the L and R signals are presented binaurally. For further
details, see the discussion of Binary Masking Level Difference (BLMD) in [12].

In stereo PAC Fig. 42.9, we used a model of BLMD in several ways, all based on the calculation
of the M (mono, L + R) and S (stereo, L − R) thresholds in addition to the independent L and R

thresholds. To compute the M and S thresholds, the following steps are added after the computation
of the masking energy.

FIGURE 42.9: Stereo PAC block diagram.

• Calculate the spread of masking energy for the other channel, assuming a tonal signal and
adding BMLD protection.

• Choose the more restrictive, or smaller, masking energy.

For the L and R thresholds, the following step is added after the computation of the masking energy.
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• Calculation of the spread of masking energy for the other channel. If the two masking
energies are similar, add BMLD protection to both.

These four thresholds are used for the calculation of quantization, rate, and so on. An example
set of spectra and thresholds for a vocal signal are shown in Fig. 42.10. In this figure, compare the
threshold values and energy values in the S (or “Difference”) signal. As is clear, even with the BMLD
protection, most of the S signal can be coded as zero, resulting in substantial coding gain. Because
the signal is more efficiently coded as MS even at low frequencies where the BLMD protection is in
effect, that protection can be greatly reduced for the more energetic M channel because the noise will
image in the same location as the signal, and not create an unmasking condition for the M signal,
even at low frequencies. This provides increases in both audio quality and compression rate.

FIGURE 42.10: Examples of stereo PAC thresholds.

42.3.5 MS vs. LR Switching

In PAC, unlike the MPEG Layer III codec [13] MS decisions are made independently for each group
of frequencies. For instance, the coder may alternate coding each group as MS or LR, if that proves
most efficient. Each of the L, R, M, and S filterbank coefficients are quantized using the appropriate
thresholds, and the number of bits required to transmit coefficients is computed. For each group of
frequencies, the more efficient of LR or MS is chosen; this information is encoded with a Huffman
codebook and transmitted as part of the bitstream.
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42.3.6 Noise Allocation

Compression is achieved by quantizing the filter bank outputs into small integers. Each coder band’s
threshold is mapped onto 1 of 128 exponentially distributed quantizer step sizes, which is used to
quantize the filter bank outputs for that coder band.

PAC controls the instantaneous rate of transmission by adjusting the thresholds according to an
equal-loudness calculation. Thresholds are adjusted so that the compression ratio is met, plus or
minus a small amount to allow for short term irregularities in demand. This noise allocation system
is iterative, using a single estimator that represents the absolute loudness of the noise relative to the
perceptual threshold. Noise allocation is made across all frequencies for all channels, regardless of
stereo coding decision: ergo the bits are allocated in a perceptually effective sense between L, R, M,
and S, without regard to any measure of how many bits are assigned to L, R, M, and S.

42.3.7 Noiseless Compression

After the quantizers and quantized coefficients for a block are determined, information-theoretic
methods are employed to yield an efficient representation.

Coefficients for each coder band are encoded using one of eight Huffman codebooks. One of the
tables encodes only zeros; the rest encode coefficients with increasing absolute value. Each codebook
encodes groups of two or four coefficients, with the exception of the zero codebook which encodes
all of the coefficients in the band. See Table 42.1 for details. In this table, LAV refers to the largest
absolute value in a given codebook, and dimension refers to the number of quantized outputs that
are coded together in one codeword. Two codebooks are special, and require further mention. The
zero codebook is of indeterminate size, it indicates that all quantized values that the zero codebook
applies to are in fact zero, no further information is transmitted about those values. Codebook seven
is also a special codebook. It is of size -16:16 by -16:16, but the entry of absolute value 16 is not a
data value, it is, rather, an escape indicator. For each escape indicator sent in codebook seven (there
can be zero, one, or two per codeword), there is an additional escape word sent immediately after the
Huffman codeword. This additional codeword, which is generated by rule, transmits the value of the
escaped codeword. This generation by rule is a process that has no bounds; therefore, any quantized
value can be transmitted by the use of an escape sequence.

TABLE 42.1 PAC Huffman

Codebooks
Codebook LAV Dimension

0 0 ∗
1 1 4
2 1 4
3 2 4
4 4 2
5 7 2
6 12 2
7 ESC 2

Communicating the codebook used for each band constitutes a significant overhead; therefore,
similar codebooks are grouped together in sections, with only one codebook transmitted and used
for encoding each section.

Since the possible quantizers are precomputed, the indices of the quantizers are encoded rather
than the quantizer values. Quantizer indices for coder bands which have only zero coefficients are
discarded; the rest are differentially encoded, and the differences are Huffman encoded.
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42.4 Multichannel PAC

The multichannel perceptual audio coder (MPAC) extends the stereo PAC algorithm to the coding
of multiple audio channels. In general, the MPAC algorithm is software configurable to operate in 2,
4, 5, and 5.1 channel mode. In this document we will describe the MPAC algorithm as it is applied
to a 5-channel system consisting of the five full bandwidth channels: Left (L), Right (R), Center (C),
Left Surround (Ls), and Right Surround (Rs).

The MPAC 5-channel audio coding algorithm is illustrated in Fig. 42.11. Below we describe the
various modules, concentrating in particular on the ones that are different from the stereo algorithm.

FIGURE 42.11: Block diagram of MPAC.

42.4.1 Filterbank and Psychoacoustic Model

Like the stereo coder, MPAC employs a MDCT filterbank with two possible resolutions, i.e., the
usual long block which has 1024 uniformly spaced frequency outputs and a short bank which has
128 uniformly spaced frequency bins. A window switching algorithm, as described above, is used to
switch to a short block in the presence of strong non-stationarities in the signal. In the 5-channel
setup it desirable to be able to switch the resolution independently for various subsets of channels. For
example, one possible, scenario is to apply the window switching algorithm to the front channels (L,
R, and C) independently of the surround channels (Ls and Rs). However, this somewhat inhibits the
possibilities for composite coding (see below) among the channels. Therefore, one needs to examine
the relative gain of independent window switching vs. the gain from a higher level of composite
coding. In the present implementation different filterbank resolutions for the front and surround
channels are allowed.

The individual masking threshold for the five channels are computed using the PAC psycho-
acoustic model described above. In addition, the front pair LR and the surround pair Ls/Rs are
used to generate two pairs of MS thresholds (c.f., Section “Stereo Threshold Calculation”). The five
channels are coded with their individual thresholds excepting in the case where joint stereo coding is
being used (either for the front or the surround pair), in which case the appropriate MS thresholds
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are used. In addition to the five individual and four stereo thresholds, a joint (or “global”) threshold
based on all channels is also computed. The computation and role of the global threshold will be
discussed later in this section.

42.4.2 The Composite Coding Methods

The MPAC algorithm extends the MS coding of the stereo algorithm to a more elaborate composite
coding scheme. Like the MS coding algorithm, the MPAC algorithm uses adaptive composite coding
in both time and frequency: the composite coding mode is chosen separately for each of the coder
bands at every analysis instance. This selection is based on a “perceptual entropy” criterion and
attempts to minimize the bit rate requirement as well as exercise some control over noise localization.
The coding scheme uses two complementary sets of inter-channel combinations as described below:

• MS coding for the front and surround pair

• Inter-channel prediction

MS coding is a basis transformation operation and is therefore performed with the uncoded sam-
ples of the corresponding pair of channels. The resulting M or S channel is then coded using its own
threshold (which is computed separately from the individual channel threshold). Inter-channel pre-
diction, on the other hand, is performed using the quantized samples of the predicting channel.This
is done to prevent the propagation of quantization errors (or “cross-talk”). The predicted value for
each channel is subtracted from the channel samples and the resulting difference is encoded using the
original channel threshold. It may be noted that the two sets of channel combinations are nested so
that either, both, or none may be employed for a particular coder band. The coder currently employs
the following possibilities for inter-channel prediction.

For the Front Channels (L, R & C): Front L and R channels are coded as LR or MS. In addition, one
of the following two possibilities for inter-channel prediction may be used.

1. Center predicts LR (or M if MS coding mode is on).

2. Front M channel predicts the center.

For the Surround Channels (Ls and Rs): Ls and Rs channels are coded as Ls/Rs or Ms/Ss (where Ms
and Ss are, respectively, the surround M and surround S). In addition, one or both of following two
modes of interchannel prediction may be employed:

1. Front L, R, M channels predict Ls/Rs or Ms.

2. Center channel predicts Ls/Rs or Ms.

In thepresent implementation, thepredictor coefficients inall of theabove inter-channelprediction
equations are all fixed to either zero or one.

Note that the possibility of completely independent coding is implicit in the above description, i.e.,
the possibility of turning off any possible prediction is always included. Furthermore, any of these
conditions may be independently used in any of the 49 coder bands (long filter band length) or in
the 14 coder bands (short filter band length), for each block of filterbank output. Also note that for
the short filterbank where the outputs are grouped into 8 groups of 128 (each group of 128 has 14
bands), each of these 8 groups has independently calculated composite coding.

The decisions for composite coding are based primarily on the “perceptual entropy” criterion; i.e.,
the composite coding mode is chosen to minimize the bit requirement for the perceptual coding
of the filterbank outputs from the five channels. The decision for MS coding (for the front and
surround pair) is also governed in part by noise localization considerations. As a consequence, the
MPAC coding algorithm ensures that signal and noise images are localized at the same place in the
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front and rear planes. The advantage of this coding scheme is that the quantization noise usually
remains masked not only in a listening room environment but also during headphone reproduction
of a stereo downmix of the five coded channels (i.e., when two downmixed channels of the form
Lc = L + αC + βLs, and Rc = R + αC + βRs are produced and fed to a headphone).

The method used for composite coding is still in the experimental phase and subject to refine-
ments/modifications in future.

42.4.3 Use of a Global Masking Threshold

In addition to the five individual thresholds and the four MS thresholds, the MPAC coder also makes
use of a global threshold to take advantage of masking across the various channels. This is done
when the bit demand is consistently high so that the bit reservoir is close to depletion. The global
threshold is taken to be the maximum of five individual thresholds minus a “safety margin”. This
global threshold is phased in gradually when the bit reservoir is really low (e.g., less than 20%) and
in that case it is used as a lower limit for the individual thresholds.

The reason that global threshold is useful is because results in [12] indicate that if the listener is
more than a “critical distance” away from the speakers, then the spectrum at either of listener’s ear
may be well approximated by the sum of power spectrums due to individual speakers.

The computationof a global threshold also involves a safetymargin. This safetymargin is frequency
dependentand is larger for the lower frequencies andsmaller forhigher frequencies. The safetymargin
changes with the bit reservoir state.

42.5 Bitstream Formatter

PAC is a block processing algorithm; each block corresponds to 1024 input samples from each
channel, regardless of the number of channels. The encoded filter bank outputs, codebook sections,
quantizers, and channel combination information for one 1024-sample chunk or eight 128-sample
chunks are packed into one frame.

Depending on the application, various extra information is added to first frame or to every frame.
When storing information on a reliable media, such as a hard disk, one header indicating version,
sample rate, number of channels, and encoded rate is placed at the beginning of the compressed
music. For extremely unreliable transmission channels, like DAR, a header is added to each frame.
This header contains synchronization, error recovery, sample rate, number of channels, an the trans-
mission bit rate.

42.6 Decoder Complexity

The PAC decoder is of approximately equal complexity to other decoders currently known in the art.
Its memory requirements are approximately

• 1100 words each for MDCT and WFB workspace

• 512 words per channel for MDCT memory

• (optional) 1024 words per channel for error mitigation

• 1024 samples per channel for output buffer

• 12 Kbytes ROM for codebooks

Thecalculation requirements for thePACdecoder are slightlymore thandoinga512-point complex
FFT per 1024 samples per channel. On an Intel 486 based platform, the decoder executes in real time
using up approximately 30 to 40.
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42.7 Conclusions

PAChasbeen testedboth internally andexternally by variousorganizations. In the1993 ISO-MPEG-2
5-channel test, PAC demonstrated the best decoded audio signal quality available from any algorithm
at 320 kb/s, far outperforming all algorithms, including the backward compatible algorithms. PAC
is the audio coder in three of the submissions to the U.S. DAR project, at bit rates of 160 kb/s or
128 kb/s for two-channel audio compression.

PAC presents innovations in the stereo switching algorithm, the psychoacoustic model, filterbank,
the noise-allocation method, and the noiseless compression technique. The combination provides
either better quality or lower bit rates than techniques currently on the market.

In summary, PACoffers a single encoding solution that efficiently codes signals fromAMbandwidth
(5 to 10 kHz) to full CD bandwidth, over dynamic ranges that match the best available analog to
digital convertors, from one monophonic channel to a maximum of 16 front, 7 back, 7 auxiliary, and
at least 1 effects channel. It operates from 16 kb/s up to a maximum of more than 1000 kb/s for the
multiple-channel case. It is currently implemented in 2-channel hardware encoder and decoder, and
5-channel software encoder and hardware decoder. Versions of the bitstream that include an explicit
transport layer provide very good robustness in the face of burst-error channels, and methods of
mitigating the effects of lost audio data.

In the future, we will continue to improve PAC. Some specific improvements that are already in
motion are the improvement of the psychoacoustic threshold for unusual signals, reduction of the
overhead in the bitstream at low bit rates, improvements of the filterbanks for higher coding efficiency,
and the application of vector quantization techniques.
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43.1 Introduction

Kenzo Akagiri
In digital signal processing, manipulating of the signal is defined as an essentially mathematical

procedure, while the AD and DA converters, the front end and the final stage devices of the pro-
cessing, include analog factor/limitation. Therefore, the performance of the devices determines the
degradation from the theoretical performance defined by the format of the system.

Until the 1970s, AD and DA converters with around 16-bit resolution, which were fabricated
by module or hybrid technology, were very expensive devices for industry applications. At the
beginningof the 1980s, theCD(compact disk)player, thefirstmass-productiondigital audioproduct,
was introduced, and required low cost and monolithic type DA converters with 16-bit resolution.
The two-step dual slope method [1] and the DEM (Dynamic Element Matching) [2] method were
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used in the first generation DA converters for CD players. These were methods which relieved the
accuracy and matching requirements of the elements to guarantee conversion accuracy by circuit
technology. Introducing new ideas on circuit and trimming, like segment decode and laser trimming
of the thin film fabricated on monolithic silicon die, for example, classical circuit topologies using
binary weighted current source were also used. For AD conversion at same generation, successive
approximation topology and the two-step dual slope method were also used.

In the mid-1980s, introductions of the oversampling and the noise shaping technology to the AD
and DA converters for audio applications were investigated [3]. The converters using the technologies
are the most popular devices for recent audio applications, especially as DA converters.

43.2 Oversampling AD and DA Conversion Principle

M. Katakura

43.2.1 Concept

The concept of the oversampling AD and DA conversion, DS or SD modulation, was known in
the 1950s; however, the device technology to fabricate actual devices was impracticable until the
1980s [4].

The oversampling AD and DA conversion is characterized by the following three technologies.

1. oversampling

2. noise shaping

3. fewer bit quantizer (converters used one bit quantizer called the DS or SD type)

It is well known that the quantization noise shown in the next equation is determined by only
quantization step D and distributed in bandwidth limited by Nyquist frequency (2/fs), and the
spectrum is almost similar to white noise when the step size is smaller than the signal level.

Vn = 1/
√

12 (43.1)

As shown in Fig. 43.1, the oversampling expands a capacity of the quantization noise cavity on the
frequency axis and reduces the noise density in the audio band, and the noise shaping moves it to
out of the band. Figure 43.2 is first-order noise shaping to show the principle of the noise shaping,
in which the quantizer is represented by the adder fed an input U(n) and a quantization noise Q(n).
Y (n) and U(n), the output and input signals of the quantizer, respectively, are given as follows:

Y(n) = U(n) + Q(n) (43.2)

U(n) = X(n) + Q(n−1) (43.3)

As a result, the output Y (n) is

Y(n) = X(n) + {
Q(n) − Q(n−1)

}
(43.4)

The quantization noise in output Y (n), which is a differentiation of the original quantization noise
Q(n) and Q(n − 1) shifted a time step, has high frequency boosted spectrum. Equation (43.4) is
written as follows using z

Y(z) = X(z) + Q(z)

(
1 − Z−1

)
(43.5)

The oversampling conversion using one bit quantizer is called DS or SD AD/DA converters. Re-
garding one bit quantizer, a mismatch of the elements does not affect differential error; in other
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FIGURE 43.1: Quantization noise of the oversampling conversion.

FIGURE 43.2: First-order noise shaping.

words, it has no non-linear error. Assume output swing of the quantizer is ± D, quantization noise
Q(z) is white noise, and the magnitude |Q(Wt)| is D2/3, which corresponds to four times in power of
Eq. (43.1) since the step size is twice that. Define q which is 2p ·f max/f s, where f maxand f s are
the audio bandwidth and the sampling frequency, respectively, then the in-band noise in Eq. (43.5)
becomes

N̄2 = ∣∣Q(ωT )

∣∣2 1

2π

∫ θ

−θ

∣∣H(ωT )

∣∣2 d(ωT )

= 12

3

1

2π

∫ θ

−θ

∣∣∣1 − e−jωT
∣∣∣2 d(ωT )

= 12

3

2

π
(θ − sinθ)

= 12

9π
θ3 (43.6)

The oversampling conversion has the following remarkable advantages compared with traditional
methods.

1. It is easy to realize “good” one bit converters without superior device accuracy and match-
ing.

2. Analog anti-aliasing filters with sharp cutoff characteristics are unnecessary due to over-
sampling.

Using the oversampling converting technology, requirements for analog parts are relaxed; however,
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they require large scale digital circuits because interpolation filters in front of the DA conversion,
which increase sampling frequency of the input digital signal, and decimation filters after the AD
conversion, which reject quantization noise in high frequency and reduce sampling frequency, are
required.

Figure 43.3 shows the block diagram of the DA converter including an interpolation filter. Though
the scheme of the noise shaper is different from that of Fig. 43.2, the function is equivalent. Figure 43.4
shows the block diagram of the AD converter including a decimation filter. Note that the AD converter
is almost the same as with the DA converters regarding the noise shapers; however, the details of the
hardware are different depending on whether the block handles analog or digital signal. For example,
to handle digital signals the delay units and the adders should use latches and digital adders; on the
other hand, to handle analog signals delay units and adders using switched capacitor topology should
be used. In the DS type, the quantizer is just reduction data length to one bit for the DA converter,
and is a comparator for the AD converter by the same rule.

FIGURE 43.3: Oversampling DA converter.

FIGURE 43.4: Oversampling AD converter.

43.2.2 Actual Converters

To achieve resolution of 16 bits or more for digital audio applications, the first-order noise shaping is
not acceptable because it requires an extra high oversampling ratio, and the following technologies
are actually adopted.

• High-order noise shaping
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• Multi-stage (feedforward) noise shaping

• Interpolative conversion

1. High-order noise shaping
Figure 43.5 shows quantization noise spectrum for order of the noise shaping. The third-order

noise shaping achieves 16-bit dynamic range using less than an oversampling ratio of 100. Figure 43.6
shows a third-order noise shaping for example of the high order. Order of the noise shaping used
is 2 to 5 for audio applications.

FIGURE 43.5: Quantization noise vs. order of noise shaping.

FIGURE 43.6: Third-order noise shaping.

In Fig. 43.6 output Y (z) is given

Y(z) = X(z) + Q(z)

(
1 − Z−1

)3
(43.7)
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The high-order noise shaping has a stability problem because the phase shift of the open loop in
more than a third-order noise shaping exceeds 180◦. In order to guarantee the stability, an amplitude
limiter at the integrator outputs is used, and modification of the loop transfer function is done,
although it degrades the noise shaping performance slightly.

2. Multi-stage (feedforward) noise shaping [5]

Multi-stage (feedforward) noise shaping (called MASH) achieves high-order noise shaping transfer
functionsusingnothigh-order feedbackbut feedforward, and is shown inFig. 43.7. Though two-stage
(two-order) is shown in Fig. 43.7, three-stage (three-order) is usually used for audio applications.

FIGURE 43.7: Multi-stage noise shaping.

3. Interpolative converters [6]

This is a method which uses a few bit resolution converters instead of one bit. The method
reduces the oversamplimg ratio and order of the noise shaping to guarantee specified dynamic range
and improve the loop stability. Since absolute value of the quantization noise becomes small, it is
relatively easy to guarantee noise level; however, linearity of large signal conditions affects the linearity
error of the AD/DA converters used in the noise shaping loop.

Oversampling conversion has become a major technique in digital audio application, and one of
the distinctions is that it does not inherently zero cross distort. For recent device technology, it is not
so difficult to guarantee 18-bit accuracy. Thus far, the available maximum dynamic range is slightly
less than 20 bit (120 dB) without noise weighting (wide band) due to analog limitation. On the other
hand, converters with 20-bit or more resolution have been reported [7] and are expected to improve
sound quality in very small signal levels from the standpoint of hearing.
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43.4 The SDDS System for Digitizing Film Sound

H. Yamauchi, E. Saito, and M. Kohut

43.4.1 Film Format

There are three basic concepts for developing the SDDS format. They can

1. Provide sound quality similar to CD sound quality. We adapt ATRAC (Adaptive TRansform
Acoustic Coding) to obtain good sound quality equivalent to that of CDs. ATRAC is the compression
method used in the mini disc (MD) which has been in sale since 1992. ATRAC enables one record
digital sound data by compressing about 1/5 of the original sound.

2. Provide enough numbers of sound channels with good surround effects. We have eight discrete
channel systems and six channels to the screen in the front and two channels in the rear as surround
speakers shown in Fig. 43.8. We have discrete channel systems, making a good channel separation
which provides superior surround effects even in a large theater with no sound defects.

3. Be compatible with the current widespread analogue sound system. There are limited spaces
between the sprockets, picture frame, and in the external portion of the sprocket hole where the
digital sound could be recorded because the analogue sound track is left as usual. As in the cinema
scope format, it may be difficult to obtain enough space between picture frames. Because the signal
for recording and playback would become intermittent between sprockets, special techniques would
be required to process such signals. As shown in Fig. 43.9, we therefore establish track P and track S
on a film external portion where continuous recordings are possible and where space can be obtained
in the digital sound recording region on the SDDS format.

Data bits are recorded on the film with black and white dot patterns. The size of a bit is decided
to overcome the effects caused by film scratch and is able to correct errors. In order to obtain the
certainty of reading data, we set a guard band area to the horizontal and track direction.

Now, the method to record digital sound data on these two tracks is to separate eight channels and
record four channels each in track P and in track S. A redundant data is also recorded about 18 frames
later on the opposite track. By this method, it makes it possible to obtain the equivalent data from
track S if any error occurs on track P and the correction is unable to be made, or vice versa. This is
called the “Digital Backup System”.

Figure 43.10 shows the block structure for the SDDS format. A data compression block of the
ATRAC system has 512 bit sound data per film block. A vertical sync region is set at the head of the
film block. A film block ID is recorded in this region to reproduce the sound data and picture frame
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FIGURE 43.8: Speaker arrangement in theater.

with the right timing and to prevent the “lip sync” offset from discordance; for example, the time
accordance between an actor’s/actress’ lip movement and his/her voice. Also, a horizontal sync is
set on the left-hand side of the film block and is referred to correctly detect the head of the data in
reading with the line sensor.

43.4.2 Playback System for Digital Sound

The digital playback sound system for the SDDS system consists of a reader unit, DFP-R2000, and a
decoder unit, DFP-D2000 as shown in Fig. 43.11. The reader unit is set between the supply reel and
the projector.

The principle of digital sound reading for the reader unit DFP-R2000 is described in Fig. 43.12.
The LED light source is derived from the optical fiber and it scans the data portion recorded on track
P and track S of the film. Transparent lights through the film give an image formation on the line
sensor through the lens. These optical systems are designed to have the appropriate structures which
can hardly be affected by scratches on the film. The output of a sensor signal is transmitted to the
decoder after the signal processing such as the wave form equalization is made.

The block diagram of the decoder unit DFP-D2000 is shown in Fig. 43.13. The unit consists of
EQ, DEC, DSP, and APR blocks.

In the EQ, signals become digital signals after being equalized. Then the digital signals are trans-
mitted to the DEC together with the regenerated clock signal.

In the DEC, jitters elimination and lip sync control are done by the time base collector circuit, and
errors caused by scratches and dust on the film are corrected by the strong error correction algorithm.
Also in the DEC, signals for track P and track S which have been compressed by the ATRAC system
are decoded. This data is transmitted to the DSP as a linear PCM signal.

In the DSP, the sound field of the theater is adjusted and concealment modes are controlled. A
CPU is installed in the DSP to control the entire decoder, and control the front panel display and
reception and transmission of external control data.
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FIGURE 43.9: SDDS track designation.

Finally in theAPR, 10 channels of digital filter includingmonitors, D/Aconverter, and line amplifier
are installed. Also, it is possible to directly bypass an analogue input signal by relay as necessary. This
bypass is prepared to cope with analogue sound if digital sound would not play back.

43.4.3 The SDDS Error Correction Technique

TheSDDSsystemadapts the“ReedSolomon”code forerrorcorrection. Anerrorcorrection technique
is essential for maintaining high sound quality and high picture quality for digital recording and
playback systems, such as CD, MD, digital VTR, etc. Such C1 parity + C2 parity data necessary for
error correction are added and recorded in advance to cope with cases when the correct data are not
able to be obtained. It enables recovery of the correct data by using this additional data even if a
reading error occurs.

If the error rate is 10−4 (1 bit for every 10,000 bits), the error rate for C1 parity after correction
would normally be 10−11. In other words, an error would occur only once every 1.3 years if a film were
showed 24 hours a day. Errors will be extremely close to “zero” by using C2 parity erasure correction.
A strong error correction capability is installed in the SDDS digital sound playback system against
random errors.

Other errors besides random errors are

• errors caused by a scratch in the film running direction

• errors caused by dust on the film

• errors caused by splice points of films

• errors caused by defocusing during printing or playback

These are considered burst errors which occur consistently. Scratch errors in particular will increase
more and more every time the film is shown. SDDS has the capability of dealing with such burst
errors. Therefore, in spite of the scratch on the film width direction, error correction towards the
film length would be possible up to 1.27 mm and in spite of the scratch on the film running direction,
error correction towards the film width would be possible up to 336 µ m.
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FIGURE 43.10: Data block configuration.

43.4.4 Features of the SDDS System

The specification characteristics for the SDDS player are shown in Table 43.1. It is not easy to obtain
high fidelity in audio data compression compared to the linear recording system of CDs with regard to
a sound quality. By adapting a system with high compression efficiency and making use of the human
hearing characteristics, we were able to maintain a sound quality equivalent to CDs by adapting the
ATRAC system which restrains deterioration to the minimum.

One of the biggest features of the SDDS is the adaption of a digital backup system. This is a
countermeasure system to make up for the damage to the splicing parts of the digital data or the parts
of data missing by using the opposite side of the track with a digital data recorded on the backup
channel. By this system, it would be possible to obtain an equivalent quality. Next, when finally the
film is worn out, the system switches over to an analogue playback signal.

This system also has a digital room EQ function. This supplies 28 bands of graphic EQ with 1/3
octave characteristics and a high and low pass filter. Moreover, a simple operation to control the
sound field in the theater will become possible by using a graphic user interface panel of an external
personal computer.

Such control usually took hours, but it can be completed in about 30 min with this SDDS player.
The stability of its features, reproducibility, and reliability of digitizing is well appreciated.

Furthermore, the SDDS player carries a backup function and a reset function for setting parameters
by using memories.
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FIGURE 43.11: Playback system.

FIGURE 43.12: Optical reader concept.

43.5 Switched Predictive Coding of Audio Signals for the CD-I
and CD-ROM XA Format

Masayuki Nishiguchi

43.5.1 Abstract

Anaudiobit rate reduction systemfor theCD-I andCD-ROMXAformatbasedonswitchedpredictive
coding algorithm is described. The principal feature of the system is that the coder provides multiple
prediction error filters, each of which has fixed coefficients. The prediction error filter that best
matches the input signal is selected every 28 samples (1 block). A first-order and two kinds of second-
order prediction error filters are used for signals in the low and middle frequencies, and the straight
PCM is used for high-frequency signals. The system also uses near-instantaneous companding to
expand the dynamic range. A noise-shaping filter is incorporated in the quantization stage, and its
frequency response is varied to minimize the energy of the output noise. With a complexity of less
than 8MIPS/channel, audio quality almost the same as CD audio can be achieved at 310 Kbps (8.2
bits/sample), near transparent audio can be achieved at 159 Kbps (4.2 bits/sample), and mid-fidelity
audio can be achieved at 80 Kbps (4.2 bits/sample).
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FIGURE 43.13: Overall block diagram.
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TABLE 43.1 SDDS Player System

Electrical Specifications
Item Specification

Sampling frequency 44.1 KHz
Dynamic range Over 90 dB

Channel Max 8 cH
Frequency band 20 Hz - 20 KHz

+/ − 1.0dB
K.F < 0.7%

Crosstalk < −80dB
Reference output level −10dB / Unbalanced

+4 dB / Balanced
Head room > 20dB / Balanced

43.5.2 Coder Scheme

Figure 43.14 is a block diagram of the encoder and decoder system. The input signal, prediction
error, quantization error, encoder output, decoder input, and decoder output are respectively ex-
pressed as x(n), d(n), e(n), d̂(n), d̂ ′(n), and x̂′(n). The z-transforms of the signals are expressed as
X(z), D(z), E(z), D̂(z), D̂′(z), and X̂′(z). The encoder response can then be expressed as

D̂(z) = G · X(z) · {1 − P(z)} + E(z) · {1 − R(z)} , (43.8)

and the decoder response as

X̂′(z) = G−1 · D̂′(z)
1 − P(z)

, (43.9)

Assuming that there is no channel error, we can write D̂′(z) = D̂(z). Using Eq. (43.8) and (43.9),
we can write the decoder output in terms of the encoder input as

X̂′(z) = X(z) + G−1 · E(z) · 1 − R(z)

1 − P(z)
. (43.10)

where

P(z) =
P∑

k=1

αk · z−k and R(z) =
R∑

k=1

βk · z−k (43.11)

Here αk and βk are, respectively, the coefficients of predictor P(z) and R(z). Equation (43.10)
shows the encoder-decoder performance characteristics of the system. It shows that the quantization
error E(z) is reduced by the extent of the noise-reduction effect G−1. The distribution of the noise
spectrum that appears at the decoder output is

N(z) = E(z) · 1 − R(z)

1 − P(z)
. (43.12)

R(z) can be varied according to the spectral shape of the input signal in order to have a maximum
masking effect, but we have set R(z) = P(z) to keep from coloring the quantization noise.

G can be regarded as the normalization factor for the peak prediction error (over 28 residual
words) from the chosen prediction error filter. The value of G changes according to the frequency
response of the prediction gain:

G ∝ |X(z)|
|D(z)| . (43.13)

This is also proportional to the inverse of the prediction error filter, 1/|1 − P(z)|. So, in order to
maximize G, it is necessary to change the frequency response of the prediction error filter 1 − P(z)

according to the frequency distribution of the input signals.
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FIGURE 43.14: Block diagram of the bit rate reduction system.
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Selection of the Optimum Filter

Several different strategies of selecting filters are possible in the CD-I/CD-ROM XA format,
but the simplest way for the encoder to choose which predictor is most suitable is the following:

• The predictor adaptation section compares the peak value of the prediction errors (over
28 words) from each prediction error filter 1 − P(z) and selects the filter that generates
the minimum peak.

• Thegroupofpredictionerrors chosen is thengaincontrolled (normalizedby itsmaximum
value) and noise shaping is executed at the same time.

As a result, a high SNR is obtained by using a first-order and two kinds of second-order prediction
error filters for signals with the low and middle frequencies and by using the straight PCM for
high-frequency signals.

Coder Parameters

This system provides three bit rates for the CD-I/CD-ROM XA format, and data encoded at
any bit rate can be decoded by a single decoder. The following sections explain how the parameters
used in the decoder and the encoder change according to the level of sound quality. Table 43.2 lists
the parameters for each level.

TABLE 43.2 The Parameters for Each Level
Level A Level B Level C

Sampling frequency 37.8 37.8 18.9
(KHz)
Residual word length 8 4 4
(bits per sample)
Block length 28 28 28
(Number of samples)
Range data 4 4 4
(bits per block)
Range values 0-8 0-12 0-12
Filter data 1 2 2
(bits per block)
Number of prediction error 2 3 4
filters used
Average of bits used per 8.18 4.21 4.21
sample (bits per sample) = (8 × 28+ 4 + 1)/28 = (4 × 28+ 4 + 1)/28 = (4 × 28+ 4 + 1)/28
Bit rate (Kbps) 309 159 80

Level A

We can obtain the highest quality audio sound with Level A, which uses only two prediction error
filters. Either the straight PCM or the first-order differential PCM is selected. The transfer functions
of the prediction error filters are as follows:

H(z) = 1 (43.14)

and
H(z) = 1 − 0.975z−1 , (43.15)

where H(z) = 1 − P(z).

Level B

The bit rate at Level B is half as high as that at Level A. By using this level, we can obtain high-
fidelity audio sound from most high-quality sources. This level uses three filters: the straight PCM,
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the first-order differential PCM, or the second-order differential PCM-1 is selected. The transfer
functions of the first two filters are the same as in Level A, and that for the second-order differential
PCM-1 mode is:

H(z) = 1 − 1.796875z−1 + 0.8125z−2 . (43.16)

Level C

We can obtain mid-fidelity audio sound at Level C, and a monoaural audio program 16 hours long
can be recorded on a single CD. Four filters are used for this level. The transfer function of the first
three filters are the same as in Level B. The transfer function of the second-order differential PCM-2
mode, used only at this level, is

H(z) = 1 − 1.53125z−1 + 0.859375z−2 . (43.17)

At all levels, the noise-shaping filter and the inverse-prediction-error filter in the decoder have the
same coefficients as the prediction error filter in the encoder.

43.5.3 Applications

The simple structure and low complexity of this CD-I/CD-ROM XA audio compression algorithm
make it suitable for applications with PCs, workstations, and video games.
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43.7 ATRAC (Adaptive Transform Acoustic Coding) and
ATRAC 2

K. Tsutsui

43.7.1 ATRAC

ATRAC is a coding system designed to meet the following criteria for the MiniDisc system:

• Compressionof 16-bit 44.1-kHzaudio (705.6kbps) into146kbpswithminimal reduction
in sound quality.

• Simple hardware implementation suitable for portable players and recorders.

Block diagrams of the encoder and decoder structures are shown in Figs. 43.15 and 43.16, respec-
tively. The time-frequency analysis block of the encoder decomposes the input signal into spectral
coefficients grouped into 52 block floating units (BFUs). The bit allocation block divides the avail-
able bits among the BFUs adaptively based on the psychoacoustics. The spectrum quantization block
normalizes spectral coefficients with the scale factor given to each BFU, and then quantizes each
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FIGURE 43.15: ATRAC encoder.

FIGURE 43.16: ATRAC decoder.

of them to the specified word length. These processes are performed in every sound unit, a block
consisting of 512 samples per channel.

In order to generate the BFUs, the time-frequency analysis block first divides the input signal into
three subbands. And then, each of these subbands is transformed into the frequency domain by
modified discrete cosine transform (MDCT), producing a set of spectral coefficients. Finally, these
spectral coefficients are nonuniformly grouped into BFUs. The subband decomposition is performed
using cascaded 48-tap quadrature mirror filters (QMFs). The input signal is divided into upper and
lower frequency bands by the first QMF, and then, the lower-frequency band is divided again by a
second QMF. While the output samples of each filter are decimated by two, the aliasing caused by
the subband decomposition is cancelled during reconstruction, due to the use of QMFs. MDCT
block length is adaptively determined based on the signal characteristics in each band. There are
two block-length modes: long mode (11.6 msec for fs = 44.1 kHz) and short mode (1.45 ms in
the high frequency band, 2.9 ms in the others). Normally, long mode is chosen, as this provides
good frequency resolution. However, problems occur during attack portions of the signal since the
quantization noise is spread over the entire block and the initial quantization noise is not masked by
simultaneous masking. In order to prevent this degradation known as pre-echo, ATRAC switches to
short mode when it detects an attack signal. In this case, as the noise before the attack exists only for
a very short period of time, it is masked by backward masking. The window form is symmetric for
both long and short modes, and the window form in the non-zero-nor-one region of the long mode
is the same as that of the short mode. Although this window form is somewhat disadvantageous to
the separability of the spectrum, it brings the following merits:

• The transform mode can be determined based only on the existence of an attack signal
in the current sound unit, and hence, no extra buffer is required in the encoder.

• A smaller size of buffer memory is required to store the overlapped samples for the next
sound unit in the encoder and decoder.

The mapping structure of ATRAC is summarized in Fig. 43.18.
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FIGURE 43.17: ATRAC time-frequency analysis.

FIGURE 43.18: ATRAC mapping structure.

43.7.2 ATRAC2

The ATRAC2 system, taking advantage of the progress in LSI technologies, allows audio signals of 16
bits per sample with a sampling frequency of 44.1 kHz (705.6 kbps) to be compressed to 64 kbps,
sacrificing almost no audio quality. It was designed focusing on efficient coding of tonal signals, as
the human ear is very sensitive to distortions in such signals.

Block diagrams of the encoder and decoder structures are shown in Figs. 43.19 and 43.20. The
encoder extracts psychoacoustically important tone components from the input signal spectra in
order to encode them separately from the other less important spectrum data in an efficient way. A
tone component is a group of consecutive spectral coefficients and is defined with several parameters
including its location and width data. The remaining spectral coefficients are grouped into 32 non-
uniform BFUs. Both the tone components and the remaining spectral coefficients may be encoded
with Huffman coding, which is shown in Table 43.3 and for which simple decoding with a look-up
table is practical due to its small size. Although the quantization step number is limited to 63, high
S/N ratio can be obtained by repeatedly extracting tone components from the same frequency range.

The mapping structure of ATRAC2 is shown in Fig. 43.21. The frequency resolution is twice that
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FIGURE 43.19: ATRAC2 encoder.

FIGURE 43.20: ATRAC2 decoder.

TABLE 43.3 Huffman Code Table
Quantization Dimension Maximum Look-up table

ID step number (spectr. num.) code length size

0 1 — — —
1 3 2 5 32
2 5 1 3 8
3 7 1 4 16
4 9 1 5 32
5 15 1 6 64
6 31 1 7 128
7 63 1 8 256

Note: Total = 536

of ATRAC, and in order to secure the frequency separability, ATRAC2 performs a signal analysis
using a combination of a 96-tap polyphase quadrature filter (PQF) and a fixed-length 50%-overlap
MDCT whose forward and backward window forms are different from each other. ATRAC2 prevents
pre-echo by amplifying the signal preceding an attack adaptively before transforming it into spectral
coefficients in the encoder and restoring it to the original level after the inverse transform in the
decoder. This technique, called gain control, simplifies the spectral structure of the system.

The subband decomposition realizes frequency scalability; decoders with smaller complexity can
be constructed by simply decoding only lower-band data. Use of PQF lowers the computational
complexity.
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FIGURE 43.21: ATRAC2 mapping structure.

FIGURE 43.22: ATRAC2 time-frequency analysis.
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W ITH THE ADVENT OF CHEAP, HIGH SPEED PROCESSORS, and with the ever-
decreasing cost of memory, the cost of speech processing has been driven down to the
point where it can be (and has been) embedded in almost any system, from a low cost

consumer product (e.g., solid-state digital answering machines, voice controlled telephones, etc.),
to a desktop application (e.g., voice dictation of a first draft quality manuscript), to an application
embedded in a voice or data network (e.g., voice dialing, packet telephony, voice browser for the
Internet, etc.). It is the purpose of this section of the Handbook to provide discussions of several
of the key technologies in speech processing and to illustrate how the technologies are implemented
using special-purpose DSP processor chips or via standard software packages running on more con-
ventional processors.

The broad area of speech processing can be broken down into several individual areas according
to both applications and technology. These include:

1. SpeechProductionModels and theirDigital Implementations (see Chapter 44 by Sondhi and
Schroeter). In order to understand how the characteristics of a speech signal can be exploited
in the different application areas, it is necessary to understand the properties and constraints
of the human vocal apparatus (to understand how speech is generated by humans). It is also
necessary to understand the way in which models can be built that simulate speech production
as well as the ways in which they can be implemented as digital systems, since such models
form the basis for almost all practical speech processing systems.

2. Speech Coding (see Chapter 45 by Cox). Speech coding is the process of compressing the
information in a speech signal so as to either transit it or store it economically over a channel
whosebandwidth is significantly smaller than thatof theuncompressed signal. Speechcoding is
used as the basis for most modern voice messaging and voice mail systems, for voice response
systems, for digital cellular and for satellite transmission of speech, for packet telephony,
for ISDN teleconferencing, and for digital answering machines and digital voice encryption
machines.

3. Text-to-SpeechSynthesis (see Chapter 46 by Sproat and Olive). Speech synthesis is the process
of creating a synthetic replica of a speech signal so as to transmit a message from a machine
to a person, with the purpose of conveying the information in the message. Speech synthesis
is often called “text-to-speech” or TTS, to convey the idea that, in general, the input to the
system is ordinary ASCII text, and the output of the system is ordinary speech. The goal of
most speech synthesis systems is to provide a broad range of capability for having a machine
speak information (stored in the machine) to a user. Key aspects of synthesis systems are the
intelligibility and the naturalness of the resulting speech. The major applications of speech
synthesis include acting as a voice server for text-based information services (e.g., stock prices,
sports scores, flight information); providing a means for reading e-mail, or the text portions
of FAX messages over ordinary phone lines; providing a means for previewing text stored in
documents (e.g., document drafts, Internet files); and finally as a voice readout for handheld
devices, (e.g., phrase book translators, dictionaries, etc.)

4. Speech Recognition by Machine (see Chapter 47 by Rabiner and Juang). Speech recognition
is the process of extracting the message information in a speech signal so as to control the
action of a machine in response to spoken commands. In a sense, speech recognition is the
complementary process to speech synthesis, and together they constitute the building blocks
of a voice dialogue system with a machine. There are many factors which influence the type
of speech recognition system that is used for different applications, including the mode of
speaking to the machine (e.g., single commands, digit sequences, fluent sentences), the size
and complexity of the vocabulary which the machine understands, the task which the machine
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is asked to accomplish, the environment in which the recognition system must run, and finally
the cost of the system. Although there is a wide range of applications of speech recognition
systems, the most generic systems are simple “command-and-control” systems (with menu-
like interfaces), and the most advanced systems support full voice dialogues for dictation, forms
entry, catalog ordering, reservation services, etc.

5. Speaker Verification (see Chapter 48 by Furui and Rosenberg). Speaker verification is the
process of verifying the claimed identity of a speaker for the purpose of restricting access
to information (e.g., personal or private records), networks (computer, PBX), or physical
premises. The basic problem of speaker verification is to decide whether or not an unknown
speech sample was spoken by the individual whose identity was claimed. A key aspect of any
speaker verification system is to accept the true speaker as often as possible while rejecting the
impostor as often as possible. Since these are inherently conflicting goals, all practical systems
arrive at some compromise between levels of these two types of system errors. The major
area of application for speaker verification is in access control to information, credit, banking,
machines, computer networks, private branch exchanges (PBX’s), and even premises. The
concept of a “voice lock” that prevents access until the appropriate speech by the authorized
individual(s) (e.g., “Open Sesame”) is “heard” by the system is made a reality using speaker
verification technology.

6. DSP Implementations of Speech Processing (see Chapter 49 by Baudendistel). Until a few
years ago, almost all speech processing systems were implemented on low-cost DSP fixed-point
processors because of their high efficiency in realizing the computational aspects of the various
signal processing algorithms. A key problem in the realization of any digital system in integer
DSP code is how to map an algorithm efficiently (in both time and space) which is typically
running in floating point C code on a workstation to integer C code that takes advantage of the
unique characteristics of different DSP chips. Furthermore, because of the rate of change of
technology, it is essential that the conversion to DSP code occur rapidly (e.g., on the order of
3-person months) or else by the time a given algorithm is mapped to a specific DSP processor,
a new (faster, cheaper) generation of DSP chips will have evolved, obsoleting the entire process.

7. Software Tools for Speech Research and Development (see Chapter 50 by Shore). The field
of speech processing has become a complex one, where an investigator needs a broad range
of tools to record, digitize, display, manipulate, process, store, format, analyze, and listen
to speech in its different file forms and manifestations. Although it is conceivable that an
individual could create a suite of software tools for an individual application, that process
would be highly inefficient and would undoubtedly result in tools which were significantly less
powerful than those developed in the commercial sector, such as the Entropic Signal Processing
System, MATLAB, Waves, Interactive Laboratory System (ILS), or the commercial packages
for TTS and speech recognition such as the Hidden Markov Model Toolkit (HTK).

The material presented in this section should provide the reader with a framework for understand-
ing the signal processing aspects of speech processing and some pointers into the literature for further
investigation of this fascinating and rapidly evolving field.
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44.1 Introduction

The characteristics of a speech signal that are exploited for various applications of speech signal
processing to be discussed later in this section on speech processing (e.g., coding, recognition, etc.)
arise from the properties and constraints of the human vocal apparatus. It is, therefore, useful in
the design of such applications to have some familiarity with the process of speech generation by
humans. In this chapter we will introduce the reader to (1) the basic physical phenomena involved in
speech production, (2) the simplified models used to quantify these phenomena, and (3) the digital
implementations of these models.

44.1.1 Speech Sounds

Speech is produced by acoustically exciting a time-varying cavity — the vocal tract, which is the
region of the mouth cavity bounded by the vocal cords and the lips. The various speech sounds are
produced by adjusting both the type of excitation as well as the shape of the vocal tract.

There are several ways of classifying speech sounds [1]. One way is to classify them on the basis of
the type of excitation used in producing them:

• Voiced sounds are produced by exciting the tract by quasi-periodic puffs of air produced
by the vibration of the vocal cords in the larynx. The vibrating cords modulate the air
stream from the lungs at a rate which may be as low as 60 times per second for some
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males to as high as 400 or 500 times per second for children. All vowels are produced in
this manner. So are laterals, of which l is the only exemplar in English.

• Nasal sounds such as m, n, ng, and nasalized vowels (as in the French word bon) are also
voiced. However, part or all of the airflow is diverted into the nasal tract by opening the
velum.

• Plosive sounds are produced by exciting the tract by a sudden release of pressure. The
plosives p, t, k are voiceless, while b, d, g are voiced. The vocal cords start vibrating before
the release for the voiced plosives.

• Fricatives are produced by exciting the tract by turbulent flow created by air flow through
a narrow constriction. The sounds f, s, sh belong to this category.

• Voiced fricatives are produced by exciting the tract simultaneously by turbulence and by
vocal cord vibration. Examples are v, z, and zh (as in pleasure).

• Affricates are sounds that begin as a stop and are released as a fricative. In English, ch as
in check is a voiceless affricate and j as in John is a voiced affricate.

In addition to controlling the type of excitation, the shape of the vocal tract is also adjusted by
manipulating the tongue, lips, and lower jaw. The shape determines the frequency response of the
vocal tract. The frequency response at any given frequency is defined to be the amplitude and phase
at the lips in response to a sinusoidal excitation of unit amplitude and zero phase at the source.
The frequency response, in general, shows concentration of energy in the neighborhood of certain
frequencies, called formant frequencies.

For vowel sounds, three or four resonances can usually be distinguished clearly in the frequency
range 0 to 4 kHz. (On average, over 99% of the energy in a speech signal is in this frequency range.)
The configuration of these resonance frequencies is what distinguishes different vowels from each
other.

For fricatives and plosives, the resonances are not as prominent. However, there are characteristic
broad frequency regions where the energy is concentrated.

For nasal sounds, besides formants there are anti-resonances, or zeros in the frequency response.
These zeros are the result of the coupling of the wave motion in the vocal and nasal tracts. We will
discuss how they arise in a later section.

44.1.2 Speech Displays

We close this section with a description of the various ways of displaying properties of a speech signal.
The three common displays are (1) the pressure waveform, (2) the spectrogram, and (3) the power
spectrum. These are illustrated for a typical speech signal in Figs. 44.1a–c.

Figure 44.1a shows about half a second of a speech signal produced by a male speaker. What is
shown is the pressure waveform (i.e., pressure as a function of time) as picked up by a microphone
placed a few centimeters from the lips. The sharp click produced at a plosive, the noise-like character
of a fricative, and the quasi-periodic waveform of a vowel are all clearly discernible.

Figure 44.1b shows another useful display of the same speech signal. Such a display is known as a
spectrogram [2]. Here the x-axis is time. But the y-axis is frequency and the darkness indicates the
intensity at a given frequency at a given time. [The intensity at a time t and frequency f is just the
power in the signal averaged over a small region of the time-frequency plane centered at the point
(t, f )]. The dark bands seen in the vowel region are the formants. Note how the energy is much
more diffusely spread out in frequency during a plosive or fricative.

Finally, Fig. 44.1c shows a third representation of the same signal. It is called the power spectrum.
Here the power is plotted as a function of frequency, for a short segment of speech surrounding a
specified time instant. A logarithmic scale is used for power and a linear scale for frequency. In
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FIGURE 44.1: Display of speech signal: (a) waveform, (b) spectrogram, and (c) frequency response.

this particular plot, the power is computed as the average over a window of duration 20 msec. As
indicated in the figure, this spectrum was computed in a voiced portion of the speech signal. The
regularly spaced peaks — the fine structure — in the spectrum are the harmonics of the fundamental
frequency. The spacing is seen to be about 100 Hz, which checks with the time period of the wave
seen in the pressure waveform in Fig. 44.1a. The peaks in the envelope of the harmonic peaks are the
formants. These occur at about 650, 1100, 1900, and 3200 Hz, which checks with the positions of
the formants seen in the spectrogram of the same signal displayed in Fig. 44.1b.

44.2 Geometry of the Vocal and Nasal Tracts

Much of our knowledge of the dimensions and shapes of the vocal tract is derived from a study of
x-ray photographs and x-ray movies of the vocal tract taken while subjects utter various specific
speech sounds or connected speech [3]. In order to keep x-ray dosage to a minimum, only one view
is photographed, and this is invariably the side view (a view of the mid-sagittal plane). Information
about the cross-dimensions is inferred from static vocal tracts using frontal X rays, dental molds, etc.

More recently, Magnetic Resonance Imaging (MRI) [4] has also been used to image the vocal and
nasal tracts. The images obtained by this technique are excellent and provide three-dimensional
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reconstructions of the vocal tract. However, at present MRI is not capable of providing images at a
rate fast enough for studying vocal tracts in motion.

Other techniques have also been used to study vocal tract shapes. These include:

(1) ultrasound imaging [5]. This provides information concerning the shape of the tongue but
not about the shape of the vocal cavity.

(2) Acoustical probing of the vocal tract [6]. In this technique, a known acoustic wave is applied at
the lips. The shape of the time-varying vocal cavity can be inferred from the shape of the time-varying
reflected wave. However, this technique has thus far not achieved sufficient accuracy. Also, it requires
the vocal tract to be somewhat constrained while the measurements are made.

(3) Electropalatography [7]. In this technique, an artificial palate with an array of electrodes is
placed against the hard palate of a subject. As the tongue makes contact with this palate during speech
production, it closes an electrical connection to some of the electrodes. The pattern of closures gives
an estimate of the shape of the contact between tongue and palate. This technique cannot provide
details of the shape of the vocal cavity, although it yields important information on the production
of consonants.

(4) Finally, the movement of the tongue and lips has also been studied by tracking the positions of
tiny coils attached to them [8]. The motion of the coils is tracked by the currents induced in them
as they move in externally applied electromagnetic fields. Again, this technique cannot provide a
detailed shape of the vocal tract.

Figure 44.2 shows an x-ray photograph of a female vocal tract uttering the vowel sound /u/. It is
seen that the vocal tract has a very complicated shape, and without some simplifications it would be
very difficult to just specify the shape, let alone compute its acoustical properties. Several models
have been proposed to specify the main features of the vocal tract shape. These models are based
on studies of x-ray photographs of the type shown in Fig. 44.2, as well as on x-ray movies taken of
subjects uttering various speech materials. Such models are called articulatory models because they
specify the shape in terms of the positions of the articulators (i.e., the tongue, lips, jaw, and velum).

Figure 44.3 shows such an idealization, similar to one proposed by Coker [9], of the shape of the
vocal tract in the mid-sagittal plane. In this model, a fixed shape is used for the palate, and the shape
of the vocal cavity is adjusted by specifying the positions of the articulators. The coordinates used to
describe the shape are labeled in the figure. They are the position of the tongue center, the radius of
the tongue body, the position of the tongue tip, the jaw opening, the lip opening and protrusion, the
position of the hyoid, and the opening of the velum. The cross-dimensions (i.e., perpendicular to
the sagittal plane) are estimated from static vocal tracts. These dimensions are assumed fixed during
speech production. In this manner, the three-dimensional shape of the vocal tract is modeled.

Whenever the velum is open, the nasal cavity is coupled to the vocal tract, and its dimensions must
also be specified. The nasal cavity is assumed to have a fixed shape which is estimated from static
measurements.

44.3 Acoustical Properties of the Vocal and Nasal Tracts

Exact computation of the acoustical properties of the vocal (and nasal) tract is difficult even for the
idealized models described in the previous section. Fortunately, considerable further simplification
can be made without affecting most of the salient properties of speech signals generated by such a
model. Almost without exception, three assumptions are made to keep the problem tractable. These
assumptions are justifiable for frequencies below about 4 kHz [10, 11].
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FIGURE 44.2: X-ray side view of a female vocal tract. The tongue, lips, and palate have been
outlined to improve visibility. (Source: Modified from a single frame from “Laval Film 55,” Side 2
of Munhall, K.G., Vatikiotis-Bateson, E., Tohkura, Y., X-ray film data-base for speech research, ATR
Technical Report Tr-H-116, 12/28/94, ATR Human Information Processing Research Laboratories,
Kyoto, Japan. With permission from Dr. Claude Rochette, Departement de Radiologie de l’Hotel-
Dieu de Quebec, Quebec, Canada.)

44.3.1 Simplifying Assumptions

1. It is assumed that the vocal tract can be “straightened out” in such a way that a center
line drawn through the tract (shown dotted in Fig. 44.3) becomes a straight line. In this
way, the tract is converted to a straight tube with a variable cross-section.

2. Wave propagation in the straightened tract is assumed to be planar. This means that if we
consider any plane perpendicular to the axis of the tract, then every quantity associated
with the acoustic wave (e.g., pressure, density, etc.) is independent of position in the
plane.

3. The third assumption that is invariably made is that wave propagation in the vocal tract is
linear. Nonlinear effects appear when the ratio of particle velocity to sound velocity (the
Mach number) becomes large. For wave propagation in the vocal tract the Mach number
is usually less than .02, so that nonlinearity of the wave is negligible. There are, however,
two exceptions to this. The flow in the glottis (i.e., the space between the vocal folds),
and that in the narrow constrictions used to produce fricative sounds, is nonlinear. We
will show later how these special cases are handled in current speech production models.
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FIGURE 44.3: An idealized articulatory model similar to that of Coker [9].

We ought to point out that some computations have been made without the first two assumptions,
and wave phenomena studied in two or three dimensions [12]. Recently there has been some interest
in removing the third assumption as well [13]. This involves the solution of the so called Navier-
Stokes equation in the complicated three-dimensional geometry of the vocal tract. Such analyses
require very large amounts of high speed computations making it difficult to use them in speech
production models. Computational cost and speed, however, are not the only limiting factors. An
even more basic barrier is that it is difficult to specify accurately the complicated time-varying shape
of the vocal tract. It is, therefore, unlikely that such computations can be used directly in a speech
production model. These computations should, however, provide accurate data on the basis of which
simpler, more tractable, approximations may be abstracted.

44.3.2 Wave Propagation in the Vocal Tract

In view of the assumptions discussed above, the propagation of waves in the vocal tract can be
considered in the simplified setting depicted in Fig. 44.4. As shown there, the vocal tract is represented
as a variable area tube of lengthL with its axis taken to be the x−axis. The glottis is located at x = 0
and the lips at x = L, and the tube has a cross-sectional areaA(x)which is a function of the distance
x from the glottis. Strictly speaking, of course, the area is time-varying. However, in normal speech

FIGURE 44.4: The vocal tract as a variable area tube.

the temporal variation in the area is very slow in comparison with the propagation phenomena that
we are considering. So, the cross-sectional area may be represented by a succession of stationary
shapes.
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We are interested in the spatial and temporal variation of two interrelated quantities in the acoustic
wave: the pressure p(x, t) and the volume velocity u(x, t). The latter is A(x)v(x, t), where v is the
particle velocity. For the assumption of linearity to be valid, the pressure p in the acoustic wave is
assumed to be small compared to the equilibrium pressure P0, and the particle velocity v is assumed
to be small compared to the velocity of sound, c. Two equations can be written down that relate
p(x, t) and u(x, t): the equation of motion and the equation of continuity [14]. A combination of
these equations will give us the basic equation of wave propagation in the variable area tube. Let us
derive these equations first for the case when the walls of the tube are rigid and there are no losses
due to viscous friction, thermal conduction, etc.

44.3.3 The Lossless Case

The equation of motion is just a statement of Newton’s second law. Consider the thin slice of air
between the planes at x and x + dx shown in Fig. 44.4. By equating the net force acting on it due to
the pressure gradient to the rate of change of momentum one gets

∂p

∂x
= − ρ

A

∂u

∂t
(44.1)

(To simplify notation, we will not always explicitly show the dependence of quantities on x and t .)
The equation of continuity expresses conservation of mass. Consider the slice of tube between x

and x+dx shown in Fig. 44.4. By balancing the net flow of air out of this region with a corresponding
decrease in the density of air we get

∂u

∂x
= −A

ρ

∂δ

∂t
. (44.2)

where δ(x, t) is the fluctuation in density superposed on the equilibrium density ρ. The density is
related to pressure by the gas law. It can be shown that pressure fluctuations in an acoustic wave
follow the adiabatic law, so that p = (γP/ρ)δ, where γ is the ratio of specific heats at constant
pressure and constant volume. Also, (γP/ρ) = c2, where c is the velocity of sound. Substituting
this into Eq. (44.2) gives

∂u

∂x
= − A

ρc2

∂p

∂t
(44.3)

Equations (44.1) and (44.3) are the two relations between p and u that we set out to derive. From
these equations it is possible to eliminate u by subtracting ∂

∂t
of Eq. (44.3) from ∂

∂x
of Eq. (44.1).

This gives

∂

∂x
A
∂p

∂x
= A

c2

∂2p

∂t2
. (44.4)

Equation (44.4) is known in the literature as Webster’s horn equation [15]. It was first derived for
computations of wave propagation in horns, hence the name. By eliminating p from Eqs. (44.1)
and (44.3), one can also derive a single equation in u.

It is useful to write Eqs. (44.1), (44.3), and (44.4) in the frequency domain by taking Laplace trans-
forms. Defining P(x, s) and U(x, s) as the Laplace transforms of p(x, t) and u(x, t), respectively,
and remembering that ∂

∂t
→ s, we get:

dP

dx
= −ρs

A
U (44.1a)

c©1999 by CRC Press LLC



dU

dx
= − sA

ρc2
Pψ (44.3a)

and

d

dx
A
dP

dx
= s2

c2
APψ (44.4a)

It is important to note that in deriving these equations we have retained only first order terms in the
fluctuating quantities p and u. Inclusion of higher order terms gives rise to nonlinear equations of
propagation. By and large these terms are quite negligible for wave propagation in the vocal tract.
However, there is one second order term, neglected in Eq. (44.1), which becomes important in the
description of flow through the narrow constriction of the glottis. In deriving Eq. (44.1) we neglected
the fact that the slice of air to which the force is applied is moving away with the velocity v. When
this effect is correctly taken into account, it turns out that there is an additional term ρv ∂v

∂x
appearing

on the left hand side of that equation. The corrected form of Eq. (44.1) is

∂

∂x

[
p + ρ

2
(u/A)2

]
= −ρ d

dt

[ u
A

]
.ψ (44.5)

The quantity ρ
2 (u/A)

2 has the dimensions of pressure, and is known as the Bernoulli pressure. We
will have occasion to use Eq. (44.5) when we discuss the motion of the vocal cords in the section on
sources of excitation.

44.3.4 Inclusion of Losses

The equations derived in the previous section can be used to approximately derive the acoustical
properties of the vocal tract. However, their accuracy can be considerably increased by including
terms that approximately take account of the effect of viscous friction, thermal conduction, and
yielding walls [16]. It is most convenient to introduce these effects in the frequency domain.

Theeffectofviscous frictioncanbeapproximatedbymodifying theequationofmotion, Eq. (44.1a)
as follows:

dP

dx
= −ρs

A
U − R(x, s)U .ψ (44.6)

Recall that Eq. (44.1a) states that the force applied per unit area equals the rate of change of mo-
mentum per unit area. The added term in Eq. (44.6) represents the viscous drag which reduces the
force available to accelerate the air. The assumption that the drag is proportional to velocity can be
approximately validated. The dependence of R on x and s can be modeled in various ways [16].

Theeffectof thermal conductionandyieldingwalls canbeapproximatedbymodifying the equation
of continuity as follows:

ρ
dU

dx
= −A

c2
sP − Y (x, s)Pψ (44.7)

Recall that the left hand side of Eq. (44.3a) represents net outflow of air in the longitudinal direction,
which is balanced by an appropriate decrease in the density of air. The term added in Eq. (44.7)
represents net outward volume velocity into the walls of the vocal tract. This velocity arises from
(1) a temperature gradient perpendicular to the walls which is due to the thermal conduction by the
walls, and (2) due to the yielding of the walls. Both these effects can be accounted for by appropriate
choice of the function Y (x, s), provided the walls can be assumed to be locally reacting. By that we
mean that the motion of the wall at any point depends on the pressure at that point alone. Models
for the function Y (x, s)may be found in [16].
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Finally, the lossy equivalent of Eq. (44.4a) is

d

dx

A

ρs + AR

dP

dx
=

(
As

ρc2
+ Y

)
P . ψ (44.8)

44.3.5 Chain Matrices

All properties of linear wave propagation in the vocal tract can be derived from Eqs. (44.1a), (44.3a),
(44.4a) or the corresponding Eqs. (44.6), (44.7), and (44.8) for the lossy tract. The most convenient
way to derive these properties is in terms of chain matrices, which we now introduce.

Since Eq. (44.8) is a second order linear ordinary differential equation, its general solution can be
written as a linear combination of two independent solutions, say φ(x, s) and9(x, s). Thus

P(x, s) = aφ(x, s)+ b9(x, s)ψ (44.9)

where a and b are, in general, functions of s. Hence, the pressure at the input of the tube (x = 0)
and at the output (x = L) are linear combinations of a and b. The volume velocity corresponding
to the pressure given in Eq. (44.9) is obtained from Eq. (44.6) to be

U(x, s) = − A

ρs + AR
[adφ/dx + bd9/dx] .ψ (44.10)

Thus, the input and output volume velocities are seen to be linear combinations of a and b. Eliminat-
ing the parameters a and b from these relationships shows that the input pressure and volume velocity
are linear combinations of the corresponding output quantities. Thus, the relationship between the
input and output quantities may be represented in terms of a 2 × 2 matrix as follows:[

Pin

Uin

]
=

[
k11 k12
k21 k22

] [
Pout

Uout

]
(44.11)

= K

[
Pout

Uout

]
.

The matrix K is called a chain matrix or ABCD matrix [17]. Its entries depend on the values of φ
and 9 at x = 0 and x = L. For an arbitrarily specified area function A(x) the functions φ and
ψ are hard to find. However, for a uniform tube, i.e., a tube for which the area and the losses are
independent of x, the solutions are very easy. For a uniform tube, Eq. (44.8) becomes

d2P

dx2
= σ 2Pψ (44.12)

where σ is a function of s given by

σ 2 = (ρs + AR)

(
s

ρc2
+ Y

A

)
.

Two independent solutions of Eq. (44.12) are well known to be cosh(σx) and sinh(σx), and a bit of
algebra shows that the chain matrix for this case is

K =
[

cosh(σL)ψ (1/β) sinh(σL)
β sinh(σL)ψ cosh(σL)

]
(44.13)

where

β =
√[
Y + As

ρc2

]
/
[
R + ρs

A

]
.
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For an arbitrary tract, one can utilize the simplicity of the chain matrix of a uniform tube by approx-
imating the tract as a concatenation of N uniform sections of length 1 = L/N . Now the output
quantities of the ith section become the input quantities for the i+1st section. Therefore, if Ki is the
chain matrix for the ith section, then the chain matrix for the variable-area tract is approximated by

K = K1K2 · · · KN .ψ (44.14)

This method can, of course, be used to relate the input-output quantities for any portion of the tract,
not just the entire vocal tract. Later we shall need to find the input-output relations for various
sections of the tract, for example, the tract from the glottis to the velum for nasal sounds, from the
narrowest constriction to the lips for fricative sounds, etc.

As stated above, all linear properties of the vocal tract can be derived in terms of the entries of the
chain matrix. Let us give several examples.

Let us associate the input with the glottal end, and the output with the lip end of the tract. Suppose
the tract is terminated by the radiation impedanceZR at the lips. Then, by definition,Pout = ZRUout.
Substituting this in Eq. (44.11) gives[

Pin/Uout

Uin/Uout

]
=

[
k11 k12
k21 k22

] [
ZR
1

]
.ψ (44.15)

From Eq. (44.15) it follows that

Uout

Uin
= 1

k21ZR + k22
.ψ (44.16a)

Equation (44.16a) gives the transfer function relating the output volume velocity to the input
volume velocity. Multiplying this by ZR gives the transfer function relating output pressure to the
input volume velocity. Other transfer functions relating output pressure or volume velocity to input
pressure may be similarly derived.

Relationships between pressure and volume velocity at a single point may also be derived. For
example,

Pin

Uin
= k11ZR + k12

k21ZR + k22
(44.16b)

gives the input impedance of the vocal tract as seen at the glottis, when the lips are terminated by
the radiation impedance.

Also, formant frequencies, which we mentioned in the Introduction, can be computed from the
transfer function of Eq. (44.16a). They are just the values of s at which the denominator on the
right-hand side becomes zero. For a lossy vocal tract, the zeros are complex and have the form
sn = −αn + jωn, n = 1,2, · · ·. Then ωn is the frequency (in rad/s) of the nth formant, and αn is its
half bandwidth.

Finally, the chain matrix formulation also leads to linear prediction coefficients (LPC), which are
the most commonly used representation of speech signals today. Strictly speaking, the representation
is valid for speech signals for which the excitation source is at the glottis (i.e., voiced or aspirated
speech sounds). Modifications are required when the source of excitation is at an interior point.

To derive the LPC formulation, we will assume the vocal tract to be lossless, and the radiation
impedance at the lips to be zero. From Eq. (44.16a) we see that to compute the output volume
velocity from the input volume velocity, we need only the k22 element of the chain matrix for the
entire vocal tract. This chainmatrix is obtainedbyaconcatenationofmatrices as shown inEq. (44.14).
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The individual matrices Ki are derived from Eq. (44.13), withN = L/1. In the lossless case, R and
Y are zero, so σ = s/c and β = A/ρc. Also, if we define z = e2s1/c, then the matrix Ki becomes

Ki = zN/2




1
2

(
1 + z−1

)
Ai
2ρc

(
1 − z−1

)
ρc
2Ai

(
1 − z−1

) 1
2

(
1 + z−1

)

 .ψ (44.17)

Clearly, therefore, k22 is zN/2 times an N th degree polynomial in z−1. Hence, Eq. (44.16a) can be
written as

N∑
k=0

akz
−kUout = z−N/2Uin .ψ (44.18)

where ak are the coefficients of the polynomial. The frequency domain factor z = e−2s1/c represents
a delay of 21/cs. Thus, the time domain equivalent of Eq. (44.18) is

N∑
k=0

akuout(t − 2k1/c) = uin(t −N1/c) .ψ (44.19)

Now uout(t) is the volume velocity in the speech signal, so we will call it s(t) for brevity. Similarly,
since uin(t) is the input signal at the glottis, we will call it g(t). To get the time-sampled version
of Eq. (44.19) we set t = 2n1/c and define s(2n1/c) = sn and g((2n − N)1/c) = gn. Then
Eq. (44.19) becomes

N∑
k=0

aksn−k = εn .ψ (44.20)

Equation (44.20) is the LPC representation of a speech signal.

44.3.6 Nasal Coupling

Nasal sounds are produced by opening the velum and thereby coupling the nasal cavity to the vocal
tract. In nasal consonants, the vocal tract itself is closed at some point between the velum and the
lips, and all the airflow is diverted into the nostrils. In nasal vowels the vocal tract remains open.
(Nasal vowels are common in French and several other languages. They are not nominally phonemes
of English. However, some nasalization of vowels commonly occurs in English speech.)

In terms of chain matrices, the nasal coupling can be handled without too much additional effort.
As far as its acoustical properties are concerned, the nasal cavity can be treated exactly like the vocal
tract, with the added simplification that its shape may be regarded as fixed. The common assumption
is that the nostrils are symmetric, in which case the cross-sectional areas of the two nostrils can be
added and the nose replaced by a single, fixed, variable-area tube.

The description of the computations is easier to follow with the aid of the block diagram shown
in Fig. 44.5. From a knowledge of the area functions and losses for the vocal and nasal tracts three
chain matrices Kgv , Kvt , and Kvn are first computed. These represent, respectively, the matrices from
glottis to velum, velum to tract closure (or velum to lips, in case of a nasal vowel), and velum to
nostrils.

From Kvn with some assumed impedance termination at the nostrils, the input impedance of
the nostrils at the velum may be computed as indicated in Eq. (44.16b). Similarly, K vt gives the
input impedance at the velum, of the vocal tract looking toward the lips. At the velum, these two
impedances are combined in parallel to give a total impedance, say Zv . With this as termination, the
velocity to velocity transfer function, Tgv , from glottis to velum can be computed from Kgv as shown
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FIGURE 44.5: Chain matrices for synthesizing nasal sounds.

in Eq. (44.16b). For a given volume velocity at the glottis, U g , the volume velocity at the velum is
Uv = TgvUg , and the pressure at the velum is Pv = ZvUv . Once Pv and Uv are known, the volume
velocity and/or pressure at the nostrils and lips can be computed by inverting the matrices Kvn and
Kvt .

44.4 Sources of Excitation

As mentioned earlier, speech sounds may be classified by type of excitation: periodic, turbulent, or
transient. All of these types of excitation are created by converting the potential energy stored in the
lungs due to excess pressure into sound energy in the audible frequency range of 20 Hz to 20 kHz.

The lungs of a young adult male may have a maximum usable volume (“vital capacity”) of about 5
l. While reading aloud the pressure in the lungs is typically in the range of 6 to 15 cm of water (6000
to 15000 Pa). Vocal cord vibrations can be sustained with a pressure as low as .2 cm of water. At the
other extreme, a pressure as high as 195 cm of water has been recorded for a trumpet player. Typical
average airflow for normal speech is about 0.1 l/s. It may peak as high as 5 l/s during rapid inhales in
singing.

Periodic excitation originates mainly at the vibrating vocal folds, turbulent excitation originates
primarily downstream of the narrowest constriction in the vocal tract, and transient excitations
occur whenever a complete closure of the vocal pathway is suddenly released. In the following, we
will explore these three types of excitation in some detail. The interested reader is referred to [18]
for more information.

44.4.1 Periodic Excitation

Many of the acoustic and perceptual features of an individual’s voice are believed to be due to specific
characteristics of the quasi-periodic excitation signal provided by the vocal folds. These, in turn,
depend on the morphology of the voice organ, the larynx. The anatomy of the larynx is quite
complicated, and descriptions of it may be found in the literature [19]. From an engineering point
of view, however, it suffices to note that the larynx is the structure that houses the vocal folds whose
vibration provides the periodic excitation. The space between the vocal folds, called the glottis,
varies with the motion of the vocal folds, and thus modulates the flow of air through them. As late
as 1950 Husson postulated that each movement of the folds is in fact induced by individual nerve
signals sent from the brain (the Neurochronaxis hypothesis) [20]. We now know that the larynx
is a self-oscillating acousto-mechanical oscillator. This oscillator is controlled by several groups of
tiny muscles also housed in the larynx. Some of these muscles control the rest position of the folds,
others control their tension, and still others control their shape. During breathing and production
of fricatives, for example, the folds are pulled apart (abducted) to allow free flow of air. To produce
voiced speech, the vocal folds are brought close together (adducted). When brought close enough
together, they go into a spontaneous periodic oscillation. These oscillations are driven by Bernoulli
pressure (the same mechanism that keeps airplanes aloft) created by the airflow through the glottis.
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If the opening of the glottis is small enough, the Bernoulli pressure due to the rapid flow of air is
large enough to pull the folds toward each other, eventually closing the glottis. This, of course, stops
the flow and the laryngeal muscles pull the folds apart. This sequence repeats itself until the folds are
pulled far enough away, or if the lung pressure becomes too low. We will discuss this oscillation in
greater detail later in this section.

Besides the laryngeal muscles, the lung pressure and the acoustic load of the vocal tract also affect
the oscillation of the vocal folds.

The larynx also houses many mechanoreceptors that signal to the brain the vibrational state of the
vocal folds. These signals help control pitch, loudness, and voice timbre.

Figure 44.6 shows stylized snapshots taken from the side and above the vibrating folds. The view
from above can be obtained on live subjects with high speed (or stroboscopic) photography, using
a laryngeal mirror or a fiber optic bundle for illumination and viewing. The view from the side is

FIGURE 44.6: One cycle of vocal fold oscillation seen from the front and from above. (After
Schönhärl, E., 1960 [25]. With permission of Georg Thieme Verlag, Stuttgart, Germany.)

the result of studies on excised (mostly animal) larynges. From studies such as these, we know that,
during glottal vibration, the folds carry a mechanical wave that starts at the tracheal (lower) end of
the folds and moves upwards to the pharyngeal (upper) end. Consequently, the edge of the folds that
faces the vocal tract usually lags behind the edge of the folds that faces the lungs. This phenomenon
is called vertical phasing. Higher eigenmodes of these mechanical waves have been observed and
have been modeled.

Figure 44.7 shows typical acoustic flow waveforms, called flow glottograms, and their first time
derivatives. In a normal glottogram, the closed phase of the glottal cycle is characterized by zero flow.
Often, however, the closure is not complete. Also, in some cases, although the folds close completely,
there is a parallel path — a chink — which stays open all the time.

In the open phase the flow gradually builds up, reaches a peak, and then falls sharply. The asym-
metry is due to the inertia of the airflow in the vocal tract and the sub-glottal cavities. The amplitude
of the fundamental frequency is governed mainly by the peak of the flow while the amplitudes of the
higher harmonics is governed mainly by the (negative) peak rate of change of flow, which occurs just
before closure.
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FIGURE 44.7: Example of glottal volume velocity and its time derivative.

Voice Qualities

Depending on the adjustment of the various parameters mentioned above, the glottis can
produce a variety of phonations (i.e., excitations for voiced speech), resulting in different perceptual
voice qualities. Some perceptual qualities vary continuously whereas others are essentially categorical
(i.e., they change abruptly when some parameters cross a threshold).

Voice timbre is an important continuously variable quality which may be given various labels
ranging from “mellow” to “pressed”. The spectral slope of the glottal waveform is the main physical
correlate of this perceptual quality. On the other hand, nasality and aspiration may be regarded as
categorical qualities.

The physical properties that distinguish a “male” voice from a “female” voice are still not well
understood, although many distinguishing features are known. Besides the obvious cue of fun-
damental frequency, the perceptual quality of “breathiness” seems to be important for producing
a female-sounding voice. It occurs when the glottis does not close completely during the glottal
cycle. This results in a more sinusoidal movement of the folds which makes the amplitude of the
fundamental frequency much larger compared to those of the higher harmonics. The presence of
leakage in the abducted glottis also increases the damping of the lower formants, thus increasing their
bandwidths. Also, the continuous airflow through the leaking glottis gives rise to increased levels of
glottal noise (aspiration noise) that masks the higher harmonics of the glottal spectrum. Finally, in
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glottograms of female voices, the open phase is a larger proportion of the glottal cycle (about 80%)
than in glottograms of male voices (about 60%). The points of closure are also smoother for female
voices, which results in lower high frequency energy relative to the fundamental.

Finally, the individuality of a voice (which allows us to recognize the speaker) appears to be
dependent largely on the exact relationships between the amplitudes of the first few harmonics.

Models of the Glottis

A study of the mechanical and acoustical properties of the larynx is still an area of active interdis-
ciplinary research. Modeling in the mechanical and acoustical domains requires making simplifying
assumptions about the tissue movements and the fluid mechanics of the airflow. Depending on the
degree to which the models incorporate physiological knowledge, one can distinguish three categories
of glottal models:

Parametrization of glottal flow is the “black-box” approach to glottal modeling. The glottal flow
wave or its first time derivative is parametrized in segments by analytical functions. It seems doubtful
that any simple model of this kind can match all kinds of speakers and speaking styles. Examples
of speech sounds that are difficult to parametrize in this way are nasal and mixed-excitation sounds
(i.e., sounds with an added fricative component) and “simple” high-pitch female vowels.

Parametrization of glottal area is more realistic. In this model, the area of the glottal opening is
parametrized in segments, but the airflow is computed from the propagation equations, and includes
its interaction with the acoustic loads of the vocal tract and the subglottal structures. Such a model is
capable of reproducing much more of the detail and individuality of the glottal wave than the black
box approach. Problems are still to be expected for mixed glottal/fricative sounds unless the tract
model includes an accurate mechanism for frication (see the section on turbulent excitation below).

In a complete, self-oscillating model of the glottis described below, the amplitude of the glottal
openingaswell as the instantsof glottal closure are automaticallyderived, anddepend inacomplicated
manner on the laryngeal parameters, lung pressure, and the past history of the flow. The area-
driven model has the disadvantage that amplitude and instants of closure must be specified as side
information. However, the ability to specify the points of glottal closure can, in fact, be an advantage
in some applications; for example, when the model is used to mimic a given speech signal.

Self-oscillating physiological models of the glottis attempt to model the complete interaction of
the airflow and the vocal folds which results in periodic excitation. The input to a model of this type is
slowly varying physical parameters such as lung pressure, tension of the folds, pre-phonatory glottal
shape, etc. Of the many models of this type that have been proposed, the one most often used is the
2-mass model of Ishizaka and Flanagan (I&F). In the following we will briefly review this model.

The I&F two-mass model is depicted in Fig. 44.8. As shown there, the thickness of the vocal
folds that separates the trachea from the vocal tract is divided into two parts of length d1 and d2,
respectively, where the subscript 1 refers to the part closest to the trachea and 2 refers to the part
closest to the vocal tract. These portions of the vocal folds are represented by damped spring-mass
systems coupled to each other. The division into two portions is a refinement of an earlier version
that represented the folds by a single spring-mass system. By using two sections the model comes
closer to reality and exhibits the phenomenon of vertical phasing mentioned earlier.

Inorder to simulate tissue, all the springs anddampers are chosen tobenonlinear. Beforediscussing
the choice of these nonlinear elements, let us first consider the relationship between the airflow and
the pressure variations from the lungs to the vocal tract.

Airflow in the Glottis

The dimensions d1 and d2 are very small — about 1.5mm each. This is a very small fraction of
the wavelength even at the highest frequencies of interest. (The wavelength of a sound wave in air at
100 kHz is about 3mm!). Therefore we may assume the flow through the glottis to be incompressible.
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FIGURE 44.8: The two-mass model of Ishizaka and Flanagan [21].

With this assumption the equation of continuity, Eq. (44.2), merely states that the volume velocity
is the same everywhere in the glottis. We will call this volume velocity ug . The relationship of this
velocity to the pressure is governed by the equation of motion. Since the particle velocity in the
glottis can be very large, we need to consider the nonlinear version given in Eq. (44.5). Also, since
the cross-section of the glottis is very small, viscous drag cannot be neglected. So we will include a
term representing viscous drag proportional to the velocity. With this addition, Eq. (44.5) becomes:

∂

∂x

[
p + ρ

2

(
ug/A

)2
]

= −ρ ∂
∂t

(ug
A

)
− Rv

(
ug/A

)
. (44.21)

The drag coefficient Rv can be estimated for simple geometries. In the present application a rect-
angular aperture is appropriate. If the length of the aperture is l, its width (corresponding to the
opening between the folds) isw and its depth in the direction of flow is d , thenRv = 12µd

lw3 , whereµ is
the coefficient of shear viscosity. The pressure distribution is obtained by repeated use of Eq. (44.21),
using the appropriate value ofA (and hence ofRv) in the different parts of the glottis. In this manner,
the pressure at any point in the glottis may be determined in terms of the volume velocity, ug , the
lung pressure, Ps , and the pressure at the input to the vocal tract, p1.

The detailed derivation of the pressure distribution is given in [21]. The derivation shows that
the total pressure drop across the glottis, Ps − p1, is related to the glottal volume velocity, ug , by an
equation of the form

Ps − p1 = Rug + d

dt
(Lug)+ ρ

2

(
ug/α

)2
. (44.22)

With the analogy of pressure to voltage and volume velocity to current, the quantity R is analogous
to resistance and L to inductance. The term in u2

g may be regarded as ug times a current-dependent
resistance. The quantity α has the dimensions of an area.

Models of Vocal Fold Tissue

When the pressure distribution derived above is coupled to the mechanical properties of the
vocal folds, we get a self-oscillating system with properties quite similar to those of a real larynx. The
mechanical properties of the vocal folds have been modeled in many ways with varying degrees of
complexity ranging from a single spring-mass system to a distributed parameter flexible tube. In the
following, by way of example, we will summarize only the original 1972 I&F model.

Returning to Fig. 44.8, we observe that the mechanical properties of the folds are represented by
the masses m1 and m2, the (nonlinear) springs s1 and s2, the coupling spring kc, and the nonlinear
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dampers r1 and r2. The opening in each section of the glottis is assumed to have a rectangular shape
with length lg . The widths of the two sections are 2xj , j = 1,2. Assuming a symmetrical glottis, the
cross-sectional areas of the two sections are

Agj = Ag0j + 2lgxj , j = 1,2 , (44.23)

whereAg01 andAg02 are the areas at rest. From this equation, we compute the lateral displacements
xj min, j = 1,2 at which the two folds touch each other in each section to be xj min = −Ag0j /(2lg).
Displacements more negative than these indicate a collision of the folds. The springs s1 and s2 are
assumed to have restoring forces of the form ax+ bx3, where the constants a and b take on different
values for the two sections and for the colliding and non-colliding conditions.

The dampers r1 and r2 are assumed to be linear, but with different values in the colliding and
non-colliding cases. The coupling spring kc is assumed to be linear. With these choices, the coupled
equations of motion for the two masses are:

m1
d2x1

dt2
+ r1

dx1

dt
+ fs1 (x1)+ kc (x1 − x2) = F1 , (44.24a)

and

m2
d2x2

dt2
+ r2

dx2

dt
+ fs2 (x2)+ kc (x2 − x1) = F2 . (44.24b)

Here fs1 and fs2 are the cubic nonlinear springs. The parameters of these springs as well as the
damping constants r1 and r2 change when the folds go from a colliding state to a non-colliding state
and vice versa. The driving forces F1 and F2 are proportional to the average acoustic pressures in
the two sections of the glottis. Whenever a section is closed (due to the collision of its sides) the
corresponding driving force is zero. Note that it is these forces that provide the feedback of the
acoustic pressures to the mechanical system. This feedback is ignored in the area-driven models of
the glottis.

We close this section with an example of ongoing research in glottal modeling. In the introduction
to this section we had stated that breathiness of a voice is considered important for producing a
natural-sounding synthetic female voice. Breathiness results from incomplete closures of the folds.
We had also stated that incomplete glottal closures due to abducted folds lead to a steep spectral
roll-off of the glottal excitation and a strong fundamental. However, practical experience shows that
many voices show clear evidence for breathiness but do not show a steep spectral roll-off, and have
relatively weak fundamentals instead. How can this mystery be solved? It has been suggested that the
glottal “chink” mentioned in the discussion of Fig. 44.7 might be the answer. Many high-speed videos
of the vocal folds show evidence of a separate leakage path in the “posterior commissure” (where the
folds join) which stays open all the time. Analysis of such a permanently open path produces the
stated effect [22].

44.4.2 Turbulent Excitation

Turbulent airflow shows highly irregular fluctuations of particle velocity and pressure. These fluctua-
tions are audible as broadband noise. Turbulent excitation occurs mainly at two locations in the vocal
tract: near the glottis and at constriction(s) between the glottis and the lips. Turbulent excitation at
a constriction downstream of the glottis produces fricative sounds or voiced fricatives depending on
whether or not voicing is simultaneously present. Also, stressed versions of the vowel i, and liquids l
and r are usually accompanied by turbulent flow. Measurements and models for turbulent excitation
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are even more difficult to establish than for the periodic excitation produced by the glottis because,
usually, no vibrating surfaces are involved. Because of the lack of a comprehensive model, much
confusion exists over the proper sub-classification of fricatives. The simplest model for turbulent
excitation is a “nozzle” (narrow orifice) releasing air into free space. Experimental work has shown
that half (or more) of the noise power generated by a jet of air originates within the so-called mixing
region that starts at the nozzle outlet and extends as far as a distance four times the diameter of the
orifice. The noise source is therefore distributed. Several scaling relations hold between the acoustic
output and the nozzle geometry. One of these scaling properties is the so-called Reynolds number,
Re, that characterizes the amount of turbulence generated as the air from the jet mixes with the
ambient air downstream from the orifice:

Re = u

A

x

ν
. (44.25)

Here u is the volume velocity, A is the area of the orifice (hence, u/A is the particle velocity), x is
a characteristic dimension of the orifice (the width for a rectangular orifice), and ν = µ/ρ is the
kinematic viscosity of air. Beyond a critical value of the Reynolds number, Recrit (which is about
1200 for the case of a free jet), the flow becomes fully turbulent; below this value, the flow is partly
turbulent and becomes fully laminar at very low velocities. Another scaling equation defines the
so-called Strouhal number, S, that relates the frequency Fmax of the (usually broad) peak in the
power spectrum of the generated noise to the width of the orifice and the velocity:

S = Fmax
x

u/A
. (44.26)

For the case of a free jet, the Strouhal number S is 0.15. Within the jet, higher frequencies are
generated closer to the orifice and lower frequencies further away.

Distributed sources of turbulence can be modeled by expanding them in terms of monopoles (i.e.,
pulsating spheres), dipoles (two pulsating spheres in opposite phase), quadrupoles (two dipoles in
opposite phase), and higher-order representations. The total power generated by a monopole source
in free space is proportional to the fourth power of the particle velocity of the flow, that of a dipole
source obeys a (u/A)6 power law, and that of a quadrupole source obeys a (u/A)8 power law. Thus,
the low order sources are more important at low flow rates, while the reverse is the case at high flow
rates. In a duct, however, the exponents of the power laws decrease by 2, that is, a dipole source’s
noise power is proportional to (u/A)4, etc.

Thus far, we have summarized noise generation in a free jet or air. A much stronger noise source
is created when a jet of air hits an obstacle. Depending on the angle between the surface of the
obstacle and the direction of flow, the surface roughness, and the obstacle geometry, the noise
generated can be up to 20 dB higher than that generated by the same jet in free space. Because of
the spatially concentrated source, modeling obstacle noise is easier than modeling the noise in a free
jet. Experiments reveal that obstacle noise can be approximated by a dipole source located at the
obstacle.

The above theoretical findings qualitatively explain the observed phenomenon that the fricatives
th and f (and the corresponding voiced dh and v) are weak compared to the fricatives s and sh.
The teeth (upper for s and lower for sh) provide the obstacle on which the jet impinges to produce
the higher noise levels. A fricative of intermediate strength results from a distributed obstacle (the
“wall” case) when the jet is forced along the roof of the mouth as for the sound y.

In a synthesizer, dipole noise sources can be implemented as series pressure sources. One possible
implementation is to make the source pressure proportional to Re2 − Recrit

2 for Re > Recrit and
zero otherwise [11]. Another option [23] is to relate the noise source power to the Bernoulli pressure
B = .5ρ(u/A)2. Since the power of a dipole source located at the teeth (and radiating into free
space) is (u/A)6, it is also proportional to B3, and the noise source pressure pn ∝ B3/2. On the
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other hand, for wall sources located further away from the lips, we need multiple (distributed) dipole
sources with source pressures proportional either to Re2 −Recrit

2 or to B. In either case, the source
should have a broadband spectrum with a peak at a frequency given by Eq. (44.26).

When a noise source is located at some point inside the tract, its effect on the acoustic output
at the lips is computed in terms of two chain matrices — the matrix KF from the glottis to the
noise source, and the matrix KL from the noise source to the lips. For fricative sounds, the glottis
is wide open, so the termination impedance at the glottis end may be assumed to be zero. With this
termination, the impedance at the noise source looking toward the glottis is computed from KF as
explained in the section on chain matrices. Call this impedance Z1. Similarly, a knowledge of the
radiation impedance at the lips and the matrix KL allows us to compute the input impedance Z2
looking toward the lips. The volume velocity at the source is then just Pn/(Z1 +Z2) where Pn is the
pressure generated by the noise source. The transfer function obtained from Eq. (44.16a) for the
matrix KL then gives the volume velocity at the lips.

It can be shown that the series noise source Pn excites all formants of the entire tract (i.e., the ones
we would see if the source were at the glottis). However, the spectrum of fricative noise usually has
a high pass character. This can be understood qualitatively by the following considerations.

When the tract has a very narrow constriction, the front and back cavities are essentially decoupled,
and the formants of the tract are the formants of the back cavity plus those of the front cavity. If
now the noise source is just downstream of the constriction, the formants of the back cavity are only
slightly excited because the impedanceZ1 also has poles at those frequencies. Since the back cavity is
usually much longer than the front cavity for fricatives, the lower formants are missing in the velocity
at the lips. This gives it a high pass character.

44.4.3 Transient Excitation

Transient excitation of the vocal tract occurs whenever pressure is built up behind a total closure
of the tract and suddenly released. This sudden release produces a step-function of input pressure
at the point of release. The output velocity is therefore proportional to the integral of the impulse
response of the tract from the point of release to the lips. In the frequency domain, this is just Pr/s
times the transfer function, where Pr is the step change in pressure. Hence, the velocity at the lips
may be computed in the same way as in the case of turbulent excitation, with Pn replaced by Pr/s.
In practice, this step excitation is usually followed by the generation of fricative noise for a short
period after release when the constriction is still narrow enough. Sometimes, if the glottis is also
being constricted (e.g., to start voicing) some aspiration might also result.

44.5 Digital Implementations

The models of the various parts of the human speech production apparatus which we have described
above can be assembled to produce fluent speech. Here we will consider how a digital implementation
of this processmaybe carriedout. Basically, the standard theoryof sampling in the timeand frequency
domains is used to convert the continuous signals considered above to sampled signals, and the
samples are represented digitally to the desired number of bits per sample.

44.5.1 Specification of Parameters

The parameters that drive the synthesizer need to be specified about every 20 ms. (The assumed
quasi-stationarity is valid over durations of this size.)

Two sets of parameters are needed — the parameters that specify the shape of the vocal tract and
those that control the glottis. The vocal tract parameters implicitly control nasality (by specifying the
opening area of the velum) and also frication (by specifying the size of the narrowest constriction).
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44.5.2 Synthesis

The vocal tract is approximated by a concatenation of about 20 uniform sections. The cross-sectional
areas of these sections is either specified directly, or computed from a specification of articulatory
parameters as shown in Fig. 44.3. The chain matrix for each section is computed at an adequate
sampling rate in the frequency domain to avoid time-aliasing of the corresponding time functions.
(Computation of the chain matrices requires a specification of the losses also. Several models exist
which assign the losses in terms of the cross-sectional area [11, 16]).

The chain matrices for the individual sections are combined to derive the matrices for various
portions of the tract, as appropriate for the particular speech sound being synthesized. For voiced
sounds, the matrices for the sections from the glottis to the lips are sequentially multiplied to give
the matrix from the glottis to the lips. From the k11, k12, k21, k22 components of this matrix, the
transfer function Uout

Uin
and the input impedance are obtained as in Eqs. (44.16a) and (44.16b).

Knowing the radiation impedance ZR at the lips we can compute the transfer function for output
pressure, H = Uout

Uin
ZR . The inverse FFT of the transfer function H and the input impedance Zin

give the corresponding time functions h(n) and zin(n), respectively. These functions are computed
every 20 ms, and the intermediate values are obtained by linear interpolation.

For the current time sampling instant n, the current pressure p1(n) at the input to the vocal tract
is then computed by convolving zin with the past values of the glottal volume velocity ug . With p1
known, the pressure differencePs−p1 on the left hand side of Eq. (44.22) is known. Equation (44.18)
is discretized by using a backward difference for the time derivative. Thus, a new value of the glottal
volume velocity is derived. This, together with the current values of the displacements of the vocal
folds, gives us new values for the driving forces F1 and F2 for the coupled oscillator Eqs. (44.24a)
and (44.24b). The coupled oscillator equations are also discretized by backward differences for time
derivatives. Thus, the new values of the driving forces give new values for the displacements of the
vocal folds. The new value of volume velocity also gives a new value for p1, and the computational
cycle repeats, to give successive samples of p1, ug , and the vocal fold displacements.

The glottal volume velocity obtained in this way, is convolved with the impulse response h(n) to
produce voiced speech.

If the speech sound calls for frication, the chain matrix of the tract is derived as the product of two
matrices — from the glottis to the narrowest constriction and from the constriction to the lips, as
discussed in the section on turbulent excitation. This enables us to compute the volume velocity at
the constriction, and thus introduce a noise source on the basis of the Reynolds number.

Finally, to produce nasal sounds, the chain matrix for the nasal tract is also computed, and the
output at the nostrils computed as discussed in the section on chain matrices. If the lips are open,
the output from the lips is also computed and added to the output from the nostrils to give the total
speech signal. Details of the synthesis procedure may be found in [24].
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45.1 Introduction

Digital speech coding is used in a wide variety of everyday applications that the ordinary person
takes for granted, such as network telephony or telephone answering machines. By speech coding
we mean a method for reducing the amount of information needed to represent a speech signal for
transmission or storage applications. For most applications this means using a lossy compression
algorithm because a small amount of perceptible degradation is acceptable. This section reviews
some of the applications, the basic attributes of speech coders, methods currently used for coding,
and some of the most important speech coding standards.

45.1.1 Examples of Applications

Digital speech transmission is used in network telephony. The speech coding used is just sample-by-
sample quantization. The transmission rate for most calls is fixed at 64 kilobits per second (kb/s).
The speech is sampled at 8000 Hz (8 kHz) and a logarithmic 8-bit quantizer is used to represent each
sample as one of 256 possible output values. International calls over transoceanic cables or satellites
are often reduced in bit rate to 32 kb/s in order to boost the capacity of this relatively expensive
equipment. Digital wireless transmission has already begun. In North America, Europe, and Japan
there are digital cellular phone systems already in operation with bit rates ranging from 6.7 to 13 kb/s
for the speech coders. Secure telephony has existed since World War II, based on the first vocoder.
(Vocoder is a contraction of the words voice coder.) Secure telephony involves first converting the
speech to a digital form, then digitally encrypting it and then transmitting it. At the receiver, it
is decrypted, decoded, and reconverted back to analog. Current videotelephony is accomplished
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through digital transmission of both the speech and the video signals. An emerging use of speech
coders is for simultaneous voice and data. In these applications, users exchange data (text, images,
FAX, or any other form of digital information) while carrying on a conversation.

All of the above examples involve real-time conversations. Today we use speech coders for many
storage applications that make our lives easier. For example, voice mail systems and telephone
answering machines allow us to leave messages for others. The called party can retrieve the message
when they wish, even from halfway around the world. The same storage technology can be used to
broadcast announcements to many different individuals. Another emerging use of speech coding is
multimedia. Most forms of multimedia involve only one-way communications, so we include them
with storage applications. Multimedia documents on computers can have snippets of speech as an
integral part. Capabilities currently exist to allow users to make voice annotations onto documents
stored on a personal computer (PC) or workstation.

45.1.2 Speech Coder Attributes

Speech coders have attributes that can be placed in four groups: bit rate, quality, complexity, and
delay. For a given application, some of these attributes are pre-determined while tradeoffs can be
made among the others. For example, the communications channel may set a limit on bit rate, or
cost considerations may limit complexity. Quality can usually be improved by increasing bit rate or
complexity, and sometimes by increasing delay. In the following sections, we discuss these attributes.

Primarily we will be discussing telephone bandwidth speech. This is a slightly nebulous term. In
the telephone network, speech is first bandpass filtered from roughly 200 to 3200Hz. This is often
referred to as 3 kHz speech. Speech is sampled at 8 kHz in the telephone network. The usual telephone
bandwidth filter rolls off to about 35 dB by 4 kHz in order to eliminate the aliasing artifacts caused
by sampling.

There is a second bandwidth of interest. It is referred to as wideband speech. The sampling rate is
doubled to 16 kHz. The lowpass filter is assumed to begin rolling off at 7 kHz. At the low end, the
speech is assumed to be uncontamined by line noise and only the DC component needs to be filtered
out. Thus, the highpass filter cutoff frequency is 50 Hz. When we refer to wideband speech, we mean
speech with a bandwidth of 50 to 7000 Hz and a sampling rate of 16 kHz. This is also referred to as
7 kHz speech.

Bit Rate

Bit rate tells us the degree of compression that the coder achieves. Telephone bandwidth speech
is sampled at 8 kHz and digitized with an 8-bit logarithmic quantizer, resulting in a bit rate of 64 kb/s.
For telephone bandwidth speech coders, we measure the degree of compression by how much the bit
rate is lowered from 64 kb/s. International telephone network standards currently exist for coders
operating from 64 kb/s down to 5.3 kb/s. The speech coders for regional cellular standards span the
range from 13 to 3.45 kb/s and those for secure telephony span the range from 16 kb/s to 800 b/s.
Finally, there are proprietary speech coders that are in common use which span the entire range.

Speech coders need not have a constant bit rate. Considerable compression can be gained by not
transmitting speech during the silence intervals of a conversation. Nor is it necessary to keep the bit
rate fixed during the talkspurts of a conversation.

Delay

The communication delay of the coder is more important for transmission than for storage
applications. In real-time conversations, a large communication delay can impose an awkward
protocol on talkers. Large communication delays of 300 ms or greater are particularly objectionable
to users even if there are no echoes.
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Most low bit rate speech coders are block coders. They encode a block of speech, also known as
a frame, at a time. Speech coding delay can be allocated as follows. First, there is algorithmic delay.
Some coders have an amount of look-ahead or other inherent delays in addition to their frame size.
The sum of frame size and other inherent delays constitutes algorithmic delay. The coder requires
computation. The amount of time required for this is called processing delay. It is dependent on the
speed of the processor used. Other delays in a complete system are the multiplexing delay and the
transmission delay.

Complexity

The degree of complexity is a determining factor in both the cost and power consumption of a
speech coder. Cost is almost always a factor in the selection of a speech coder for a given application.
With the advent of wireless and portable communications, power consumption has also become an
important factor. Simple scalar quantizers, such as linear or logarithmic PCM, are necessary in any
coding system and have the lowest possible complexity.

More complex speech coders are first simulated on host processors, then implemented on DSP
chips and may later be implemented on special purpose VLSI devices. Speed and random access
memory (RAM) are the two most important contributing factors of complexity. The faster the chip
or the greater the chip size, the greater the cost. In fact, complexity is a determining factor for both
cost and power consumption. Generally 1 word of RAM takes up as much on-chip area as 4 to 6
words of read only memory (ROM). Most speech coders are implemented on fixed point DSP chips,
so one way to compare the complexity of coders is to measure their speed and memory requirements
when efficiently implemented on commercially available fixed point DSP chips.

DSP chips are available in both 16-bit fixed point and 32-bit floating point. 16-bit DSP chips
are generally preferred for dedicated speech coder implementations because the chips are usually
less expensive and consume less power than implementations based on floating point DSPs. A
disadvantage of fixed-point DSP chips is that the speech coding algorithm must be implemented
using 16-bit arithmetic. As part of the implementation process, a representation must be selected
for each and every variable. Some can be represented in a fixed format, some in block floating point,
and still others may require double precision. As VLSI technology has advanced, fixed point DSP
chips contain a richer set of instructions to handle the data manipulations required to implement
representations such as block floating point. The advantage of floating point DSP chips is that
implementing speech coders is much quicker. Their arithmetic precision is about the same as that
of a high level language simulation, so the steps of determining the representation of each and every
variable and how these representations affect performance can be omitted.

Quality

The attribute of quality has many dimensions. Ultimately quality is determined by how the
speech sounds to a listener. Some of the factors that affect the performance of a coder are whether
the input speech is clean or noisy, whether the bit stream has been corrupted by errors, and whether
multiple encodings have taken place.

Speech coder quality ratings are determined by means of subjective listening tests. The listening
is done in a quiet booth and may use specified telephone handsets, headphones, or loudspeakers.
The speech material is presented to the listeners at specified levels and is originally prepared to have
particular frequency characteristics. The most often used test is the absolute category rating (ACR)
test. Subjects hear pairs of sentences and are asked to give one of the following ratings: excellent,
good, fair, poor, or bad. A typical test contains a variety of different talkers and a number of different
coders or reference conditions. The data resulting from this test can be analyzed in many ways. The
simplest way is to assign a numerical ranking to each response, giving a 5 to the best possible rating,
4 to the next best, down to a 1 for the worst rating, then computing the mean rating for each of the
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conditions under test. This is a referred to as a mean opinion score (MOS) and the ACR test is often
referred to as a MOS test.

There aremanyotherdimensions toquality besides thosepertaining tonoiseless channels. Bit error
sensitivity is another aspect of quality. For some low bit rate applications such as secure telephones
over 2.4 or 4.8 kb/s modems, it might be reasonable to expect the distribution of bit errors to be
random and coders should be made robust for low random bit error rates up to 1 to 2%. For radio
channels, such as in digital cellular telephony, provision is made for additional bits to be used for
channel coding to protect the information bearing bits. Errors are more likely to occur in bursts and
the speech coder requires a mechanism to recover from an entire lost frame. This is referred to as
frame erasure concealment, another aspect of quality for cellular speech coders.

For the purposes of conserving bandwidth, voice activity detectors are sometimes used with speech
coders. During non-speech intervals, the speech coder bit stream is discontinued. At the receiver
“comfort noise” is injected to simulate the background acoustic noise at the encoder. This method
is used for some cellular systems and also in digital speech interpolation (DSI) systems to increase
the effective number of channels or circuits. Most international phone calls carried on undersea
cables or satellites use DSI systems. There is some impact on quality when these techniques are used.
Subjective testing can determine the degree of degradation.

45.2 Useful Models for Speech and Hearing

45.2.1 The LPC Speech Production Model

Human speech is produced in the vocal tract by a combination of the vocal cords in the glottis
interacting with the articulators of the vocal tract. The vocal tract can be approximated as a tube
of varying diameter. The shape of the tube gives rise to resonant frequencies called formants. Over
the years, the most successful speech coding techniques have been based on linear prediction coding
(LPC).TheLPCmodel isderived fromamathematical approximation to thevocal tract representation
as a variable diameter tube. The essential element of LPC is the linear prediction filter. This is an
all pole filter which predicts the value of the next sample based on a linear combination of previous
samples.

Let xn be the speech sample value at sampling instant n. The object is to find a set of prediction
coefficients {ai} such that the prediction error for a frame of size M is minimized:

ε =
M−1∑
m=0

(
I∑

i=1

aixn+m−i + xn+m

)2

(45.1)

where I is the order of the linear prediction model. The prediction value for xn is given by

x̃n = −
I∑

i=1

aixn−i (45.2)

The prediction error signal {en} is also referred to as the residual signal. In z-transform notation
we can write

A(z) = 1 +
I∑

i=1

aiz
−i (45.3)

1/A(z) is referred to as the LPC synthesis filter and (ironically) A(z) is referred to as the LPC inverse
filter.
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LPC analysis is carried out as a block process on a frame of speech. The most often used techniques
are referred to as the autocorrelation and the autocovariance methods [1]–[3]. Both methods involve
inverting matrices containing correlation statistics of the speech signal. If the poles of the LPC filter
are close to the unit circle, then these matrices become more ill-conditioned, which means that
the techniques used for inversion are more sensitive to errors caused by finite numerical precision.
Various techniques for dealing with this aspect of LPC analysis include windows for the data [1, 2],
windows for the correlation statistics [4], and bandwidth expansion of the LPC coefficients.

For forward adaptive coders, the LPC information must also be quantized and transmitted or
stored. Direct quantization of LPC coefficients is not efficient. A small quantization error in a
single coefficient can render the entire LPC filter unstable. Even if the filter is stable, sufficient
precision is required and too many bits will be needed. Instead, it is better to transform the LPC
coefficients to another domain in which stability is more easily determined and fewer bits are required
for representing the quantization levels.

The first such domain to be considered is the reflection coefficient [5]. Reflection coefficients are
computed as a byproduct of LPC analysis. One of their properties is that all reflection coefficients
must have magnitudes less than 1, making stability easily verified. Direct quantization of reflection
coefficients is still not efficient because the sensitivity of the LPC filter to errors is much greater
when reflection coefficients are nearly 1 or −1. More efficient quantizers have been designed by
transforming the individual reflection coefficients with a nonlinearity that makes the error sensitivity
more uniform. Two such nonlinear functions are the inverse sine function, arcsin(ki), and the
logarithm of the area ratio, log 1+ki

1−ki
.

A second domain that has attracted even greater interest recently is the line spectral frequency (LSF)
domain [6]. The transformation is given as follows. We first use A(z) to define two polynomials:

P(z) = A(z) + z−(I+1)A
(
z−1

)
(45.4a)

Q(z) = A(z) − z−(I+1)A
(
z−1

)
(45.4b)

These polynomials can be shown to have two useful properties: all zeroes of P(z) and Q(z) lie on
the unit circle and they are interlaced with each other. Thus, stability is easily checked by assuring
both the interlaced property and that no two zeroes are too close together. A second property
is that the frequencies tend to be clustered near the formant frequencies; the closer together two
LSFs are, the sharper the formant. LSFs have attracted more interest recently because they typically
result in quantizers having either better representations or using fewer bits than reflection coefficient
quantizers.

The simplest quantizers are scalar quantizers [8]. Each of the values (in whatever domain is
being used to represent the LPC coefficients) is represented by one of the possible quantizer levels.
The individual values are quantized independently of each other. There may also be additional
redundancy between successive frames, especially during stationary speech. In such cases, values
may be quantized differentially between frames.

A more efficient, but also more complex, method of quantization is called vector quantization [9].
In this technique, the complete set of values is quantized jointly. The actual set of values is compared
against all sets in the codebook using a distance metric. The set that is nearest is selected. In practice,
an exhaustive codebook search is too complex. For example, a 10-bit codebook has 1024 entries.
This seems like a practical limit for most codebooks, but does not give sufficient performance for
typical 10th order LPC. A 20-bit codebook would give increased performance, but would contain
over 1 million vectors. This is both too much storage and too much computational complexity to
be practical. Instead of using large codebooks, product codes are used. In one technique, an initial
codebook is used, then the remaining error vector is quantized by a second stage codebook. In the
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second technique, the vector is sub-divided and each sub-vector is quantized using its own codebook.
Both of these techniques lose efficiency compared to a full-search vector quantizer, but represent a
good means for reducing computational complexity and codebook size for bit rate or quality.

45.2.2 Models of Human Perception for Speech Coding

Our ears have a limited dynamic range that depends on both the level and the frequency content of
the input signal. The typical bandpass telephone filter has a stopband of only about 35 dB. Also, the
logarithmicquantizer characteristics specifiedbyCCITTRec. G.711 result in a signal-to-quantization
noise ratio of about 35 dB. Is this a coincidence? Of course not! If a signal maintains an SNR of about
35 dB or greater for telephone bandwidth, then most humans will perceive little or no noise.

Conceptually, the masking property tells us that we can permit greater amounts of noise in and
near the formant regions and that noise will be most audible in the spectral valleys. If we use a coder
that produces a white noise characteristic, then the noise spectrum is flat. The white noise would
probably be audible in all but the formant regions.

In modern speech coders, an additional linear filter is added to weight the difference between the
original speech signal and the synthesized signal. The object is to minimize the error in a space
whose metric is like that of the human auditory system. If the LPC filter information is available, it
constitutes the best available estimate of the speech spectrum. It can be used to form the basis for
this “perceptual weighting filter” [10]. The perceptual weighting filter is given by

W(z) = 1 − A(z/γ1)

1 − A(z/γ2)
0 < γ2 < γ1 < 1 (45.5)

The perceptual weighting filter de-emphasizes the importance of noise in the formant region and
emphasizes its importance in spectral valleys. The quantization noise will have a spectral shape that
is similar to that of the LPC spectral estimate, making it easier to mask.

The adaptive postfilter is an additional linear filter that is combined with the synthesis filter to
reduce noise in the spectral valleys [11]. Once again the LPC synthesis filter is available as the estimate
of the speech spectrum. As in the perceptual weighting filter, the synthesis filter is modified. This
idea was later further extended to include a long-term (pitch) filter. A tilt-compensation filter was
added to correct for the low pass characteristic that causes a muffled sound. A gain control strategy
helped prevent any segments from being either too loud or too soft. Adaptive postfilters are now
included as a part of many standards.

45.3 Types of Speech Coders

This part of the section describes a variety of speech coders that are widely used. They are divided into
two categories: waveform-following coders and model-based coders. Waveform-following coders
have the property that if there were no quantization error, the original speech signal would be exactly
reproduced. Model-based coders are based on parametric models of speech production. Only the
values of the parameters are quantized. If there were no quantization error, the reproduced signal
would not be the original speech.

45.3.1 Model-Based Speech Coders

LPC Vocoders

A block diagram of the LPC vocoder is shown in Fig. 45.1. LPC analysis is performed on a frame
of speech and the LPC information is quantized and transmitted. A voiced/unvoiced determination
is made. The decision may be based on either the original speech or the LPC residual signal, but it
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will always be based on the degree of periodicity of the signal. If the frame is classified as unvoiced,
the excitation signal is white noise. If the frame is voiced, the pitch period is transmitted and the
excitation signal is a periodic pulse train. In either case, the amplitude of the output signal is selected
such that its power matches that of the original speech. For more information on the LPC vocoder,
the reader is referred to [12].

FIGURE 45.1: Block diagram of LPC vocoder.

Multiband Excitation (MBE) Coders

Figure 45.2 is a block diagram of a multiband sinusoidal excitation coder. The basic premise of
these coders is that the speech waveform can be modeled as a combination of harmonically related
sinusoidal waveforms and narrowband noise. Within a given bandwidth, the speech is classified as
periodic or aperiodic. Harmonically related sinusoids are used to generate the periodic components
and white noise is used to generate the aperiodic components. Rather than transmitting a single
voiced/unvoiced decision, a frame consists of a number of voiced/unvoiced decisions corresponding
to the different bands. In addition, the spectral shape and gain must be transmitted to the receiver.
LPC may or may not be used to quantize the spectral shape. Most often the analysis of the encoder
is performed via fast Fourier transform (FFT). Synthesis at the decoder is usually performed by a
number of parallel sinusoid and white noise generators. MBE coders are model-based because they
do not transmit the phase of the sinusoids, nor do they attempt to capture anything more than the
energy of the aperiodic components. For more information the reader is referred to [13]–[16].

FIGURE 45.2: Block diagram of multiband excitation coder.
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Waveform Interpolation Coders

Figure 45.3 is a block diagram of a waveform interpolation coder. In this coder, the speech
is assumed to be composed of a slowly evolving periodic waveform (SEW) and a rapidly evolving
noise-like waveform (REW). A frame is analyzed first to extract a “characteristic waveform”. The
evolution of these waveforms is filtered to separate the REW from the SEW. REW updates are made
several times more often than SEW updates. The LPC, the pitch, the spectra of the SEW and REW,
and the overall energy are all transmitted independently. At the receiver a parametric representation
of the SEW and REW information is constructed, summed, and passed through the LPC synthesis
filter to produce output speech. For more information the reader is referred to [17, 18].

FIGURE 45.3: Block diagram of waveform interpolation coder.

45.3.2 Time Domain Waveform-Following Speech Coders

All of the time domain waveform coders described in this section include a prediction filter. We begin
with the simplest.

Adaptive Differential Pulse Code Modulation (ADPCM)

Adaptive differential pulse code modulation (ADPCM) [19] is based on sample-by-sample
quantization of the prediction error. A simple block diagram is shown in Fig. 45.4. Two parts of the
coder may be adaptive: the quantizer step-size and/or the prediction filter. ITU Recommendations
G.726 and G.727 adapt both. The adaptation may be either forward or backward adaptive. In a
backward adaptive system, the adaptation is based only on the previously quantized sample values
and the quantizer codewords. At the receiver, the backward adaptive parameter values must be
recomputed. An important feature of such adaptation schemes is that they must use predictors that
include a leakage factor that allows the effects of erroneous values caused by channel errors to die out
over time. In a forward adaptive system, the adapted values are quantized and transmitted. This
additional “side information” uses bit rate, but can improve quality. Additionally, it does not require
recomputation at the decoder.

Delta Modulation Coders

In delta modulation coders [20], the quantizer is just the sign bit. The quantization step size is
adaptive. Not all the adaptation schemes used for ADPCM will work for delta modulation because
the quantization is so coarse. The quality of delta modulation coders tends to be proportional to
their sampling clock: the greater the sampling clock, the greater the correlation between successive
samples, and the finer the quantization step size that can be used. The block diagram for delta
modulation is the same as that of ADPCM.

c©1999 by CRC Press LLC



FIGURE 45.4: ADPCM encoder and decoder block diagrams.

Adaptive Predictive Coding

The better the performance of the prediction filter, the lower the bit rate needed to encode a
speech signal. This is the basis of the adaptive predictive coder [21] shown in Fig. 45.5. A forward
adaptive higher order linear prediction filter is used. The speech is quantized on a frame-by-frame
basis. In this way the bit rate for the excitation can be reduced compared to an equivalent quality
ADPCM coder.

FIGURE 45.5: Adaptive predictive coding encoder and decoder.

Linear Prediction Analysis-by-Synthesis Speech Coders

Figure 45.6 shows a typical linear prediction analysis-by-synthesis speech coder [22]. Like APC,
these are frame-by-frame coders. They begin with an LPC analysis. Typically the LPC information is
forward adaptive, but there are exceptions. LPAS coders borrow the concept from ADPCM of having
a locally available decoder. The difference between the quantized output signal and the original signal
is passed through a perceptual weighting filter. Possible excitation signals are considered and the best
(minimum mean square error in the perceptual domain) is selected. The long-term prediction filter
removes long-term correlation (the pitch structure) in the signal. If pitch structure is present in the
coder, the parameters for the long-term predictor are determined first. The most commonly used
system is the adaptive codebook, where samples from previous excitation sequences are stored. The
pitch period and gain that result in the greatest reduction of perceptual error are selected, quantized,
and transmitted. The fixed codebook excitation is next considered and, again, the excitation vector
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that most reduces the perceptual error energy is selected and its index and gain are transmitted. A
variety of different possible fixed excitation codebooks and their corresponding names have been
created for coders that fall into this class. Our enumeration touches only the highlights.

FIGURE 45.6: Linear prediction analysis-by-synthesis coder.

Multipulse Linear Predictive Coding (MPLPC) assumes that the speech frame is sub-divided into
smaller sub-frames. After determining the adaptive codebook contribution, the fixed codebook
consists of a number of pulses. Typically the number of pulses is about one-tenth the number of
samples in a sub-frame. The pulse that makes the greatest contribution to reducing the error is
selected first, then the pulse making the next largest contribution, etc. Once the requisite number of
pulses have been selected, determination of the pulses is complete. For each pulse, its location and
amplitude must be transmitted.

Codebook Excited Linear Predictive Coding (CELP) assumes that the fixed codebook is composed
of vectors. This is similar in nature to the Vector Excitation Coder (VXC). In the first CELP coder,
the codebooks were composed of Gaussian random numbers. It was subsequently discovered that
center-clipping these random number codebooks resulted in better quality speech. This had the
effect of making the codebook look more like a collection of multipulse LPC excitation vectors. One
means for reducing the fixed codebook search is if the codebook consists of overlapping vectors.

Vector Sum Excitation Linear Predictive Coding (VSELP) assumes that the fixed codebook is com-
posed of a weighted sum of a set of basis vectors. The basis vectors are orthogonal to each other.
The weights on any basis vector are always either −1 or +1. A fast search technique is possible based
on using a pseudo-Gray code method of exploration. VSELP was used for several first or second
generation digital cellular phone standards [23].

45.3.3 Frequency Domain Waveform-Following Speech Coders

Sub-Band Coders

Figure 45.7 shows the structures of a typical sub-band encoder and decoder [19, 24]. The
concept behind sub-band coding is quite simple: divide the speech signal into a number of frequency
bands and quantize each band separately. In this way the quantization noise is kept within the band.
Typically quadrature mirror or wavelet filterbanks are used. These have the properties that (1) in the
absence of quantization error all aliasing caused by decimation in the analysis filterbank is canceled
in the synthesis filterbank and (2) the bands can be critically sampled, i.e., the number of frequency

c©1999 by CRC Press LLC



domain samples is the same as the number of time domain samples. The effectiveness of these
coders depends largely on the sophistication of the quantization algorithm. Generally, algorithms
that dynamically allocate the bits according to the current spectral characteristics of the speech give
the best performance.

FIGURE 45.7: Sub-band coder.

Adaptive Transform Coders

Adaptive transform coding (ATC) can be viewed as a further extension to sub-band coding [19,
24]. The filterbank structure of SBC is replaced with a transform such as the FFT, the discrete
cosine transform (DCT), wavelet transform or other transform-filterbank. They provide a higher
resolution analysis than the sub-band filterbanks. This allows the coder to exploit the pitch harmonic
structure of the spectrum. As in the case of SBC, the ATC coders that use sophisticated quantization
techniques that dynamically allocate the bits usually give the best performance. Most recently, work
has combined transform coding with LPC and time-domain pitch analysis [25]. The residual signal
is coded using ATC.

45.4 Current Standards

This part of the section is divided into descriptions of current speech coder standards and activities.
The subsections contain informationonspeechcoders thathavebeenorwill soonbe standardized. We
begin first by briefly describing the standards organizations who formulate speech coding standards
and the processes they follow in making these standards.

The International Telecommunications Union (ITU) is an agency of the United Nations Eco-
nomic, Scientific and Cultural Organization (UNESCO) charged with all aspects of standardization
in telecommunications and radio networks. Its headquarters are in Geneva, Switzerland. The ITU
Telecommunications Standardization Sector (ITU-T) formulates standards related to both wireline
and wireless telecommunications. The ITU Radio Standardization Sector (ITU-R) handles standard-
ization related to radio issues. There is also a third branch, the ITU – Telecommunications Standards
Bureau (ITU-B) is the bureaucracy handling all of the paperwork. Speech coding standards are han-
dled jointly by Study Groups 16 and 12 within the ITU-T. Other Study Groups may originate requests
for speech coders for specific applications. The speech coding experts are found in SG16. The experts
on speech performance are found in SG12. When a new standard is being formulated, SG16 draws
up a list of requirements based on the intended applications. SG12 and other interested bodies may
review the requirements before they are finalized. SG12 then creates a test plan and enlists the help
of subjective testing laboratories to measure the quality of the speech coders under the various test
conditions. The process of standardization can be time consuming and take between 2 to 6 years.

Three different standards bodies make regional cellular standards, including those for the speech
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coders. In Europe, the parent body is the European Telecommunications Standards Institute (ETSI).
ETSI is an organization that is composed mainly of telecommunications equipment manufacturers.
In North America, the parent body is the American National Standards Institute (ANSI). The body
chargedwithmakingdigital cellular standards is theTelecommunications IndustryAssociation (TIA).
In Japan, the body charged with making digital cellular standards is the Research and Development
Center for Radio Systems (RCR).

There are also speech coding standards for satellite, emergencies, and secure telephony. Some of
these standards were promulgated by government bodies, while others were promulgated by private
organizations.

Each of these standards organizations works according to its own rules and regulations. However,
there is a set of common threads among all of the organizations. These are the standards making
process. Creating a standard is a long process, not to be undertaken lightly. First, a consensus must be
reached that a standard is needed. In most cases this is obvious. Second, the terms of reference need
to be created. This becomes the governing document for the entire effort. If defines the intended
applications. Based on these applications, requirements can be set on the attributes of the speech
coder: quality, complexity, bit rate, and delay. The requirements will later determine the test program
that is needed to ascertain whether any candidates are suitable.

Finally, the members of the group need to define a schedule for doing the work. There needs to
be an initial period to allow proponents to design coders that are likely to meet the requirements. A
deadline is set for submissions. The services of one or more subjective test labs need to be secured
and a test plan needs to be defined. A host lab is also needed to process all of the data that will be used
in the Selection Test. Some criteria are needed for determining how to make the selection. Based
on the selection, a draft standard needs to be written. Only after the standard is fully specified can
manufacturers begin to produce implementations of the standard.

45.4.1 Current ITU Waveform Signal Coders

Table 45.1 describes current ITU speech coding recommendations that are based on sample-by-
sample scalar quantization. Three of these coders operate in the time domain on the original sampled
signal while the fourth is based on a two-band sub-band coder for wideband speech.

TABLE 45.1 ITU Waveform Speech Coders
Standard body ITU ITU ITU ITU

Number G.711 G.726 G.727 G.722

Year 1972 1990 1990 1988

Type of coder Companded PCM ADPCM ADPCM SBC/ADPCM

Bit rate 64 kb/s 16–40 kb/s 16–40 kb/s 48, 56 64 kb/s

Quality Toll ≤ Toll ≤ Toll Commentary

Complexity
MIPS � 1 1 1 10
RAM 1 byte < 50 bytes < bytes 1 K words

Delay
Frame size 0.125 ms 0.125 ms 0.125 ms 1.5 ms

Specification type
Fixed point Bit exact Bit exact Bit exact Bit exact

The CCITT standardized two 64 kb/s companded PCM coders in 1972. North America and Japan
use µ -law PCM. The rest of the world uses A-law PCM. Both coders use 8 bits to represent the
signal. Their effective signal-to-noise ratio is about 35 dB. The tables for both of the G.711 quantizer
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characteristics are contained in [19]. Both coders are considered equivalent in overall quality. A
tandem encoding with either coder is considered equivalent to dropping the least significant bit
(which is equivalent to reducing the bit rate to 56 kb/s). Both coders are extremely sensitive to bit
errors in the most significant bits. Their complexity is very low.

32 kb/s ADPCM was first standardized by the ITU in 1984 [26]–[28]. Its primary application was
intended to be digital circuit multiplication equipment (DCME). In combination with digital speech
interpolation, a 5:1 increase in the capacity of undersea cables and satellite links was realized for
voice conversations. An additional reason for its creation was that such links often encountered the
problem of having µ-law PCM at one end and A-law at the other. G.726 can accept either µ-law or
A-law PCM as inputs or outputs. Perhaps its most unique feature is a property called synchronous
tandeming. If a circuit involves two ADPCM codings with a µ -law or A-law encoding in-between,
no additional degradation occurs because of the second encoding. The second bit stream will be
identical to the first! In 1986 the Recommendation was revised to eliminate the all-zeroes codeword
and so that certain low rate modem signals would be passed satisfactorily. In 1988 extensions for 24
and 40 kb/s were added and in 1990 the 16 kb/s rate was added. All of these additional rates were
added for use in digital circuit multiplication equipment applications.

G.727 includes the same rates as G.726, but all of the quantizers have an even number of levels. The
2-bit quantizer is embedded in the 3-bit quantizer, which is embedded in the 4-bit quantizer, which
is embedded in the 5-bit quantizer. The is needed for Packet Circuit Multiplex Equipment (PCME)
where the least significant bits in the packet can be discarded when there is an overload condition.

Recommendation G.722 is a wideband speech coding standard. Its principal applications are
teleconferences and videoteleconferences [29]. The wider bandwidth (50 – 7000 Hz) is more natural
sounding and less fatiguing than telephone bandwidth (200 – 3200 Hz). The wider bandwidth
increases the intelligibility of the speech, especially for fricative sounds such as /f/ and /s/, which
are difficult to distinguish for telephone bandwidth. The G.722 coder is a two-band sub-band
coder with ADPCM coding in both bands. The ADPCM is similar in structure to that of the G.727
recommendation. The upper band uses an ADPCM coder with a 2-bit adaptive quantizer. The lower
band uses an ADPCM coder with an embedded 4-5-6 bit adaptive quantizer. This makes the rates of
48, 56, and 64 kb/s all possible. A 24-tap quadrature mirror filter is used to efficiently split the signal.

45.4.2 ITU Linear Prediction Analysis-by-Synthesis Speech Coders

Table 45.2 describes three current analysis-by-synthesis speech coder recommendations of the ITU.
All three are block coders based on extensions of the original multipulse LPC speech coder.

TABLE 45.2 ITU Linear Prediction Analysis-By-Synthesis Speech

Coders
Standard body ITU ITU ITU

Number G.728 G.729 G.723.1

Year 1992 and 1994 1995 1995

Type of coder LD-CELP CS-ACELP MPC-MLQ and ACELP

Bit rate 16 kb/s 8 kb/s 6.3 & 5.3 kb/s

Quality Toll Toll ≤ Toll

Complexity
MIPS 30 ≤ 22 ≤ 16
RAM 2 K < 2.5 K 2.2 K

Delay
Frame size 0.625 ms 10 ms 30 ms
Look ahead 0 5 ms 7.5 ms

Specification type
Floating point Algorithm exact None None
Fixed point Bit exact Bit exact C Bit exact C
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G.728 Low-Delay CELP (LD-CELP) [30] is a backward adaptive CELP coder whose quality is
equivalent to that of 32 kb/s ADPCM. It was initially specified as a floating point CELP coder that
required implementers to follow exactly the algorithm specified in the recommendation. A set of
test vectors for verifying correct implementation was created. Subsequently, a bit exact fixed point
specification was requested and completed in 1994. The performance of G.728 has been extensively
tested by SG12. It gives robust performance for signals with background noise or music. It is very
robust to random bit errors, more so than previous ITU standards G.711, G.726, G.727, and the
newer standards described below. In addition to passing low bit rate modem signals as high as 2400
bps, it passes all network signaling tones.

In response to a request from CCIR Task Group 8/1 for a speech coder for wireless networks
as envisioned in the Future Public Land Mobile Telecommunication Service (FPLMTS), the ITU
initiated a work program for a toll quality 8 kb/s speech coder which resulted in G.729. It is a forward
adaptive CELP coder with a 10-ms frame size that uses algebraic CELP (ACELP) excitation.

The work program for G.723.1 was initiated in 1993 by the ITU as part of a group of standards
to specify a low bit rate videophone for use on the public switched toll networks (PSTN) carried
over a high speed modem. Other standards in this group include the video coder, modem, and
data multiplexing scheme. A dual rate coder was selected. The two rates differ primarily by their
excitation scheme. The higher rate used Multipulse LPC with Maximum Likelihood Quantization
(MPC-MLQ) while the lower rate used ACELP. G.723.1 and G.729 are the first ITU coders to be
specified by a bit exact fixed point ANSI C code simulation of the encoder and decoder.

45.4.3 Digital Cellular Speech Coding Standards

Table 45.3 describes the first and second generation of speech coders to be standardized for digital
cellular telephony. The first generation coders provided adequate quality. Two of the second gener-
ation coders are so-called half-rate coders that have been introduced in order to double the capacity
of the rapidly growing digital cellular industry. Another generation of coders will soon follow them
in order to bring the voice quality of digital cellular service up to that of current wireline network
telephony.

TABLE 45.3 Digital Cellular Telephony Speech Coders
Standard body CEPT ETSI TIA TIA RCR RCR

Standard name GSM GSM 1/2 IS-54 IS-96 PDC PDC 1/2
Rate Rate

Type of coder RPE-LTP VSELP VSELP CELP VSELP PSI-CELP

Date 1987 1994 1989 1993 1990 1993

Bit rate 13 kb/s 5.6 kb/s 7.95 kb/s 0.8 to 8.5 6.7 kb/s 3.45 kb/s

Quality < toll = GSM = GSM < GSM < GSM = PDC

Est. complexity
MIPS 4.5 30 20 20 20 50
RAM 1K 4K 2K 2K 2K 4K

Delay
Frame size 20 ms 20 ms 20 ms 20 ms 20 ms 40 ms
Look ahead 0 5 ms 5 ms 5 ms 5 ms 10 ms

Specification type Bit Bit Bit Bit Bit Bit
fixed point exact exact C stream stream stream stream

The RPE-LTP coder [33] was standardized by the Group Special Mobile (GSM) of CEPT in 1987
for pan-European digital cellular telephony. RPE-LTP stands for Regular Pulse Excitation with Long-
Term Predictor. The GSM full-rate channel supports 22.8 kb/s. The additional 9.8 kb/s is used for
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channel coding to protect the coder from bit errors in the radio channel. Voice activity detection
and discontinuous transmission are included as part of this standard. In addition to digital cellular
telephony, this coder has since been used for other applications, such as messaging, because of its low
complexity.

The GSM half-rate coder was standardized by ETSI (an off-shoot of CEPT) in order to double the
capacity of the GSM cellular system. The coder is a 5.6 kb/s VSELP coder [23]. A greater percentage
of the channel bits are used for error protection because the half-rate channel has less frequency
diversity than the full-rate system. The overall performance was measured to be similar to that of
RPE-LTP, except for certain signals with background noise.

Vector Sum Excitation Liner Prediction Coding (VSELP) was standardized by the Telecommunica-
tions Industry Association (TIA) for time division multiple access (TDMA) digital cellular telephony
in North America as a part of Interim Standard 54 (IS-54). It was selected on the basis of subjective
listening tests in 1989. The quality of this coder and RPE-LTP are somewhat different in the character
of their distortion, but they usually receive about the same MOS in subjective listening tests. IS-54
does not have a bit exact specification. Implementations need only conform to the bit stream specifi-
cation. The TIA does have a qualification procedure, IS-85, to verify whether the performance of an
implementation is good enough to be used for digital cellular [34]. In addition, Motorola provided a
floating point C program for their version of the coder, which implementers may use as a guideline.

The IS-96 coder [35] was standardized by the TIA for code division multiple access (CDMA) digital
cellular telephony in North America. It is a part of IS-96 and is used in the system specified by IS-95.
CDMA system capacity is its most attractive feature. When there is no speech, the rate of the channels
is reduced. IS-96 is a variable rate CELP coder which uses digital speech interpolation to achieve
this rate reduction. It runs at 8.5 kb/s during most of a talk spurt. When there is no speech on the
channel, it drops down to just 0.8 kb/s. At this rate, it is just supplying statistics about the background
noise. These two rates are the ones most often used during operation of IS96, although the coder
does transition through the two intermediate rates of 2 and 4 kb/s. The validation procedure for this
coder is similar to that of IS-85.

The Personal Digital Cellular (PDC) full-rate speech coder was standardized by the Research and
Development Center for Radio Systems (RCR) for TDMA digital cellular telephone service in Japan
as RCR STD-27B. The coder is very similar to IS-54 VSELP. The principal difference is that instead
of two vector sum excitation codebooks, there is only one.

The PDC half-rate coder [37] was standardized by RCR to double the capacity of the Japanese
TDMA PDC system. Pitch synchronous innovation CELP (PSI-CELP) uses fixed codebooks that are
modified as a function of the pitch in order to improve the speech quality for such a low rate coder.
If the pitch period is less than the frame size, then all vectors in the fixed codebook for that frame are
made periodic. It has a background noise pre-processor as part of the standard. When it senses that
the background noise exceeds a certain threshold, the pre-processor attempts to improve the quality
of the speech. To date, this coder appears to be the most complex yet standardized.

45.4.4 Secure Voice Standards

Table 45.4 presents information about three secure voice standards. Two are existing standards, while
the third describes a standard that the U.S. government hopes to promulgate in 1996.

FS1015 [12] is a U.S. Federal Standard 2.4 kb/s LPC vocoder that was created over a long period of
time beginning in the late 1970s. It was standardized by the U.S. Department of Defense (DoD) and
later the North Atlantic Treaty Organization (NATO) before becoming a U.S. Federal Standard in
1984. It was always intended for secure voice terminals. It does not produce natural sounding speech,
but over the years its intelligibility has been greatly improved through a series of changes to both its
encoder and decoder. Remarkably, these changes never required changes to the bit stream. Presently
the intelligibility of FS1015 for clean input speech having telephone bandwidth is almost equivalent
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TABLE 45.4 Secure Telephony Speech Coding Standards
Standard body U.S. Dept. of Defense U.S. Dept. of Defense U.S. Dept. of Defense

Standard number FS-1015 FS-1016 ?

Type of coder LPC vocoder CELP Model-based

Year 1984 1991 1996

Bit rate 2.4 kb/s 4.8 kb/s 2.4 kb/s

Quality high DRT < IS-54 = FS-1016

Complexity
MIPS 20 19 41a

RAM 2K 1.5K Unknown

Delay
Frame size 22.5 ms 30 ms 22.5
Look ahead 90 ms 7.5 ms 23

Specification type Bit stream Bit stream Bit stream

a Actual goal is 40 MIPS floating point or 80 MIPS fixed point.

to that of the source material as measured by the diagnostic rhyme test (DRT). Most recently an 800
bps vector quantized version of FS1015 has been standardized by NATO [39].

FS1016 [40] is the result of a project undertaken by DoD to increase the naturalness of the secure
telephoneunit III (STU-3)by the introductionof4.8kb/smodemtechnology. DoDsurveyedavailable
4.8 kb/s speech coder technology in 1988 and 1989. It selected a CELP-based coder having a so-called
ternary codebook, meaning that all excitation amplitudes are +1, −1, or 0 before scaling by the gain
for that sub-frame. This allows an easier codebook search. FS1016 definitely preserves far more of
the naturalness of the original speech than FS1015, but the speech still contains many artifacts and
the quality is substantially below that of the cellular coders such as GSM of IS54. Both FS-1015 and
FS-1016 have bit stream specifications, but there are C code simulations of them available from the
government.

The next coder to be standardized by DoD is a new 2.4 kb/s coder to replace both FS1015 and
FS1016. A 3-year project was initiated in 1993 which should culminate in a new standard in 1997.
Subjective testing was done in 1993 and 1994 on software versions of potential coders and a realtime
hardware evaluation took place in 1995 and 1996 to select a best candidate. The Mixed Excitation
Linear Prediction (MELP) coder was selected [41]–[43]. The need for this coder is due to the lack
of a sufficient number of satellite channels at 4.8 kb/s. The quality target for this coder is to match
or exceed the quality and intelligibility of FS1016 for most scenarios. Many of the scenarios include
severe background noise and noisy channel conditions. At 2.4 kb/s, there is not enough bit rate
available for explicit channel coding, so the speech coder itself must be designed to be robust for
the channel conditions. The noisy background conditions have proven to be difficult for vocoders
making voiced/unvoiced classification decisions, whether the decisions are made for all bands or for
individual bands.

45.4.5 Performance

Figure 45.8 is included to give an impression of the relative performance for clean speech of most of
the standard coders that were included above. There has never been a single subjective test which
included all of the above coders. Figure 45.8 is based on the relative performances of these coders
across a number of tests that have been reported. In the case of coders that are not yet standards, their
performance is projected and shown as a circle. The vertical axis of Fig. 45.8 gives the approximate
single encoding quality for clean input speech. The horizontal axis is a logarithmic scale of bit rate.
Figure 45.8 only includes telephone bandwidth speech coders. The 7-kHz speech coders have been
omitted. Figure 45.9 compares the complexity as measured in MIPS and RAM for a fixed point DSP
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FIGURE 45.8: Approximate speech quality of speech coding standards.

FIGURE 45.9: Approximate complexity of speech coding standards.
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implementation for most of the same standard coders. The horizontal axis is in RAM and the vertical
axis is in MIPS.
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46.1 Introduction

Text-to-speech synthesis has had a long history, one that can be traced back at least to Dudley’s
“Voder”, developed at Bell Laboratories and demonstrated at the 1939 World’s Fair [1]. Practical
systems for automatically generating speech parameters from a linguistic representation (such as a
phoneme string) were not available until the 1960s, and systems for converting from ordinary text
into speech were first completed in the 1970s, with MITalk being the best-known such system [2].
Many projects in text-to-speech conversion have been initiated in the intervening years, and papers
on many of these systems have been published.1

It is tempting to think of the problem of converting written text into speech as “speech recognition
in reverse”: current speech recognition systems are generally deemed successful if they can convert
speech input into the sequence of words that was uttered by the speaker, so one might imagine
that a text-to-speech (TTS) synthesizer would start with the words in the text, convert each word
one-by-one into speech (being careful to pronounce each word correctly), and concatenate the result
together. However, when one considers what literate native speakers of a language must do when
they read a text aloud, it quickly becomes clear that things are much more complicated than this
simplistic view suggests. Pronouncing words correctly is only part of the problem faced by human
readers: in order to sound natural and to sound as if they understand what they are reading, they
must also appropriately emphasize (accent) some words, and deemphasize others; they must “chunk”
the sentence into meaningful (intonational) phrases; they must pick an appropriate F0 (fundamental
frequency) contour; they must control certain aspects of their voice quality; they must know that a
word should be pronounced longer if it appears in some positions in the sentence than if it appears
in others because segmental durations are affected by various factors, including phrasal position.

1For example, [3] gives an overview of recent Dutch efforts in this area. Audio examples of several current projects on
TTS can be found at the WWW URL http://www.cs.bham.ac.uk/∼jpi/synth/museum.html.
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What makes reading such a difficult task is that all writing systems systematically fail to specify
many kinds of information that are important in speech. While the written form of a sentence
(usually) completely specifies the words that are present, it will only partly specify the intonational
phrases (typically with some form of punctuation), will usually not indicate which words to accent
or deaccent, and hardly ever give information on segmental duration, voice quality, or intonation.
(One might think that a question mark “?” indicates that a sentence should be pronounced with a
rising intonation: generally, though, a question mark merely indicates that a sentence is a question,
leaving it up to the reader to judge whether this question should be rendered with a rising intonation.)
The orthographies of some languages — e.g., Chinese, Japanese, and Thai — fail to give information
on where word boundaries are, so that even this needs to be figured out by the reader.2 Humans
are able to perform these tasks because, in addition to being knowledgeable about the grammar of
their language, they also (usually) understand the content of the text that they are reading, and can
thus appropriately manipulate various extragrammatical “affective” factors, such as appropriate use
of intonation and voice quality.

The task of a TTS system is thus a complex one that involves mimicking what human readers
do. But a machine is hobbled by the fact that it generally “knows” the grammatical facts of the
language only imperfectly, and generally can be said to “understand” nothing of what it is reading.
TTS algorithms thus have to do the best they can making use, where possible, of purely grammatical
information to decide on such things as accentuation, phrasing, and intonation — and coming up
with a reasonable “middle ground” analysis for aspects of the output that are more dependent on
actual understanding.

It is natural to divide the TTS problem into two broad subproblems. The first of these is the
conversion of text — an imperfect representation of language, as we have seen — into some form
of linguistic representation that includes information on the phonemes (sounds) to be produced,
their duration, the locations of any pauses, and the F0 contour to be used. The second — the actual
synthesis of speech — takes this information and converts it into a speech waveform. Each of these
main tasks naturally breaks down into further subtasks, some of which have been alluded to. The
first part, text and linguistic analysis, may be broken down as follows:

• Text preprocessing: including end-of-sentence detection, “text normalization” (expansion
of numerals and abbreviations), and limited grammatical analysis, such as grammatical
part-of-speech assignment.

• Accent assignment: the assignment of levels of prominence to various words in the sen-
tence.

• Word pronunciation: including the pronunciation of names and the disambiguation of
homographs.3

• Intonational phrasing: the breaking of (usually long) stretches of text into one or more
intonational units.

• Segmental durations: the determination, on the basis of linguistic information computed
thus far, of appropriate durations for phonemes in the input.

• F0 contour computation.

2Even in English, single orthographic words, e.g., AT&T, can actually represent multiple words — A T and T.
3A homograph is a single written word that represents two or more different lexical entries, often having different pronun-

ciations: an example would be bass, which could be the word for a musical range — with pronunciation /bejs/ — or a fish
— with pronunciation /bæs/. We transcribe pronunciations using the International Phonetic Association’s (IPA) symbol
set. Symbols used in this chapter are defined in Table 46.1.
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Speech synthesis breaks down into two parts:

• The selection and concatenation of appropriate concatenative units given the phoneme
string.

• The synthesis of a speech waveform given the units, plus a model of the glottal source.

46.2 Text Analysis and Linguistic Analysis

46.2.1 Text Preprocessing

The input to TTS systems is text encoded using an electronic coding scheme appropriate for the
language, such as ASCII, JIS (Japanese), or Big-5 (Chinese). One of the first tasks facing a TTS system
is that of dividing the input into reasonable chunks, the most obvious chunk being the sentence. In
some writing systems there is a designated symbol used for marking the end of a declarative sentence
and for nothing else — in Chinese, for example, a small circle is used — and in such languages
end-of-sentence detection is generally not a problem. For English and other languages we are not so
fortunate because a period, in addition to its use as a sentence delimiter, is also used, for example,
to mark abbreviations: if one sees the period in Mr., one would not (normally) want to analyze
this as an end-of-sentence marker. Thus, before one concludes that a period does in fact mark the
end of a sentence, one needs to eliminate some other possible analyses. In a typical TTS system,
text analysis would include an abbreviation-expansion module; this module is invoked to check for
common abbreviations which might allow one to eliminate one or more possible periods from further
consideration. For example, if a preprocessor for English encounters the string Mr. in an appropriate
context (e.g., followed by a capitalized word), it will expand it as mister and remove the period.

Of course, abbreviation expansion itself is not trivial, since many abbreviations are ambiguous.
For example, is St. to be expanded as Street or Saint? Is Dr., Doctor or Drive? Such cases can be
disambiguated via a series of heuristics. For St., for example, the system might first check to see if
the abbreviation is followed by a capitalized word (i.e., a potential name), in which case it would be
expanded as Saint; otherwise, if it is preceded by a capitalized word, a number, or an alphanumeric
(49th), it would be expanded as Street. Another problem that must be dealt with is the conversion of
numbers into words: 232 should usually be expanded as two hundred thirty two, whereas if the same
sequence occurs as part of 232-3142 — a likely telephone number — it would normally be read two
three two.

In languages like English, tokenization into words can to a large extent be done on the basis of
white space. In contrast, in many Asian languages, including Chinese, the situation is not so simple
because spaces are never used to delimit words. For the purposes of text analysis it is therefore
generally necessary to “reconstruct” word boundary information. A minimal requirement for word
segmentation is an on-line dictionary that enumerates the wordforms of the language. This is not
enough on its own, however, since there are many words that will not be found in the dictionary;
among these are personal names, foreign names in transliteration, and morphological derivatives
of words that do not occur in the dictionary. It is therefore necessary to build models of these
non-dictionary words; see [4] for further discussion.

In addition to lexical analysis, the text-analysis portion of a TTS system will typically perform
syntactic analysis of various kinds. One commonly performed analysis is grammatical part-of-
speech assignment, as information on the part of speech of words can be useful for accentuation and
phrasing, among other things. Thus, in a sentence like they can can cans, it is useful for accentuation
purposes to know that the first can is a function word — an auxiliary verb, whereas the second
and third are content words — respectively a verb and a noun. There are a number of part-of-speech
algorithms available, perhaps the best known being the stochastic method of [5], which computes the
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most likely analysis of a sequence of words, maximizing the product of the lexical probabilities of the
parts-of-speech in the sentence (i.e., the possible parts of speech of each word and their probabilities),
and the n-gram probabilities (probabilities of n-grams of parts of speech), which provide a model of
the context.

46.2.2 Accentuation

In languages like English, various words in a sentence are associated with accents, which are usually
manifested as upward or downward movements of fundamental frequency. Usually, not every word
in the sentence bears an accent, however, and the decision on which words should be accented and
which should be unaccented is one of the problems that must be addressed as part of text analysis.
It is common in prosodic analysis to distinguish three levels of prominence. Two are accented and
unaccented, as just described, and the third is cliticized. Cliticized words are unaccented but in
addition have lost their word stress, so that they tend to be durationally short: in effect, they behave
like unstressed affixes, even though they are written as separate words.

A good first step in assigning accents is to make the accentual determination on the basis of broad
lexical categories or parts of speech. Content words — nouns, verbs, adjectives, and perhaps adverbs,
tend in general to be accented; function words, including auxiliary verbs and prepositions tend to
be deaccented; short function words tend to be cliticized. But accenting has a wider function than
merely communicating lexical category distinctions between words. In English, one important set
of constructions where accenting is more complicated than what might be inferred from the above
discussion are complex noun phrases — basically, a noun preceded by one or more adjectival or
nominal modifiers. In a “discourse-neutral” context, some constructions are accented on the final
word (Madison Avenue), some on the penultimate (Wall Street, kitchen towel rack), and some on an
even earlier word (sump pump factory). The assignment of accent to complex noun phrases depends
on complex lexical and semantic factors; see [6].

Accenting is not only sensitive to syntactic structure and semantics, but also to properties of the
discourse. One straightforward effect is contrast, as in the example I didn’t ask for cherry pie, I asked
for apple pie. For most speakers, the “discourse neutral” accent would be on pie, but in this example
there is a clear intention to contrast the ingredients in the pies, and pie is thus deaccented to effect the
contrast between cherry and apple. See [7] for a discussion of how these kind of effects are handled
in a TTS system for English. Note, while humanlike accenting capabilities are possible in many cases,
there are still some intractable problems. For example, just as one would often deaccent a word that
had been previously mentioned, so would one often deaccent a word if a supercategory of that word
had been mentioned: My son wants a Labrador, but I’m allergic to dogs. Handling such cases in any
general way is beyond the capabilities of current TTS systems.

46.2.3 Word Pronunciation

The next stage of analysis involves computing pronunciations for the words in the input, given the
orthographic representation of those words. The simplest approach is to have a set of “letter-to-
sound” rules that simply map sequences of graphemes into sequences of phonemes, along with
possible diacritic information, such as stress placement. This approach is naturally best suited to
languages where there is a relatively simple relation between orthography and phonology: languages
such as Spanish or Finnish fall into this category. However, languages like English manifestly do not,
so it has generally been recognized that a highly accurate word pronunciation module must contain
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a pronouncing dictionary that, at the very least, records words whose pronunciation could not be
predicted on the basis of general rules. However, having a dictionary that is merely a list of words
presents us with familiar problems of coverage: many text words occur that are not to be found in the
dictionary, including morphological derivatives from known words, or previously unseen personal
names.

For morphological derivatives, standard techniques for morphological analysis [2, 8] can be ap-
plied to achieve a morphological decomposition for a word. The pronunciation of the whole can
then, in general, be computed from the (presumably known) pronunciation of the morphological
parts, applying appropriate phonological rules of the language. For novel personal names, additional
mechanisms may be necessary since novel names cannot always be related morphologically to previ-
ously seen ones. One such additional method involves computing the pronunciation of a new name
by analogy with the pronunciation of a similar name [9, 10]. For example, imagine that we have the
name Califano in our dictionary and that we know its pronunciation: then we could compute the
pronunciation of a hypothetical name Balifano by noting that both names share the “suffix” alifano.
The pronunciation of Balifano can then be computed by removing the phoneme /k/, corresponding
to the letter C in Califano, and replacing it with the phoneme /b/.

There are some word forms that are inherently ambiguous in pronunciation, and for which a word
pronunciation module as just described can only return a set of possible pronunciations, from which
one must then be chosen. A straightforward example is the word Chevy, which is most commonly
pronounced /

∫ ′
εvi/, but is /t

∫ ′
εvi/ in the name Chevy Chase, so in this case one could succeed by

simply storing the bigram Chevy Chase. But n-gram models do not solve all cases of homograph

TABLE 46.1 IPA Symbols Used in this

Chapter

disambiguation. So, the word bass, is most likely to be pronounced /bæs/ in a “fishy” context like he
was fishing for bass, but /bej s/ in a musical context like he plays bass. What defines the context as being
musical or “fishy” is not characterizable in terms of n-grams, but rather relates to the occurrence of
certain words (e.g., fish, lake, boat vs. play, sing, orchestra) in a wider context. A method proposed by
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Yarowsky [11, 12] allows for both local (n-gram) context and wide context to be used in homograph
disambiguation, and excellent results have been achieved using this approach.4

46.2.4 Intonational Phrasing

In reading a long sentence, speakers will typically break the sentence up into several phrases, each of
which can be said to “stand alone” as an intonational unit. If punctuation is used liberally so that
there are relatively few words between the commas, semicolons, or periods, then a reasonable guess
at an appropriate phrasing would be simply to break the sentence at the punctuation marks (though
this is not always appropriate [13]). The real problem comes when long stretches occur without
punctuation; in such cases, human readers would normally break the string of words into phrases,
and the problem then arises of where to place these breaks.

The simplest approach is to have a list of words, typically function words, that are likely indicators
of good places to break [1]. One has to use some caution, however, because while a particular function
word such as and may coincide with a plausible phrase break in some cases (He got out of the car and
walked towards the house), in other examples it might coincide with a particularly poor place to break
as in I was forced to sit through a dog and pony show that lasted most of Wednesday afternoon. Other
approaches to intonational phrasing have been proposed in the literature, including methods that
depend on syntactic parsers of various degrees of sophistication [13, 14]. An alternative approach,
described in [15], uses a decision tree model [16, 17] that is trained on a corpus of text annotated
with prosodic phrase-boundary information.

46.2.5 Segmental Durations

Having computed which phonemes are to be produced by the synthesizer, it is necessary to decide
how long to make each one. In this section we briefly describe the methods used for computing
segmental durations: the reader is referred to [18] for an extended discussion of this topic.

What duration to assign to a phonemic segment depends on many factors, including:

• The identity of the segment in question. For example, in many dialects of English, the
vowel /æ/ has a longer intrinsic duration than the vowel /ı/.

• The stress of the syllable of which the segment is a member. For example, vowels in
stressed syllables tend to be longer than vowels in unstressed syllables.

• Whether the syllable of which the segment is a member bears an accent. Accented syllables
tend to be longer than otherwise identical unaccented syllables.

• The quality of the surrounding segments. For example, a vowel preceding a voiced
consonant in the same syllable tends to be longer than the same vowel preceding a voiceless
consonant.

• The position of the segment in the phrase: elements close to the ends of phrases tend to
be longer than elements more internal to the phrase.

Various approacheshavebeen taken tomodeling segmental durations inTTS systems. Onemethod
involvesduration rules, whichare rulesof the form“if the segment isX and it is inphrase-finalposition,
then lengthen X by n milliseconds” [19, 20]. In rule-based systems of this kind, it is not unusual for
the duration of a given segment to be rewritten several times as the conditions for the application of

4Clearly theabove-describedmethod forhomographdisambiguationcanalsobeapplied toother formally similarproblems
in TTS, such as whether St. to be expanded as Saint or Street, or 747 is to be read as a number seven hundred and forty
seven or the name of an aircraft seven forty seven.
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the various rules are considered. The rule-based approach can be formalized explicitly in terms of
the second approach — duration models — which are mathematical expressions that prescribe how
the various conditioning factors are to be used in computing the duration of a segment [19]; the
successive application of the rules can, in effect, be “compiled” into a single mathematical expression
that implements the combined effect of the rules. As argued in [18], all extant duration models can
be viewed as instances of a more general sum-of-products model, where the duration of a segment is
predicted by a formula of the general form:

DUR(f) =
∑

i∈T

∏

j∈Ii

Si,j (fj ) (46.1)

Here the duration assigned to a feature vector — DUR(f) — is computed by scaling each factor
fj in the ith product term by a factor scale Si,j ; computing the product of all scaled factors within
each product term; and then summing over all i product terms. Rather than deciding a priori on a
particular sums-of-products model (or set of such models) within the space of all possible models,
one approach taken to segmental duration is to use exploratory data analysis to arrive at models
whose predictions show a good fit to durations from a corpus of labeled speech [18].

More specifically, we start with a text corpus that (ideally) has a good coverage both of various
phonemes and of the factors (and their combinations) that are deemed likely to be relevant for du-
ration. A native speaker of the language reads this text and the speech is segmented and labeled.
Using the text-analysis modules of TTS, with some possible hand correction, we automatically com-
pute the sequence of phonemes, and the feature vectors (including features on stress, accent, phrasal
position, etc.) associated with each phoneme. Given the feature vectors, various sums-of-products
models are compared and their predictions of the values of the observed segmental durations are
evaluated. In general, different specific duration models may be better suited to different sets of
conditions than others: for example, in the English duration system, intervocalic consonants are
associated with a different sums-of-products model than consonants that occur in clusters. In the
actual implementation of segmental duration predictions, a decision tree is used to determine, on
the basis of contextual factors appropriate to the segment at hand, what particular sums-of-products
model to use; this model is then used to compute the duration of the segment.

Designing a corpus with good coverage of relevant factors is a non-trivial task in itself: the basic
problem is to provide a set that has maximal coverage with the minimal amount of text to be read
by a speaker, and analyzed. The method that we use involves starting with a large corpus of text in a
language and automatically predicting the phonemic segments along with their features (again, using
text analysis components for the language). A greedy algorithm is then applied to arrive at a minimal
set of sentences that have good (ideally total) coverage of the desired feature vectors.

46.2.6 Intonation

Having computed linguistic information such as the sequence of segments to be produced, their
duration, the prominence of the various words, and the locations of prosodic boundaries, the next
thing that a TTS system needs to compute is an intonation contour. There are almost as many models
of intonation implemented in TTS systems as there are TTS systems, and we do not have the space
to review these different approaches here. Suffice it to say that most intonation models that have
actually been incorporated into working TTS systems can be classified into one of three “schools”:

• The Fujisaki school [21, 22, inter alia]. An intonation contour for a phrase is computed
from a phrase impulse and some number of accent impulses. These impulses are con-
volved with a smoothing function to produce phrase and accent curves, which are then
summed to produce the final contour.
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• The Dutch school [23]. Intonation contours are represented as sequences of connected
line segments which are chosen so as to perceptually closely approximate real (smooth)
intonation contours.

• The autosegmental/metrical school [24, 25, inter alia]. Intonation contours are repre-
sented abstractly as sequences of high and low targets.

The computation of an intonation contour from a phonological representation can be illustrated
by considering the Bell Labs English TTS system, which currently uses a version of the Pierrehumbert
autosegmental model [26, 27, 28]. As the first stage in the computation of an intonation contour, a
tone-timing function sets up nominal times for each accent in the sentence. Separate routines are
called for initial boundary tones, final boundary tones, pitch accents and phrase accents. Roughly,
initial boundary tones are aligned with the silence that is placed at the beginning of each minor
phrase, whereas final boundary tones are aligned with the final vowel of each minor phrase. Phrase
accents are aligned after the final word accent of the minor phrase, if there is one; otherwise at the
end of the first vowel of the first word, or else at the end of the first phoneme. Finally, accents on
words are aligned with their associated syllables using a complex set of contextual factors. These
nominal accent times are then converted into actual F0/time pairs, by another function. F0 values
are computed dependent on the prominence of the accent (either determined automatically, or else
definable by the user), and various phrasal parameters from the intonation model, as well as the
particular type of accent involved. Finally, an F0 contour is produced by interpolating the computed
pitch/time pairs, and smoothing via convolution with a rectangular window.

46.3 Speech Synthesis

Once the text has been transformed into phonemes, and their associated durations and a fundamental
frequency contour have been computed, the system is ready to compute the speech parameters for
synthesis.

There are two independent variables in the choice of parametric computation in a TTS system.
One variable is the choice between a rule-based scheme for the computation of the parameters on the
one hand, and a concatenative scheme involving concatenation of short segments of previously uttered
speech on the other. The second variable is the actual parametric representation chosen: possible
choices include articulatory parameters, formants, LPC (linear predictive coding), spectral param-
eters, or time domain parameters. In a concatenative scheme, any parametric representation that
permits independent control of loudness, F0, voicing, timing, and possibly spectral manipulations is
appropriate. Rule-based systems are more restrictive of the choice of parameters since such schemes
rely both on our understanding of the relation between the parameters and the acoustic signals they
represent, and on our ability to compute the dynamics of the parameters as they move from one
sound to another. Thus far only articulatory parameters and formants have been used in rule-based
systems. The best-known examples of a formant-based synthesizer are the Klatt synthesizer and its
commercial offshoot DECtalk.

Rule-based systems are space-efficient because they eliminate the need to store speech segments.
Rule-based approaches also make it easier, in principle, to implement new speaker characteristics
for different voices, as well as different phone inventories for new dialects and languages. However,
since the dynamics of the parameters are very difficult to model it requires a great deal more effort to
produce a rule-based system than it does to produce a concatenative system of comparable quality.
Given the right choice of units, a concatenative scheme is able to store the dynamics of the speech
signal and thus produce high quality synthetic sound. The choice of the exact parameters depends
on what the designer values in such a system. Waveform representations — such as PSOLA [29] —
have a high sound quality, but they are limiting in terms of the ability to alter the sound, and thus

c©1999 by CRC Press LLC



FIGURE 46.1: Source-filter model for speech synthesis.

far, no one has been able to change the spectral parameters in a time domain system. Articulatory
parameters or formants, on the other hand, can be successfully manipulated. However, the speech
quality produced by using these parameters is somewhat degraded because there are no reliable
methods to extract these parameters and even in a plain coding application (analysis and resynthesis
without manipulations) these methods produce degradation of the speech signal.

Other systems use a concatenative approach. In this approach, parametrized short speech segments
of natural speech are connected to form a representation of the synthetic speech. The majority of
the natural speech segments are merely transitions between pairs of phonemes. However, due to the
large contextual variation of some phonemes, some segments consisting of three or more phoneme
elements are often necessary; such elements consist of the transition from the first phoneme to the
second, and a transition from the penultimate phoneme to the last, but the intermediate phonemes
are stored completely. For the Bell Labs English system, there are approximately 2900 different speech
elements — also called dyads — in the acoustic inventory, and these elements are sufficient to make
up all the legal phoneme combinations for English.

The concatenative approach to speech synthesis requires that speech samples be stored in some
parametric representation that will be suitable for connecting the segments and changing the signal’s
characteristics of loudness, F0, and spectrum. One method for changing the characteristics of natural
speech is to analyze the speech in terms of a source/filter model, as diagramed in Fig. 46.1.

This model of speech synthesis has a variety of independent input controls. Starting at the left side
of the figure, we show two possible source generators: a noise generator and a simple pulse generator.
The noise generator has no controlling input whereas the pulse generator is controlled by the F0
parameter; the F0 parameter specifies the distance between any two pulses thus controlling the F0
of the periodic source. These inputs are selected by a switch which is controlled by a voicing flag.
It is also possible to have a mixer to control the relative contribution of the noise and pulse source,
and to insert a glottal pulse with additional controls for the shape of the glottal source in place of
the simple pulse generator. To the right of the switch, we have a multiplier that multiplies the source
by an amplitude parameter. This serves as the loudness control for the system. The signal from the
multiplier is fed into a filter controlled by the filter coefficients which are varied slowly to shape the
speech spectrum.

The source/filter model can be used to replicate naturally spoken speech when the parameters
are obtained by analysis of natural speech. Speech can be parametrized by an amplitude control,
voiced/voiceless flag, F0, and filter coefficients at a small interval (on the order of 5 msec. to 15 msec.)
The loudness control is determined from the power of the speech at the time frame of the analysis. F0
extraction algorithms determine the voicing of the speech as well as the fundamental frequency. The
filter parameters can be determined by various analysis techniques. The parameters obtained from
the analysis can be used to drive the source filter model to reproduce the analyzed speech. However,
these parameters can also be varied independently to change the speech. The ability to alter the
analysis parameters is crucial to a concatenative approach, where the spectral parameters have to be
smoothed and interpolated whenever two elements from different utterances are connected, or when
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the duration of the speech has to be altered. Of course, the fundamental frequency of the original
speech is completely discarded and replaced during synthesis by a rule-generated F0, as described
earlier.

46.4 The Future of TTS

Using current methods such as those outlined in this chapter, it is possible to produce speech output
that is of high intelligibility and reasonable naturalness, given unrestricted input text. (See [30] for a
discussion of methods for evaluating TTS systems.) However, there is still much work to be done in
all areas of the problem, including: improving voice quality, and allowing for greater user control over
aspects of voice quality; producing better models of intonation to allow for more natural-sounding
F0 contours; and improving linguistic analysis so that more accurate information on contextually
appropriate word pronunciation, accenting, and phrasing can be computed automatically. This latter
area — linguistic analysis — is particularly crucial: most high-quality TTS systems allow for user
control of the output speech by means of various “escape sequences”, which can be inserted into the
input text. By use of such escape sequences, it is possible to produce highly appropriate and natural-
sounding output. What is still lacking in many cases are natural-language analysis techniques that
can mimic what a human annotator is able to do.
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[23] ’t Hart, J., Collier, R. and Cohen, A., A Perceptual Study of Intonation: An Experimental-

Phonetic Approach to Speech Melody, Cambridge University Press, Cambridge, 1990.
[24] Pierrehumbert, J.B., The Phonology and Phonetics of English Intonation, Ph.D. thesis, Mas-

sachusetts Institute of Technology, Sept. 1980.
[25] Ladd, D.R., The Structure of Intonational Meaning, Indiana University Press, Bloomington,

Ind., 1980.
[26] Liberman, M. and Pierrehumbert, J., Intonational invariants under changes in pitch range and

length, in Language Sound Structure, Aronoff, M. and Oehrle, R., Eds., MIT Press, Cambridge,
1984.

[27] Anderson, M., Pierrehumbert, J. and Liberman, M., Synthesis by rule of English intonation
patterns, in Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, vol.1, ICASSP, San Diego, 2.8.1–2.8.4, 1984.

[28] Silverman, K., Utterance-internal prosodic boundaries, inProceedings of the Second Australian
International Conference on Speech Science and Technology, Sydney, Australia, 86–91, 1988.

[29] Charpentier, F. and Moulines, E., Pitch-synchronous waverform processing techniques for
text-to-speech synthesis using diphones, Speech Commun., 9(5/6), 453–467, 1990.

[30] van Santen, J., Perceptual experiments for diagnostic testing of text-to-speech systems, Com-
puter Speech and Language, 7, 49–100, 1993.

c©1999 by CRC Press LLC



Speech Recognition by Machine

Lawrence R. Rabiner
AT&T Labs — Research

B. H. Juang
Bell Laboratories
Lucent Technologies

47.1 Introduction
47.2 Characterization of Speech Recognition Systems
47.3 Sources of Variability of Speech
47.4 Approaches to ASR by Machine

The Acoustic-Phonetic Approach [1] • “Pattern-Matching”
Approach [2] • Artificial Intelligence Approach [3, 4]

47.5 Speech Recognition by Pattern Matching
Speech Analysis • Pattern Training • Pattern Matching • De-
cision Strategy • Results of Isolated Word Recognition

47.6 Connected Word Recognition
Performance of Connected Word Recognizers

47.7 Continuous Speech Recognition
Sub-Word Speech Units and Acoustic Modeling • Word Mod-
eling From Sub-Word Units • Language Modeling Within the
Recognizer • Performance of Continuous Speech Recognizers

47.8 Speech Recognition System Issues
Robust Speech Recognition [18] • Speaker Adaptation [25]
• Keyword Spotting [26] and Utterance Verification [27] •
Barge-In

47.9 Practical Issues in Speech Recognition
47.10 ASR Applications
References

47.1 Introduction

Over the past several decades a need has arisen to enable humans to communicate with machines in
order to control their actions or to obtain information. Initial attempts at providing human-machine
communications led to the development of the keyboard, the mouse, the trackball, the touch screen,
and the joy stick. However, none of these communication devices provides the richness or the ease
of use of speech which has been the most natural form of communication between humans for tens
of centuries. Hence, a need has arisen to provide a voice interface between humans and machines.
This need has been met, to a limited extent, by speech processing systems which enable a machine
to speak (speech synthesis systems) and which enable a machine to understand (speech recognition
systems) human speech. We concentrate on speech recognition systems in this section.

Speech recognition by machine refers to the capability of a machine to convert human speech to
a textual form, providing a transcription or interpretation of everything the human speaks while
the machine is listening. This capability is required for tasks in which the human is controlling the
actions of the machine using only limited speaking capability, e.g., while speaking simple commands
or sequences of words from a limited vocabulary (e.g., digit sequences for a telephone number). In
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the more general case, usually referred to as speech understanding, the machine need only recognize
a limited subset of the user input speech, namely the speech that specifies enough about the action
requested so that the machine can either respond appropriately, or initiate some action in response
to what was understood.

Speech recognition systems have been deployed in applications ranging from control of desktop
computers, to telecommunication services, to business services, and have achieved varying degrees
of success and commercialization.

In this section we discuss a range of issues involved in the design and implementation of speech
recognition systems.

47.2 Characterization of Speech Recognition Systems

A number of issues define the technology of speech recognition systems. These include:

1. The manner in which a user speaks to the machine. There are generally three modes of
speaking, including:

• isolated word (or phrase) mode in which the user speaks individual words (or
phrases) drawn from a specified vocabulary;

• connected word mode in which the user speaks fluent speech consisting entirely of
words from a specified vocabulary (e.g., telephone numbers);

• continuous speech mode in which the user can speak fluently from a large (often
unlimited) vocabulary.

2. The size of the recognition vocabulary, including:

• small vocabulary systems which provide recognition capability for up to 100 words;

• medium vocabulary systems which provide recognition capability for from 100 to
1000 words;

• large vocabulary systems which provide recognition capability for over 1000 words.

3. The knowledge of the user’s speech patterns, including:

• speaker dependent systems which have been custom tailored to each individual
talker;

• speaker independent systems which work on broad populations of talkers, most of
which the system has never encountered or adapted to;

• speaker adaptive systems which customize their knowledge to each individual user
over time while the system is in use.

4. The amount of acoustic and lexical knowledge used in the system, including:

• simple acoustic systems which have no linguistic knowledge;

• systems which integrate acoustic and linguistic knowledge, where the linguistic
knowledge is generally represented via syntactical and semantic constraints on the
output of the recognition system.

5. The degree of dialogue between the human and the machine, including:

• one-way (passive) communication in which each user spoken input is acted upon;

• system-driven dialog systems in which the system is the sole initiator of a dialog,
requesting information from the user via verbal input;
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• natural dialogue systems in which the machine conducts a conversation with the
speaker, solicits inputs, acts in response to user inputs, or even tries to clarify am-
biguity in the conversation.

47.3 Sources of Variability of Speech

Speech recognition by machine is inherently difficult because of the variability in the signal. Sources
of this variability include:

1. Within-speaker variability in maintaining consistent pronunciation and use of words and
phrases.

2. Across-speaker variability due to physiological differences (e.g., different vocal tract
lengths) regional accents, foreign languages, etc.

3. Transducer variability while speaking over different microphones/telephone handsets.

4. Variability introduced by the transmission system (the media through which speech is
transmitted, telecommunication networks, cellular phones, etc.).

5. Variability in the speaking environment, including extraneous conversations and acoustic
background events (e.g., noise, door slams).

47.4 Approaches to ASR by Machine

47.4.1 The Acoustic-Phonetic Approach [1]

The earliest approaches to speech recognition were based on finding speech sounds and providing ap-
propriate labels to these sounds. This is the basis of the acoustic-phonetic approach which postulates
that there exist finite, distinctive phonetic units (phonemes) in spoken language, and that these units
are broadly characterized by a set of acoustic properties that are manifest in the speech signal over
time. Even though the acoustic properties of phonetic units are highly variable, both with speakers
and with neighboring sounds (the so-called coarticulation), it is assumed in the “acoustic-phonetic
approach” that the rules governing the variability are straightforward and can be readily learned (by
a machine). The first step in the acoustic-phonetic approach is a segmentation and labeling phase
in which the speech signal is segmented into stable acoustic regions, followed by attaching one or
more phonetic labels to each segmented region, resulting in a phoneme lattice characterization of
the speech (see Fig. 47.1). The second step attempts to determine a valid word (or string of words)
from the phonetic label sequences produced in the first step. In the validation process, linguistic
constraints of the task (i.e., the vocabulary, the syntax, and other semantic rules) are invoked in
order to access the lexicon for word decoding based on the phoneme lattice. The acoustic-phonetic
approach has not been widely used in most commercial applications.

47.4.2 “Pattern-Matching” Approach [2]

The “pattern-matching approach” involves two essential steps, namely, pattern training and pattern
comparison. The essential feature of this approach is that it uses a well- formulated mathematical
framework, and establishes consistent speech pattern representations for reliable pattern comparison
from a set of labeled training samples via a formal training algorithm. A speech pattern representation
can be in the form of a speech template or a statistical model, and can be applied to a sound (smaller
than a word), a word, or a phrase. In the pattern-comparison stage of the approach, a direct
comparison is made between the unknown speech (the speech to be recognized) with each possible
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FIGURE 47.1: Segmentation and labeling for word sequence“seven-six”.

pattern learned in the training stage, in order to determine the identity of the unknown according to
the goodness of match of the patterns. The pattern matching approach has become the predominant
method of speech recognition in the last decade and we shall elaborate on it in subsequent sections.

47.4.3 Artificial Intelligence Approach [3, 4]

The “artificial intelligence approach” attempts to mechanize the recognition procedure according to
the way a person applies intelligence in visualizing, analyzing, and characterizing speech based on a
set of measured acoustic features. Among the techniques used within this class of methods are use
of an expert system (e.g., a neural network) which integrates phonemic, lexical, syntactic, semantic,
and even pragmatic knowledge for segmentation and labeling, and uses tools such as artificial neural
networks for learning the relationships among phonetic events. The focus in this approach has been
mostly in the representation of knowledge and integration of knowledge sources. This method has
not been used widely in commercial systems.

47.5 Speech Recognition by Pattern Matching

Figure 47.2 is a block diagram that depicts the pattern matching framework. The speech signal is
first analyzed and a feature representation is obtained for comparison with either stored reference
templates or statistical models in the pattern matching block. A decision scheme determines the word
or phonetic class of the unknown speech based on the matching scores with respect to the stored
reference patterns.

There are two types of reference patterns that can be used with the model of Fig. 47.2. The first
type, called a nonparametric reference pattern [5] (or often a template), is a pattern created from one
or more spoken tokens (exemplars) of the sound associated with the pattern. The second type, called
a statistical reference model, is created as a statistical characterization (via a fixed type of model) of
the behavior of a collection of tokens of the sound associated with the pattern. The hidden Markov
model [6] is an example of the statistical model.
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FIGURE 47.2: Block diagram of pattern-recognition speech recognizer.

The model of Fig. 47.2 has been used (either explicitly or implicitly) for almost all commercial and
industrial speech recognition systems for the following reasons:

1. It is invariant to different speech vocabularies, user sets, feature sets, pattern matching
algorithms, and decision rules.

2. It is easy to implement in software (and hardware).

3. It works well in practice.

We now discuss the elements of the pattern recognition model and show how it has been used in
isolated word, connected word, and continuous speech recognition systems.

47.5.1 Speech Analysis

The purpose of the speech analysis block is to transform the speech waveform into a parsimonious
representation which characterizes the time varying properties of the speech. The transformation
is normally done on successive and possibly overlapped short intervals 10 to 30 msec in duration
(i.e., short-time analysis) due to the time-varying nature of speech. The representation [7] could be
spectral parameters, such as the output from a filter bank, a discrete Fourier transform (DFT), or a
linear predictive coding (LPC) analysis, or they could be temporal parameters, such as the locations
of various zero or level crossing times in the speech signal.

Empirical knowledge gained over decades of psychoacoustic studies suggests that the power spec-
trum has the necessary acoustic information for high accuracy sound identity. Studies in psychoa-
coustics also suggest that our auditory perception of sound power and loudness involves compression,
leading to the use of the logarithmic power spectrum and the cepstrum [8], which is the Fourier trans-
form of the log-spectrum. The low order cepstral coefficients (up to 10 to 20) provide a parsimonious
representationof the short-time speech segmentwhich isusually sufficient forphonetic identification.

The cepstral parameters are often augmented by the so-called delta cepstrum [9] which character-
izes dynamic aspects of the time-varying speech process.

47.5.2 Pattern Training

Pattern training is the method by which representative sound patterns (for the unit being trained)
are converted into reference patterns for use by the pattern matching algorithm. There are several
ways in which pattern training can be performed, including:

1. Casual training in which a single sound pattern is used directly to create either a template
or a crude statistical model (due to the paucity of data).

2. Robust training in which several (typically 2 to 4) versions of the sound pattern (usually
extracted from the speech of a single talker) are used to create a single merged template
or statistical model.
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3. Clustering training in which a large number of versions of the sound pattern (extracted
from a wide range of talkers) is used to create one or more templates or a reliable statistical
model of the sound pattern.

Inorder tobetterunderstandhowandwhystatisticalmodels are sobroadlyused in speech recognition,
we now formally define an important class of statistical models, namely the hidden Markov model
(HMM) [6].

The HMM

The HMM is a statistical characterization of both the dynamics (time varying nature) and statics
(the spectral characterization of sounds) of speech during speaking of a sub-word unit, a word, or
even a phrase. The basic premise of the HMM is that a Markov chain can be used to describe the
probabilistic nature of the temporal sequence of sounds in speech, i.e., the phonemes in the speech,
via a probabilistic state sequence. The states in the sequence are not observed with certainty because
the correspondence between linguistic sounds and the speech waveform is probabilistic in nature;
hence the concept of a hidden model. Instead, the states manifest themselves through the second
component of the HMM which is a set of output distributions governing the production of the
speech features in each state (the spectral characterization of the sounds). In other words, the output
distributions (which are observed) represent the local statistical knowledge of the speech pattern
within the state, and the Markov chain characterizes, through a set of state transition probabilities,
how these sound processes evolve from one sound to another. Integrated together, the HMM is
particularly well suited for modeling speech processes.

FIGURE 47.3: Characterization of a word (or phrase, or subword) using a N(5) state, left-to-right,
HMM, with continuous observation densities in each state of the model.

An example of an HMM of a speech pattern is shown in Fig. 47.3. The model has five states
(corresponding to five distinct “sounds” or “phonemes” within the speech), and the state (corre-
sponding to the sound being spoken) proceeds from left-to-right (as time progresses). Within each
state (assumed to represent a stable acoustical distribution) the spectral features of the speech signal
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are characterized by a mixture Gaussian density of spectral features (called the observation density),
along with an energy distribution, and a state duration probability. The states represent the changing
temporal nature of the speech signal; hence indirectly they represent the speech sounds within the
pattern.

The trainingproblemforHMMsconsistsof estimating theparametersof the statisticaldistributions
within each state (e.g., means, variances, mixture gains, etc.), along with the state transition proba-
bilities for the composite HMM. Well-established techniques (e.g., the Baum-Welch method [10] or
the segmental K-means method [11]) have been defined for doing this pattern training efficiently.

47.5.3 Pattern Matching

Pattern matching refers to the process of assessing the similarity between two speech patterns, one
of which represents the unknown speech and one of which represents the reference pattern (derived
from the training process) of each element that can be recognized. When the reference pattern is a
“typical” utterance template, pattern matching produces a gross similarity (or dissimilarity) score.
When the reference pattern consists of a probabilistic model, such as an HMM, the process of pattern
matching is equivalent to using the statistical knowledge contained in the probabilistic model to
assess the likelihood of the speech (which led to the model) being realized as the unknown pattern.

FIGURE 47.4: Results of time aligning two versions of the word “seven”, showing linear alignment of
the two utterances (top panel); optimal time-alignment path (middle panel); and nonlinearly aligned
patterns (lower panel).

A major problem in comparing speech patterns is due to speaking rate variations. HMMs provide
an implicit time normalization as part of the process for measuring likelihood. However, for template
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approaches, explicit time normalization is required. Figure 47.4 demonstrates the effect of explicit
time normalization between two patterns representing isolated word utterances. The top panel of the
figure shows the log energy contour of the two patterns (for the spoken word “seven”) — one called
the reference (known) pattern and the other called the test (or unknown input) pattern. It can be
seen that the inherent duration of the two patterns, 30 and 35 frames (where each frame is a 15-ms
segment of speech), is different and that linear alignment is grossly inadequate for internally aligning
events within the two patterns (compare the locations of the vowel peaks in the two patterns). A
basic principle of time alignment is to nonuniformly warp the time scale so as to achieve the best
possible matching score between the two patterns (regardless of whether the two patterns are of the
same word identity or not). This can be accomplished by a dynamic programming procedure, often
called dynamic time warping (DTW) [12] when applied to speech template matching. The “optimal”
nonlinear alignment result of dynamic time warping is shown at the bottom of Fig. 47.4 in contrast
to the linear alignment of the patterns at the top. It is clear that the nonlinear alignment provides a
more realistic measure of similarity between the patterns.

47.5.4 Decision Strategy

The decision strategy takes all the matching scores (from the unknown pattern to each of the stored
reference patterns) into account, finds the “closest” match, and decides if the quality of the match is
good enough to make a recognition decision. If not, the user is asked to provide another token of the
speech (e.g., the word or phrase) for another recognition attempt. This is necessary because often
the user may speak words that are incorrect in some sense (e.g., hesitation, incorrectly spoken word,
etc.) or simply outside of the vocabulary of the recognition system.

47.5.5 Results of Isolated Word Recognition

Using the pattern recognition model of Fig. 47.2, and using either the non-parametric template
approach or the statistical HMM method to derive reference patterns, a wide variety of tests of the
recognizer have been performed on telephone speech with isolated word inputs in both speaker-
dependent (SD) and speaker-independent (SI) modes. Vocabulary sizes have ranged from as few
as 10 words (i.e., the digits zero–nine) to as many as 1109 words. Table 47.1 gives a summary of
recognizer performance under the conditions described above.

TABLE 47.1 Performance of Isolated Word Recognizers

Vocabulary Mode Word error rate (%)

10 Digits SI 0.1
SD 0.0

39 Alphadigits SI 7.0
SD 4.5

129 Airline terms SI 2.9
SD 1.0

1109 Basic English SD 4.3

47.6 Connected Word Recognition

The systems we have been describing in previous sections have all been isolated word recognition
systems. In this section we consider extensions of the basic processing methods described in pre-
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vious sections in order to handle recognition of sequences of words, the so-called connected word
recognition system.

The basic approach to connected word recognition is shown in Fig. 47.5. Assume we are given
a fluently spoken sequence of words, represented by the (unknown) test pattern T , and we are also
given a set of V reference patterns, {R1, R2, . . . , RV } each representing one of the words in the
vocabulary. The connected word recognition problem consists of finding the concatenated reference
pattern, RS , which best matches the test pattern, in the sense that the overall similarity between T

and RS is maximum over all sequence lengths and over all combinations of vocabulary words.

FIGURE 47.5: Illustration of the problem of matching a connected word string, spoken fluently,
using whole word patterns concatenated together to provide the best match.

There are several problems associated with solving the connected word recognition problem, as
formulated above. First of all, we do not know how many words were spoken; hence, we have to
consider solutions with a range on the number of words in the utterance. Second, we do not know nor
can we reliably find word boundaries within the test pattern. Hence, we cannot use word boundary
information to segment the problem into simple “word-matching” recognition problems. Finally,
since the combinatorics of trying to solve the problem exhaustively (by trying to match every possible
string) are exponential in nature, we need to devise efficient algorithms to solve this problem. Such
efficient algorithms have been developed and they solve the connected word recognition problem
by iteratively building up time-aligned matches between sequences of reference patterns and the
unknown test pattern, one frame at a time [13, 14, 15].

47.6.1 Performance of Connected Word Recognizers

Typical recognition performance for connected word recognizers is given in Table 47.2 for a range
of vocabularies, and for a range of associated tasks. In the next section we will see how we exploit
linguistic constraints of the task to improve recognition accuracy for word strings beyond the level
one would expect on the basis of word error rates of the system.
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TABLE 47.2 Performance of Connected Word Recognizers
Word error String error

Vocabulary Mode rate (%) Task rate (%)

10 Digits SD 0.1 Variable length 0.4
SI 0.2 digit strings 0.8

(1–7 digits)

26 Letters of SD 10.0 Name retrieval 4.0
the alphabet SI 10.0 from directory 10.0

of 1700 names

129 Airline terms SD 0.1 Sentences in a 1.0
SI 3.0 grammar 10.0

47.7 Continuous Speech Recognition

The techniques used in connected word recognition systems cannot be extended to the problem of
continuous speech recognition for several reasons. First of all, as the size of the vocabulary of the
recognizer grows, it becomes impractical to train patterns for each individual word in the vocabulary.
Hence, continuous speech recognizers generally use sub-word speech units as the basic patterns to
be trained, and use a lexicon to define the structure of word patterns in terms of the sub-word
units. Second, the words spoken during continuous speech generally have a syntax associated with
the word order, i.e., they are spoken according to a grammar. In order to achieve good recognition
performance, account must be taken of the word grammar so as to constrain the set of possible
recognized sentences. Finally, the spoken sentence often must make sense according to a semantic
model of the task which the recognizer is asked to perform. Again, by explicitly including these
semantic constraints on the spoken sentence, as part of the recognition process, performance of the
system improves.

Based on the discussion above, there are three distinct new problems associated with continuous
speech recognition [16], namely:

1. Choice of sub-word unit used to represent the sounds of speech, and methods of creating
appropriate acoustic models for these sub-word units;

2. Choice of a representation of words in the recognition vocabulary, in terms of the sub-
word units;

3. Choice of a method for integrating syntactic (and possibly semantic) information into
the recognition process so as to properly constrain the sentences that are allowed by the
system.

47.7.1 Sub-Word Speech Units and Acoustic Modeling

For the basic sub-word speech recognition unit, one could consider a range of linguistic units,
including syllables, half syllables, dyads, dyphones, or phonemes. The most common choice is a
simple phoneme set, which for English comprises about 40 to 50 units, depending on fine choices
as to what constitutes a unique phoneme. Since the number of phonemes is limited, it is usually
straightforward to collect sufficient speech training data for reliable estimation of statistical models
of the phonemes. The resulting set of sub-word speech models are usually referred to as “context
independent” phone-like units (CI-PLU) since each unit is trained independently of the context of
neighboring units. The problem with using such CI-PLU models is that phonemes are highly variable
according to different contexts, and therefore using models which cannot represent this variability
properly leads to inferior speech recognition performance.

A straightforward way to improve the modeling of phonemes is to augment the CI-PLU set with
phoneme models that are context dependent. In this manner, a target phoneme is modeled differently
depending on the phonemes that precede and follow it. By using such context dependent PLUs (in
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addition to the CI-PLUs) the “resolution” of the acoustic models is increased, and the performance
of the recognition system improves.

47.7.2 Word Modeling From Sub-Word Units

Once the base set of sub-word units is chosen, one can use standard lexical modeling techniques to
represent words in terms of these units. The key problem here is variability of word pronunciation
across talkers with different regional accents. Hence, for each word in the recognition vocabulary,
the lexicon contains a baseform (or standard) pronunciation of the word, as well as alternative
pronunciations, as appropriate.

The lexicon used in most recognition systems is extracted from a standard pronouncing dictionary,
and each word pronunciation is represented as a linear sequence of phonemes. This lexical definition
is basically data independent because no speech or text data are used to derive the pronunciation.
Hence the lexical variability of a word in speech is characterized only indirectly through the sub-word
unit models. To improve lexical modeling capability, the use of (multiple) pronunciation networks
has been proposed [17].

47.7.3 Language Modeling Within the Recognizer

In order to determine the best match to a spoken sentence, a continuous speech recognition system
has to evaluate both an acoustic match score (corresponding to the “local” acoustic matches of the
words in the sentence) and a language match score (corresponding to the match of the words to the
grammar and syntax of the task). The acoustic matching score is readily determined using dynamic
programming methods much like those used in connected word recognition systems. The language
match scores are computed according to a production model of the syntax and the semantics. Most
often the language model is represented as a finite state network (FSN) for which the language score
is computed according to arc scores along the best decoded path (according to an integrated model
where acoustic and language modeling are combined) in the network. Other models of language
include word pair models as well as N-gram word probabilities.

47.7.4 Performance of Continuous Speech Recognizers

Table 47.3 illustrates current capabilities in continuous speech recognition, for three distinct tasks,
namely database access (Resource Management), natural language queries (ATIS) for air travel reser-
vations, and read text from a set of business publications (NAB).

TABLE 47.3 Performance of Continuous Speech Recognition Systems
Task Syntax Mode Vocabulary Word error rate (%)

Resource Finite state SI
management grammar fluent input 1,000 Words 4.4

(DARPA) (perplexity = 60)

Air travel Backoff trigram SI
information system (perplexity = 18) natural 2,500 Words 3.6

(DARPA) language

North American Backoff 5-gram SI
business (perplexity = 173) fluent input 60,000 Words 10.8
(DARPA)
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47.8 Speech Recognition System Issues

This section discusses some key issues in building “real world” speech recognition systems.

47.8.1 Robust Speech Recognition [18]

Robust speech recognition refers to the problem of designing an ASR system that works equally
well in various unknown or adverse operating environments. Robustness is important because the
performance of existing ASR systems, whose designs are predicated on known or clean environments,
often degrades rapidly under field conditions.

There are basically four types of sound degradation, namely, noise, distortion, articulation effects,
and pronunciation variations. Noise is an inevitable component of the acoustic environment and is
normally considered additive with the speech. Distortion refers to modification to the spectral char-
acteristics of the signal by the room, the transducer (microphone), the channel (e.g., transmission),
etc. Articulation effects result from the factors that affect a talker’s speaking manner when responding
to a machine rather than a human. One well-known phenomenon is the Lombard effect which is
related to the changes in articulation when the talker speaks in a noisy environment. Finally, different
speakers will pronounce a word differently depending on the regional accent. These conditions are
often not known a priori when the recognizer is trained in the laboratory and are often detrimental
to the recognizer performance.

There are essentially two broad categories of techniques that have been proposed for dealing with
adverse conditions. These are invariant methods and adaptive methods, respectively.

Invariant methods use speech features (or the associated similarity measures) that are invariant
under a wide range of conditions, e.g., liftering and RASTA [19] (which suppress speech features
that are more susceptible to signal variabilities), the short-time modified coherence (SMC) [20]
(which has a built-in noise averaging advantage), and the Ensemble Interval Histogram (EIH) [21]
(which mimics the human auditory mechanism). Robust distortion measures include the group-
delay measure [22] and a family of distortion measures based on the projection operator [23] which
were shown to be effective in conditions involving additive noise.

Adaptive methods differ from invariant methods in the way the characteristics of the operating
environment are taken into account. Invariant methods assume no explicit knowledge of the signal
environment, while adaptive methods attempt to estimate the adverse condition and adjust the signal
(or the reference models) accordingly in order to achieve reliable matching results.

When channel or transducer distortions are the major factor, it is convenient to assume that the
linear distortion effect appears as an additive signal bias in the cepstral domain. This distortion model
leads to the method of cepstral mean subtraction and, more generally, signal bias removal [24] which
makes a maximum likelihood estimate of the bias due to distortion and subtracts the estimated bias
from the cepstral features before pattern matching is performed.

47.8.2 Speaker Adaptation [25]

Given sufficient training data, a SD recognition system usually performs better than a SI system for
the same task. Many systems are designed for SI applications, however, due to the fact that it is often
difficult to collect speaker-specific training data that would be adequate for reliable performance.
One way to bridge the performance gap is to apply the method of speaker adaptation which uses
a very limited amount of speaker-specific data to modify the model parameters of a SI recognition
system in order to achieve a recognition accuracy, approaching that of a well-trained SD system.
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47.8.3 Keyword Spotting [26] and Utterance Verification [27]

Anautomatic speech recognition systemneeds tohavebothhighaccuracyandauser-friendly interface
in order to be acceptable to the users. One major component in a friendly user-interface is to allow
the user to speak naturally and spontaneously without imposing a rigid speaking format. In a typical
spontaneously spoken utterance, however, we usually observe various kinds of disfluency, such as
hesitation and extraneous sounds such as um and ah and false starts, and unanticipated ambient
noise, such as mouth clicks and lip smacks, etc. In the conventional paradigm, which formulates
speech recognition as decoding of an unknown utterance into a contiguous sequence of phonetic
units, the task is equivalent to designing an unlimited vocabulary continuous speech recognition and
understanding system which is, unfortunately, beyond reach with today’s technology.

One alternative to the above approach, particularly when implementing domain-specific services,
is to focus on a finite set of vocabulary words most relevant to the intended task and design the system
using the technology of keyword spotting and, more generally, utterance verification (UV). With UV
incorporated into the speech recognition system, the user is allowed to speak spontaneously so long
as the keywords appear somewhere in the spoken utterance. The system then detects and identifies
the in-vocabulary words (i.e., keywords), while rejecting all other superfluous acoustic events in the
utterance (which include out-of-vocabulary words, invalid inputs — any form of disfluency as well
as lack of keywords — and ambient sounds). In such cases, no critical constraints are imposed on
the users’ speaking format, making the user interface natural and effective.

47.8.4 Barge-In

In human-human conversation, talkers often interrupt each other during speaking. This is called
“barge-in”. For human-machine interactions, in which machine prompts are often routine messages
or instructions, the capability of allowing talkers to “barge in” becomes an important enabling
technology for a natural human-machine interface.

Two key technologies are integrated in the implementation of “barge-in”, namely, an echo canceler
(to remove the spokenmessage fromthemachine to the recognizer) andapartial rejectionmechanism.

With “barge-in”, the recognizer needs to be activated and listen starting from the beginning of
the system prompt. An echo canceler, with a proper double talk detector, is used to cancel the
system prompt while attempting to detect if the near-end signal from the talker (i.e., speech to be
recognized) is present. The tentatively detected signal is then passed through the recognizer with
rejection thresholds to produce the partial recognition results. The rejection technique is critical
because extraneous input is very likely to be present, both from the ambient background and from
the talker (breathing, lip smacks, etc.), during the long period when the recognizer is activated.

47.9 Practical Issues in Speech Recognition

As progress is made in fundamental recognition technologies, we need to examine carefully the key
attributes that a recognition machine must possess in order for it to be useful. These include: high
recognition performance in terms of speed and accuracy, ease of use, and low cost. A recognizer must
be able to deliver high recognition accuracy without excessive delay. A system that does not provide
high performance often adds to users’ frustration and may even be considered counterproductive. A
recognition system must also be easy to use. The more naturally a system interacts with the user (e.g.,
does not require words in a sentence to be spoken in isolation), the higher the perceived effectiveness.
Finally, the recognition system must be low cost to be competitive with alternative technologies such
as keyboard or mouse devices in computer interface applications.
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47.10 ASR Applications

Speech recognition has been successfully applied in a range of systems. We categorize these applica-
tions into five broad classes.

1. Office or business system. Typical applications include data entry onto forms, database
management and control, keyboard enhancement, and dictation. Examples of voice-
activated dictation machines include the Tangora system [28] and the Dragon Dictate
system [29].

2. Manufacturing. ASR is used to provide “eyes-free, hands-free” monitoring of manufac-
turing processes (e.g., parts inspection) for quality control.

3. Telephone or telecommunications. Applications include automation of operator assisted
services (the Voice Recognition Call Processing system by AT&T to automate operator
service routing according to call types), inbound and outbound telemarketing, informa-
tion services (the ANSER system by NTT for limited home banking services, the stock
price quotation system by Bell Northern Research, Universal Card services by Conver-
sant/AT&T for account information retrieval), voice dialing by name/number (AT&T
VoiceLine, 800 Voice Calling services, Conversant FlexWord, etc.), directory assistance
call completion, catalog ordering, and telephone calling feature enhancements (AT&T
VIP — Voice Interactive Phone for easy activation of advanced calling features such as
call waiting, call forwarding, etc. by voice rather than by keying in the code sequences).

4. Medical. The application is primarily in voice creation and editing of specialized medical
reports (e.g., Kurzweil’s system).

5. Other. This category includes voice controlled and operated toys and games, aids for the
handicapped and voice control of non-essential functions in moving vehicles (such as
climate control and the audio system).
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48.1 Introduction

Speaker recognition is the process of automatically extracting personal identity information by anal-
ysis of spoken utterances. In this section, speaker recognition is taken to be a general process whereas
speaker identification and speaker verification refer to specific tasks or decision modes associated with
this process. Speaker identification refers to the task of determining who is speaking and speaker
verification is the task of validating a speaker’s claimed identity.

Many applications have been considered for automatic speaker recognition. These include secure
access control by voice, customizing services or information to individuals by voice, indexing or
labeling speakers in recorded conversations or dialogues, surveillance, and criminal and forensic in-
vestigations involving recorded voice samples. Currently, the most frequently mentioned application
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is access control. Access control applications include voice dialing, banking transactions over a tele-
phone network, telephone shopping, database access services, information and reservation services,
voice mail, and remote access to computers. Speaker recognition technology, as such, is expected
to create new services and make our daily lives more convenient. Another potentially important
application of speaker recognition technology is its use for forensic purposes [24].

For access control and other important applications, speaker recognition operates in a speaker
verification task decision mode. For this reason the section is entitled speaker verification. However,
the term speaker recognition is used frequently in this section when referring to general processes.

This section is not intended to be a comprehensive review of speaker recognition technology.
Rather, it is intended togive anoverviewof recent advances and theproblems thatmustbe solved in the
future. The reader is referred to papers by Doddington [4], Furui [10, 11, 12, 13], O’Shaughnessy [39],
and Rosenberg and Soong [48] for more general reviews.

48.2 Personal Identity Characteristics

A universal human faculty is the ability to distinguish one person from another by personal identity
characteristics. The most prominent of these characteristics are facial and vocal features. Organized,
scientific efforts to make use of personal identifying characteristics for security and forensic purposes
began about 100 years ago. The most successful such effort was fingerprint classification which has
gained widespread use in forensic investigations.

Today, there is a rapidly growing technology based on biometrics, the measurement of human
physiological or behavioral characteristics, for the purpose of identifying individuals or verifying the
claimed or asserted identity of an individual [34]. The goal of these technological efforts is to produce
completely automated systems for personal identity identification or verification that are convenient
to use and offer high performance and reliability. Some of the personal identity characteristics
which have received serious attention are blood typing, DNA analysis, hand shape, retinal and iris
patterns, and signatures, in addition to fingerprints, facial features, and voice characteristics. In
general, characteristics that are subject to the least amount of contamination or distortion and
variability provide the greatest accuracy and reliability. Difficulties arise, for example, with smudged
fingerprints, inconsistent signature handwriting, recording and channel distortions, and inconsistent
speaking behavior for voice characteristics. Indeed, behavioral characteristics, intrinsic to signature
and voice features, although potentially an important source of identifying information, are also
subject to large amounts of variability from one sample to another.

The demand for effective biometric techniques for personal identity verification comes from foren-
sic and security applications. For security applications, especially, there is a great need for techniques
that are not intrusive, that are convenient and efficient, and are fully automated. For these reasons,
techniques such as signature verification or speaker verification are attractive even if they are subject
to more sources of variability than other techniques. Speaker verification, in addition, is particularly
useful for remote access, since voice characteristics are easily recorded and transmitted over telephone
lines.

48.3 Vocal Personal Identity Characteristics

Both physiology and behavior underly personal identity characteristics of the voice. Physiological
correlates are associated with the size and configuration of the components of the vocal tract (see
Fig. 48.1).

For example, variations in the size of vocal tract cavities are associated with characteristic variations
in the spectral distributions in the speech signal for different speech sounds. The most prominent
of these spectral features are the characteristic resonances associated with voiced speech sounds
known as formants [6]. Vocal cord variations are associated with the average pitch or fundamental
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FIGURE48.1: Simplifieddiagramof thehumanvocal tract showinghowspeech soundsare generated.
The size and shape of the articulators differ from person to person.

frequency of voiced speech sounds. Variations in the velum and nasal cavities are associated with
characteristic variations in the spectrum of nasalized speech sounds. Atypical anatomical variations,
in the configuration of the teeth or the structure of the palate are associated with atypical speech
sounds such as lisps or abnormal nasality.

Behavioral correlates of speaker identity in the speech signal are more difficult to specify. “Low
level” behavioral characteristics are associated with individuality in articulating speech sounds, char-
acteristic pitch contours, rhythm, timing, etc. Characteristics of speech that have to do with indi-
vidual speech sounds, or phones, are referred to as “segmental”, while those that pertain to speech
phenomena over a sequence of phones are referred to as “suprasegmental”. Phonetic or articu-
latory suprasegmental “settings” distinguishing speakers have been identified which are associated
with characteristic “breathy”, nasal, and other voice qualities [38]. “High-level” speaker behavioral
characteristics refer to individual choice of words and phrases and other aspects of speaking styles.

48.4 Basic Elements of a Speaker Recognition System

The basic elements of a speaker recognition system are shown in Fig. 48.2. An input utterance from
an unknown speaker is analyzed to extract speaker characteristic features. The measured features are
compared with prototype features obtained from known speaker models.

Speaker recognition systems can operate in either an identification decision mode (Fig. 48.2(a))
or verification decision mode (Fig. 48.2(b)). The fundamental difference between these two modes
is the number of decision alternatives.

In the identification mode, a speech sample from an unknown speaker is analyzed and compared
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FIGURE 48.2: Basic structures of speaker recognition systems.

with models of known speakers. The unknown speaker is identified as the speaker whose model best
matches the input speech sample. In the “closed set” identification mode, the number of decision
alternatives is equal to the size of the population. In the “open set” identification mode, a reference
model for the unknown speaker may not exist. In this case, an additional alternative, “the unknown
does not match any of the models”, is required.

In the verification decision mode, an identity claim is made by or asserted for the unknown speaker.
The unknown speaker’s speech sample is compared with the model for the speaker whose identity
is claimed. If the match is good enough, as indicated by passing a threshold test, the identity claim
is verified. In the verification mode there are two decision alternatives, accept or reject the identity
claim, regardless of the size of the population. Verification can be considered as a special case of the
“open set” identification mode in which the known population size is one.

Crucial to the operation of a speaker recognition system is the establishment and maintenance
of speaker models. One or more enrollment sessions are required in which training utterances are
obtained from known speakers. Features are extracted from the training utterances and compiled
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into models. In addition, if the system operates in the “open set” or verification decision mode,
decision thresholds must also be set. Many speaker recognition systems include an updating facility
in which test utterances are used to adapt speaker models and decision thresholds.

A list of terms commonly found in the speaker recognition literature can be found at the end
of this chapter. In the remaining sections of the chapter, the following subjects are treated: how
speaker characteristic features are extracted from speech signals, how these features are used to
represent speakers, how speaker models are constructed and maintained, how speech utterances
from unknown speakers are compared with speaker models and scored to make speaker recognition
decisions, and how speaker verification performance is measured. The chapter concludes with a
discussion of outstanding issues in speaker recognition.

48.5 Extracting Speaker Information from the Speech Signal

Explicit measurements of speaker characteristics in the speech signal are often difficult to carry out.
Segmenting, labeling, and measuring specific segmental speech events that characterize speakers,
such as nasalized speech sounds, is difficult because of variable speech behavior and variable and
distorted recording and transmission conditions. Overall qualities, such as breathiness, are difficult
to correlate with specific speech signal measurements and are subject to variability in the same way
as segmental speech events.

Even though voice characteristics are difficult to specify and measure explicitly, most characteristics
are captured implicitly in the kinds of speech measurements that can be performed relatively easily.
Such measurements as short-time and long-time spectral energy, overall energy, and fundamental
frequency are relatively easy to obtain. They can often resolve differences in speaker characteristics
surpassing human discriminability. Although subject to distortion and variability, features based on
these analysis tools form the basis for most automatic speaker recognition systems.

Themost important analysis tool is short-time spectral analysis. It isnocoincidence that short-time
spectral analysis also forms the basis for most speech recognition systems [42]. Short-time spectral
analysis not only resolves the characteristics that differentiate one speech sound from another, but also
many of the characteristics already mentioned that differentiate one speaker from another. There are
two principal modes of short-time spectral analysis: filter bank analysis and linear predictive coding
(LPC) analysis.

In filter bank analysis, the speech signal is passed through a bank of bandpass filters covering the
available range of frequencies associated with the signal. Typically, this range is 200 to 3,000 Hz
for telephone band speech and 50 to 8,000 Hz for wide band speech. A typical filter bank for wide
band speech contains 16 bandpass filters spaced uniformly 500 Hz apart. The output of each filter
is usually implemented as a windowed, short-time Fourier transform [using fast Fourier transform
(FFT) techniques] at the center frequency of the filter. The speech is typically windowed using a
10 to 30 ms Hamming window. Instead of uniformly spacing the bandpass filters, a nonuniform
spacing is often carried out reflecting perceptual criteria that allot approximately equal perceptual
contributions for each such filter. Such mel scale or bark scale filters [42] provide a spacing linear in
frequency below 1000 Hz and logarithmic above.

LPC-based spectral analysis is widely used for speech and speaker recognition. The LPC model of
the speech signal specifies that a speech sample at time t , s(t), can be represented as a linear sum of
the p previous samples plus an excitation term, as follows:

s(t) = a1s(t − 1) + a2s(t − 2) + · · · + aps(t − p) + Gu(t) (48.1)

The LPC coefficients, ai , are computed by solving a set of linear equations resulting from the mini-
mization of the mean-squared error between the signal at time t and the linearly predicted estimate
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of the signal. Two generally used methods for solving the equations, the autocorrelation method and
the covariance method, are described in Rabiner and Juang [42].

The LPC representation is computationally efficient and easily convertible to other types of spectral
representations. While the computational advantage is less important today than it was for early
digital implementations of speech and speaker recognition systems, LPC analysis competes well with
other spectral analysis techniques and continues to be widely used.

An important spectral representation for speech and speaker recognition is the cepstrum. The
cepstrum is the (inverse) Fourier transform of the log of the signal spectrum. Thus, the log spectrum
can be represented as a Fourier series expansion in terms of a set of cepstral coefficients cn

logS(ω) =
∞∑

n=−∞
cne

−njω (48.2)

The cepstrum can be calculated from the filter-bank spectrum or from LPC coefficients by a recursion
formula [42]. In the latter case it is known as the LPC cepstrum indicating that it is based on an
all-pole representation of the speech signal. The cepstrum has many interesting properties. Since
the cepstrum represents the log of the signal spectrum, signals that can be represented as the cascade
of two effects which are products in the spectral domain are additive in the cepstral domain. Also,
pitch harmonics, which produce prominent ripples in the spectral envelope, are associated with high
order cepstral coefficients. Thus, the set of cepstral coefficients truncated, for example, at order 12
to 24 can be used to reconstruct a relatively smooth version of the speech spectrum. The spectral
envelope obtained is associated with vocal tract resonances and does not have the variable, oscillatory
effects of the pitch excitation. It is considered that one of the reasons that cepstral representation
has been found to be more effective than other representations for speech and speaker recognition is
this property of separability of source and tract. Since the excitation function is considered to have
speaker dependent characteristics, it may seem contradictory that a representation which largely
removes these effects works well for speaker recognition. However, in short-time spectral analysis
the effects of the source spectrum are highly variable so that they are not especially effective in
providing consistent representations of the source spectrum.

Other spectral features such as PARCOR coefficients, log area ratio coefficients, LSP (line spectral
pair coefficients), have been used for both speech and speaker recognition [42]. Generally speaking,
however, the cepstral representation is most widely used and is usually associated with better speaker
recognition performance than other representations.

Cruder measures of spectral energy, such as waveform zero-crossing or level-crossing measure-
ments have also been used for speech and speaker recognition in the interest of saving computation
with some success.

Additional features have been proposed for speaker recognition which are not used often or con-
sidered to be marginally useful for speech recognition. For example, pitch and energy features,
particularly when measured as a function of time over a sufficiently long utterance, have been shown
to be useful for speaker recognition [27]. Such time sequences or “contours” are thought to represent
characteristic speaking inflections and rhythms associated with individual speaking behavior. Pitch
and energy measurements have an advantage over short-time spectral measurements in that they
are more robust to many different kinds of transmission and recording variations and distortions
since they are not sensitive to spectral amplitude variability. However, since speaking behavior can
be highly variable due to both voluntary and involuntary activity, pitch and energy can acquire more
variability than short-time spectral features and are more susceptible to imitation.

The time course of feature measurements, as represented by so-called feature contours, provides
valuable speaker characterizing information. This is because such contours provide overall, supraseg-
mental information characterizing speaking behavior and also because they contain information on
a more local, segmental time scale describing transitions from one speech sound to another. This
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latter kind of information can be obtained explicitly by measuring the local trajectory in time of a
measured feature at each analysis frame. Such measurements can be obtained by averaging successive
differences of the feature in a window around each analysis frame, or by fitting a polynomial in time
to the successive feature measurements in the window. The window size is typically 5 to 9 analysis
frames. The polynomial fit provides a less noisy estimate of the trajectory than averaging successive
differences. The order of the polynomial is typically 1 or 2, and the polynomial coefficients are called
delta- and delta-delta-feature coefficients. It has been shown in experiments that such dynamic fea-
ture measurements are fairly uncorrelated with the original static feature measurements and provide
improved speech and speaker recognition performance [9].

48.6 Feature Similarity Measurements

Much of the originality and distinctiveness in the design of a speaker recognition system is found in
how features are combined and compared with reference models. Underlying this design is the basic
representation of features in some space and the formation of a distance or distortion measurement
to use when one set of features is compared with another. The distortion measure can be used
to partition the feature vectors representing a speaker’s utterances into regions representative of
the most prominent speech sounds for that speaker, as in the vector quantization (VQ) codebook
representation (Section 48.9.2). It can be used to segment utterances into speech sound units. And
it can be used to score an unknown speaker’s utterances against a known speaker’s utterance models.

A general approach for calculating a distance between two feature vectors is to make use of a
distance metric from the family of Lp norm distances dp , such as the absolute value of the difference
between the feature vectors

d1 =
D∑

i=1

|fi − f ′
i | (48.3)

or the Euclidean distance

d2 =
D∑

i=1

(
fi − f ′

i

)2
(48.4)

where fi, f ′
i , i = 1, 2, . . . , D are the coefficients of two feature vectors f and f ′. The feature

vectors, for example, could comprise filter-bank outputs or cepstral coefficients described in the
previous section. (It is not common, however, to use filter bank outputs directly, as previously
mentioned, because of the variability associated with these features due to harmonics from the pitch
excitation.)

For example, a weighted Euclidean distance distortion measure for cepstral features of the form

d2
cw =

D∑
i=1

(
wi

(
ci − c′

i

))2
(48.5)

where
wi = 1/σi (48.6)

andσ 2
i is anestimateof thevarianceof the ith coefficienthasbeen showntoprovidegoodperformance

for both speech and speaker recognition. A still more general formulation is the Mahalanobis distance
formulation which accounts for interactions between coefficients with a full covariance matrix.

An alternate approach to comparing vectors in a feature space with a distortion measurement is
to establish a probabilistic formulation of the feature space. It is assumed that the feature vectors
in a subspace associated with, for example, a particular speech sound for a particular speaker, can
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be specified by some probability distribution. A common assumption is that the feature vector is a
random variable x whose probability distribution is Gaussian

p(x|λ) = 1

(2π)D/2 |6|1/2
exp

[
−1

2
(x − µ)T 6−1(x − µ)

]
(48.7)

where λ represents the parameters of the distribution, which are the mean vector µ and covariance
matrix 6.

When x is a feature vector sample, p(x|λ) is referred to as the likelihood of x with respect to
λ. Suppose there is a population of n speakers each modeled by a Gaussian distribution of feature
vectors, λi , i = 1, 2, . . . , n. In the maximum likelihood formulation, a sample x is associated with
speaker I if

p (x|λI ) > p (x|λi) , for all i 6= I (48.8)

where p(x|λi) is the likelihood of the test vector x for speaker model λi . It is common to use log
likelihoods to evaluate Gaussian models. From Eq. (48.7)

L (x|λi) = logp (x|λi) = −D

2
log 2π − 1

2
log |6i | − 1

2
(x − µi)

T 6−1
i (x − µi) (48.9)

It can be seen from Eq. (48.9) that, using log likelihoods, the maximum likelihood classifier is
equivalent to the minimum distance classifier using a Mahalanobis distance formulation.

A more general probabilistic formulation is the Gaussian mixture distribution of a feature vector
x

p(x|λ) =
M∑
i=1

wibi(x) (48.10)

where bi(x) is the Gaussian probability density function with mean µi and covariance 6i , wi is the
weight associated with the ith component, and M is the number of Gaussian components in the
mixture. The weights wi are constrained so that

∑n
i=1 wi = 1. The model parameters λ are

λ = {µi, 6i, wi, i = 1, 2, . . . , M} (48.11)

The Gaussian mixture probability function is capable of approximating a wide variety of smooth,
continuous, probability functions.

48.7 Units of Speech for Representing Speakers

An important consideration in the design of a speaker recognition system is the choice of a speech
unit to model a speaker’s utterances. The choice of units includes phonetic or linguistic units such
as whole sentences or phrases, words, syllables, and phone-like units. It also includes acoustic
units such as subword segments, segmented from utterances and labeled on the basis of acoustic
rather than phonetic criteria. Some speaker recognition systems model speakers directly from single
feature vectors rather than through an intermediate speech unit representation. Such systems usually
operate in a text independent mode (see Sections 48.8 and 48.9) and seek to obtain a general model
of a speaker’s utterances from a usually large number of training feature vectors. Direct models
might include long-time averages, VQ codebooks, segment and matrix quantization codebooks, or
Gaussian mixture models of the feature vectors.

Most speech recognizers of moderate to large vocabulary are based on subword units such as
phones so that large numbers of utterances transcribed as sequences of phones can be represented
as concatenations of phone models. For speaker recognition, there is no absolute need to represent
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utterances in terms of phones or other phonetically based units because there is no absolute need
to account for the linguistic or phonetic content of utterances in order to build speaker recognition
models. Generally speaking, systems in which phonetic representations are used are more complex
than other representations because they require phonetic transcriptions for both training and testing
utterances and because they require accurate and reliable segmentations of utterances in terms of
these units. The case in which phonetic representations are required for speaker recognition is the
same as for speech recognition: where there is a need to represent utterances as concatenations of
smaller units. Speaker recognition systems based on subword units have been described by Rosenberg
et al. [46] and Matsui and Furui [31].

48.8 Input Modes

Speaker recognition systems typically operate in one of two input modes: text dependent or text
independent. In the text-dependent mode, speakers must provide utterances of the same text for
both training and recognition trials. In the text-independent mode, speakers are not constrained to
provide specific texts in recognition trials. Since the text-dependent mode can directly exploit the
voice individuality associated with each phoneme or syllable, it generally achieves higher recognition
performance than the text-independent mode.

48.8.1 Text-Dependent (Fixed Passwords)

The structure of a system using fixed passwords is rather simple; input speech is time aligned with
reference templates or models created by using training utterances for the passwords. If the fixed
passwords aredifferent fromspeaker to speaker, thedifference canalsobeusedas additional individual
information. This helps to increase performance.

48.8.2 Text Independent (No Specified Passwords)

There are several applications in which predetermined passwords cannot be used. In addition, human
beingscanrecognize speakers irrespectiveof thecontentof theutterance. Therefore, text-independent
methods have recently been actively investigated. Another advantage of text-independent recognition
is that it can be done sequentially, until a desired significance level is reached, without the annoyance
of having to repeat passwords again and again.

48.8.3 Text Dependent (Randomly Prompted Passwords)

Both text-dependent and independent methods have a potentially serious problem. Namely, these
systems can be defeated because someone who plays back the recorded voice of a registered speaker
uttering key words or sentences into the microphone could be accepted as the registered speaker. To
cope with this problem, there are methods in which a small set of words, such as digits, are used as
key words and each user is prompted to utter a given sequence of key words that is randomly chosen
every time the system is used [20, 47].

Recently, a text-prompted speaker recognition method was proposed in which password sentences
are completely changed every time [31, 33]. The system accepts the input utterance only when it
judges that the registered speakeruttered theprompted sentence. Because thevocabulary isunlimited,
prospective impostors cannotknowinadvance the sentence theywill beprompted to say. Thismethod
cannot only accurately recognize speakers, but can also reject utterances whose text differs from the
prompted text, even if it is uttered by a registered speaker. Thus, a recorded and played-back voice
can be correctly rejected.
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48.9 Representations

48.9.1 Representations That Preserve Temporal Characteristics

The most common approach to automatic speaker recognition in the text-dependent mode uses
representations that preserve temporal characteristics. Each speaker is represented by a sequence
of feature vectors (generally, short-term spectral feature vectors), analyzed for each test word or
phrase. This approach is usually based on template matching techniques in which the time axes of an
input speech sample and each reference template of registered speakers are aligned, and the similarity
between them accumulated from the beginning to the end of the utterance is calculated.

Trial-to-trial timing variations of utterances of the same talker, both local and overall, can be
normalized by aligning the analyzed feature vector sequence of a test utterance to the template feature
vector sequence using a dynamic programming (DP) time warping algorithm or DTW [11, 42]. Since
the sequenceofphonetic events is the same for trainingand testing, there is anoverall similarity among
these sequences of feature vectors. Ideally the intra-speaker differences are significantly smaller than
the inter-speaker differences.

Figure 48.3 shows an example of a typical structure of the DTW-based system [9]. Initially, 10
LPC cepstral coefficients are extracted every 10 ms from a short sentence of speech. The spectral
equalization technique, which is described in Section 48.12.1, is applied to each cepstral coefficient
to compensate for transmission distortion and intraspeaker variability. In addition to the normal-
ized cepstral coefficients, delta-cepstral and delta-delta-cepstral coefficients (polynomial expansion
coefficients) are extracted every 10 ms. The time function of the set of parameters is brought into
time registration with the reference template in order to calculate the distance between them. The
overall distance is then compared with a threshold for the verification decision.

Another approach using representations that preserve temporal characteristics is based on the
HMM (hidden Markov model) technique [42]. In this approach, a reference model for each speaker
is represented by an HMM instead of directly using a time series of feature vectors. An HMM can
efficiently model statistical variation in spectral features. Therefore, HMM-based methods have
achieved significantly better recognition accuracies than the DTW-based methods [36, 47, 53].

48.9.2 Representations That do not Preserve Temporal Characteristics

In a text-independent system, the words or phrases used in recognition trials generally cannot be
predicted. Therefore, it is impossible to model or match speech events at the level of words or phrases.
Classical text-independent speaker recognition techniques are based on measurements for which the
time dimension is collapsed. Recently text-independent speaker verification techniques based on
short duration speech events have been studied. The new approaches extract and measure salient
acoustic and phonetic events. The bases for these approaches lie in statistical techniques for extracting
and modeling reduced sets of optimally representative feature vectors or feature vector sequences or
segments. These techniques fall under the related categories of vector quantization (VQ), matrix and
segment quantization, probabilistic mixture models, and HMM.

A set of short-term training feature vectors of a speaker can be used directly to represent the
essential characteristics of that speaker. However, such a direct representation is impractical when
the number of training vectors is large, since the memory and amount of computation required
become prohibitively large. Therefore, efficient ways of compressing the training data have been
tried using VQ techniques.

In this method, VQ codebooks consisting of a small number of representative feature vectors are
used as an efficient means of characterizing speaker-specific features [25, 29, 45, 52]. A speaker-
specific codebook is generated by clustering the training feature vectors of each speaker. In the
recognition stage, an inpututterance is vector-quantizedusing the codebookof each reference speaker,
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FIGURE 48.3: Typical structure of the DTW-based text-dependent speaker verification system.

and the VQ distortion accumulated over the entire input utterance is used in making the recognition
decision.

In contrast with the memoryless VQ-based method, source coding algorithms with memory have
also been studied using a segment (matrix) quantization technique [22]. The advantage of a segment
quantization codebook over a VQ codebook representation is its characterization of the sequential
nature of speech events. Higgins and Wohlford [19] proposed a segment modeling procedure for
constructing a set of representative time normalized segments, which they called “filler templates”.
The procedure, a combination of K-means clustering and dynamic programming time alignment,
provides a way to handle temporal variation.

On a longer time scale, temporal variation in speech signal parameters can be represented by
stochastic Markovian transitions between states. Poritz [41] proposed using a five-state ergodic
HMM (i.e., all possible transitions between states are allowed) to classify speech segments into one
of the broad phonetic categories corresponding to the HMM states. A linear predictive HMM was
used to characterize the output probability function. Poritz characterized the automatically obtained
categories as strong voicing, silence, nasal/liquid, stop burst/post silence, and frication.

Savic and Gupta [50] also used a five-state ergodic linear predictive HMM for broad phonetic

c©1999 by CRC Press LLC



categorization. After identifying frames belonging to particular phonetic categories, feature selection
was performed. In the training phase, reference templates are generated and verification thresholds
are computed for each phonetic category. In the verification phase, after the phonetic categorization,
a comparison with the reference template for each particular category provides a verification score
for that category. The final verification score is a weighted linear combination of the scores for each
category. The weights are chosen to reflect the effectiveness of particular categories of phonemes in
discriminating between speakers and are adjusted to maximize the verification performance.

The performances of speaker recognition based on a VQ-based method and that using dis-
crete/continuous ergodic HMM-based methods have been compared, in particular from the view-
point of robustness against utterance variations [30]. It was shown that a continuous ergodic HMM
method is far superior to a discrete ergodic HMM method, and that a continuous ergodic HMM
method is as robust as a VQ-based method when enough training data is available. However, when
little data is available, the VQ-based method is more robust than a continuous HMM method. It
was also shown that the information on transitions between different states is ineffective for text-
independent speaker recognition, so the speaker recognition rates using a continuous ergodic HMM
are strongly correlated with the total number of mixtures, irrespective of the number of states.

Rose and Reynolds [44] investigated a technique based on maximum likelihood estimation of a
Gaussian mixture model representation of speaker identity. This method corresponds to the single-
state continuous ergodic HMM. Gaussian mixtures are noted for their robustness as a parametric
model and for their ability to form smooth estimates of rather arbitrary underlying densities.

Traditionally, long-term sample statistics of various spectral features, e.g., the mean and variance
of spectral components averaged over a series of utterances have been used for speaker recognition [7,
28]. However, long-term spectral averages are extreme condensations of the spectral characteristics
of a speaker’s utterances and, as such, lack the discriminating power obtained in the sequence of
short-term spectral features used as models in text-dependent systems. Moreover, recognition based
on long-term spectral averages tends to be less tolerant of recording and transmission variations since
many of these variations are themselves associated with long-term spectral averages.

Studies on the use of statistical dynamic features have also been reported. Montacie et al. [35] used
a multivariate auto-regression (MAR) model to characterize speakers, and reported good speaker
recognition results. Griffin et al. [18] studied distance measures for the MAR-based method, and
reported that the identification and verification rates were almost the same as those obtained by an
HMM-based method. In these experiments, the MAR model was applied to the time series of cepstral
vectors. It was also reported that the optimum order of the MAR model was 2 or 3, and that distance
normalization was essential to obtain good results in speaker verification.

Speaker recognition based on feed-forward neural net models has been investigated [40]. Each
registered speaker has a personalized neural net that is trained to be activated only by that speaker’s
utterances. It is assumed that including speech from many people in the training data of each net
enables direct modeling of the differences between the registered person’s speech and an impostor’s
speech. It has been found that while the net architecture and the amount of training utterances
strongly affect the recognition performance, it is comparable to the performance of the VQ approach
based on personalized codebooks.

As an expansion of the VQ-based method, a connectionist approach has also been developed based
on the learning vector quantization (LVQ) algorithm [2].

48.10 Optimizing Criteria for Model Construction

The establishment of effective speaker models is fundamental for good performing speaker recogni-
tion. In the previous section, we described different kinds of representations for speaker models. In
this section, we describe some of the techniques for optimizing model representations.
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Statistical and discriminative training techniques are based on optimizing criteria for constructing
models. Typical criteria for optimizing the model parameters include likelihood maximization, a
posteriori probability maximization, linear discriminant analysis (LDA), and discriminative error
minimization.

The maximum likelihood (ML) approach is widely used in statistical model parameter estimation,
such as for HMM parameter training [42]. Although ML estimation has good asymptotic properties,
it often requires a large amount of training data to achieve reliable results.

Linear discriminant analysis techniques have been used in a speaker verification system reported
by Netsch and Doddington [37]. A set of LDA weights applied to word-level feature vectors is found
by maximizing the ratio of between-speaker to within speaker covariances obtained from pooled
customer and impostor training data.

In contrast to conventional ML training, which estimates a model based only on training utterances
from the same speaker, discriminative training takes into account the models of other competing
speakers and formulates the optimization criterion so that speaker separation is enhanced. In the
minimum classification error/generalized probabilistic descent (MCE/GPD) method [23], the opti-
mum solution is obtained with a steepest descent algorithm minimizing recognition error rate for the
training data. Unlike the statistical framework, this method does not require estimating the prob-
ability distributions, which usually cannot be reliably obtained. However, discriminative training
methods require a sufficient amount of representative reference speaker training data, which is often
difficult to obtain, to be effective. This method has been applied to speaker recognition with good
results [26].

Neural nets are capable of discriminative training. Various investigations have been conducted to
cope with training problems, such as overtuning to training data. A typical implementation is the
neural tree network (NTN) classifier [5]. In this system each speaker is represented by a VQ codebook
and an NTN classifier. The NTN classifier is trained on both customer and impostor training data.

48.11 Model Training and Updating

Trial-to-trial variations have a major impact on the performance of speaker recognition systems.
Variations arise from the speaker himself/herself, from differences in recording and transmission
conditions, and from noise. Speakers cannot repeat an utterance precisely the same way from trial
to trial. It has been found that tokens of the same utterance recorded in one session are much
more highly correlated than tokens recorded in separate sessions. There are also long-term trends in
voices [7, 8].

There are two approaches for dealing with variability. One, discussed in this section, is to construct
and update models to accommodate variability. Another, discussed in the next section, is to condition
or normalize the acoustic features or the recognition scores to manage some sources of variability.

Training difficulties are closely related to training conditions. The key training conditions include
the number of training sessions, the number of tokens, and transmission channel and recording
conditions. Tokens of the same utterance recorded in one session are much more highly correlated
than tokens recorded in separate sessions. Therefore, wherever it is practicable, it is desirable to collect
training utterances for each speaker in multiple sessions to accommodate trial-to-trial variability. For
example, Gish and Schmidt [17] report a text-independent speaker identification system in which
multiple models of a speaker are constructed from multiple session training utterances.

It is inconvenient to request speakers to utter training tokens at many sessions before being allowed
to use a speaker recognition system. It is possible, however, to compensate for small amounts
of training data collected in a small number of enrollment sessions, often only one, by updating
models with utterances collected in recognition sessions. Updating is especially important for speaker
verification systems used for access control, where it can be expected that user trials will take place

c©1999 by CRC Press LLC



periodically over long periods of time in which trial-to-trial variations are likely. Updating models
in this way incorporates into the models the effects of trial-to-trial variations we have mentioned.
Rosenberg and Soong [45] reported significant improvements in performance in a text independent
speaker verification system based on VQ speaker models in which the VQ codebooks were updated
with test utterance data. A hazard associated with updating models using test session data is the
possibility of adapting a customer model with impostor data.

48.12 Signal Feature and Score Normalization Techniques

Some sources of variability can be managed by normalization techniques applied to signal features
or the scores. For example, as noted in Section 48.9.1, it is possible to adjust for trial-to-trial
timing variations by aligning test utterances with model parameters using DTW or Viterbi alignment
techniques.

48.12.1 Signal Feature Normalization

A typical normalization technique in the parameter domain, spectral equalization, also called “blind
equalization” or “blind deconvolution”, has been shown to be effective in reducing linear channel
effects and long-term spectral variation [1, 9]. This method is especially effective for text-dependent
speaker recognition applications using sufficiently long utterances. In this method, cepstral coeffi-
cients are averaged over the duration of an entire utterance, and the averaged values are subtracted
from the cepstral coefficients of each frame. This method can compensate fairly well for additive
variation in the log spectral domain. However, it unavoidably removes some text-dependent and
speaker specific features, and is therefore inappropriate for short utterances in speaker recognition
applications.

Gish [15] demonstrated that by simply prefiltering the speech transmitted over different telephone
lines with a fixed filter, text-independent speaker recognition performance can be significantly im-
proved. Gish et al. [14, 16] have also proposed using multi-variate Gaussian probability density
functions to model channels statistically. This can be achieved if enough training samples of chan-
nels to be modeled are available. It was shown that time derivatives (short-time spectral dynamic
features) of cepstral coefficients (delta-cepstral coefficients) are resistant to linear channel mismatch
between training and testing [51].

48.12.2 Likelihood and Normalized Scores

Likelihood measures (see Section 48.6) are commonly used in speaker recognition systems based on
statistical models, such as HMMs, to compare test utterances with models. Since likelihood values
are highly subject to inter-session variability, it is essential to normalize these variations.

Higgins et al. [20] proposed a normalization method that uses a likelihood ratio. The likelihood
ratio is defined as the ratio of the conditional probability of the observed measurements of the
utterance given the claimed identity to the conditional probability of the observed measurements
given the speaker is an impostor. A mathematical expression in terms of log likelihoods is given as

log l(x) = logp (x|S = Sc) − logp (x|S 6= Sc) (48.12)

Generally, a positive value of log l indicates a valid claim, whereas a negative value indicates an
impostor. The second term of the right hand side of Eq. (48.12) is called the normalization term.
Some proposals for calculating the normalization term are described.

The density at point x for all speakers other than the true speaker S can be dominated by the density
for the nearest reference speaker, if we assume that the set of reference speakers is representative of
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all speakers. We can, therefore, arrive at the decision criterion

log l(x) = logp (x|S = Sc) − max
S∈Ref,S 6=Sc

logp(x|S) (48.13)

This shows that likelihood ratio normalization is approximately equal to optimal scoring in Bayes’
sense. However, this decision criterion is unrealistic for two reasons. First, in order to choose the
nearest reference speaker, conditional probabilities must be calculated for all the reference speakers,
which involves a high computational cost. Second, the maximum conditional probability value is
rather variable from speaker to speaker, depending on how close the nearest speaker is in the reference
set.

48.12.3 Cohort or Speaker Background Models

A set of speakers, “cohort speakers”, has been chosen for calculating the normalization term of
Eq. (48.12). Higgins et al. proposed the use of speakers that are representative of the population near
the claimed speaker:

log l(x) = logp (x|S = Sc) − log
∑

S∈Cohort,S 6=Sc

p(x|S) (48.14)

Experimental results show that this normalization method improves speaker separability and reduces
the need for speaker-dependent or text-dependent thresholding, compared with scoring using only
the model of the claimed speaker. Another experiment in which the size of the cohort speaker set was
varied from 1 to 5 showed that speaker verification performance increases as a function of the cohort
size, and that the use of normalization significantly compensates for the degradation obtained by
comparing verification utterances recorded using an electret microphone with models constructed
from training utterances recorded with a carbon button microphone [49].

This method using speakers that are representative of the population near the claimed speaker is
expected to increase the selectivity of the algorithm against voices similar to the claimed speaker.
However, this method has a serious problem in that it is vulnerable to attack by impostors of the
opposite gender. Since the cohorts generally model only same-gender speakers, the probability
of opposite-gender impostor speech is not well modeled, and the likelihood ratio is based on the
tails of distributions giving rise to unreliable values. Another way of choosing the cohort speaker
set is to use speakers who are typical of the general population. Reynolds [43] reported that a
randomly selected, gender-balanced background speaker population outperformed a population
near the claimed speaker.

Matsui and Furui [31] proposed a normalization method based on a posteriori probability:

log l(x) = logp (x|S = Sc) − log
∑

S∈Ref

p(x|S) (48.15)

The difference between the normalization method based on the likelihood ratio and that based
on a posteriori probability is in whether or not the claimed speaker is included in the speaker set
for normalization; the cohort speaker set in the likelihood-ratio-based method does not include
the claimed speaker, whereas the normalization term for the a posteriori-probability-based method
is calculated using all the reference speakers, including the claimed speaker. Matsui and Furui
approximated the summation in Eq. (48.15) by the summation over a small set of speakers having
relatively high likelihood values. Experimental results indicate that the two normalization methods
are almost equally effective.

Carey and Parris [3] proposed a method in which the normalization term is approximated by the
likelihood for a world model representing the population in general. This method has the advantage
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that the computational cost for calculating the normalization term is much smaller than in the
original method since it does not need to sum the likelihood values for cohort speakers. Matsui and
Furui [32] recently proposed a new method based on tied-mixture HMMs in which the world model
is made as a pooled mixture model representing the parameter distribution for all the registered
speakers. This model is created by averaging the mixture-weighting factors of each registered speaker
calculated using speaker-independent mixture distributions. Therefore, the pooled model can be
easily updated when a new speaker is added as a registered speaker. In addition, this method has
been shown to give much better results than either of the original normalization methods.

Since these normalization methods neglect the absolute deviation between the claimed speaker’s
model and the input speech, they cannot differentiate highly dissimilar speakers. Higgins et al. [20]
reported that a multilayer network decision algorithm makes effective use of the relative and absolute
scores obtained from the matching algorithm.

48.13 Decision Process

48.13.1 Specifying Decision Thresholds and Measuring Performance

A “tight” decision threshold makes it difficult for impostors to be falsely accepted by the system.
However, it increases the possibility of rejecting legitimate users (customers). Conversely, a “loose”
threshold enables customers to be consistently accepted, while also falsely accepting impostors. To
set the threshold at a desired level of customer acceptance and impostor rejection, the distribution of
customer and impostor scores must be known. In practice, samples of impostor and customer scores
of a reasonable size that will provide adequate estimates of distributions are not readily available. A
satisfactory empirical procedure for setting the threshold is to assign a relatively loose initial threshold
and then allow it to adapt by setting it to the average, or some other statistic, of recent trial scores,
plus some margin that allows a reasonable rate of customer acceptance. For the first few verification
trials, the threshold may be so loose that it does not adequately protect against impostor attempts.
To prevent impostor acceptance during initial trials, they may be carried out as part of an extended
enrollment.

48.13.2 ROC Curves

Measuring the false rejectionandfalseacceptance rates foragiven thresholdcondition is an incomplete
description of system performance. A general description can be obtained by varying the threshold
over a sufficiently large range and tabulating the resulting false rejection and false acceptance rates.
A tabulation of this kind can be summarized in a receiver operating characteristic (ROC) curve,
first used in psychophysics. An ROC curve, shown as the probability of correct acceptance vs. the
probability of incorrect (false) acceptance is shown in Figure 48.4 [11].

The figure exemplifies the curves for three systems: A, B, and C. Clearly, the performance of curve
B is consistently superior to that of curve A, and C corresponds to the limiting case of purely chance
performance. Position a in the figure corresponds to the case in which a strict decision criterion is
employed, and position b corresponds to a case involving a lax criterion.

The point-by-point knowledge of the ROC curve provides a threshold-independent description of
all possible functioning conditions of the system. For example, if a false rejection rate is specified, the
corresponding false acceptance rate is obtained as the intersection of the ROC curve with the vertical
straight line indicating the false rejection.

Equal-error rate is a commonly accepted summary of system performance. It corresponds to a
threshold at which the rate of false acceptance is equal to the rate of false rejection. The equal-error
rate point corresponds to the intersection of the ROC curve with the straight line of 45 degrees,
indicated in the figure.
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FIGURE 48.4: Receiver operating characteristic (ROC) curves; performance examples of three
speaker recognition systems: A, B, and C.

48.13.3 Adaptive Thresholds

An issue related to model updating is the selection of a strategy for updating thresholds. A threshold
updating strategy must be specified that tolerates trial-to-trial variations while, at the same time,
ensures the desired level of performance.

48.13.4 Sequential Decisions (Multi-Attempt Trials)

In either the verification or identification mode, an additional threshold test can be applied to
determine whether the match is good enough to accept the decision or whether the decision should
be deferred to a new trial.

48.14 Outstanding Issues

There are many outstanding issues and problems in the area of speaker recognition. The most
pressing issues, providing challenges for implementing practical and uniformly reliable systems for
speaker verification, are rooted in problems associated with variability and insufficient data. As
described earlier, variability is associated with trial-to-trial variations in recording and transmission
conditions and speaking behavior. The most serious variations occur between enrollment sessions
and subsequent test sessions resulting in models that are mismatched to test conditions. Most appli-
cations require reliable system operation under a variety of environmental and channel conditions
and require that variations in speaking behavior will be tolerated. Insufficient data refers to the
unavailability of sufficient amounts of data to provide representative models and accurate decision
thresholds. Insufficient data is a serious and common problem because most applications require
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systems that operate with the smallest practicable amounts of training data recorded in the fewest
number of enrollment sessions, preferably one. The challenge is to find techniques that compensate
for these deficiencies. A number of techniques have been mentioned which provide partial solutions,
such as cepstral subtraction techniques for channel normalization and spectral subtraction for noise
removal. An especially effective technique for combating both variability and insufficient data is
updating models with data extracted from test utterances. Studies have shown that model adapta-
tion, properly implemented, can improve verification performance significantly with a small number
of updates. It is difficult, however, for model adaptation to respond to large, precipitous changes.
Moreover, adaptation provides for the possibility that customer models might be updated and possi-
bly captured by impostors. Another effective tool for making speaker verification more robust is the
use of likelihood ratio scoring. An utterance recorded in conditions mismatched to the conditions of
enrollment will experience degraded scores for both the customer reference model and the cohort or
background model so that the ratio of these two scores remains relatively stable. Ongoing research is
directed towards constructing efficient and effective background models for which likelihood ratio
scores that behave in this manner can be reliably obtained.

A desirable feature for a practical speaker verification system is reasonably uniform performance
across a population of speakers. Unfortunately, it is typical to observe in a speaker verification
experiment a substantial discrepancy between the best performing individuals, the “sheep”, and the
worst, the “goats”. This additional problem in variability has been widely observed, but there are
virtually no studies focusing on its origin. Speakers with no observable speech pathologies, and for
whom apparently good reference models have been obtained, are often observed to be “goats”. It is
possible that such speakers exhibit large amounts of trial-to-trial variability, beyond the ability of the
system to provide adequate compensation.

Finally, there are fundamental research issues which require additional study to promote further
advances in speaker recognition technology. First, and most important, is the selection of effective
features for speaker discrimination and the specification of robust, efficient acoustic measurements
for representing these features. Currently, as we have described, the most effective speaker recogni-
tion features are short-time spectral features, the same features used for speech recognition. These
features are mainly correlated with segmental speech phenomena and have been shown to be capable
of resolving very fine spectral differences, possibly exceeding human perceptual resolving ability.
Suprasegmental features, such as pitch and energy, are generally acknowledged to be less effective
for speaker recognition. However, it may be that suprasegmental features are not being measured or
used effectively since human listeners make effective use of such features in their speaker recognition
judgments.

Perhaps the single most fundamental speaker recognition research issue is the intrinsic discrim-
inability of speakers. A related issue is whether intrinsic discriminability should be calibrated by
the ability of listeners to discriminate speakers. It is not at all clear that the intrinsic discriminabil-
ity of speakers is the same order as the discriminability that can be obtained using other personal
identification characteristics, such as fingerprints and facial features. Speakers’ voices differ on the
basis of physiological and behavioral characteristics. But it is not clear precisely which characteris-
tics are significant, what acoustic measurements are correlated with specific features, and how close
features of different speakers must be to be acoustically and perceptually indistinguishable. Funda-
mental research on these questions will provide answers for developing better speaker recognition
technology.

Defining Terms

Registered speaker: A speaker who belongs to the list of known (registered) users for a given
speaker recognition system. Alternative terms: reference speaker, customer.
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Genuine speaker: A speaker whose real identity is in accordance with the claimed identity.
Alternative terms: true speaker, correct speaker.

Impostor: In the context of speaker identification, a speaker who does not belong to the set of
registered speakers. In the context of speaker verification, a speaker whose real identity
is different from his/her claimed identity.

Acceptance: A decision outcome which involves a positive response to a speaker (or speaker
class) verification task.

Rejection: A decision outcome which involves refusal to assign a registered identity (or class)
in the context of open-set speaker identification or speaker verification.

Misclassification: Erroneous identity assignment to a registered speaker in speaker identifica-
tion.

False rejection: Erroneous rejection of a genuine speaker in open-set speaker identification or
speaker verification.

False acceptance: Erroneous acceptance of an impostor in open-set identification or speaker
verification.

A posteriori equal error threshold: A decision threshold which is set a posteriori on the test data
so that the false rejection rate and false acceptance rate become equal. Although this
method cannot be put into actual practice, it is the most common constraint because it
is a simple way to summarize the overall performance of the system into a single figure.

A priori threshold: A decision threshold which is set beforehand usually based on estimates
from a set of training data.
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Implementations of digital speech processing algorithms in software can be distinguished from those
resulting from general-purpose algorithms basically in the type of arithmetic and the algorithmic
constructs used in their realization. In addition, many speech processing algorithms are realized with
Programmable Digital Signal Processors (PDSPs) as the software development target—this leads to
important considerations in the languages and paradigms used to realize the algorithms.

Although they are important topics in their own right, this section does not discuss the historical
development of PDSPs to explain why these devices provide the architectural features that they do,
and it does not provide a primer on PDSP architectures, either in general or in specific. Brief synopses
of these topics are presented in the text, however, where they are appropriate.

49.1 Software Development Targets

PDSPs were developed as specialized microprocessors in the late 1970s in response to the needs
of speech processing algorithms, and the vast majority of these devices have remained to this day
basically audio-rate and, hence, speech processing devices [1]–[5]. These processors present a unique
venue in which to both examine and implement speech processing algorithms since even a cursory
examination of the device architectures quickly reveals the strong synergy between PDSP features
and speech processing algorithms. As a result, specialized but restricted software development skills
are necessary to realize speech processing algorithms on these devices.

Within the context of speech processing application realization, PDSPs which provide fixed-point
data processing capabilities in hardware rather than floating-point capabilities are significantly more
important. The simple reason for this is that fixed-point PDSPs are significantly less expensive than
floating-point PDSPs but still provide the required computational capabilities for this class of appli-
cations. The fixed-point hardware capabilities are used to realize various types of arithmetic or data
abstractions for the infinite-precision mathematical constructs used in algorithms. These abstrac-
tions include the well-known integer arithmetic, as well as various forms of fixed-point arithmetic that

c©1999 by CRC Press LLC



use fixed shifts to control the scale of values within a computation and block floating-point arithmetic
which performs run-time scale manipulations under programmer control.

General-purpose microprocessors also present an implementation medium that is well suited to
many speech processing operations, although not one so well tailored to the task as that provided by
PDSPs. All of the algorithmic structures presented here can be realized via microprocessors, and in
fact many software libraries have been specifically designed to allow such realization [6]–[7].

49.2 Software Development Paradigms

As with general-purpose algorithms, a single software development paradigm cannot be described
under which speech processing algorithms are always implemented. A small set of such paradigms
do exist, however, and they are distinguished by just a few salient features.

Imperative vs. Applicative Language

Imperative programming languages specify a program as a sequence of commands to be per-
formed in the order given. All of the familiar high-level programming languages, such as C, C++,
or FORTRAN, as well as the assembly languages of most PDSPs, are imperative.

Applicative programming languages, on the other hand, describe a program via a collection of
relationships that must be maintained between variables. Applicative languages intended to be
programmed directly by the user such as Silage, SIGNAL, LUCID/Lustre, and Esterel, as well as the
assembly language of data-flow PDSPs, can all be used to specify speech processing algorithms in a
non-imperative manner, but their use to date in real applications is quite limited. And, although
usually described as a hardware-description language and used as an intermediate language generated
by other tools rather than directly by programmers, from the point of view of this discussion VHDL
is an applicative language that can be used to describe speech processing algorithms directly.

Graphical programming environments such as Ptolemy, GOSPL, COSSAP, and SPW also provide
an applicative “language” in which speech processing algorithms can be described. However, these
environments universally rely on atomic elements that are programmed with a separate paradigm,
usually an imperative one.

Most speech processing applications are implemented using imperative languages, and this pro-
gramming model will be used here. Note, however, that the important distinguishing features of
speech processing algorithms, arithmetic and algorithmic constructs, are applicable within any pro-
gramming paradigm.

High Level Language vs. Assembly Language

Given that an imperative programming paradigm is to be used, the choice of a High Level
Language (HLL) or assembly language as an implementation vehicle seems very straightforward [8]–
[9]. The common wisdom holds that (1) assembly language should be chosen where execution speed
is of the essence, in realizing “signal-processing kernels”, since HLL compilers cannot produce object
code of the same efficiency as can be obtained with hand-coded assembly language. However, (2) a
high-level language should be used otherwise, in the realization of “control code”, since this allows
effective software development and the use of a top-down code development strategy.

In PDSP implementations, however, this sensible arrangement is often not possible. The reason
for this is that use of a HLL compiler and run-time system makes untoward demands, relatively
speaking, on an embedded system where resources such as registers, memory, and instruction cycles
are quite scarce. In particular:

1. The settings in the control registers of the processor are often different between signal-
processing and control code, and the device is more often than not “ in the wrong mode”.
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2. The run-time memory organization demanded by a high-level language, typically includ-
ing a stack on which automatic variables are to be allocated but lacking memory bank
control, is one that most system designers are not willing to provide.

3. The standard function-call mechanism of a high-level language does not fit well with the
customized register usage demanded in embedded systems programming.

Thus, more often than not, HLL programming is not currently utilized in PDSP systems. This will
change, however, as PDSP HLL compilers become more sophisticated and as PDSP architectures
become more “microprocessor-like”.

Specialized vs. Standard High Level Languages

Specialized languages are often developed as dialects of standard high level programming lan-
guages by the authors of compilers. DSP/C, for example, is an extension of the C language that
contains special vector and signal processing operations [10]. While they appear to be quite useful
for target code development for speech processing applications, the lack of general support means
that these languages are not often used for either algorithm or target code development.

Extensible languages, on the other hand, allow “dialects” of standard programming languages to be
created by the end-user. C++ and Ada allow the construction of specialized arithmetic support via
class and generic constructs, respectively. While these languages are quite useful for algorithm
development, they generally cannot produce efficient realizations of the kind desired in target code
for speech processing applications.

More often than not, when standard high level languages are used, they are simply augmented by
libraries of operations. The Signal Processing Toolbox for MatlabTM and the Basic Operators for the
C language used in standard speech codecs are good examples of these [6]–[7].

Block vs. Single-Sample Processing

Speech coding applications lend themselves quite well to block processing, where individual
time-domain signal samples are buffered into vectors or frames [11]. This is often done for algorith-
mic reasons, as in LPC analysis, but significant performance gains can be realized by choosing this
processing structure as well, when this is possible.1

Buffered data can be processed much more efficiently than single samples with typical PDSP
architectures because the overhead associated with data transfer and instruction pipelining in these
devices can be amortized over the entire vector rather than occurring for each sample. For example,
the ubiquitous multiply-accumulate operation can be performed in a single instruction cycle by
most PDSPs, but only within the instruction execution pipeline, meaning that overhead of several
instruction cycles are required to set up for this level of performance. In single-sample processing,
this instruction execution rate cannot be achieved.

Frames can be processed in toto or divided into subframes that are to be processed individually.
This technique provides algorithmic flexibility without sacrificing the significant performance en-
hancement to be achieved with block processing.

Static vs. Dynamic Run-Time Operation

Two disparate philosophies on the operation of any real-time software system are particularly
evident in speech processing implementations. Static and dynamic here indicate that run-time

1Not all algorithms can use block processing—modems and other signaling systems with very low delay requirements
cannot. This technique is generally useful, however, for speech processing applications.
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resource requirements, outlined in Table 49.1, can be computed and known at compile-time or
only at run-time, respectively. Of course, some mix of these two philosophies can be found in any
system, but the emphasis will usually be placed on one or the other.

TABLE 49.1 Static vs. Dynamic Operation
Resource Static operation Dynamic operation

Memory allocation Global Stack/heap
−→ Address computation Fixed Stack-relative dynamic

Vector size Fixed Data dependent

Execution time Fixed Data dependent
−→ Branch paths Time-equivalent Time-disparate
−→ Wait-state insertiona Must be computed Can be ignored

Data transfer Polling possible DMA required
−→ Fifo buffers Not necessary Required
−→ Fifo overflow Impossible Possible

Operating system Not typical Typical

a Wait states may be inserted by an interlocked pipeline.

Exact vs. Approximate Arithmetic

The terms exact and approximate here refer to the concern on the part of the programmer as to
whether the results produced by a given arithmetic operation are fully specified by the programmer
in a bit-exact manner, or whether the best, approximate numerical performance that can be produced
by a particular processor is acceptable [12]. For example, IEEE floating-point arithmetic is exact,
while machine-dependent floating-point formats can be considered approximate from the point of
view of a programmer porting code to that architecture from another. The most important form of
exact arithmetic for speech processing applications is that provided by the Basic Operators, which
are used in the C language specification provided as part of modern speech coding standards [6]–[7].
As a general rule, the integral and fractional fixed-point arithmetic forms, discussed in Section 49.4,
can be considered exact and approximate, respectively.

Approximatearithmetic ismuchsimpler to specify thanexact arithmetic, but it isharder toevaluate.
In the former case, implementation details are left up to the target architecture, but if the numerical
performance of a particular realization does not meet some criteria, gross changes are required in
the source code. The problem here is that the criteria are not defined as part of the source code and
must be supplied elsewhere. Exact arithmetic, on the other hand, requires excruciating detail in the
specification of the algorithm from the outset, but no evaluation of the realization is required since
this realization must adhere to the specification.

Approximate arithmetic is the form promoted by the C language where, for example, the data
type int does not define the precision of the integer or the results of operations that overflow.2 It is
also the form preferred by software developers working in a native code development environment.3

Exact arithmetic, on the other hand, is preferred by developers who produce standards and who work
in cross-code development environments because it eases the task of porting the algorithm from one
environment to the other. Care must be exercised in this case, however, as any cross-development

2This is not to say that the C language cannot be used to realize exact arithmetic, which it often is through the machine-
dependent declaration of data types such as int16 and int32, but rather that the language was not designed for use with
exact arithmetic.
3Native indicates that code for a particular processor is developed on that processor, while cross indicates that the host and
target processors are different.

c©1999 by CRC Press LLC



introduces inherent biases into an implementation that may be difficult or impractical to realize on
a particular target processor [7].

It is well-known that a trade-off always exists between numerical and execution performance, as
discussed in Section 49.4. It is not so well-known, however, that approximate arithmetic will always
allow an equivalent or better balance to be struck in this trade-off than exact arithmetic. This is
because the excruciating detail provided as part of an exact specification supplies not a minimum
numerical requirement, but an exact one. In the case where a particular architecture can provide
more precision than is specified, extra code must be inserted to remove that precision, resulting in
less efficient execution performance. And, precisely because of this, an exact specification is in fact
always targeted to a particular PDSP or microprocessor architecture—no algorithm can be specified
in an exact manner and be truly portable or architecturally neutral.

49.3 Assembly Language Basics

Assembly languages for PDSPs are closely matched with the PDSP architecture for which they are
designed, but they all share common elements [1]–[5]. In particular, multiple processing units must
be programmed at the same time:

• adder

• multiplier

• fixed-point logic, such as shifter(s), rounding logic, saturation logic, etc.

• address generation unit

• program memory, for instruction fetch or data fetch

• data memories, perhaps multiple

In some cases, these units operate by default. For example, instruction fetches occur each machine
cycle unless program memory is otherwise used. And in other cases, these units are utilized in
combination. For example, (1) the DSP56000 multiply-accumulate instructions and (2) all address
generation and memory fetch operations are indivisible and not pipelined. In all other cases, however,
these processing units must be programmed within the instruction execution pipeline in which the
outputs of one processing unit are connected directly to the inputs of another.

Coding Paradigms

Distinct coding paradigms are required by the architectures of various PDSPs, basically de-
termined by the pipeline of that device, in order to perform this programming [13, 14]. Several
assembly language forms are presented by PDSPs to realize these coding paradigms:

Data stationary coding specifies ultimately the data that is operated on by an instruction, but
not the time at which the operation takes place—the latter is implicit in the form of the
instruction. For example, the AT&T DSP32 instruction

*r0++ = a0 = *r1++ + *r2++ (49.1)

specifies the locations in memory from which the addends should be read and to which
the sum should be written, but it is implicit that the sum will be written to memory in
the third instruction cycle following this one.
Because of such delays, illegal and erroneous instruction combinations can be written that
cause conflicts in the use of data from both memory and registers—the former can be
detected by the assembler, but the latter will simply produce data manipulations different
from those intended by programmer.
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Time stationary coding specifies the operations that should occur at the time that this instruc-
tion is executed, while the data to be used is whatever is present in the “pipeline registers”
at this time. For example, the AT&T DSP16 instruction

a1 = a0 + y y = *r0++ (49.2)

specifies that a sum should occur at this time between the named registers and that a
memory read should occur to the y register in parallel. No illegal or erroneous instruction
combinations are possible in this case.

Interlocked coding solves the instruction combination problems of data stationary coding by
automatically introducing extra machine cycles or wait states to ensure that conflicts do
not occur. While this is convenient for the programmer, it does not produce more efficient
execution than pure data stationary coding—on the contrary, it encourages programmers
to be less savvy about their product.

Data flow coding is appropriate for machines that realize an applicative paradigm directly, such
as the Hughes DFSP or the NEC µPD7281.

It must be pointed out that a mixture of these coding paradigms is often used in real PDSPs for control
of different processing units. For example, the AT&T DSP16, while ostensibly a time-stationary
device, utilizes a form of interlocking to allow multiple accesses to the same memory bank in a single
instruction cycle [1].

Assembly Languages Forms

Within the four coding paradigms presented above, several assembly language forms can be
utilized. First, either an infix form as given in Eq. 49.1 or the traditional assembly language prefix
form using instruction mnemonics, as shown in Eq. 49.3 for the Motorola DSP56000, can be used:

clr a (49.3)

Second, the instruction may consist of a single field, as in Eq. 49.1 or Eq. 49.3, or it may contain
multiple fields to be executed in parallel, as in Eq. 49.2 or Eq. 49.4:

mac x0, y0,a x:(r0)+,x0 y:(r4)+,y0 (49.4)

Note, however, that even within the multiple fields more than one operation is specified—in both
Eq. 49.2 and Eq. 49.4 address register updates are specified along with the memory move. Pure hori-
zontal microcode, in which a dedicated field in each instruction word controls a particular processing
unit, is used in only a few modern PDSP architectures, but the multiple-field instructions are similar.

Additionally, all PDSPs contain “mode registers” which control operation of particular elements
of the device. For example, the auc register of the AT&T DSP16 controls the multipler-shift, and
thus the type of arithmetic realized by this processor’s p=x*y instruction. Such mode registers, while
prevalent and powerful in extending the effective instruction encoding space of a PDSP, are quite
difficult to manage in large programming systems, especially in the design of function libraries.

49.4 Arithmetic

The most fundamental problem encountered during the implementation of speech processing al-
gorithms is that the algorithm must be realized (1) using the finite-precision arithmetic capabilities
of real processors rather than the infinite-precision available in mathematic formulae (2) under
typically severe cost constraints in terms of the processing capabilities of the target system [15]–[17].

c©1999 by CRC Press LLC



Any arbitrary level of arithmetic performance can be achieved by any processor, but the cost of
this performance in terms of machine cycles can be prohibitive, and so an engineering trade-off is
required.

Finite-precision arithmetic effects can be broadly classified as representational and operational
errors:

• The bit pattern used to represent a finite-precision value can be of many forms, but
all restrict the range of values over which a representation can be provided as well as
the precision or number of bits used for the representation of a given value. No forms of
arithmetic allow values outside the range to be represented, but some invoke an exception
handler when such is requested. This is not appropriate in most speech processing
systems, however, and in this case a finite-precision representation must be provided to
approximate this value.
The difference between an infinite-precision value and its finite-precision representation
is the representational error, and there are two sources of such error: truncation error
results from finite precision and overflow error results from range violations.

• Finite-precision operators used to transform values can also introduce error. In the case
of simple arithmetic operators, this is equivalent to representational error, but it is often
useful to conceptualize more complicated operators, such as an FIR or IIR filter, and to
characterize the error introduced by that entity.

The engineering trade-off thus becomes an exercise in balancing the numerical performance of a re-
alization of an algorithm in terms of truncation error and overflow error under the considerations
introduced by possibly wide variance in input signal strengths or dynamic range, against imple-
mentation cost constraints in terms of target processor choice and available machine cycles on that
processor. Because of the importance of this trade-off, it is important to examine different types of
arithmetic and to evaluate the numerical performance and implementation cost of each type.

For example, floating-point arithmetic produces adequate numerical performance for most speech
processing applications. However, the cost of floating-point processors is often prohibitive in dollar
terms, and the cost of realizing floating-point arithmetic on a less expensive, fixed-point processor
is prohibitive in terms of machine cycles. For this reason, some other type of arithmetic is often a
better choice even though it may be numerically inferior and much harder to implement.

Regardless of the type of arithmetic chosen, however, it will be used in speech processing applica-
tions as a proxy or abstraction for the real-valued, infinite-precision arithmetic of mathematics. An
important aspect that must be considered in evaluating finite-precision arithmetic types, then, is the
effectiveness of the abstraction they provide for real-valued arithmetic. For example, all arithmetic
needed for speech processing applications can be provided by integers, but determining what bit
pattern to use to represent π or how to add two values of different scales can be quite difficult with
this data abstraction.

Arithmetic Errors as Noise

Considering that most numerical values used in a speech processing algorithm are signals, in
that they take on distinct values at distinct sample points, the difference between a finite-precision
realization and the infinite-precision mathematical model on which it is based can be considered an
error or noise signal that is injected into an algorithm at the point at which that arithmetic is used,
as illustrated in Fig. 49.1. Given this model for the error as simply a noise source, finite-precision
arithmetic effects can be analyzed in a manner similar to that used for other noise sources in a signal
processing system.
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An important corollary to this fact is that speech processing algorithms should be, and typically
are, designed to be robust in the presence of arithmetic noise, just as they are designed to be robust
in the presence of other noise sources.

The model for the noise that is injected at each point is a function of the type of arithmetic used in
that operation, however. This noise model is an important element in understanding the motivation
for using various types of arithmetic, and is presented where appropriate in the sections that follow.

FIGURE 49.1: Noise model of arithmetic error.

Floating Point

A floating-point number consists of a sign bit, a mantissa, and an exponent, and it presents a
well-known model for realizing an approximation to real-valued arithmetic, where the value of the
number V is given by

V = M · βE (49.5)

with β the radix of the representation, usually 2, and M and E the effective values of the signed
mantissa and the exponent, respectively. A wide variety of floating-point formats exist, especially for
PDSPs, of which the IEEE 754 Floating-Point Standard is the most widely utilized for general-purpose
processors. These different formats are distinguished chiefly by the precision of the exponent and
the mantissa, and the behavior of the arithmetic at the limits of the representable range.

Floating-point arithmetic is usually used only in applications in which such arithmetic capabilities
are provided in hardware by the processor—it is not often simulated via software by a processor that
provides only fixed-point arithmetic capabilities, but rather another, similar data abstraction is used.
While quite powerful and easy-to-use, floating-point arithmetic is actually of little practical value in
the realization of speech processing algorithms.

Block Floating Point

A block floating-point representation of a vector of length N of numbers v̄ consists of a single
signed, 2’s complement integer of precision Be representing the exponent e for the block computed
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as4

e = max
i∈N

dlog2 (|vi |)e (49.6)

along with an array of N signed, 2s complement fractions of precision Bm = bm + 1 representing
the mantissas mi to which the exponent can be applied to yield the represented values v̂i as

v̂i = mi · 2bm−e (49.7)

The precision of the exponent Be and of the mantissas Bm are almost always chosen as the word
length of the target machine, yielding a single-precision block floating-point vector.

Arithmetic on the exponent and mantissas in a block floating-point representation are controlled
separately, since significant savings in computation can often be supplied directly by the programmer.
For example, if a block floating-point vector is to be computed as the result of a correlation, it is
known that the zeroeth lag will produce the value with the largest magnitude, and so the exponent
for the vector can be immediately determined. In the absence of such direct support from the
programmer, block floating-point computations require either (1) that high precision results be
saved in a temporary buffer to be scaled after all values have been computed and the maximum
exponent found or (2) that all results be computed twice—once to determine the exponent and a
second time to compute the mantissas.

An array of length L of block floating-point vectors of length N can be constructed, yielding a
construct consisting of L exponents and L · N mantissa values. This segmented block floating-point
representation allows better representation of values over a wide dynamic range than is available with
a single exponent. It is also quite suited to applications in which a segment of values is known to be
of one scale that can be quite different from that of neighboring segments.

In the limit with N = 1, (segmented) block floating-point yields the scalar (segmented) block
floating-point representation which is quite like the well-known (vector) floating-point representation,
except that normalization occurs only on demand. This is an appropriate representation to use for
quantities of large dynamic range in speech processing applications realized on fixed-point processors
where true floating-point would be prohibitively expensive.

Fixed Point

A fixed-point number consists of a field of B = b +1data bits that is interpreted as a binary, 2’s
complement number relative to a scale factor or size that is multiplied by the field to yield a value. The
two basic forms of fixed-point numbers are the integral and fractional forms, in which the justification
of the data bits within the field determines how the value of a bit pattern is interpreted:

Justification Field Size Value Range

Right Integer i Stepsize 1 1 · i
[
−1 · 2b, 1 · 2b

)

Left Fraction f Fieldsize φ φ · f [−φ, φ)

Regardless of the representation, note that the stepsize 1 and fieldsize φ are always related as
φ = 1 · 2b for quantities of precision B = b + 1.

Among other possible fixed-point representations, center-justified or mixed numbers are quite rare
in speech processing applications, and all other common representations are easily derived from the
integral and fractional forms.

4This is a simplified exponent definition used for purposes of illustration. The actual value used in any particular
implementation will be machine dependent, but this is of no consequence except as regards the point at which exponent
overflow or underflow occurs, rare occurrences in most systems.
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Given the basic machine word length or precision, usually 16 or 24 bits, fixed-point PDSPs
universally provide signed, single-precision multiplication producing a double-precision product,
along with double-precision addition, which allows numerically efficient computation of a sum-of-
products. Multiple-precision operations of greater precision, discussed below, must be simulated in
software.

The additive operators (addition, subtraction, negation, and absolute value) are equivalent for any
fixed-point representation, with the caveat that only numbers of the same type can be combined with
the binary additive operators. That is, only numbers of the same precision, form, and size can be
added together directly—other combinations require conversion of one or both quantities to another,
possibly a third, type before the operation can take place. Given this equivalency, it can be seen that
it is the kind of multiplication, controlled by the shift that occurs at the output of the multiplier and
the input to the ALU in all processors, that determines the type of arithmetic realized by a device, as
shown in Table 49.2.

TABLE 49.2 Multiplier-Shift Determines

Processor Type
Processor type Shifta

Integral 0

Fractional 1

Biquadraticb 2

Summationb -N

a This value is a relative one—the value zero could just as
easily have been assigned to the fractional machine.

b These names derive from the use of this type of
arithmetic in second-order IIR filter sections and long
summations, respectively.

Fixed-point PDSPs abound with shifters—at the ALU inputs, the multiplier output, accumulator
outputs, and perhaps within an independent barrel shifter. Because of a dearth of instruction encod-
ing space, however, these are often fixed or controlled from mode registers rather than instructions
or general registers, as discussed in Section 49.3.

The kind of multiplication realized by a processor also defines the kinds of data abstractions that
are most useful given that machine architecture:

Q-notation is a natural extension of integer notation that is useful for right-justified arithmetic.
A B-bit Qn fixed-point number is defined to have a binary point to the right of bit
n, where bit 0 is the Least Significant Bit (LSB), yielding a stepsize 1 = 2B a range
[−2B−n−1, 2B−n−1). Multiplication is defined as producing a product with a precision
and Q-value that are the sums of those of the multiplicands, respectively:

Bx?y = Bx + By (49.8)

nx?y = nx + ny (49.9)

When precision is increased or reduced, it is naturally done on the left of a right-justified
quantity, as with an integer. This seemingly simple operation is catastrophic when Q-
notation is used to model real-valued arithmetic, however, since it produces overflow.
Thus, precision must not be omitted at any point when Q-notation is in use—the term
“a Qn number” should always be qualified as “a B-bit, Qn number”.

c©1999 by CRC Press LLC



Scaled fractions are a natural extension of fractions that are useful for left-justified arithmetic.
A b + 1−bit fractional number of fieldsize φ has a range [−φ, φ), and multiplication
is defined as producing a product with a precision and fieldsize that are the sum and
product of those of the multiplicands, respectively:

bx?y = bx + by (49.10)

φx?y = φx · φy (49.11)

With this notation, biquadratic quantities can be seen to be simply scaled-fractions of
fieldsize 2.0.
Precision is much less important for scaled-fractions than for Q-values. This is because
increasing or reducing the precision of a left-justified quantity naturally occurs on the
right, which simply raises or lowers the accuracy of the representation. Thus, while
important as regards numerical performance, precision is not required in describing a
quantity as “a scaled-fractional of fieldsize φ”.

It should be pointed out that use of a right-justified data abstraction on a left-justified machine, or
vice versa, is quite difficult.

Reduction describes the common response to overflow in fixed-point additive operations, where a
sum is simply allowed to “wrap around” in the 2’s complement representation:

x+y ≡ sgn(x + y) · [(|x + y| + φ) mod 2φ − φ] (49.12)

Saturation describes an alternate response to overflow where the result is set to the maximum repre-
sentable value of the appropriate sign:

x+y ≡



φ − 1 x + y ≥ φ

x + y −φ ≥ x + y < φ

−φ x + y < −φ

(49.13)

The bit patterns that result from saturation are 0x7f. . .f and 0x80. . .0 in the cases of positive and
negative overflow, respectively. Fixed-point PDSPs typically provide hardware to realize saturation
because it gives a significant boost to the numerical performance of many speech processing algo-
rithms in the presence of overflow. In most cases, when reduction arithmetic is in use no overflow
can be tolerated, even in extremely unlikely situations, while some overflow can be tolerated with
saturation arithmetic in most algorithms.

General-purposemicroprocessors traditionallyprovideonly a singleoverflow-detectionbit. Fixed-
point PDSPs, on the other hand, typically provide N > 1 overflow bits for each register that can be
the destination of an additive operation in the ALU, usually termed accumulators. This feature allows
summations of up to 2N terms to be performed while the result can be saturated correctly if overflow
does occur. The overflow bits are alternately called secondary overflow bits, guard bits, or extension
words by different manufacturers.

For summations involving more than 2N terms, it is often useful to determine if overflow occurred
during the summation, even though enough information to saturate the result is not available—this
capability is also required for the support of block floating-point operations. Sticky or permanent
overflow bits are set when overflow occurs, but they are only cleared under programmer control,
allowing such overflow detection. And, it is sometimes useful to provide such permanent overflow
detection at a saturation value other than the range, as noted in Section 49.5.

Another option in the case of summations involving more than 2N terms is to scale the inputs to the
summation and then perform saturation at the end of the summation during a rescaling operation.
As with all scaling operations, however, this one trades off overflow error for truncation error, and
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it may introduce unacceptable noise levels. For example, in the case of a summation of K i.i.d.
Gaussian random variables, prescaling introduces a 3dlog2 KedB SNR degradation relative to an
unscaled summation.

The nature of fixed-point PDSPs as single-precision multiply/double-precision add machines
means that conversions between single- and double-precision quantities is quite common. Extension
from single- to double-precision always takes place on the right for fixed-point quantities, except in
the rare cases where integers are involved, and the extension is always with zeroes. Conversion from
double- to single-precision, however, can be performed by truncation where the extra bits are simply
removed,

( x & ( ( -1 ) << B) (49.14)

where B is the basic machine precision, or by rounding:

( ( x + ( 1 << B − 1)) & ( ( -1 ) << B) (49.15)

Fixed-point PDSPs typically provide hardware to realize rounding because it gives a significant boost
to the numerical performance of many speech processing algorithms. In most applications, it can be
safely assumed that the low bits of the 2s complement value that are removed as part of a conversion
operation are neither deterministic nor correlated and that they represent values that are uniformly
distributed over the range [0, 1). In this case, rounding produces errors that statistically are approx-
imately zero-mean, while truncation produces errors with mean µ ≈ 1

21, and this bias error can be
significant in many situations.

Multiple-precision operations can be simulated in software in many ways, but usually one or more
of the following formats is used to represent them:

Native format represents double- and higher-precision numbers as simply the appropriate bit
pattern broken into multiple machine words. High-precision additive operations can be
directly realized in this format using a carry flag, but multiplication of such quantities
requires unsigned multiplication capabilities, which are lacking in most PDSPs and many
general-purpose processors.

Double precision format (DPF)allowsdouble-precision fractionalmultiplication, withdouble-
precision inputs and double-precision output, to be realized using signed multiplier ca-
pabilities by representing a double-precision value as the concatenation of the high-order
word with the low-order word logically right-shifted by one bit.

Double round format (DRF) allows double-precision multiplication, both integral and frac-
tional, toberealizedusingsignedmultiplier capabilitiesbyrepresentingadouble-precision
value as the concatenation of the high-order word that would result from rounding the
double-precision quantity to single-precision, with the original low-order word.

These representations are illustrated in Table 49.3.

TABLE 49.3 Double-Precision

Formats
Format High word Low word

Native 0x89AB 0xCDEF

DPF 0x89AB 0x66F7

DRF 0x89AC 0xCDEF
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49.5 Algorithmic Constructs

The second major distinction between implementations of digital speech processing algorithms and
general-purpose algorithms concerns the algorithmic constructs used in their realization, and the
most important of these are discussed below.

Delay Lines

Delay lines, which allow the storage of sample values from one operational cycle to the next,
are an important component of speech processing systems, and they can be realized in a variety of
ways with PDSPs:

Registers, including implicit pipeline registers, can be used to effectively realize short delays,
including the one- and two-tap delays required in IIR filters.

Modulo addressing causes an address register to “wrap around” within a defined range to the
start of a buffer when an attempt is made to increment that register past the end of the
defined range. A delay line can be realized using modulo addressing by utilizing the
location containing the expired data at a given step for the new data and by bumping the
address register accordingly.
Most PDSPs do provide modulo-addressing capabilities, but often in only a limited man-
ner. For example, strides greater than one or negative strides may not be supported, and
the buffer may require a certain alignment in memory.

Writeback causes a delay line element to be written back to memory at a new location after it
is read and used in a computation. While this technique is quite powerful as regards the
rearrangement of data in memory, it is quite expensive in terms of memory bandwidth
requirements.

These techniques are most useful for fixed delays, but equivalent methods can be used to realize
variable delays.

Transforms

Modern PDSPs provide specialized support for transforms, and inverse transforms as well,
especially the radix-2 FFT. This can include the ability to

• Compute both a sum and a difference on the same data in parallel.

• Compute addresses using reverse-carry addition, where the carry propagates to the right
rather than to the left as in ordinary addition. This allows straightforward computa-
tion of the bit-reversed addresses needed to unscramble the results of many transform
calculations.

• Detect overflow in fixed-point computations at a point other than the saturation point.
This can be used to predict that overflow is likely to occur at the current transform stage
based on the output of the previous stage before computation of the current stage begins.
With this capability, the data can be scaled as part of the current processing stage if and
only if it is necessary, efficiently producing an optimally scaled transform output.

Vector Structure Organization

Vectors of atomic components are always laid out simply as an array of the elements. When
the components are not atomic, however, as with segmented block floating-point or complex quan-
tities, an alternative is to organize the vector as two arrays: an exponent array and a mantissa array
for segmented block floating-point quantities, or a real array and an imaginary array for complex
quantities.
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The choice of interleaved or separate arrays, as these two techniques are known, is a trade-off
between resource demands, in terms of the number of address registers needed to access a single
element, vs. flexibility, in terms of the order of access and stride control that is possible.

Zipping

Zipping is a generic term that is used to refer to the process of performing a sequence of multiply-
accumulate operations on input arrays to realize the signal processing tasks of scaling, windowing,
convolution, auto- and cross-correlation, and FIR filtering. The only real difference between these
conceptually distinct tasks is (1) the choice of data or constant input arrays and (2) the order of access
within these arrays.

PDSPs are designed to implement this operation, above all others, efficiently—their performance
here is what distinguishes them most from general-purpose and RISC microprocessors. Regardless
of the coding paradigm used,5 all PDSPs allow in a single instruction cycle the following:

• two memory accesses, either data-constant or data-data

• two address register updates

• a single-precision multiply

• a double-precision accumulate

Programming contortions are often required to achieve this throughput in the face of processor
limitations and memory access penalties, but the holy grail single-cycle operation is always attainable.

Mathematical Functions

As ingeneral-purposeprogramming, higher levelmathematical functionscanberealizedwithin
speech processing applications in one of three ways:

Bitwise computation can be used to build an exact representation one bit at a time. This
technique is often used to implement single-precision division and square root functions,
and some PDSPs even include special iterative instructions to accomplish these operations
in a single cycle per output bit. For example, unsigned division can be realized for the
Motorola 56000 as follows:

and #$fe,ccr ; Clear quotient sign bit
rep #24 ; Form 24 bit quotient,
div x0,a ; ... one bit at a time.

(49.16)

Approximate computation, such as Newton’s method, is often used to produce a double-
precision result from a single-precision estimate.

Table lookup is often used, along with linear interpolation between sample points, especially
for trigonometric, logarithmic, and inverse functions. Several PDSPs even include the
necessary tables in ROM.

Looping Constructs

Loop counting can be done with general registers, and this is required in deeply nested loops,
but hardware support is often provided by PDSPs for low- and zero-overhead loops. Low-overhead
loops utilize a special counter register to realize a branching construct similar to the well-known
decrement-and-branch instruction of the Motorola 68000 microprocessor. They are “low overhead”

5Coding paradigms are discussed in Section 49.3.
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in that the cost of the loop is typically only that of the branch instruction per iteration—separate
increment (or decrement) and test instructions are not needed. Zero-overhead loops go one step
further and eliminate even the cost of the branch instruction per iteration. They do this via special-
purpose hardware to perform the program counter manipulations normally handled in the branch
instruction. There is an overhead cost at the start of the loop, but the cost per iteration is truly zero.

Loop reversal is an important concept that often allows more efficient coding of speech processing
constructs. In its simplest form, a loop counter is run backward to allow more efficient counting of
iterations, or an address register is run backward to allow it to be reused without having to reinitialize
it. In both of these cases, the reversal of the counter or address register is only possible when there are
no dependencies from one loop iteration to the next. More powerful, however, is to perform memory
access via a temporary register to allow loops that need to run in one direction for algorithmic reasons
to be coded in the opposite direction. This technique can be used to exploit the pipelined nature of
PDSPs to great effect.
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50.1 Introduction

Experts in every field of study depend on specialized tools. In the case of speech research and
development, the dominant tools today are computer programs. In this article, we present an
overview of key technical approaches and features that are prevalent today.

We restrict the discussion to software intended to support R&D, as opposed to software for com-
mercial applications of speech processing. For example, we ignore DSP programming (which is
discussed in the previous article). Also, we concentrate on software intended to support the special-
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ities of speech analysis, coding, synthesis, and recognition, since these are the main subjects of this
chapter. However, much of what we have to say applies as well to the needs of those in such closely
related areas as psycho-acoustics, clinical voice analysis, sound and vibration, etc.

We do not attempt to survey available software packages, as the result would likely be obsolete by
the time this book is printed. The examples mentioned are illustrative, and not intended to provide a
thorough or balanced review. Our aim is to provide sufficient background so that readers can assess
their needs and understand the differences among available tools. Up-to-date surveys are readily
available online (see Section 50.13).

In general, there are three common uses of speech R&D software:

• Teaching, e.g., homework assignments for a basic course in speech processing

• Interactive, free-form exploration, e.g., designing a filter and evaluating its effects on a
speech processing system

• Batch experiments, e.g., training and testing speech coders or speech recognizers using a
large database

The relative importance of various features differs among these uses. For example, in conducting
batch experiments, it is important that large signals can be handled, and that complicated algorithms
execute efficiently. For teaching, on the other hand, these features are less important than simplicity,
quick experimentation, and ease-of-use. Because of practical limitations, such differences in priority
mean that no one software package today can meet all needs.

To explain the variation among current approaches, we identify a number of distinguishing char-
acteristics. These characteristics are not independent (i.e., there is considerable overlap), but they do
help to present the overall view.

For simplicity, we will refer to any particular speech R&D software as “the speech software”.

50.2 Historical Highlights

Early or significant examples of speech R&D software include “Visible Speech” [5], MITSYN [1], and
Lloyd Rice’s WAVE program of the mid 1970s (not to be confused with David Talkin’s waves [8]).

The first general, commercial system that achieved widespread acceptance was the Interactive
Laboratory System (ILS) from Signal Technology Incorporated, which was popular in the late 1970s
and early 1980s. Using the terminology defined below, ILS is compute-oriented software with an
operating-system-based environment. The first popular, display-oriented, workspace-based speech
software was David Shipman’s LISP-machine application called Spire [6].

50.3 The User’s Environment
(OS-Based vs. Workspace-Based)

In some cases, the user sees the speech software as an extension of the computer’s operating system.
We call this “operating-system-based” (or OS-based); an example is the Entropic Signal Processing
System (ESPS) [7].

In other cases, the software provides its own operating environment. We call this “workspace-
based” (from the term used in implementations of the programming language APL); an example is
MATLABTM (from The Mathworks).
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50.3.1 Operating-System-Based Environment

In this approach, signals are represented as files under the native operating system (e.g., Unix, DOS),
and the software consists of a set of programs that can be invoked separately to process or display
signals in various ways. Thus, the user sees the software as an extension of an already-familiar oper-
ating system. Because signals are represented as files, the speech software inherits file manipulation
capabilities from the operating system. Under Unix, for example, signals can be copied and moved
respectively using the cp and mv programs, and they can be organized as directory trees in the Unix
hierarchical file system (including NFS).

Similarly, the speech software inherits extension capabilities inherent in the operating system.
UnderUnix, for example, extensions canbecreatedusing shell scripts invarious languages (sh, csh, Tcl,
perl, etc.), as well as such facilities as pipes and remote execution. OS-based speech software packages
are often called command-line packages because usage typically involves providing a sequence of
commands to some type of shell.

50.3.2 Workspace-Based Environment

In this approach, the user interacts with a single application program that takes over from the
operating system. Signals, which may or may not correspond to files, are typically represented as
variables in some kind of virtual space. Various commands are available to process or display the
signals. Such a workspace is often analogous to a personal blackboard.

Workspace-based systems usually offer means for saving the current workspace contents and for
loading previously saved workspaces.

An extension mechanism is typically provided by a command interpreter for a simple language that
includes the available operations and a means for encapsulating and invoking command sequences
(e.g., in a function or procedure definition). In effect, the speech software provides its own shell to
the user.

50.4 Compute-Oriented vs. Display-Oriented

This distinction concerns whether the speech software emphasizes computation or visualization or
both.

50.4.1 Compute-Oriented Software

If there is a large number of signal processing operations relative to the number of signal display
operations, we say that the software is compute-oriented. Such software typically can be operated
withoutadisplaydeviceandtheuser thinksof itprimarilyasacomputationpackage that supports such
functions as spectral analysis, filtering, linear prediction, quantization, analysis/synthesis, pattern
classification, Hidden Markov Model (HMM) training, speech recognition, etc.

Compute-oriented software can be either OS-based or workspace based. Examples include ESPS,
MATLABTM, and the Hidden Markov Model Toolkit (HTK) (from Cambridge University and En-
tropic).

50.4.2 Display-Oriented Software

In contrast, display-oriented speech software is not intended to and often cannot operate without
a display device. The primary purpose is to support visual inspection of waveforms, spectrograms,
and other parametric representations. The user typically interacts with the software using a mouse
or other pointing device to initiate display operations such as scrolling, zooming, enlarging, etc.
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While the software may also provide computations that can be performed on displayed signals (or
marked segments of displayed signals), the user thinks of the software as supporting visualization
more than computation. An example is the waves program [8].

50.4.3 Hybrid Compute/Display-Oriented Software

Hybrid compute/display software combines the best of both. Interactions are typically by means
of a display device, but computational capabilities are rich. The computational capabilities may be
built-in to workspace-based speech software, or may be OS-based but accessible from the display
program. Examples include the Computerized Speech Lab (CSL) from Kay Elemetrics Corp., and
the combination of ESPS and waves.

50.5 Compiled vs. Interpreted

Here we distinguish according to whether the bulk of the signal processing or display code (whether
written by developers or users) is interpreted or compiled.

50.5.1 Interpreted Software

The interpreter language may be specially designed for the software (e.g., S-PLUS from Statistical
Sciences, Inc., and MATLABTM), or may be an existing, general purpose language (e.g., LISP is used
in N!Power from Signal Technology, Inc.).

Compared to compiler languages, interpreter languages tend to be simpler and easier to learn.
Furthermore, it is usually easier and faster to write and test programs under an interpreter. The
disadvantage, relative to compiled languages, is that the resulting programs can be quite slow to run.
As a result, interpreted speech software is usually better suited for teaching and interactive exploration
than for batch experiments.

50.5.2 Compiled Software

Compared to interpreted languages, compiled languages (e.g., FORTRAN, C, C++) tend to be more
complicated and harder to learn. Compared to interpreted programs, compiled programs are slower
to write and test, but considerably faster to run. As a result, compiled speech software is usually
better suited for batch experiments than for teaching.

50.5.3 Hybrid Interpreted/Compiled Software

Some interpreters make it possible to create new language commands with an underlying implemen-
tation that is compiled. This allows a hybrid approach that can combine the best of both.

Some languages provide a hybrid approach in which the source code is pre-compiled quickly into
intermediate code that is then (usually!) interpreted. Java is a good example.

If compiled speech software is OS-based, signal processing scripts can typically be written in an
interpretive language (e.g., a sh script containing a sequence of calls to ESPS programs). Thus, hybrid
systems can also be based on compiled software.

50.5.4 Computation vs. Display

The distinction between compiled and interpreted languages is relevant mostly to the computational
aspects of the speech software. However, the distinction can apply as well to display software, since
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some display programs are compiled (e.g., using Motif) while others exploit interpreters (e.g., Tcl/Tk,
Java).

50.6 Specifying Operations Among Signals

Here we are concerned with the means by which users specify what operations are to be done and on
what signals. This consideration is relevant to how speech software can be extended with user-defined
operations (see Section 50.7), but is an issue even in software that is not extensible.

The main distinction is between a text-based interface and a visual (“point-and-click”) interface.
Visual interfaces tend to be less general but easier to use.

50.6.1 Text-Based Interfaces

Traditional interfaces for specifying computations are based on a textual-representation in the form
of scripts and programs. For OS-based speech software, operations are typically specified by typing
the name of a command (with possible options) directly to a shell. One can also enter a sequence of
such commands into a text editor when preparing a script.

This style of specifying operations also is available for workspace-based speech software that is
based on a command interpreter. In this case, the text comprises legal commands and programs in
the interpreter language.

Both OS-based and workspace-based speech software may also permit the specification of opera-
tions using source code in a high-level language (e.g., C) that gets compiled.

50.6.2 Visual (“Point-and-Click”) Interfaces

The point-and-click approach has become the ubiquitous user-interface of the 1990s. Operations and
operands (signals) are specified by using a mouse or other pointing device to interact with on-screen
graphical user-interface (GUI) controls such as buttons and menus. The interface may also have a
text-based component to allow the direct entry of parameter values or formulas relating signals.

Visual Interfaces for Display-Oriented Software

In display-oriented software, the signals on which operations are to be performed are visible
as waveforms or other directly representative graphics.

A typical user-interaction proceeds as follows: A relevant signal is specified by a mouse-click
operation (if a signal segment is involved, it is selected by a click-and-drag operation or by a pair of
mouse-click operations). The operation to be performed is then specified by mouse click operations
on screen buttons, pull-down menus, or pop-up menus.

This style works very well for unary operations (e.g., compute and display the spectrogram of a
given signal segment), and moderately well for binary operations (e.g., add two signals). But it is
awkward for operations that have more than two inputs. It is also awkward for specifying chained
calculations, especially if you want to repeat the calculations for a new set of signals.

One solution to these problems is provided by a “calculator-style” interface that looks and acts like
a familiar arithmetic calculator (except the operands are signal names and the operations are signal
processing operations).

Another solution is the “spreadsheet-style” interface. The analogy with spreadsheets is tight.
Imagine a spreadsheet in which the cells are replaced by images (waveforms, spectrograms, etc.)
connected logically by formulas. For example, one cell might show a test signal, a second might show
the results of filtering it, and a third might show a spectrogram of a portion of the filtered signal.
This exemplifies a spreadsheet-style interface for speech software.
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A spreadsheet-style interface provides some means for specifying the “formulas” that relate the
various “cells”. This formula interface might itself be implemented in a point-and-click fashion,
or it might permit direct entry of formulas in some interpretive language. Speech software with
a spreadsheet-style interface will maintain consistency among the visible signals. Thus, if one of
the signals is edited or replaced, the other signal graphics change correspondingly, according to the
underlying formulas.

DADisp (from DSP Development Corporation) is an example of a spreadsheet-style interface.

Visual Interfaces for Compute-Oriented Software

In a visual interface for display-oriented software, the focus is on the signals themselves. In
a visual interface for compute-oriented software, on the other hand, the focus is on the operations.
Operations among signals typically are represented as icons with one or more input and output lines
that interconnect the operations. In effect, the representation of a signal is reduced to a straight
line indicating its relationship (input or output) with respect to operations. Such visual interfaces
are often called block-diagram interfaces. In effect, a block-diagram interface provides a visual
representation of the computation chain. Various point-and-click means are provided to support
the user in creating, examining, and modifying block diagrams.

Ptolomy [4] and N!Power are examples of systems that provide a block-diagram interface.

Limitations of Visual Interfaces

Although much in vogue, visual interfaces are inherently limited as a means for specifying
signal computations.

For example, the analogy between spreadsheets and spreadsheet-style speech software continues.
For simple signal computations, the spreadsheet-style interface can be very useful; computations
are simple to set up and informative when operating. For complicated computations, however,
the spreadsheet-style interface inherits all of the worst features of spreadsheet programming. It is
difficult to encapsulate common sub-calculations, and it is difficult to organize the “program” so that
the computational structure is self-evident. The result is that spreadsheet-style programs are hard to
write, hard to read, and error-prone.

In this respect, block-diagram interfaces do a better job since their main focus is on the underlying
computation rather than on the signals themselves. Thus, screen “real-estate” is devoted to the
computation rather than to the signal graphics. However, as the complexity of computations grows,
the geometric and visual approach eventually becomes unwieldy. When was the last time you used a
flowchart to design or document a program?

It follows that visual interfaces for specifying computations tend to be best suited for teaching and
interactive exploration.

50.6.3 Parametric Control of Operations

Speech processing operations often are based on complicated algorithms with numerous parameters.
Consequently, the means for specifying parameters is an important issue for speech software.

The simplest form of parametric control is provided by command-line options on command-line
programs. This is convenient, but can be cumbersome if there are many parameters. A common
alternative is to read parameter values from parameter files that are prepared in advance. Typically,
command-line values can be used to override values in the parameter file. A third input source for
parameter values is directly from the user in response to prompts issued by the program.

Some systems offer the flexibility of a hierarchy of inputs for parameter values, for example:

• default values
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• values from a global parameter file read by all programs

• values from a program-specific parameter file

• values from the command line

• values from the user in response to run-time prompts

In some situations, it is helpful if a current default value is replaced by the most recent input from
a given parameter source. We refer to this property as “parameter persistence”.

50.7 Extensibility (Closed vs. Open Systems)

Speech software is “closed” if there is no provision for the user to extend it. There is a fixed set of
operations available to process and display signals. What you get is all you get.

OS-based systems are always extensible to a degree because they inherit scripting capabilities from
the OS, which permits the creation of new commands. They may also provide programming libraries
so that the user can write and compile new programs and use them as commands.

Workspace-based systems may be extensible if they are based on an interpreter whose programming
language includes the concept of an encapsulated procedure. If so, then users can write scripts that
define new commands. Some systems also allow the interpreter to be extended with commands that
are implemented by underlying code in C or some other compiled language.

In general, for speech software to be extensible, it must be possible to specify operations (see
Section 50.6) and also to re-use the resulting specifications in other contexts. A block-diagram
interface is extensible, for example, if a given diagram can be reduced to an icon that is available for
use as a single block in another diagram.

For speech software with visual interfaces, extensibility considerations also include the ability to
specify new GUI controls (visible menus and buttons), the ability to tie arbitrary internal and external
computations to GUI controls, and the ability to define new display methods for new signal types.

In general, extended commands may behave differently from the built-in commands provided with
the speech software. For example, built-in commands may share a common user interface that is
difficult to implement in an independent script or program (such a common interface might provide
standard parameters for debug control, standard processing of parameter files, etc.).

If user-defined scripts, programs, and GUI components are indistinguishable from built-in facili-
ties, we say that the speech software provides seamless extensibility.

50.8 Consistency Maintenance

A speech processing chain involves signals, operations, and parameter sets. An important consid-
eration for speech software is whether or not consistency is maintained among all of these. Thus,
for example, if one input signal is replaced with another, are all intermediate and output signals
recalculated automatically? Consistency maintenance is primarily an issue for speech software with
visual interfaces, namely whether or not the software guarantees that all aspects of the visible displays
are consistent with each other.

Spreadsheet-style interfaces (for display-oriented software) and block-diagram interfaces (for
compute-oriented software) usually provide consistency maintenance.
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50.9 Other Characteristics of Common Approaches

50.9.1 Memory-based vs. File-based

“Memory-based” speech software carries out all of its processing and display operations on signals
that are stored entirely within memory, regardless of whether or not the signals also have an external
representation as a disk file. This approach has obvious limitations with respect to signal size, but it
simplifies programming and yields fast operation. Thus, memory-based software is well-suited for
teaching and the interactive exploration of small samples.

In “file-based” speech software, on the other hand, signals are represented and manipulated as disk
files. The software partially buffers portions of the signal in memory as required for processing and
display operations. Although programming can be more complicated, the advantage is that there
are no inherent limitations on signal size. The file-based approach is, therefore, well-suited for large
scale experiments.

50.9.2 Documentation of Processing History

Modern speechprocessing involves complicated algorithmswithmanyprocessing steps andoperating
parameters. As a result, it is often important to be able to reconstruct exactly how a given signal was
produced. Speech software can help here by creating appropriate records as signal and parameter
files are processed.

The most common method for recording this information about a given signal is to put it in the
same file as the signal. Most modern speech software uses a file format that includes a “file header”
that is used for this purpose. Most systems store at least some information in the header, e.g., the
sampling rate of the signal. Others, such as ESPS, attempt to store all relevant information. In this
approach, the header of a signal file produced by any program includes the program name, values
of processing parameters, and the names and headers of all source files. The header is a recursive
structure, so that the headers of the source files themselves contain the names and headers of files that
were prior sources. Thus, a signal file header contains the headers of all source files in the processing
chain. It follows that files contain a complete history of the origin of the data in the file and all
the intermediate processing steps. The importance of record keeping grows with the complexity of
computation chains and the extent of available parametric control.

50.9.3 Personalization

There is considerable variation in the extent to which speech software can be customized to suit
personal requirements and tastes. Some systems cannot be personalized at all; they start out the
same way, every time. But most systems store personal preferences and use them again next time.
Savable preferences may include color selections, button layout, button semantics, menu contents,
currently loaded signals, visible windows, window arrangement, and default parameter sets for speech
processing operations.

At the extreme, some systems can save a complete “snapshot” that permits exact resumption. This
is particularly important for the interactive study of complicated signal configurations across repeated
software sessions.

50.9.4 Real-Time Performance

Software is generally described as “real-time” if it is able to keep up with relevant, changing inputs.
In the case of speech software, this usually means that the software can keep up with input speech.

Even this definition is not particularly meaningful unless the input speech is itself coming from a
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human speaker and digitized in real-time. Otherwise, the real-issue is whether or not the software is
fast enough to keep up with interactive use.

For example, if one is testing speech recognition software by directly speaking into the computer,
real-time performance is important. It is less important, on the other hand, if the test procedure
involves running batch scripts on a database of speech files.

If the speech software is designed to take input directly from devices (or pipes, in the case of Unix),
then the issue becomes one of CPU speed.

50.9.5 Source Availability

It is unfortunate but true that the best documentation for a given speech processing command is
often the source code. Thus, the availability of source code may be an important factor for this reason
alone. Typically, this is more important when the software is used in advanced R&D applications.
Sources also are needed if users have requirements to port the speech software to additional platforms.
Source availability may also be important for extensibility, since it may not be possible to extend the
speech software without the sources.

If the speech software is interpreter-based, sources of interest will include the sources for any
built-in operations that are implemented as interpreter scripts.

50.9.6 Hardware Requirements

Speech software may require the installation of special purpose hardware. There are two main reasons
for such requirements: to accelerate particular computations (e.g., spectrograms), and to provide
speech I/O with A/D and D/A converters.

Such hardware has several disadvantages. It adds to the system cost, and it decreases the overall
reliability of the system. It may also constrain system software upgrades; for example, the extra
hardware may use special device drivers that do not survive OS upgrades. Special purpose hardware
used to be common, but is less so now owing to the continuing increase in CPU speeds and the
prevalenceof built-in audio I/O. It is still important, however, whenmaximumspeedandhigh-quality
audio I/O are important. CSL is a good example of an integrated hardware/software approach.

50.9.7 Cross-Platform Compatibility

If your hardware platform may change or your site has a variety of platforms, then it is important
to consider whether the speech software is available across a variety of platforms. Source availability
(Section 50.9.5) is relevant here.

If you intend to run the speech software on several platforms that have different underlying numeric
representations (a byte order difference being most likely), then it is important to know whether the
file formats and signal I/O software support transparent data exchange.

50.9.8 Degree of Specialization

Some speech software is intended for general purpose work in speech (e.g., ESPS/waves, MATLABTM).
Other software is intended for more specialized usage. Some of the areas where specialized software
tools may be relevant include linguistics, recognition, synthesis, coding, psycho-acoustics, clinical-
voice, music, multi-media, sound and vibration, etc. Two examples are HTK for recognition, and
Delta (from Eloquent Technology) for synthesis.
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50.9.9 Support for Speech Input and Output

In the past, built-in speech I/O hardware was uncommon in workstations and PCs, so speech software
typically supported speech I/O by means of add-on hardware supplied with the software or available
fromother thirdparties. Thisprovided thedesiredcapability, albeitwith thedisadvantagesmentioned
earlier (see Section 50.9.6).

TodaymostworkstationsandPCshavebuilt-inaudio support that canbeuseddirectlyby the speech
software. This avoids the disadvantages of add-on hardware, but the resulting A/D-D/A quality can
be too noisy or otherwise inadequate for use in speech R&D (the built-in audio is typically designed
for more mundane requirements). There are various reasons why special-purpose hardware may still
be needed, including:

• need for more than two channels

• need for very high sampling rates

• compatibility with special hardware (e.g., DAT tape)

50.10 File Formats (Data Import/Export)

Signal file formats are fundamentally important because they determine how easy it is for independent
programs to read and write the files (interoperability). Furthermore, the format determines whether
files can contain all of the information that a program might need to operate on the file’s primary
data (e.g., can the file contain the sampling frequency in addition to a waveform itself?).

The best way to design speech file formats is hotly debated, but the clear trend has been towards
“self-describing” file formats that include information about the names, data types, and layout of all
data in the file. (For example, this permits programs to retrieve data by name.)

There are many popular file formats, and various programs are available for converting among
them (e.g., SOX). For speech sampled data, the most important file format is Sphere (from NIST),
which is used in the speech databases available from the Linguistic Data Consortium (LDC). Sphere
supports several data compression formats in a variety of standard and specialized formats.

Sphere works well for sampled data files, but is limited for more general speech data files. A general
purpose, public-domain format (Esignal) has recently been made available by Entropic.

50.11 Speech Databases

Numerous databases (or corpora) of speech are available from various sources. For a current list,
see the comp.speech Frequently Asked Questions (FAQ) (see Section 50.13). The largest supplier of
speech data is the Linguistic Data Consortium, which publishes a large number of CDs containing
speech and linguistic data.

50.12 Summary of Characteristics and Uses

In Section 50.1, we mentioned that the three most common uses for speech software are teaching,
interactive exploration, and batch experiments. And at various points during the discussion of speech
software characteristics, we mentioned their relative importance for the different classes of software
uses. We attempt to summarize this in Table 50.1, where the symbol “•” indicates that a characteristic
is particularly useful or important.

It is important not to take Table 50.1 too seriously. As we mentioned at the outset, the various
distinguishing characteristics discussed in this section are not independent (i.e., there is considerable
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overlap). Furthermore, the three classes of software use are broad and not always easily distinguish-
able; i.e., the importance of particular software characteristics depends a lot on the details of intended
use. Nevertheless, Table 50.1 is a reasonable starting point for evaluating particular software in the
context of intended use.

TABLE 50.1 Relative Importance of Software Characteristics
Interactive Batch

Teaching exploration experiments

OS-based (50.3.1) •
Workspace-based (50.3.2) •
Compute-oriented (50.4.1) •
Display-oriented (50.4.2) • •
Compiled (50.5.2) •
Interpreted (50.5.1) •
Text-based interface (50.6.1) • •
Visual interface (50.6.2) • •
Memory-based (50.9.1) • •
File-based (50.9.1) •
Parametric control (50.6.3) • • •
Consistency maintenance (50.8.0) • •
History documentation (50.9.2) • •
Extensibility (50.7.0) • •
Personalization (50.9.3) • •
Real-time performance (50.9.4) • •
Source availability (50.9.5) • •
Cross-platform compatibility (50.9.7) • • •
Support for speech I/O (50.9.9) • •

50.13 Sources for Finding Out What is Currently Available

The best single online source of general information is the Internet news group comp.speech, and in
particular its FAQ (see http://svr-www.eng.cam.ac.uk/comp.speech/). Use this as a starting
point.

Here are some other WWW sites that (at this writing) contain speech software information or
pointers to other sites:

http://svr-www.eng.cam.ac.uk

http://mambo.ucsc.edu/psl/speech.html

http://www.bdti.com/faq/dsp_faq.html

http://www.ldc.upenn.edu

http://www.entropic.com
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50.14 Future Trends

From the user’s viewpoint, speech software will continue to become easier to use, with a heavier
reliance on visual interfaces with consistency maintenance.

Calculator, spreadsheet, and block-diagram interfaces will become more common, but will not
eliminate text-based (programming, scripting) interfaces for specifying computations and system
extensions.

Software will become more open. Seamless extensibility will be more common, and extensions
will be easier. GUI extensions as well as computation extensions will be supported.

There will be less of a distinction between compute-oriented and display-oriented speech software.
Hybrid compute/display-oriented software will dominate.

Visualization will become more important and more sophisticated, particularly for multidimen-
sional data. “Movies” will be used to show arbitrary 3D data. Sound will be used to represent an
arbitrary dimension. Various methods will be available to project N-dimensional data into 2- or
3-space. (This will be used, for example, to show aspects of vector quantization or HMM clustering.)

Public-domain file formats will dominate proprietary formats. Networked computers will be used
for parallel computation if available. Tcl/Tk and Java will grow in popularity as a base for graphical
data displays and user interfaces.
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I MAGE AND VIDEO SIGNAL PROCESSING is quite different from other forms of signal pro-
cessing for a variety of reasons. The most obvious difference lies in the fact that these signals
are two or three dimensional. This means that some familiar techniques used for processing

one-dimensional signals, for example, those that require factorization of polynomials, have to be
abandoned. Other techniques for filtering, sampling, and transform computation have to be mod-
ified. Even more compromises have to be made, however, because of the signals’ size. Images and
sequences of images can be huge. For example, processing sequences of color images each of which
contains 780 rows and 1024 columns at a frame rate of 30 frames per second requires a data rate
of 72 megabytes per second. Successful image processing techniques reward careful attention to
problem requirements, algorithmic complexity, and machine architecture. The past decade has been
particularly exciting as each new wave of faster computing hardware has opened the door to new
applications. This is a trend that will likely continue for some time.

The following chapters, written by experts in their fields, highlight the state-of-the-art in several
aspects of image and video processing. The range of topics is quite broad. While it includes some
discussions of techniques that go back more than a decade, the emphasis is on current practice. There
is some danger in this, because the field is changing very rapidly, but, on the other hand, many of the
concepts on which these current techniques are based should be around for some time.

Chapter 51 is a very long and thorough discussion of image processing fundamentals. For a
novice to the field, this material is important for a complete understanding. It discusses the basics
of how images differ from other types of signals and how the limitations of cameras, displays, and
the human visual system affect the kinds of processing that can be done. It also defines the basic
theory of multidimensional digital signal processing, particularly with respect to how linear and
nonlinear filtering, transform computation, and sampling are generalized from the one-dimensional
case. Other topics treated include statistical models for images, models for recording distortions,
histogram-based methods for image processing, and image segmentation.

Probably the most visible image processing is occurring in the development of standards for image
and video compression. JPEG, MPEG, and digital television are all highly visible success stories.
Chapter 52 looks at methods for still image compression including JPEG, wavelet, and fractal coders.
Image compression is successful because image samples are spatially correlated with their neighbors.
Operators such as the discrete cosine transform (DCT) largely remove this correlation and capture the
essence of an image block in a few parameters that can be quantized and transmitted. The transform
domain also enables these coders to exploit limitations in the human visual system. Chapters 55 and
56 extend these approaches to video and television compression, respectively. Video compression
achieves significant additional compression gains by exploiting the temporal redundancy that is
present in video sequences. This is done by using simple models for modeling object motion within a
scene, using these models to predict the current frame, and then encoding only the model parameters
and the quantized prediction errors.

Images are often distorted when they are recorded. This might be caused by out-of-focus optics,
motion blur, camera noise, or coding errors. Chapter 53 looks at methods for image and video
restoration. This is the most mathematically based area of image processing, and it is also one of the
areas with the longest history. It has applications in the analysis of astronomical images, in forensic
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imaging, and in the production of high-quality stills from video sequences.
Chapter 54 looks at methods for motion estimation and video scan conversion. Motion estimation

is a key technique for removing temporal redundancy in image sequences and, as a result, it is a key
component in all of the video compression standards. It is also, however, a highly time-consuming
numerically ill-posed operation. As a result it continues to be highly studied, particularly with
respect to more sophisticated motion models. A related problem is the problem of scanning format
conversion. This is amajor issue in television systemswhereboth interlacedandprogressively scanned
images are encountered.

Chapter 57 explores stereoscopic and multiview image processing. Traditional image processing
assumes that only one camera is present. As a result depth information in a three-dimensional scene
is lost. When explicit depth information is needed, multiple cameras can be used. Differences in the
displacement of objects in the left and right images can be converted to depth measurements. Mam-
mals do this naturally with their two eyes. Stereoscopic image processing techniques are becoming
increasingly used in problems of computer vision and computer graphics. This chapter discusses the
state-of-the-art in this emerging area.

The final two chapters in this section, Chapters 58 and 59, look at software and hardware systems
for doing image processing. Chapter 58 provides an overview of a representative set of image software
packages that embody the core capabilities required by many image processing applications. It also
provides a list of Internet addresses for a number of image databases. Chapter 59 provides an overview
of VLSI architectures for implementing many of the video compression standards.
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51.1 Introduction

Modern digital technology has made it possible to manipulate multidimensional signals with systems
that range from simple digital circuits to advanced parallel computers. The goal of this manipulation
can be divided into three categories:

• Image Processing image in → image out
• Image Analysis image in → measurements out
• Image Understanding image in → high-level description out
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In this section we will focus on the fundamental concepts of image processing. Space does not
permit us to make more than a few introductory remarks about image analysis. Image understanding
requires an approach that differs fundamentally from the theme of this handbook, Digital Signal
Processing. Further, we will restrict ourselves to two-dimensional (2D) image processing although
most of the concepts and techniques that are to be described can be extended easily to three or more
dimensions.

We begin with certain basic definitions. An image defined in the “real world” is considered to be
a function of two real variables, for example, a(x, y) with a as the amplitude (e.g., brightness) of
the image at the real coordinate position (x, y). An image may be considered to contain sub-images
sometimes referred to as regions-of-interest, ROIs, or simply regions. This concept reflects the fact
that images frequently contain collections of objects each of which can be the basis for a region.
In a sophisticated image processing system it should be possible to apply specific image processing
operations to selected regions. Thus, one part of an image (region) might be processed to suppress
motion blur while another part might be processed to improve color rendition.

The amplitudes of a given image will almost always be either real numbers or integer numbers. The
latter is usually a result of a quantization process that converts a continuous range (say, between 0 and
100%) to a discrete number of levels. In certain image-forming processes, however, the signal may
involve photon counting which implies that the amplitude would be inherently quantized. In other
image forming procedures, such as magnetic resonance imaging, the direct physical measurement
yields a complex number in the form of a real magnitude and a real phase. For the remainder of this
introduction we will consider amplitudes as reals or integers unless otherwise indicated.

51.2 Digital Image Definitions

A digital image a[m, n] described in a 2D discrete space is derived from an analog image a(x, y) in
a 2D continuous space through a sampling process that is frequently referred to as digitization. The
mathematics of that sampling process will be described in section 51.5. For now we will look at some
basic definitions associated with the digital image. The effect of digitization is shown in Fig. 51.1.

FIGURE 51.1: Digitization of a continuous image. The pixel at coordinates [m = 10, n = 3] has the
integer brightness value 110.

The 2D continuous image a(x, y) is divided into N rows and M columns. The intersection of
a row and a column is termed a pixel. The value assigned to the integer coordinates [m, n] with
{m = 0,1,2, . . . ,M − 1} and {n = 0,1,2, . . . , N − 1} is a[m, n]. In fact, in most cases a(x, y)
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— which we might consider to be the physical signal that impinges on the face of a 2D sensor — is
actually a function of many variables including depth (z), color (λ), and time (t). Unless otherwise
stated, we will consider the case of 2D, monochromatic, static images in this chapter.

The image shown in Fig. 51.1 has been divided intoN = 16rows andM = 16columns. The value
assigned to every pixel is the average brightness in the pixel rounded to the nearest integer value. The
process of representing the amplitude of the 2D signal at a given coordinate as an integer value with
L different gray levels is usually referred to as amplitude quantization or simply quantization.

51.2.1 Common Values

There are standard values for the various parameters encountered in digital image processing. These
values can be caused by video standards, algorithmic requirements, or the desire to keep digital
circuitry simple. Table 51.1 gives some commonly encountered values.

TABLE 51.1

Common Values of Digital Image Parameters
Parameter Symbol Typical Values

Rows N 256,512,525,625,1024,1035

Columns M 256,512,768,1024,1320

Gray levels L 2,64,256,1024,4096,16384

Quite frequently we see cases of M = N = 2K where {K = 8,9,10}. This can be motivated
by digital circuitry or by the use of certain algorithms such as the (fast) Fourier transform (see
section 51.3.3).

The number of distinct gray levels is usually a power of 2, that is, L = 2B where B is the number
of bits in the binary representation of the brightness levels. When B > 1, we speak of a gray-level
image; when B = 1, we speak of a binary image. In a binary image there are just two gray levels
which can be referred to, for example, as “black” and “white” or “0” and “1”.

51.2.2 Characteristics of Image Operations

There is a variety of ways to classify and characterize image operations. The reason for doing so is to
understand what type of results we might expect to achieve with a given type of operation or what
might be the computational burden associated with a given operation.

Types of Operations

The typesofoperations that canbeapplied todigital images to transforman input imagea[m, n]
into an output image b[m, n] (or another representation) can be classified into three categories as
shown in Table 51.2.

This is shown graphically in Fig. 51.2.

Types of Neighborhoods

Neighborhood operations play a key role in modern digital image processing. It is therefore im-
portant to understand how images can be sampled and how that relates to the various neighborhoods
that can be used to process an image.
• Rectangular sampling — In most cases, images are sampled by laying a rectangular grid over an
image as illustrated in Fig. 51.1. This results in the type of sampling shown in Fig. 51.3(a) and 51.3(b).
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TABLE 51.2 Types of Image Operations
Generic

Operation Characterization Complexity / Pixel

• Point - the output value at a specific coordinate is dependent only on the input
value at that same coordinate.

constant

• Local - the output value at a specific coordinate is dependent on the input values in
the neighborhood of that same coordinate.

P 2

• Global - the output value at a specific coordinate is dependent on all the values in the
input image.

N2

Note: Image size = N ×N ; neighborhood size = P × P . Note that the complexity is specified in operations per pixel.

FIGURE 51.2: Illustration of various types of image operations.

• Hexagonal sampling — An alternative sampling scheme is shown in Fig. 51.3(c) and is termed
hexagonal sampling.

FIGURE 51.3: (a) Rectangular sampling 4-connected; (b) rectangular sampling 8-connected;
(c) hexagonal sampling 6-connected.

Both sampling schemes have been studied extensively and both represent a possible periodic tiling
of the continuous image space. We will restrict our attention, however, to only rectangular sampling
as it remains, due to hardware and software considerations, the method of choice.

Local operations produce an output pixel value b[m = m0, n = n0] based on the pixel values
in the neighborhood of a[m = m0, n = n0]. Some of the most common neighborhoods are the
4-connected neighborhood and the 8-connected neighborhood in the case of rectangular sampling
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and the 6-connected neighborhood in the case of hexagonal sampling illustrated in Fig. 51.3.

51.2.3 Video Parameters

We do not propose to describe the processing of dynamically changing images in this introduction.
It is appropriate — given that many static images are derived from video cameras and frame grabbers
— to mention the standards that are associated with the three standard video schemes currently in
worldwide use — NTSC, PAL, and SECAM. This information is summarized in Table 51.3.

TABLE 51.3 Standard Video Parameters
Standard

Property NTSC PAL SECAM

images/second 29.97 25 25
ms/image 33.37 40.0 40.0
lines/image 525 625 625
(horiz./vert.) = aspect ratio 4:3 4:3 4:3
interlace 2:1 2:1 2:1
µs /line 63.56 64.00 64.00

In an interlaced image, the odd numbered lines (1,3,5, . . .) are scanned in half of the allotted time
(e.g., 20 ms in PAL) and the even numbered lines (2,4,6, . . .) are scanned in the remaining half. The
image display must be coordinated with this scanning format. (See section 51.8.2.) The reason for
interlacing the scan lines of a video image is to reduce the perception of flicker in a displayed image. If
one is planning to use images that have been scanned from an interlaced video source, it is important
to know if the two half-images have been appropriately “shuffled” by the digitization hardware or if
that should be implemented in software. Further, the analysis of moving objects requires special care
with interlaced video to avoid “zigzag” edges.

The number of rows (N) from a video source generally corresponds one-to-one with lines in
the video image. The number of columns, however, depends on the nature of the electronics that
is used to digitize the image. Different frame grabbers for the same video camera might produce
M = 384,512, or 768 columns (pixels) per line.

51.3 Tools

Certain tools are central to the processing of digital images. These include mathematical tools such as
convolution, Fourier analysis, and statistical descriptions, and manipulative tools such as chain codes
and run codes. We will present these tools without any specific motivation. The motivation will
follow in later sections.

51.3.1 Convolution

There are several possible notations to indicate the convolution of two (multidimensional) signals to
produce an output signal. The most common are:

c = a ⊗ b = a ∗ b (51.1)

We shall use the first form, c = a ⊗ b, with the following formal definitions.
In 2D continuous space:

c(x, y) = a(x, y)⊗ b(x, y) =
∫ +∞

−∞

∫ +∞

−∞
a (χ, ζ ) b (x − χ, y − ζ ) dχdζ (51.2)
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In 2D discrete space:

c[m, n] = a[m, n] ⊗ b[m, n] =
+∞∑
j=−∞

+∞∑
k=−∞

a[j, k]b[m− j, n− k] (51.3)

51.3.2 Properties of Convolution

There are a number of important mathematical properties associated with convolution.

• Convolution is commutative.
c = a ⊗ b = b ⊗ a (51.4)

• Convolution is associative.

c = a ⊗ (b ⊗ d) = (a ⊗ b)⊗ d = a ⊗ b ⊗ d (51.5)

• Convolution is distributive.

c = a ⊗ (b + d) = (a ⊗ b)+ (a ⊗ d) (51.6)

where a, b, c, and d are all images, either continuous or discrete.

51.3.3 Fourier Transforms

The Fourier transform produces another representation of a signal, specifically a representation as a
weighted sum of complex exponentials. Because of Euler’s formula:

ejq = cos(q)+ j sin(q) (51.7)

where j2 = −1, we can say that the Fourier transform produces a representation of a (2D) signal
as a weighted sum of sines and cosines. The defining formulas for the forward Fourier and the
inverse Fourier transforms are as follows. Given an image a and its Fourier transformA, the forward
transform goes from the spatial domain (either continuous or discrete) to the frequency domain
which is always continuous.

Forward - A = F{a} (51.8)

The inverse Fourier transform goes from the frequency domain back to the spatial domain

Inverse - a = F−1{A} (51.9)

The Fourier transform is a unique and invertible operation so that:

a = F−1 {F{a}} and A = F
{
F−1{A}

}
(51.10)

The specific formulas for transforming back and forth between the spatial domain and the fre-
quency domain are given below.

In 2D continuous space:

Forward - A(u, ν) =
∫ +∞

−∞

∫ +∞

−∞
a(x, y)e−j (ux+νy)dxdy (51.11)

Inverse - a(x, y) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
A(u, ν)e+j (ux+νy)dudν (51.12)
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In 2D discrete space:

Forward - A(�,9) =
+∞∑

m=−∞

+∞∑
n=−∞

a[m, n]e−j (�m+9n) (51.13)

Inverse - a[m, n] = 1

4π2

∫ +π

−π

∫ +π

−π
A(�,9)e+j (�m+9n)d�d9 (51.14)

51.3.4 Properties of Fourier Transforms

There are a variety of properties associated with the Fourier transform and the inverse Fourier
transform. The following are some of the most relevant for digital image processing.

• The Fourier transform is, in general, a complex function of the real frequency variables. As such,
the transform can be written in terms of its magnitude and phase.

A(u, ν) = |A(u, ν)| ejϕ(u,ν) A(�,9) = |A(�,9)| ejϕ(�,9) (51.15)

• A 2D signal can also be complex and thus written in terms of its magnitude and phase.

a(x, y) = |a(x, y)| ejϑ(x,y) a[m, n] = |a[m, n]| ejϑ[m,n] (51.16)

• If a 2D signal is real, then the Fourier transform has certain symmetries.

A(u, ν) = A∗(−u,−ν) A(�,9) = A∗(−�,−9) (51.17)

The symbol (∗) indicates complex conjugation. For real signals Eq. (51.17) leads directly to:

|A(u, ν)| = |A(−u,−ν)| ϕ(u, ν) = −ϕ(−u,−ν)
|A(�,9)| = |A(−�,−9)| ϕ(�,9) = −ϕ(−�,−9) (51.18)

• If a 2D signal is real and even, then the Fourier transform is real and even.

A(u, ν) = A(−u,−ν) A(�,9) = A(−�,−9) (51.19)

• The Fourier and the inverse Fourier transforms are linear operations.

F {w1a + w2b} = F {w1a} + F {w2b} = w1A+ w2B

F−1 {w1A+ w2B} = F−1 {w1A} + F−1 {w2B} = w1a + w2b (51.20)

where a and b are 2D signals (images) and w1 and w2 are arbitrary, complex constants.

• The Fourier transform in discrete space, A(�,9), is periodic in both � and 9. Both periods are
2π .

A (�+ 2πj,9 + 2πk) = A(�,9) j, k integers (51.21)

• The energy, E, in a signal can be measured either in the spatial domain or the frequency domain.
For a signal with finite energy:

Parseval’s theorem (2D continuous space):

E =
∫ +∞

−∞

∫ +∞

−∞
|a(x, y)|2 dxdy = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
|A(u, ν)|2 dudν (51.22)
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Parseval’s theorem (2D discrete space):

E =
+∞∑

m=−∞

+∞∑
n=−∞

|a[m, n]|2 = 1

4π2

∫ +π

−π

∫ +π

−π
|A(�,9)|2 d�d9 (51.23)

This “signal energy” is not to be confused with the physical energy in the phenomenon that
produced the signal. If, for example, the value a[m, n] represents a photon count, then the physical
energy is proportional to the amplitude, a, and not the square of the amplitude. This is generally the
case in video imaging.

• Given three, multi-dimensional signals a, b, and c and their Fourier transforms A,B, and C:

c = a ⊗ b
F
↔ C = A • B

and

c = a • b F
↔ C = 1

4π2
A⊗ B (51.24)

In words, convolution in the spatial domain is equivalent to multiplication in the Fourier (fre-
quency) domain and vice-versa. This is a central result which provides not only a methodology for
the implementation of a convolution but also insight into how two signals interact with each other
— under convolution — to produce a third signal. We shall make extensive use of this result later.

• If a two-dimensional signal a(x, y) is scaled in its spatial coordinates then:

If a(x, y) → a
(
Mx • x,My • y)

Then A(u, ν) → A
(
u
/
Mx, ν

/
My

)
/
∣∣Mx •My

∣∣ (51.25)

• If a two-dimensional signal a(x, y) has Fourier spectrum A(u, ν) then:

A(u = 0, ν = 0) =
∫ +∞

−∞

∫ +∞

−∞
a(x, y)dxdy

a(x = 0, y = 0) = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
A(u, ν)dxdy (51.26)

• If a two-dimensional signal a(x, y) has Fourier spectrum A(u, ν) then:

∂a(x, y)

∂x

F
↔ juA(u, ν)

∂a(x, y)

∂y

F
↔ jνA(u, ν)

∂2a(x, y)

∂x2
F
↔ − u2A(u, ν)

∂2a(x, y)

∂y2
F
↔ − ν2A(u, ν) (51.27)

Importance of Phase and Magnitude

Equation (51.15) indicates that the Fourier transform of an image can be complex. This is
illustrated below in Fig. 51.4(a-c). Figure 51.4(a) shows the original image a[m, n], Fig. 51.4(b) the
magnitude in a scaled form as log(|A(�,9)|), and Fig. 51.4(c) the phase ϕ(�,9).

Both the magnitude and the phase functions are necessary for the complete reconstruction of
an image from its Fourier transform. Figure 51.5(a) shows what happens when Fig. 51.4(a) is
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FIGURE 51.4: (a) Original; (b) log(|A(�,9)|); (c) ϕ(�,9).

FIGURE 51.5: (a) ϕ(�,9) = 0 and (b) |A(�,9)| = constant.

restored solely on the basis of the magnitude information and Fig. 51.5(b) shows what happens when
Fig. 51.4(a) is restored solely on the basis of the phase information.

Neither the magnitude information nor the phase information is sufficient to restore the image.
The magnitude-only image, Fig. 51.5(a), is unrecognizable and has severe dynamic range problems.
The phase-only image, Fig. 51.5(b), is barely recognizable, that is, severely degraded in quality.

Circularly Symmetric Signals

An arbitrary 2D signal a(x, y) can always be written in a polar coordinate system as a(r, θ).
When the 2D signal exhibits a circular symmetry this means that:

a(x, y) = a(r, θ) = a(r) (51.28)

where r2 = x2 + y2 and tanθ = y/x. As a number of physical systems, such as lenses, exhibit
circular symmetry, it is useful to be able to compute an appropriate Fourier representation.

The Fourier transform A(u, ν) can be written in polar coordinates A(ωr, ξ) and then, for a
circularly symmetric signal, rewritten as a Hankel transform:

A(u, ν) = F {a(x, y)} = 2π
∫ ∞

0
a(r)J0 (ωrr) rdr = A (ωr) (51.29)

where ω2
r = u2 + ν2 and tanξ = ν/u and J0(•) is a Bessel function of the first kind of order zero.

The inverse Hankel transform is given by:

a(r) = 1

2π

∫ ∞

0
A (ωr) J0 (ωrr) ωrdωr (51.30)

The Fourier transform of a circularly symmetric 2D signal is a function of only the radial frequency,
ωr . The dependence on the angular frequency, ξ , has vanished. Further, if a(x, y) = a(r) is real,
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then it is automatically even due to the circular symmetry. According to Eq. (51.19),A(ωr)will then
be real and even.

Examples of 2D Signals and Transforms

Table 51.4 shows some basic and useful signals and their 2D Fourier transforms. In using the
table entries in the remainder of this chapter, we will refer to a spatial domain term as the point spread
function (PSF) or the 2D impulse response and its Fourier transforms as the optical transfer function
(OTF) or simply transfer function. Two standard signals used in this table are u(•), the unit step
function, and J1(•), the Bessel function of the first kind. Circularly symmetric signals are treated as
functions of r as in Eq. (51.28).

51.3.5 Statistics

In image processing, it is quite common to use simple statistical descriptions of images and sub-
images. The notion of a statistic is intimately connected to the concept of a probability distribution,
generally the distribution of signal amplitudes. For a given region — which could conceivably be
an entire image — we can define the probability distribution function of the brightnesses in that
region and the probability density function of the brightnesses in that region. We will assume in the
discussion that follows that we are dealing with a digitized image a[m, n].

Probability Distribution Function of the Brightnesses

The probability distribution function, P(a), is the probability that a brightness chosen from
the region is less than or equal to a given brightness value a. As a increases from −∞ to +∞, P (a)

increases from 0 to 1. P(a) is monotonic, nondecreasing in a and thus dP/da ≥ 0.

Probability Density Function of the Brightnesses

The probability that a brightness in a region falls between a and a +1a, given the probabil-
ity distribution function P(a), can be expressed as p(a)1a where p(a) is the probability density
function:

p(a)1a =
(
dP (a)

da

)
1a (51.31)

Because of the monotonic, nondecreasing character of P(a) we have that:

p(a) ≥ 0 and

∫ +∞

−∞
p(a)da = 1 (51.32)

For an image with quantized (integer) brightness amplitudes, the interpretation of1a is the width
of a brightness interval. We assume constant width intervals. The brightness probability density
function is frequently estimated by counting the number of times that each brightness occurs in the
region to generate a histogram, h[a]. The histogram can then be normalized so that the total area
under the histogram is 1 [Eq. (51.32)]. Said another way, the p[a] for a region is the normalized
count of the number of pixels, 3, in a region that have quantized brightness a:

p[a] = 1

3
h[a] with 3 =

∑
a

h[a] (51.33)

The brightness probability distribution function for the image shown in Fig. 51.4(a) is shown in
Fig. 51.6(a). The (unnormalized) brightness histogram of Fig. 51.4(a), which is proportional to
the estimated brightness probability density function, is shown in Fig. 51.6(b). The height in this
histogram corresponds to the number of pixels with a given brightness.
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TABLE 51.4 2D Images and their Fourier Transforms
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TABLE 51.4 2D Images and their Fourier Transforms (continued)
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FIGURE 51.6: (a) Brightness distribution function of Fig. 51.4(a) with minimum, median, and
maximum indicated. See text for explanation. (b) Brightness histogram of Fig. 51.4(a).

Both the distribution function and the histogram as measured from a region are a statistical
description of that region. It should be emphasized that both P [a] and p[a] should be viewed as
estimates of true distributions when they are computed from a specific region. That is, we view
an image and a specific region as one realization of the various random processes involved in the
formation of that image and that region. In the same context, the statistics defined below must be
viewed as estimates of the underlying parameters.

Average

The average brightness of a region is defined as the sample mean of the pixel brightnesses within
that region. The average,ma , of the brightnesses over the3 pixels within a region (<) is given by:

ma = 1

3

∑
(m,n)∈<

a[m, n] (51.34)

Alternatively, we can use a formulation based on the (unnormalized) brightness histogram,h(a) =
3 • p(a), with discrete brightness values a, This gives:

ma = 1

3

∑
a

a • h[a] (51.35)

The average brightness,ma , is an estimate of the mean brightness,µa , of the underlying brightness
probability distribution.

Standard Deviation

The unbiased estimate of the standard deviation, sa , of the brightness within a region (<) with
3 pixels is called the sample standard deviation and is given by:

sa =
√√√√ 1

3− 1

∑
m,n∈<

(a[m, n] −ma)
2

=

√√√√√
∑
m,n∈<

a2[m, n] −3m2
a

3− 1
(51.36)
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Using the histogram formulation gives:

sa =

√√√√√√
(∑

a

a2 • h[a]
)

−3 •m2
a

3− 1
(51.37)

The standard deviation, sa , is an estimate of σa of the underlying brightness probability distribu-
tion.

Coefficient-of-Variation

The dimensionless coefficient-of-variation, CV , is defined as:

CV = sa

ma
× 100% (51.38)

Percentiles

The percentile, p%, of an unquantized brightness distribution is defined as that value of the
brightness a such that:

P(a) = p%

or equivalently ∫ a

−∞
p(α)dα = p% (51.39)

Three special cases are frequently used in digital image processing.

• 0% the minimum value in the region
• 50% the median value in the region
• 100% the maximum value in the region

All three of these values can be determined from Fig. 51.6(a).

Mode

The mode of the distribution is the most frequent brightness value. There is no guarantee that
a mode exists or that it is unique.

Signal-to-Noise Ratio

The signal-to-noise ratio, SNR, can have several definitions. The noise is characterized by its
standard deviation, sn. The characterization of the signal can differ. If the signal is known to lie
between two boundaries, amin ≤ a ≤ amax, then the SNR is defined as:

Bounded signal -

SNR = 20 log10

(
amax − amin

sn

)
dB (51.40)

If the signal is not bounded but has a statistical distribution, then two other definitions are known:

Stochastic signal -

S & N inter-dependent SNR = 20 log10

(
ma

sn

)
dB (51.41)

S & N independent SNR = 20 log10

(
sa

sn

)
dB (51.42)

c©1999 by CRC Press LLC



wherema and sa are defined above.

The various statistics are given in Table 51.5 for the image and the region shown in Fig. 51.7.

FIGURE 51.7: Region is the interior of the
circle.

TABLE 51.5 Statistics from

Fig.51.7
Statistic Image ROI

Average 137.7 219.3
Standard deviation 49.5 4.0
Minimum 56 202
Median 141 220
Maximum 241 226
Mode 62 220
SNR (db) NA 33.3

ASNR calculation for the entire image based on Eq. (51.40) is not directly available. The variations
in the imagebrightnesses that lead to the large valueof s(= 49.5) arenot, in general, due tonoisebut to
the variation in local information. With the help of the region, there is a way to estimate theSNR. We
can use the s<(= 4.0) and the dynamic range, amax − amin, for the image (= 241− 56) to calculate
a global SNR (= 33.3 dB). The underlying assumptions are that (1) the signal is approximately
constant in that region and the variation in the region is, therefore, due to noise, and that (2) the
noise is the same over the entire image with a standard deviation given by sn = s<.

51.3.6 Contour Representations

When dealing with a region or object, several compact representations are available that can facilitate
manipulation of and measurements on the object. In each case we assume that we begin with an
image representation of the object as shown in Fig. 51.8(a) and (b). Several techniques exist to
represent the region or object by describing its contour.

Chain Code

This representation is based on the work of Freeman. We follow the contour in a clockwise
manner and keep track of the directions as we go from one contour pixel to the next. For the
standard implementation of the chain code, we consider a contour pixel to be an object pixel that
has a background (nonobject) pixel as one or more of its 4-connected neighbors. See Figs. 51.3(a)
and 51.8(c).

The codes associated with eight possible directions are the chain codes and, with x as the current
contour pixel position, the codes are generally defined as:

Chain codes =
3 2 1
4 x 0
5 6 7

(51.43)

Chain Code Properties

• Even codes {0,2,4,6} correspond to horizontal and vertical directions: odd codes {1,3,5,7}
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FIGURE 51.8: Region (shaded) as it is transformed from (a) continuous to (b) discrete form and
then considered as a (c) contour or (d) run lengths illustrated in alternating colors.

correspond to the diagonal directions.

• Each code can be considered as the angular direction, in multiples of 45◦, that we must move to
go from one contour pixel to the next.

• The absolute coordinates [m, n] of the first contour pixel (e.g., top, leftmost) together with the
chain code of the contour represent a complete description of the discrete region contour.

• When there is a change between two consecutive chain codes, then the contour has changed
direction. This point is defined as a corner.

“Crack” Code

An alternative to the chain code for contour encoding is to use neither the contour pixels
associated with the object nor the contour pixels associated with background but rather the line, the
“crack”, in between. This is illustrated with an enlargement of a portion of Fig. 51.8 in Fig. 51.9.

The “crack” code can be viewed as a chain code with four possible directions instead of eight.

Crack codes =
1

2 x 0
3

(51.44)

The chain code for the enlarged section of Fig. 51.9(b), from top to bottom, is {5,6,7,7,0}. The
crack code is {3,2,3,3,0,3,0,0}.
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FIGURE 51.9: (a) Object including part to be studied. (b) Contour pixels as used in the chain code
are diagonally shaded. The “crack” is shown with the thick black line.

Run Codes

A third representation is based on coding the consecutive pixels along a row — a run — that
belongs to an object by giving the starting position of the run and the ending position of the run.
Such runs are illustrated in Fig. 51.8(d). There are a number of alternatives for the precise definition
of the positions. Which alternative should be used depends on the application and thus will not be
discussed here.

51.4 Perception

Many image processing applications are intended to produce images that are to be viewed by human
observers (as opposed to, say, automated industrial inspection.) It is, therefore, important to under-
stand the characteristics and limitations of the human visual system — to understand the “receiver”
of the 2D signals. At the outset it is important to realize that (1) the human visual system is not
well understood, (2) no objective measure exists for judging the quality of an image that corresponds
to human assessment to image quality, and (3) the “typical” human observer does not exist. Nev-
ertheless, research in perceptual psychology has provided some important insights into the visual
system.

51.4.1 Brightness Sensitivity

There are several ways to describe the sensitivity of the human visual system. To begin, let us assume
that a homogeneous region in an image has an intensity as a function of wavelength (color) given by
I (λ). Further, let us assume that I (λ) = Io, a constant.

Wavelength Sensitivity

The perceived intensity as a function of λ, the spectral sensitivity, for the “typical observer” is
shown in Fig. 51.10.

Stimulus Sensitivity

If the constant intensity (brightness) Io is allowed to vary, then, to a good approximation, the
visual response, R, is proportional to the logarithm of the intensity. This is known as the Weber-
Fechner law:

R = log(Io) (51.45)

The implications of this are easy to illustrate. Equal perceived steps brightness, 1R = k, require
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FIGURE 51.10: Spectral sensitivity of the “typical” human observer.

that the physical brightness (the stimulus) increases exponentially. This is illustrated in Fig. 51.11(a)
and (b).

FIGURE 51.11: (a) (Top) brightness step1I = k, (bottom) brightness step1I = k • I . (b) Actual
brightnesses plus interpolated values.

A horizontal line through the top portion of Fig. 51.11(a) shows a linear increase in objective
brightness (Fig. 51.11(b)) but a logarithmic increase in subjective brightness. A horizontal line
through the bottom portion of Fig. 51.11(a) shows an exponential increase in objective brightness
Fig. 51.11(b) but a linear increase in subjective brightness.

The Mach band effect is visible in Fig. 51.11(a). Although the physical brightness is constant across
each vertical stripe, the human observer perceives an “undershoot” and “overshoot” in brightness
at what is physically a step edge. Thus, just before the step, we see a slight decrease in brightness
compared to the true physical value. After the step we see a slight overshoot in brightness compared
to the true physical value. The total effect is one of increased, local, perceived contrast at a step edge
in brightness.

51.4.2 Spatial Frequency Sensitivity

If the constant intensity (brightness) Io is replaced by a sinusoidal grating with increasing spatial
frequency (Fig. 51.12(a)), it is possible to determine the spatial frequency sensitivity. The result is
shown in Fig. 51.12(b).

To translate these data into common terms, consider an “ideal” computer monitor at a viewing
distance of 50 cm. The spatial frequency that will give maximum response is at 10 cycles per degree.
(See Fig. 51.12(b)). The one degree at 50 cm translates to 50 tan(1◦) = 0.87 cm on the computer
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FIGURE 51.12: (a) Sinusoidal test grating and (b) spatial frequency sensitivity.

screen. Thus, the spatial frequency of maximum response fmax = 10 cycles/0.87 cm = 11.46
cycles/cm at this viewing distance. Translating this into a general formula gives:

fmax = 10

d • tan(1◦)
= 572.9

d
cycles / cm (51.46)

where d = viewing distance measured in centimeters.

51.4.3 Color Sensitivity

Human color perception is an exceedingly complex topic. As such we can only present a brief
introduction here. The physical perception of color is based on three color pigments in the retina.

Standard Observer

Based on psychophysical measurements, standard curves have been adopted by the CIE (Com-
mission Internationale de l’Eclairage) as the sensitivity curves for the “typical” observer for the three
“pigments” x̄(λ), ȳ(λ), and z̄(λ). These are shown in Fig. 51.13. These are not the actual pigment
absorption characteristics found in the “standard” human retina but rather sensitivity curves derived
from actual data.

350 400 450 500 550 600 650 700 750

Wavelength (nm.)

R
el

at
iv

e 
R

es
p

o
n

se

x (λ)y (λ)

z (λ)

FIGURE 51.13: Standard observer color pigment sensitivity curves.
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For an arbitrary homogeneous region in an image that has an intensity as a function of wavelength
(color) given by I (λ), the three pigment responses are called the tristimulus values:

X =
∫ ∞

0
I (λ)x̄(λ)dλ Y =

∫ ∞

0
I (λ)ȳ(λ)dλ Z =

∫ ∞

0
I (λ)z̄(λ)dλ (51.47)

CIE Chromaticity Coordinates

The chromaticity coordinates, which describe the perceived color information, are defined as:

x = X

X + Y + Z
y = Y

X + Y + Z
z = 1 − (x + y) (51.48)

The red chromaticity coordinate is given by x and the green chromaticity coordinate by y. The
tristimulus values are linear in I (λ), and thus the absolute intensity information has been lost in the
calculation of the chromaticity coordinates {x, y}. All color distributions, I (λ), that appear to an
observer as having the same color will have the same chromaticity coordinates.

If we use a tunable source of pure color (such as dye laser), then the intensity can be modeled as
I (λ) = δ(λ − λ0) with δ(•) as the impulse function. The collection of chromaticity coordinates
{x, y} that will be generated by varying λ0 gives the CIE chromaticity triangle as shown in Fig. 51.14.
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FIGURE 51.14: Chromaticity diagram containing the CIE chromaticity triangle associated with pure
spectral colors and the triangle associated with CRT phosphors.

Pure spectral colors are along the boundary of the chromaticity triangle. All other colors are inside
the triangle. The chromaticity coordinates for some standard sources are given in Table 51.6.

TABLE 51.6

Chromaticity Coordinates for Standard Sources
Source x y

Fluorescent lamp @ 4800 ◦K 0.35 0.37
Sun @ 6000 ◦K 0.32 0.33
Red phosphor (europium yttrium vanadate) 0.68 0.32
Green phosphor (zinc cadmium sulfide) 0.28 0.60
Blue phosphor (zinc sulfide) 0.15 0.07
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The description of color on the basis of chromaticity coordinates not only permits an analysis of
color but provides a synthesis technique as well. Using a mixture of two color sources, it is possible to
generate any of the colors along the line connecting their respective chromaticity coordinates. Since
we cannot have a negative number of photons, this means the mixing coefficients must be positive.
Using three color sources such as the red, green, and blue phosphors on CRT monitors leads to the
set of colors defined by the interior of the “phosphor triangle” shown in Fig. 51.14.

The formulas for converting from the tristimulus values (X, Y, Z) to the well-known CRT colors
(R,G,B) and back are given by:

 R

G

B


 =


 1.9107 −0.5326 −0.2883

−0.9843 1.9984 −0.0283
0.0583 −0.1185 0.8986


 •


 X

Y

Z


 (51.49)

and 
 X

Y

Z


 =


 0.6067 0.1736 0.2001

0.2988 0.5868 0.1143
0.0000 0.0661 1.1149


 •


 R

G

B


 (51.50)

As long as the position of a desired color (X, Y, Z) is inside the phosphor triangle in Fig. 51.14, the
values R,G, and B as computed by Eq. (51.49) will be positive and therefore can be used to drive a
CRT monitor.

It is incorrect toassumethat a smalldisplacementanywhere in thechromaticitydiagram(Fig. 51.14)
will produce a proportionally small change in the perceived color. An empirically derived chromaticity
space where this property is approximated is the (u′, ν′) space:

u′ = 4x

−2x + 12y + 3
ν′ = 9y

−2x + 12y + 3

and

x = 9u′

6u′ − 16ν′ + 12
y = 4ν′

6u′ − 16ν′ + 12
(51.51)

Small changes almost anywhere in the (u′, ν′) chromaticity space produce equally small changes in
the perceived colors.

51.4.4 Optical Illusions

The description of the human visual system presented above is couched in standard engineering
terms. This could lead one to conclude that there is sufficient knowledge of the human visual
system to permit modeling the visual system with standard system analysis techniques. Two simple
examples of optical illusions, shown in Fig. 51.15, illustrate that this system approach would be a
gross oversimplification. Such models should only be used with extreme care.

The left illusion induces the illusion of gray values in the eye that the brain “knows” do not exist.
Further, there is a sense of dynamic change in the image due, in part, to the saccadic movements of
the eye. The right illusion, Kanizsa’s triangle, shows enhanced contrast and false contours, neither of
which can be explained by the system-oriented aspects of visual perception described above.

51.5 Image Sampling

Converting from a continuous image a(x, y) to its digital representation b[m, n] requires the process
of sampling. In the ideal sampling system, a(x, y) is multiplied by an ideal 2D impulse train:
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FIGURE 51.15: Optical illusions.

bideal[m, n] = a(x, y) •
+∞∑

m=−∞

+∞∑
n=−∞

δ (x −mXo, y − nYo)

=
+∞∑

m=−∞

+∞∑
n=−∞

a (mXo, nYo) δ (x −mXo, y − nYo) (51.52)

where Xo and Yo are the sampling distances or intervals and δ(•, •) is the ideal impulse function.
(At some point, of course, the impulse function δ(x, y) is converted to the discrete impulse function
δ[m, n].) Square sampling implies that Xo = Yo. Sampling with an impulse function corresponds
to sampling with an infinitesimally small point. This, however, does not correspond to the usual
situation as illustrated in Fig. 51.1. To take the effects of a finite sampling aperture p(x, y) into
account, we can modify the sampling model as follows:

b[m, n] = (a(x, y)⊗ p(x, y)) •
+∞∑

m=−∞

+∞∑
n=−∞

δ (x −mXo, y − nYo) (51.53)

The combined effect of the aperture and sampling are best understood by examining the Fourier
domain representation.

B(�,9) = 1

4π2

+∞∑
m=−∞

+∞∑
n=−∞

A (�−m�s,9 − n9s) • P (�−m�s,9 − n9s) (51.54)

where �s = 2π/Xo is the sampling frequency in the x direction and 9s = 2π/Yo is the sampling
frequency in the y direction. The aperturep(x, y) is frequently square, circular, or Gaussian with the
associated P(�,9) (see Table 51.4). The periodic nature of the spectrum, described in Eq. (51.21)
is clear from Eq. (51.54).

51.5.1 Sampling Density for Image Processing

To prevent the possible aliasing (overlapping) of spectral terms that is inherent in Eq. (51.54), two
conditions must hold:

• Bandlimited A(u, ν) -

|A(u, ν)| ≡ 0 for |u| > uc and |ν| > νc (51.55)
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• Nyquist sampling frequency -

�s > 2 • uc and 9s > 2 • νc (51.56)

where uc and νc are the cutoff frequencies in the x and y direction, respectively. Images that are
acquired through lenses that are circularly symmetric, aberration-free, and diffraction-limited will,
in general, be bandlimited. The lens acts as a lowpass filter with a cutoff frequency in the frequency
domain [Eq. (51.11)] given by:

uc = νc = 2NA

λ
(51.57)

where NA is the numerical aperture of the lens and λ is the shortest wavelength of light used with
the lens. If the lens does not meet one or more of these assumptions, then it will still be bandlimited
but at lower cutoff frequencies than those given in Eq. (51.57). When working with the F-number
(F ) of the optics instead of the NA and in air (with index of refraction = 1.0), Eq. (51.57) becomes:

uc = νc = 2

λ

(
1√

4F 2 + 1

)
(51.58)

Sampling Aperture

The aperture p(x, y) described above will have only a marginal effect on the final signal if the
two conditions, Eqs. (51.56) and (51.57), are satisfied. Given, for example, the distance between
samples Xo equals Yo and a sampling aperture that is not wider than Xo, the effect on the overall
spectrum — due to theA(u, ν)P (u, ν) behavior implied by Eq. (51.53) — is illustrated in Fig. 51.16
for square and Gaussian apertures.

FIGURE 51.16: Aperture spectra P(u, ν = 0) for frequencies up to half the Nyquist frequency. For
explanation of “fill” see text.

The spectra are evaluated along one axis of the 2D Fourier transform. The Gaussian aperture in
Fig. 51.16 has a width such that the sampling interval Xo contains ±3σ(99.7%) of the Gaussian.
The rectangular apertures have a width such that one occupies 95% of the sampling interval and the
other occupies 50% of the sampling interval. The 95% width translates to a fill factor of 90% and the
50% width to a fill factor of 25%. The fill factor is discussed in section 51.7.5.
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51.5.2 Sampling Density for Image Analysis

The “rules” for choosing the sampling density when the goal is image analysis — as opposed to image
processing — are different. The fundamental difference is that the digitization of objects in an image
into a collection of pixels introduces a form of spatial quantization noise that is not bandlimited.
This leads to the following results for the choice of sampling density when one is interested in the
measurement of area and (perimeter) length.

Sampling for Area Measurements

Assuming square sampling, Xo = Yo and the unbiased algorithm for estimating area which
involves simple pixel counting, the CV [see Eq. (51.38)] of the area measurement is related to the
sampling density by:

2D : lim
S→∞CV (S) = k2S

−3/2 3D : lim
S→∞CV (S) = k3S

−2 (51.59)

and inD dimensions:

lim
S→∞CV (S) = kDS

−(D+1)/2 (51.60)

where S is the number of samples per object diameter. In 2D, the measurement is area; in 3D, volume;
and inD-dimensions, hypervolume.

Sampling for Length Measurements

Again assuming square sampling and algorithms for estimating length based on the Freeman
chain-code representation (see section 51.3.6), the CV of the length measurement is related to the
sampling density per unit length as shown in Fig. 51.17.
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FIGURE 51.17: CV of length measurement for various algorithms.

The curves in Fig. 51.17 were developed in the context of straight lines but similar results have
been found for curves and closed contours. The specific formulas for length estimation use a chain
code representation of a line and are based on a linear combination of three numbers:

L = α •Ne + β •N0 + γ •Nc (51.61)

whereNe is the number of even chain codes,N0 the number of odd chain codes, andNc the number
of corners. The specific formulas are given in Table 51.7.
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TABLE 51.7 Length Estimation Formulas

Based on Chain Code Counts (Ne,N0,Nc)
Coefficients

Formula α β γ

Pixel count 1 1 0

Freeman 1
√

2 0

Kulpa 0.9481 0.9481 •√
2 0

Corner count 0.980 1.406 −0.091

Conclusions on Sampling

If one is interested in image processing, one should choose a sampling density based on classical
signal theory, that is, the Nyquist sampling theory. If one is interested in image analysis, one should
choose a sampling density based on the desired measurement accuracy (bias) and precision (CV ).
In a case of uncertainty, one should choose the higher of the two sampling densities (frequencies).

51.6 Noise

Images acquired through modern sensors may be contaminated by a variety of noise sources. By
noise we refer to stochastic variations as opposed to deterministic distortions such as shading or
lack of focus. We will assume for this section that we are dealing with images formed from light
using modern electro-optics. In particular we will assume the use of modern, charge-coupled device
(CCD) cameras where photons produce electrons that are commonly referred to as photoelectrons.
Nevertheless, most of the observations we shall make about noise and its various sources hold equally
well for other imaging modalities.

While modern technology has made it possible to reduce the noise levels associated with various
electro-optical devices to almost negligible levels, one noise source can never be eliminated and thus
forms the limiting case when all other noise sources are “eliminated”.

51.6.1 Photon Noise

When the physical signal that we observe is based on light, then the quantum nature of light plays a
significant role. A single photon atλ = 500nm carries an energy ofE = hν = hc/λ = 3.97×10−19

Joules. Modern CCD cameras are sensitive enough to be able to count individual photons. (Camera
sensitivity will be discussed in section 51.7.2). The noise problem arises from the fundamentally
statistical nature of photon production. We cannot assume that, in a given pixel for two consecutive
but independent observation intervals of length T , the same number of photons will be counted.
Photon production is governed by the laws of quantum physics which restrict us to talking about an
average number of photons within a given observation window. The probability distribution for p
photons in an observation window of length T seconds is known to be Poisson:

P(p|ρ, T ) = (ρT )p e−ρT

p! (51.62)

where ρ is the rate or intensity parameter measured in photons per second. It is critical to understand
that even if there were no other noise sources in the imaging chain, the statistical fluctuations asso-
ciated with photon counting over a finite time interval T would still lead to a finite signal-to-noise
ratio (SNR). If we use the appropriate formula for the SNR [Eq. (51.41)], then due to the fact that
the average value and the standard deviation are given by:
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Poisson process -

average = ρT

σ = √
ρT

(51.63)

we have for the SNR:

Photon noise -

SNR = 10 log10(ρT ) dB (51.64)

The three traditional assumptions about the relationship between signal and noise do not hold for
photon noise:

• photon noise is not independent of the signal;

• photon noise is not Gaussian; and

• photon noise is not additive.

For very bright signals, where ρT exceeds 105, the noise fluctuations due to photon statistics can
be ignored if the sensor has a sufficiently high saturation level. This will be discussed further in
section 51.7.3 and, in particular, Eq. (51.73).

51.6.2 Thermal Noise

An additional, stochastic source of electrons in a CCD well is thermal energy. Electrons can be
freed from the CCD material itself through thermal vibration and then, trapped in the CCD well,
be indistinguishable from “true” photoelectrons. By cooling the CCD chip, it is possible to reduce
significantly the number of “thermal electrons” that give rise to thermal noise or dark current. As the
integration time T increases, the number of thermal electrons increases. The probability distribution
of thermal electrons is also a Poisson process where the rate parameter is an increasing function of
temperature. There are alternative techniques (to cooling) for suppressing dark current and these
usually involve estimating the average dark current for the given integration time and then subtracting
this value from the CCD pixel values before the A/D converter. While this does reduce the dark current
average, it does not reduce the dark current standard deviation and it also reduces the possible dynamic
range of the signal.

51.6.3 On-Chip Electronic Noise

This noise originates in the process of reading the signal from the sensor, in this case through the
field effect transistor (FET) of a CCD chip. The general form of the power spectral density of readout
noise is:

Readout noise - Snn(ω) ∝


ω−β ω < ωmin β > 0
k ωmin < ω < ωmax

ωα ω > ωmax α > 0
(51.65)

where α and β are constants and ω is the (radial) frequency at which the signal is transferred
from the CCD chip to the “outside world”. At very low readout rates (ω < ωmin) the noise has a
1/f character. Readout noise can be reduced to manageable levels by appropriate readout rates and
proper electronics. At very low signal levels [see Eq. (51.64)], however, readout noise can still become
a significant component in the overall SNR.

c©1999 by CRC Press LLC



51.6.4 KTC Noise

Noise associated with the gate capacitor of an FET is termed KTC noise and can be nonnegligible.
The output RMS value of this noise voltage is given by:

KTC noise (voltage) -

σKTC =
√
kT

C
(51.66)

whereC is the FET gate switch capacitance, k is Boltzmann’s constant, and T is the absolute temper-
ature of the CCD chip measured in K. Using the relationships Q = C • V = Ne− • e−, the ouput
RMS value of the KTC noise expressed in terms of the number of photoelectrons (Ne−) is given by:

KTC noise (electrons) -

σNe =
√
kT C

e−
(51.67)

where e−is the electron charge. For C = 0.5 pF and T = 233K, this gives Ne− = 252electrons.
This value is a “one time” noise per pixel that occurs during signal readout and is thus independent
of the integration time (see sections 51.6.1 and 51.7.7). Proper electronic design that makes use, for
example, of correlated double sampling and dual-slope integration can almost completely eliminate
KTC noise.

51.6.5 Amplifier Noise

The standard model for this type of noise is additive, Gaussian, and independent of the signal.
In modern well-designed electronics, amplifier noise is generally negligible. The most common
exception to this is in color cameras where more amplification is used in the blue color channel than
in the green channel or red channel leading tomorenoise in theblue channel. (See also section51.7.6.)

51.6.6 Quantization Noise

Quantization noise is inherent in the amplitude quantization process and occurs in the analog-to-
digital converter, ADC. The noise is additive and independent of the signal when the number of levels
L ≥ 16. This is equivalent toB ≥ 4bits. (See section 51.2.1). For a signal that has been converted to
electrical form and thus has a minimum and maximum electrical value, Eq. (51.40) is the appropriate
formula for determining the SNR. If the ADC is adjusted so that 0 corresponds to the minimum
electrical value and 2B − 1 corresponds to the maximum electrical value then:

Quantization noise -
SNR = 6B + 11 dB (51.68)

For B ≥ 8 bits, this means a SNR ≥ 59 dB. Quantization noise can usually be ignored as the
total SNR of a complete system is typically dominated by the smallest SNR. In CCD cameras, this
is photon noise.

51.7 Cameras

The cameras and recording media available for modern digital image processing applications are
changing at a significant pace. To dwell too long in this section on one major type of camera, such as
the CCD camera, and to ignore developments in areas such as charge injection device (CID) cameras
and CMOS cameras, is to run the risk of obsolescence. Nevertheless, the techniques that are used
to characterize the CCD camera remain “universal” and the presentation that follows is given in the
context of modern CCD technology for purposes of illustration.
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51.7.1 Linearity

It is generally desirable that the relationship between the input physical signal (e.g., photons) and
the output signal (e.g., voltage) be linear. Formally this means [as in Eq. (51.20)] that if we have two
images, a and b, and two arbitrary complex constants, w1 and w2, and a linear camera response,
then:

c = R {w1a + w2b} = w1R{a} + w2R{b} (51.69)

where R{•} is the camera response and c is the camera output. In practice, the relationship between
input a and output c is frequently given by:

c = gain • aγ + offset (51.70)

where γ is the gamma of the recording medium. For a truly linear recording system we must have
γ = 1 and offset = 0. Unfortunately, the offset is almost never zero and thus we must compensate
for this if the intention is to extract intensity measurements. Compensation techniques are discussed
in section 51.10.1.

Typical values of γ that may be encountered are listed in Table 51.8. Modern cameras often have
the ability to switch electronically between various values of γ .

TABLE 51.8 Comparison of γ of Various Sensors
Sensor Surface γ Possible advantages

CCD chip Silicon 1.0 Linear
Vidicon tube Sb2 S3 0.6 Compresses dynamic range → high contrast scenes
Film Silver halide < 1.0 Compresses dynamic range → high contrast scenes
Film Silver halide > 1.0 Expands dynamic range → low contrast scenes

51.7.2 Sensitivity

There are two ways to describe the sensitivity of a camera. First, we can determine the minimum
number of detectable photoelectrons. This can be termed the absolute sensitivity. Second, we can
describe the number of photoelectrons necessary to change from one digital brightness level to the
next, that is, to change one analog-to-digital unit (ADU). This can be termed the relative sensitivity.

Absolute Sensitivity

To determine the absolute sensitivity we need a characterization of the camera in terms of its
noise. If the noise has a σ of, say, 100 photoelectrons, then to ensure detectability of a signal we could
then say that, at the 3σ level, the minimum detectable signal (or absolute sensitivity) would be 300
photoelectrons. If all the noise sources listed in section 51.6, with the exception of photon noise, can
be reduced to negligible levels, this means that an absolute sensitivity of less than 10 photoelectrons
is achievable with modern technology.

Relative Sensitivity

The definition of relative sensitivity, S, given above when coupled to the linear case, Eq. (51.70)
with γ = 1, leads immediately to the result:

S = 1/ gain = gain−1 (51.71)

The measurement of the sensitivity or gain can be performed in two distinct ways.
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• If following Eq. (51.70), the input signal a can be precisely controlled by either “shutter”
time or intensity (through neutral density filters), then the gain can be estimated by
estimating the slope of the resulting straight-line curve. To translate this into the desired
units, however, a standard source must be used that emits a known number of photons
onto the camera sensor and the quantum efficiency (η) of the sensor must be known. The
quantum efficiency refers to how many photoelectrons are produced — on the average
— per photon at a given wavelength. In general 0 ≤ η(λ) ≤ 1.

• If, however, the limiting effect of the camera is only the photon (Poisson) noise (see
section 51.6.1), then aneasy-to-implement, alternative technique is available todetermine
the sensitivity. Using Eqs. (51.63), (51.70), and (51.71) and after compensating for the
offset (see section 51.10.1), the sensitivity measured from an image c is given by:

S = E{c}
Var {c} = mc

s2
c

(51.72)

wheremc and sc are defined in Eqs. (51.34) and (51.36).

Measured data for five modern (1995) CCD camera configurations are given in Table 51.9.

TABLE 51.9 Sensitivity Measurements
Camera Pixel size Temp. S

label Pixels (µm× µm) (K) (e−/ADU) Bits

C-1 1320 × 1035 6.8 × 6.8 231 7.9 12
C-2 578 × 385 22.0 × 22.0 227 9.7 16
C-3 1320 × 1035 6.8 × 6.8 293 48.1 10
C-4 576 × 384 23.0 × 23.0 238 90.9 12
C-5 756 × 581 11.0 × 5.5 300 109.2 8

Note: The lower the value of S, the more sensitive the camera is.

The extraordinary sensitivity of modern CCD cameras is clear from these data. In a scientific-grade
CCD camera (C-1), only 8 photoelectrons (approximately 16 photons) separate two gray levels in
the digital representation of the image. For a considerably less expensive video camera (C-5), only
about 110 photoelectrons (approximately 220 photons) separate two gray levels.

51.7.3 SNR

As described in section 51.6 in modern camera systems the noise is frequently limited by:

• amplifier noise in the case of color cameras;

• thermal noise which, itself, is limited by the chip temperature K and the exposure time
T ; and/or

• photon noise, which is limited by the photon production rate ρ and the exposure time T .

Thermal Noise (Dark Current)

Using cooling techniques based on Peltier cooling elements, it is straightforward to achieve chip
temperatures of 230 to 250 K. This leads to low thermal electron production rates. As a measure of
the thermal noise, we can look at the number of seconds necessary to produce a sufficient number of
thermal electrons togo fromonebrightness level to thenext, anADU, in theabsenceofphotoelectrons.
This last condition — the absence of photoelectrons — is the reason for the name dark current.
Measured data for the five cameras described above are given in Table 51.10.
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TABLE 51.10 Thermal Noise

Characteristics
Camera Temp. Dark current

label (K) (seconds/ADU)

C-1 231 526.3
C-2 227 0.2
C-3 293 8.3
C-4 238 2.4
C-5 300 23.3

The video camera (C-5) has on-chip dark current suppression (see section 51.6.2). Operating at
room temperature this camera requires more than 20 seconds to produce one ADU change due to
thermal noise. This means at the conventional video frame and integration rates of 25 to 30 images
per second (see Table 51.3), the thermal noise is negligible.

Photon Noise

From Eq. (51.64) we see that it should be possible to increase the SNR by increasing the
integration time of our image and thus “capturing” more photons. The pixels in CCD cameras have,
however, a finite well capacity. This finite capacity, C, means that the maximum SNR for a CCD
camera per pixel is given by:

Capacity-limited photon noise -

SNR = 10 log10(C) dB (51.73)

Theoretical as well as measured data for the five cameras described above are given in Table 51.11.

TABLE 51.11 Photon Noise Characteristics
Camera C Theor. SNR Meas. SNR Pixel size Well depth

label #e− (dB) (dB) (µm× µm) (#e − /µm2)

C-1 32,000 45 45 6.8 × 6.8 692
C-2 340,000 55 55 22.0 × 22.0 702
C-3 32,000 45 43 6.8 × 6.8 692
C-4 400,000 56 52 23.0 × 23.0 756
C-5 40,000 46 43 11.0 × 5.5 661

Note that for certain cameras, the measured SNR achieves the theoretical maximum indicating
that the SNR is, indeed, photon and well capacity limited. Further, the curves of SNR vs. T

(integration time) are consistent with Eqs. (51.64) and (51.73). (Data not shown.) It can also be
seen that, as a consequence of CCD technology, the “depth” of a CCD pixel well is constant at about
0.7 ke−/µm2.

51.7.4 Shading

Virtually all imaging systems produce shading. By this we mean that if the physical input image
a(x, y) = constant, then the digital version of the image will not be constant. The source of the
shading might be outside the camera, such as in the scene illumination, or the result of the camera
itself where a gain and offset might vary from pixel to pixel. The model for shading is given by:

c[m, n] = gain[m, n] • a[m, n] + offset[m, n] (51.74)

where a[m, n] is the digital image that would have been recorded if there were no shading in the
image, that is, a[m, n] = constant. Techniques for reducing or removing the effects of shading are
discussed in section 51.10.1.
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51.7.5 Pixel Form

While the pixels shown in Fig. 51.1 appear to be square and to “cover” the continuous image, it is
important to know the geometry for a given camera/digitizer system. In Fig. 51.18 we define possible
parameters associated with a camera and digitizer and the effect they have on the pixel.

FIGURE 51.18: Pixel form parameters.

The parameters Xo and Yo are the spacing between the pixel centers and represent the sampling
distances from Eq. (51.52). The parameters Xa and Ya are the dimensions of that portion of the
camera’s surface that is sensitive to light. As mentioned in section 51.2.3 different video digitizers
(frame grabbers) can have different values for Xo while they have a common value for Yo.

Square Pixels

As mentioned in section 51.5, square sampling implies thatXo = Yo or alternativelyXo/Yo =
1. It is not uncommon, however, to find frame grabbers whereXo/Yo = 1.1orXo/Yo = 4/3. (This
latter format matches the format of commercial television. See Table 51.3). The risk associated with
nonsquare pixels is that isotropic objects scanned with nonsquare pixels might appear isotropic on
a camera-compatible monitor but analysis of the objects (such as length-to-width ratio) will yield
nonisotropic results. This is illustrated in Fig. 51.19.

FIGURE 51.19: Effect of nonsquare pixels.
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The ratioXo/Yo can be determined for any specific camera/digitizer system by using a calibration
test chart with known distances in the horizontal and vertical direction. These are straightforward
to make with modern laser printers. The test chart can then be scanned and the sampling distances
Xo and Yo determined.

Fill Factor

In modern CCD cameras it is possible that a portion of the camera surface is not sensitive to
light and is instead used for the CCD electronics or to prevent blooming. Blooming occurs when
a CCD well is filled (see Table 51.11) and additional photoelectrons spill over into adjacent CCD
wells. Antiblooming regions between the active CCD sites can be used to prevent this. This means,
of course, that a fraction of the incoming photons are lost as they strike the nonsensitive portion of
the CCD chip. The fraction of the surface that is sensitive to light is termed the fill factor and is given
by:

fill factor = Xa • Ya
Xo • Yo × 100% (51.75)

The larger the fill factor, the more light will be captured by the chip up to the maximum of 100%.
This helps improve the SNR. As a tradeoff, however, larger values of the fill factor mean more spatial
smoothing due to the aperture effect described in section 51.5.1. This is illustrated in Fig. 51.16.

51.7.6 Spectral Sensitivity

Sensors, such as those found in cameras and film, are not equally sensitive to all wavelengths of light.
The spectral sensitivity for the CCD sensor is given in Fig. 51.20.
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FIGURE 51.20: Spectral characteristics of silicon, the sun, and the human visual system. UV =
ultraviolet and IR = infra-red.

The high sensitivity of silicon in the infra-red means that for applications where a CCD (or other
silicon-based) camera is to be used as a source of images for digital image processing and analysis,
consideration should be given to using an IR blocking filter. This filter blocks wavelengths above
750 nm and thus prevents “fogging” of the image from the longer wavelengths found in sunlight.
Alternatively, a CCD-based camera can make an excellent sensor for the near infrared wavelength
range of 750 to 1000 nm.
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51.7.7 Shutter Speeds (Integration Time)

The length of time that an image is exposed — that photons are collected — may be varied in some
cameras or may vary on the basis of video formats (see Table 51.3). For reasons that have to do
with the parameters of photography, this exposure time is usually termed shutter speed although
integration time would be a more appropriate description.

Video Cameras

Values of the shutter speed as low as 500 ns are available with commercially available CCD
video cameras, although the more conventional speeds for video are 33.37 ms (NTSC) and 40.0 ms
(PAL, SECAM). Values as high as 30 s may also be achieved with certain video cameras although
this means sacrificing a continuous stream of video images that contain signal in favor of a single
integrated image among a stream of otherwise empty images. Subsequent digitizing hardware must
be capable of handling this situation.

Scientific Cameras

Again, values as low as 500 ns are possible and, with cooling techniques based on Peltier-cooling
or liquid nitrogen cooling, integration times in excess of one hour are readily achieved.

51.7.8 Readout Rate

The rate at which data is read from the sensor chip is termed the readout rate. The readout rate for
standard video cameras depends on the parameters of the frame grabber as well as the camera. For
standard video — see section 51.2.3 — the readout rate is given by:

R =
(

images

sec

)
•
(

lines

image

)
•
(

pixels

line

)
(51.76)

While the appropriate unit for describing the readout rate should be pixels/second, the termHz is
frequently found in the literature and in camera specifications; we shall therefore use the latter unit.
As illustration, readout rates for a video camera with square pixels are given in Table 51.12 (see also
section 51.7.5).

TABLE 51.12 Video Camera Readout Rates
Format lines/sec pixels/line R(MHz)

NTSC 15,750 (4/3) ∗ 525 ≈ 11.0
PAL/SECAM 15,625 (4/3) ∗ 625 ≈ 13.0

Note that the values in Table 51.12 are approximate. Exact values for square-pixel systems require
exact knowledge of the way the video digitizer (frame grabber) samples each video line.

The readout rates used in video cameras frequently mean that the electronic noise described in
section 51.6.3 occurs in the region of the noise spectrum [Eq. (51.65)] described by ω > ωmax where
the noise power increases with increasing frequency. Readout noise can thus be significant in video
cameras.

Scientific cameras frequently use a slower readout rate in order to reduce the readout noise. Typical
values of readout rate for scientific cameras, such as those described in Tables 51.9, 51.10, and 51.11
are 20 kHz, 500 kHz, and 1 to 8 MHz.
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51.8 Displays

The displays used for image processing — particularly the display systems used with computers —
have a number of characteristics that help determine the quality of the final image.

51.8.1 Refresh Rate

The refresh rate is defined as the number of complete images that are written to the screen per second.
For standard video, the refresh rate is fixed at the values given in Table 51.3, either 29.97 or 25
images/s. For computer displays, the refresh rate can vary with common values being 67 images/s
and 75 images/s. At values above 60 images/s, visual flicker is negligible at virtually all illumination
levels.

51.8.2 Interlacing

To prevent the appearance of visual flicker at refresh rates below 60 images/s, the display can be
interlaced as described in section 51.2.3. Standard interlace for video systems is 2:1. Since interlacing
is not necessary at refresh rates above 60 images/s, an interlace of 1:1 is used with such systems. In
other words, lines are drawn in an ordinary sequential fashion: 1,2,3,4 . . . , N .

51.8.3 Resolution

The pixels stored in computer memory, although they are derived from regions of finite area in the
original scene (see sections 51.5.1 and 51.7.5), may be thought of as mathematical points having
no physical extent. When displayed, the space between the points must be filled in. This generally
happens as a result of the finite spot size of a cathode-ray tube (CRT). The brightness profile of a
CRT spot is approximately Gaussian and the number of spots that can be resolved on the display
depends on the quality of the system. It is relatively straightforward to obtain display systems with a
resolution of 72 spots per inch (28.3 spots per cm.) This number corresponds to standard printing
conventions. If printing is not a consideration, then higher resolutions, in excess of 30 spots per cm,
are attainable.

51.9 Algorithms

In this section we will describe operations that are fundamental to digital image processing. These
operations can be divided into four categories: operations based on the image histogram, on simple
mathematics, on convolution, and on mathematical morphology. Further, these operations can also
be described in terms of their implementation as a point operation, a local operation, or a global
operation as described in section 51.2.2.

51.9.1 Histogram-Based Operations

An important class of point operations is based on the manipulation of an image histogram or a
region histogram. The most important examples are described below.

Contrast Stretching

Frequently, an image is scanned in such a way that the resulting brightness values do not make
full use of the available dynamic range. This can be easily observed in the histogram of the brightness
values shown in Fig. 51.6. By stretching the histogram over the available dynamic range, we attempt
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to correct this situation. If the image is intended to go from brightness 0 to brightness 2B − 1 (see
section 51.2.1), then one generally maps the 0% value (or minimum as defined in section 51.3.5) to
the value 0 and the 100% value (or maximum) to the value 2B − 1. The appropriate transformation
is given by:

b[m, n] =
(
2B − 1

)
• a[m, n] − minimum

maximum − minimum
(51.77)

This formula, however, can be somewhat sensitive to outliers and a less sensitive and more general
version is given by:

b[m, n] =




0 a[m, n] ≤ plow%(
2B − 1

) • a[m,n]−plow%
phigh%−plow% plow%< a[m, n] < phigh%(

2B − 1
)

a[m, n] ≥ phigh%

(51.78)

In this second version, one might choose the 1% and 99% values forplow%andphigh%, respectively,
instead of the 0% and 100% values represented by Eq. (51.77). It is also possible to apply the
contrast-stretching operation on a regional basis using the histogram from a region to determine the
appropriate limits for the algorithm. Note that in Eqs. (51.77) and (51.78) it is possible to suppress
the term 2B − 1 and simply normalize the brightness range to 0 ≤ b[m, n] ≤ 1. This means
representing the final pixel brightnesses as reals instead of integers, but modern computer speeds and
RAM capacities make this quite feasible.

Equalization

When one wishes to compare two or more images on a specific basis, such as texture, it is
common to first normalize their histograms to a “standard” histogram. This can be especially useful
when the images have been acquired under different circumstances. The most common histogram
normalization techniques is histogram equalization where one attempts to change the histogram
through the use of a function b = f (a) into a histogram that is constant for all brightness values. This
would correspond to a brightness distribution where all values are equally probable. Unfortunately,
for an arbitrary image, one can only approximate this result.

For a “suitable” function f (•) the relation between the input probability density function, the
output probability density function, and the function f (•) is given by:

pb(b)db = pa(a)da ⇒ df = pa(a)da

pb(b)
(51.79)

From Eq. (51.79) we see that “suitable” means that f (•) is differentiable and that df/da ≥ 0. For
histogram equalization, we desire that pb(b) = constant and this means that:

f (a) =
(
2B − 1

)
• P(a) (51.80)

where P(a) is the probability distribution function defined in section 51.3.5 and illustrated in
Fig. 51.6(a). In other words, the quantized probability distribution function normalized from 0
to 2B − 1 is the look-up table required for histogram equalization. Figures 51.21(a-c) illustrate
the effect of contrast stretching and histogram equalization on a standard image. The histogram
equalization procedure can also be applied on a regional basis.

Other Histogram-Based Operations

The histogram derived from a local region can also be used to drive local filters that are to
be applied to that region. Examples include minimum filtering, median filtering, and maximum
filtering. The concepts minimum, median, and maximum were introduced in Fig. 51.6. The filters
based on these concepts will be presented formally in sections 51.9.4 and 51.9.6.
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FIGURE 51.21: (a) Original, (b) contrast stretched, and (c) histogram equalized.

51.9.2 Mathematics-Based Operations

In this section we distinguish between binary arithmetic and ordinary arithmetic. In the binary
case there are two brightness values “0” and “1”. In the ordinary case we begin with 2B brightness
values or levels but the processing of the image can easily generate many more levels. For this reason,
many software systems provide 16- or 32-bit representations for pixel brightnesses in order to avoid
problems with arithmetic overflow.

Binary Operations

Operations based on binary (Boolean) arithmetic form the basis for a powerful set of tools that
will be described here and extended in section 51.9.6 mathematical morphology. The operations
described below are point operations and thus admit a variety of efficient implementations including
simple look-up tables. The standard notation for the basic set of binary operations is:

NOT c = ā

OR c = a + b

AND c = a • b
XOR c = a ⊕ b = a • b̄ + ā • b
SUB c = a\b = a − b = a • b̄

(51.81)

The implication is that each operation is applied on a pixel-by-pixel basis. For example, c[m, n] =
a[m, n] • b̄[m, n] ∀m, n. The definition of each operation is:

NOT
a

0 1
1 0

OR b

a 0 1
0 0 1
1 1 1

AND b

a 0 1
0 0 0
1 0 1

↑ ↑
input output

XOR b

a 0 1
0 0 1
1 1 0

SUB b

a 0 1
0 0 0
1 1 0

(51.82)

These operations are illustrated in Fig. 51.22 where the binary value “1” is shown in black and the
value “0” in white.

The SUB(•) operation can be particularly useful when the image a represents a region-of-interest
that we want to analyze systematically and the image b represents objects that, having been analyzed,
can now be discarded, that is subtracted, from the region.
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FIGURE 51.22: Examples of the various binary point operations. (a) Image a; (b) Image b;
(c) NOT(b) = b̄; (d) OR(a, b) = a + b; (e) AND(a, b) = a • b; (f) XOR(a, b) = a ⊕ b; and
(g) SUB(a, b) = a\b.

Arithmetic-Based Operations

The gray-value point operations that form the basis for image processing are based on ordinary
mathematics and include:

Operation Definition Preferred Data Type

ADD c = a + b Integer
SUB c = a − b Integer
MUL c = a • b Integer or floating point
DIV c = a/b Floating point
LOG c = log(a) Floating point
EXP c = exp(a) Floating point
SQRT c = sqrt(a) Floating point
TRIG. c = sin/ cos/ tan(a) Floating point
INVERT c = (2B − 1)− a Integer

(51.83)
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51.9.3 Convolution-Based Operations

Convolution, the mathematical, local operation defined in section 51.3.1, is central to modern image
processing. The basic idea is that a window of some finite size and shape — the support — is scanned
across the image. The output pixel value is the weighted sum of the input pixels within the window
where the weights are the values of the filter assigned to every pixel of the window itself. The window
with its weights is called the convolution kernel. This leads directly to the following variation on
Eq. (51.3). If the filter h[j, k] is zero outside the (rectangular) window {j = 0,1, . . . , J − 1; k =
0,1, . . . , K − 1}, then using Eq. (51.4), the convolution can be written as the following finite sum:

c[m, n] = a[m, n] ⊗ h[m, n] =
J−1∑
j=0

K−1∑
k=0

h[j, k]a[m− j, n− k] (51.84)

This equation canbeviewedasmore than just apragmaticmechanism for smoothingor sharpening
an image. Further, while Eq. (51.84) illustrates the local character of this operation, Eqs. (51.10)
and (51.24) suggest that the operation can be implemented through the use of the Fourier domain
which requires a global operation, the Fourier transform. Both of these aspects will be discussed
below.

Background

In a variety of image-forming systems, an appropriate model for the transformation of the
physical signal a(x, y) into an electronic signal c(x, y) is the convolution of the input signal with
the impulse response of the sensor system. This system might consist of both an optical as well as an
electrical sub-system. If each of these systems can be treated as a linear, shift-invariant (LSI) system,
then the convolution model is appropriate. The definitions of these two possible system properties
are given below:

Linearity -
If a1 → c1 and a2 → c2

Then w1 • a1 + w2 • a2 → w1 • c1 + w2 • c2

(51.85)

Shift-Invariance -
If a(x, y) → c(x, y)

Then a (x − xo, y − yo) → c (x − xo, y − yo)
(51.86)

wherew1 andw2 are arbitrary complex constants andxo yo are coordinates corresponding toarbitrary
spatial translations.

Two remarks are appropriate at this point. First, linearity implies (by choosing w1 = w2 = 0)
that “zero in” gives “zero out”. The offset described in Eq. (51.70) means that such camera signals are
not the output of a linear system and thus (strictly speaking) the convolution result is not applicable.
Fortunately, it is straightforward to correct for this nonlinear effect. (See section 51.10.1).

Second, optical lenses with a magnification,M , other than 1× are not shift invariant; a translation
of 1 unit in the input image a(x, y) produces a translation of M units in the output image c(x, y).
Due to the Fourier property described in Eq. (51.25), this case can still be handled by linear system
theory.

If an impulse point of light δ(x, y) is imaged through an LSI system, then the impulse response of
that system is called the point spread function (PSF). The output image then becomes the convolution
of the input image with the PSF . The Fourier transform of the PSF is called the optical transfer
function (OTF). For optical systems that are circularly symmetric, aberration-free, and diffraction-
limited, the PSF is given by the Airy disk shown in Table 51.4-T.5. TheOTF of the Airy disk is also
presented in Table 51.4-T.5.
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If the convolution window is not the diffraction-limited PSF of the lens but rather the effect of
defocusing a lens, then an appropriate model for h(x, y) is a pill box of radius a as described in
Table 51.4-T.3. The effect on a test pattern is illustrated in Fig. 51.23.

FIGURE 51.23: Convolution of test pattern with a pill box of radius a = 4.5 pixels. (a) Test pattern;
(b) defocused image.

The effect of the defocusing is more than just simple blurring or smoothing. The almost periodic
negative lobes in the transfer function in Table 51.4-T.3 produce a 180◦ phase shift in which black
turns to white and vice-versa. The phase shift is clearly visible in Fig. 51.23(b).

Convolution in the Spatial Domain

In describing filters based on convolution, we will use the following convention. Given a filter
h[j, k] of dimensions J × K , we will consider the coordinate [j = 0, k = 0] to be in the center of
the filter matrix, h. This is illustrated in Fig. 51.24. The “center” is well defined when J and K are
odd: for the case where they are even, we will use the approximations (J/2,K/2) for the “center” of
the matrix.

FIGURE 51.24: Coordinate system for describing h[j, k].

When we examine the convolution sum [Eq. (51.84)] closely, several issues become evident.

• Evaluation of formula (51.84) form = n = 0while rewriting the limits of the convolution
sum based on the “centering” of h[j, k] shows that values of a[j, k] can be required that
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are outside the image boundaries:

c[0,0] =
+J0∑
j=−J0

+K0∑
k=−K0

h[j, k]a[−j,−k] J0 = (J − 1)

2
, K0 = (K − 1)

2
(51.87)

Thequestionarises—whatvalues shouldweassign to the imagea[m, n] form < 0, m ≥ M,n < 0,
and n ≥ N ? There is no “answer” to this question. There are only alternatives among which we
are free to choose assuming we understand the possible consequences of our choice. The standard
alternatives are (a) extend the images with a constant (possibly zero) brightness value, (b) extend the
image periodically, (c) extend the image by mirroring it at its boundaries, or (d) extend the values at
the boundaries indefinitely. These alternatives are illustrated in Fig. 51.25.

FIGURE 51.25: Examples of various alternatives to extend an image outside its formal boundaries.
See text for explanation.

• When the convolution sum is written in the standard form [Eq. (51.3)] for an image
a[m, n] of sizeM ×N :

c[m, n] =
M−1∑
j=0

N−1∑
k=0

a[j, k]h[m− j, n− k] (51.88)

we see that the convolution kernel h[j, k] is mirrored around j = k = 0 to produce
h[−j,−k] before it is translated by [m, n] as indicated in Eq. (51.88). While some
convolution kernels in common use are symmetric in this respect, h[j, k] = h[−j,−k],
many are not. (See section 51.9.5). Care must therefore be taken in the implementation
of filters with respect to the mirroring requirements.

• The computational complexity for aK×K convolution kernel implemented in the spatial
domain on an image of N ×N isO(K2) where the complexity is measured per pixel on
the basis of the number of multiplies-and-adds (MADDs).

• The value computed by a convolution that begins with integer brightnesses for a[m, n]
may produce a rational number or a floating point number in the result c[m, n]. Working
exclusively with integer brightness values will, therefore, cause roundoff errors.

• Inspection of Eq. (51.84) reveals another possibility for efficient implementation of con-
volution. If the convolution kernel h[j, k] is separable, that is, if the kernel can be written
as:

h[j, k] = hrow[k] • hcol[j ] (51.89)
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then the filtering can be performed as follows:

c[m, n] =
J−1∑
j=0

{
K−1∑
k=0

hrow[k]a[m− j, n− k]
}
hcol[j ] (51.90)

This means that instead of applying one two-dimensional filter, it is possible to apply two one-
dimensional filters, the first one in the k direction and the second one in j direction. For an N ×N

image this, in general, reduces the computational complexity per pixel fromO(J •K) toO(J +K).
An alternative way of writing separability is to note that the convolution kernel Fig. 51.24 is a

matrix h and, if separable, h can be written as:

[h] = [
hcol

] • [hrow

]t
(J ×K) = (J × 1) • (1 ×K) (51.91)

where “t”denotes the matrix transpose operation. In other words, h can be expressed as the outer
product of a column vector [hcol] and a row vector [hrow].

• For certain filters it is possible to find an incremental implementation for a convolution.
As the convolution window moves over the image [see Eq. (51.88)], the leftmost column
of image data under the window is shifted out as a new column of image data is shifted in
from the right. Efficient algorithms can take advantage of this and, when combined with
separable filters as described above, this can lead to algorithms where the computational
complexity per pixel is O(constant).

Convolution in the Frequency Domain

In section 51.3.4 we indicated that there was an alternative method to implement the filtering
of images through convolution. Based on Eq. (51.24), it appears possible to achieve the same result
as in Eq. (51.84) by the following sequence of operations:

(i) Compute A(�,9) = F{a[m, n]}
(ii) Multiply A(�,9)by the precomputed H(�,9) = F{h[m, n]}
(iii) Compute the result c[m, n] = F−1{A(�,9) •H(�,9)}

(51.92)

• While it might seem that the “recipe” given above in Eq. (51.92) circumvents the problems
associatedwithdirect convolution in the spatialdomain—specifically, determiningvalues
for the image outside the boundaries of the image — the Fourier domain approach, in
fact, simply “assumes” that the image is repeated periodically outside its boundaries as
illustrated in Fig. 51.25(b). This phenomenon is referred to as circular convolution.

If circular convolution is not acceptable, then the other possibilities illustrated in
Fig. 51.25 can be realized by embedding the image a[m, n] and the filter H(�,9) in
larger matrices with the desired image extension mechanism for a[m, n] being explicitly
implemented.

• The computational complexity per pixel of the Fourier approach for an image of N ×N

and for a convolution kernel of K × K is O(logN) complex MADDs independent of
K. Here we assume that N > K and that N is a highly composite number such as
a power of two. (See also section 51.2.1). This latter assumption permits use of the
computationally efficient fast Fourier transform (FFT ) algorithm. Surprisingly then,
the indirect route described by Eq. (51.92) can be faster than the direct route given in
Eq. (51.84). This requires, in general, thatK2 � logN . The range ofK andN for which
this holds depends on the specifics of the implementation. For the machine on which this
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manuscript is being written and the specific image processing package that is being used,
for an image of N = 256, the Fourier approach is faster than the convolution approach
when K ≥ 15. (It should be noted that in this comparison the direct convolution
involves only integer arithmetic while the Fourier domain approach requires complex
floating point arithmetic.)

51.9.4 Smoothing Operations

These algorithms are applied in order to reduce noise and/or to prepare images for further processing
such as segmentation. We distinguish between linear and nonlinear algorithms where the former
are amenable to analysis in the Fourier domain and the latter are not. We also distinguish between
implementationsbasedona rectangular support for thefilter and implementationsbasedona circular
support for the filter.

Linear Filters

Several filtering algorithms will be presented together with the most useful supports.

Uniform filter – The output image is based on a local averaging of the input filter where all
of the values within the filter support have the same weight. In the continuous spatial domain (x, y)
the PSF and transfer function are given in Table 51.4-T.1 for the rectangular case and in Table 51.4-T.3
for the circular (pill box) case. For the discrete spatial domain [m, n], the filter values are the samples
of the continuous domain case. Examples for the rectangular case (J = K = 5) and the circular
case (R = 2.5) are shown in Fig. 51.26.

FIGURE 51.26: Uniform filters for image smoothing. (a) Rectangular filter (J = K = 5); (b) circular
filter (R = 2.5).

Note that in both cases the filter is normalized so that
∑
h[j, k] = 1. This is done so that if the

input a[m, n] is a constant, then the output image c[m, n] is the same constant. The justification can
be found in the Fourier transform property described in Eq. (51.26). As can be seen from Table 51.4,
both of these filters have transfer functions that have negative lobes and can, therefore, lead to phase
reversal as seen in Fig. 51.23. The square implementation of the filter is separable and incremental;
the circular implementation is incremental.

Triangular filter – The output image is based on a local averaging of the input filter where
the values within the filter support have differing weights. In general, the filter can be seen as
the convolution of two (identical) uniform filters either rectangular or circular, and this has direct
consequences for the computational complexity. (See Table 51.13.) In the continuous spatial domain,
the PSF and transfer function are given in Table 51.4-T.2 for the rectangular support case and in
Table 51.4-T.4 for the circular (pill box) support case. As seen in Table 51.4, the transfer functions of
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these filters do not have negative lobes and thus do not exhibit phase reversal.
Examples for the rectangular support case (J = K = 5) and the circular support case (R = 2.5)

are shown in Fig. 51.27. The filter is again normalized so that
∑
h[j, k] = 1.

FIGURE 51.27: Triangular filters for image smoothing. (a) Pyramidal filter (J = K = 5); (b) Cone
filter (R = 2.5).

Gaussian filter – The use of the Gaussian kernel for smoothing has become extremely
popular. This has to do with certain properties of the Gaussian (e.g., the central limit theorem,
minimum space-bandwidth product) as well as several application areas such as edge finding and
scale space analysis. The PSF and transfer function for the continuous space Gaussian are given in
Table 51.4-T.6. The Gaussian filter is separable:

h(x, y) = g2D(x, y) =
(

1√
2πσ

e−
(
x2/2σ2

))
•
(

1√
2πσ

e−
(
y2/2σ2

))

= g1D(x) • g1D(y) (51.93)

There are four distinct ways to implement the Gaussian:

1. Convolution using a finite number of samples (No) of the Gaussian as the convolution
kernel. It is common to choose No = d3σe or d5σe.

g1D[n] =
{

1√
2πσ

e−
(
n2/2σ2

)
|n| ≤ No

0 |n| > No
(51.94)

2. Repetitive convolution using a uniform filter as the convolution kernel.

g1D[n] ≈ u[n] ⊗ u[n] ⊗ u[n]

u[n] =
{

1/ (2No + 1) |n| ≤ No

0 |n| > No
(51.95)

The actual implementation (in each dimension) is usually of the form:

c[n] = ((a[n] ⊗ u[n])⊗ u[n])⊗ u[n] (51.96)

This implementation makes use of the approximation afforded by the central limit theo-
rem. For a desired σ with Eq. (51.96), we use No = dσe although this severely restricts
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our choice of σ ’s to integer values.

3. Multiplication in the frequency domain. As the Fourier transform of a Gaussian is a
Gaussian (see Table 51.4-T.6), this means that it is straightforward to prepare a filter
H(�,9) = G2D(�,9) for use with Eq. (51.92). To avoid truncation effects in the
frequency domain due to the infinite extent of the Gaussian, it is important to choose a σ
that is sufficiently large. Choosing σ > k/π where k = 3 or 4 will usually be sufficient.

4. Use of a recursive filter implementation. A recursive filter has an infinite impulse response
and thus an infinite support. The separable Gaussian filter can be implemented by
applying the following recipe in each dimension when σ ≥ 0.5.

(i) Choose the σ based on the desired goal of the filtering;
(ii) Determine the parameter q based on Eq. (51.98);
(iii) Use Eq. (51.99) to determine the filter coefficients {b0, b1, b2, b3, B};
(iv) Apply the forward difference equation. Eq. (51.100);
(v) Apply the backward difference equation. Eq. (51.101).

(51.97)

The relation between the desired σ and q is given by:

q =
{

.98711σ − 0.96330 σ ≥ 2.5

3.97156− 4.14554
√

1 − .26891σ 0.5 ≤ σ ≤ 2.5
(51.98)

The filter coefficients {b0, b1, b2, b3, B} are defined by:

b0 = 1.57825+ (2.44413q)+
(
1.4281q2

)
+
(
0.422205q3

)
b1 = (2.44413q)+

(
2.85619q2

)
+
(
1.26661q3

)
b2 = −

(
1.4281q2

)
−
(
1.26661q3

)
(51.99)

b3 = 0.422205q3

B = 1 − (b1 + b2 + b3)/b0

The one-dimensional forward difference equation takes an input row (or column) a[n]
and produces an intermediate output resultw[n] given by:

w[n] = Ba[n] + (b1w[n− 1] + b2w[n− 2] + b3w[n− 3]) /b0 (51.100)

The one-dimensional backward difference equation takes the intermediate resultw[n] and
produces the output c[n] given by:

c[n] = Bw[n] + (b1c[n+ 1] + b2c[n+ 2] + b3c[n+ 3]) /b0 (51.101)

The forward equation is applied fromn = 0up ton = N−1while the backward equation
is applied from n = N − 1 down to n = 0.

The relative performance of these various implementations of the Gaussian filter can be described

as follows. Using the root-square error
√∑+∞

n=−∞ |g[n|σ ] − h[n]|2 between a true, infinite-extent

Gaussian, g[n|σ ], and an approximated Gaussian, h[n], as a measure of accuracy, the various al-
gorithms described above give the results shown in Fig. 51.28(a). The relative speed of the various
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algorithms is shown in Fig. 51.28(b).

FIGURE 51.28: Comparison of various Gaussian algorithms with N = 256. The legend is spread
across both graphs. (a) Accuracy comparison; (b) speed comparison.

The root-square error measure is extremely conservative and, thus, all filters, with the exception
of “Uniform 3×” for large σ , are sufficiently accurate. The recursive implementation is the fastest
independent of σ : the other implementations can be significantly slower. The FFT implementation,
for example, is 3.1 times slower forN = 256. Further, the FFT requires thatN be a highly composite
number.

Other – The Fourier domain approach offers the opportunity to implement a variety of
smoothing algorithms. The smoothing filters will then be lowpass filters. In general, it is desirable
to use a lowpass filter that has zero phase so as not to produce phase distortion when filtering the
image. The importance of phase was illustrated in Figs. 51.5 and 51.23. When the frequency domain
characteristics can be represented in an analytic form, then this can lead to relatively straightforward
implementationsofH(�,9). Possible candidates include the lowpassfilters “Airy” and“Exponential
Decay” found in Table 51.4-T.5 and Table 51.4-T.8, respectively.

Nonlinear Filters

A variety of smoothing filters have been developed that are not linear. While they cannot,
in general, be submitted to Fourier analysis, their properties and domains of application have been
studied extensively.

Median filter – The median statistic was described in section 51.3.5. A median filter is
based on moving a window over an image (as in a convolution) and computing the output pixel as
the median value of the brightnesses within the input window. If the window is J ×K in size we can
order the J •K pixels in brightness value from smallest to largest. If J •K is odd, then the median
will be the (J •K + 1)/2 entry in the list of ordered brightnesses. Note that the value selected will
be exactly equal to one of the existing brightnesses so that no roundoff error will be involved if we
want to work exclusively with integer brightness values. The algorithm as it is described above has a
generic complexity per pixel ofO(J •K • log(J •K)). Fortunately, a fast algorithm (due to Huang
et al.) exists that reduces the complexity toO(K) assuming J ≥ K .

A useful variation on the theme of the median filter is the percentile filter. Here the center pixel in
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the window is replaced not by the 50% (median) brightness value but rather by the p% brightness
value where p% ranges from 0% (the minimum filter) to 100% (the maximum filter). Values other
than (p = 50)% do not, in general, correspond to smoothing filters.

Kuwahara filter – Edges play an important role in our perception of images (see Fig. 51.15)
as well as in the analysis of images. As such, it is important to be able to smooth images without
disturbing the sharpness and, if possible, the position of edges. A filter that accomplishes this goal
is termed an edge-preserving filter and one particular example is the Kuwahara filter. Although this
filter can be implemented for a variety of different window shapes, the algorithm will be described
for a square window of size J = K = 4L+ 1 where L is an integer. The window is partitioned into
four regions, as shown in Fig. 51.29.

FIGURE 51.29: Four square regions defined for the Kuwahara filter. In this example,L = 1 and thus
J = K = 5. Each region is [(J + 1)/2] × [(K + 1)/2].

In each of the four regions (i = 1,2,3,4), the mean brightness, mi in Eq. (51.34), and the
variancei , s2

i in Eq. (51.36), are measured. The output value of the center pixel in the window is the
mean value of that region that has the smallest variance.

Summary of Smoothing Algorithms

Table 51.13 summarizes the various properties of the smoothing algorithms presented above.
The filter size is assumed to be bounded by a rectangle of J × K where, without loss of generality,
J ≥ K . The image size isN ×N . Examples of the effect of various smoothing algorithms are shown
in Fig. 51.30.

TABLE 51.13 Characteristics of Smoothing Filters
Algorithm Domain Type Support Separable/incremental Complexity/pixel

Uniform Space Linear Square Y/Y O(constant)
Uniform Space Linear Circular N/Y O(K)
Triangle Space Linear Square Y/N O(constant)a

Triangle Space Linear Circular N/N O(K)a

Gaussian Space Linear ∞a Y/N O(constant)a

Median Space Non-Linear Square N/Y O(K)a

Kuwahara Space Non-Linear Squarea N/N O(J •K)
Other Frequency Linear — —/— O(logN)

a See text for additional explanation.
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FIGURE 51.30: Illustration of various linear and nonlinear smoothing filters: (a) Original; (b) Uni-
form 5 × 5; (c) Gaussian (σ = 2.5); (d) Median 5 × 5; and (e) Kuwahara 5 × 5.

51.9.5 Derivative-Based Operations

Just as smoothing is a fundamental operation in image processing, so is the ability to take one or more
spatial derivatives of the image. The fundamental problem is that, according to the mathematical
definition of a derivative, this cannot be done. A digitized image is not a continuous function a(x, y)
of the spatial variables but rather a discrete function a[m, n] of the integer spatial coordinates. As a
result, the algorithms we will present can only be seen as approximations to the true spatial derivatives
of the original spatially continuous image.

Further, as we can see from the Fourier property in Eq. (51.27), taking a derivative multiplies the
signal spectrum by either u or ν. This means that high frequency noise will be emphasized in the
resulting image. The general solution to this problem is to combine the derivative operation with one
that suppresses high frequency noise, in short, smoothing in combination with the desired derivative
operation.

First Derivatives

As an image is a function of two (or more) variables, it is necessary to define the direction in
which the derivative is taken. For the two-dimensional case, we have the horizontal direction, the
vertical direction, or an arbitrary direction that can be considered as a combination of the two. If
we use hx to denote a horizontal derivative filter (matrix), hy to denote a vertical derivative filter
(matrix), and hθ to denote the arbitrary angle derivative filter (matrix), then:

[
hθ
] = cosθ • [hx

]+ sinθ • [hy] (51.102)
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Gradientfilters – It is alsopossible togenerate avectorderivativedescriptionas the gradient,
∇a[m, n], of an image:

∇a = ∂a

∂x
Eix + ∂a

∂y
Eiy = (hx ⊗ a)Eix + (

hy ⊗ a
)Eiy (51.103)

where Eix and Eiy are unit vectors in the horizontal and vertical direction, respectively. This leads to
two descriptions:

Gradient magnitude -

|∇a| =
√
(hx ⊗ a)2 + (

hy ⊗ a
)2

(51.104)

and
Gradient direction -

ψ (∇a) = arctan
{(
hy ⊗ a

)
/ (hx ⊗ a)

}
(51.105)

The gradient magnitude is sometimes approximated by:

Approx. gradient magnitude -

|∇a| ∼= |hx ⊗ a| + ∣∣hy ⊗ a
∣∣ (51.106)

The final results of these calculations depend strongly on the choices of hx and hy . A number of
possible choices for (hx,hy) will now be described.

Basic derivative filters – These filters are specified by:

(i)
[
hx
] = [

hy
]t = [1 − 1]

(ii)
[
hx
] = [

hy
]t = [1 0 − 1] (51.107)

where “t” denotes matrix transpose. These two filters differ significantly in their Fourier magnitude
and Fourier phase characteristics. For the frequency range 0 ≤ � ≤ π , these are given by:

(i)
[
h
] = [1 − 1] F

↔ |H(�)| = 2 |sin(�/2)| ; ϕ(�) = (π −�)/2

(ii)
[
h
] = [1 0 − 1] F

↔ |H(�)| = 2 |sin(�)| ; ϕ(�) = π/2 (51.108)

The second form (ii) gives suppression of high frequency terms (� ≈ π) while the first form
(i) does not. The first form leads to a phase shift; the second form does not.

Prewitt gradient filters – These filters are specified by:

[
hx
] = 1

3


 1 0 −1

1 0 −1
1 0 −1


 = 1

3


 1

1
1


 • [1 0 − 1]

[
hy
] = 1

3


 1 1 1

0 0 0
−1 −1 −1


 = 1

3


 1

0
−1


 • [1 1 1] (51.109)

Both hx and hy are separable. Beyond the computational implications are the implications for
the analysis of the filter. Each filter takes the derivative in one direction using Eq. (51.107 ii) and
smoothes in the orthogonal direction using a one-dimensional version of a uniform filter as described
in section 51.9.4.
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Sobel gradient filters – These filters are specified by:

[
hx
] = 1

4


 1 0 −1

2 0 −2
1 0 −1


 = 1

4


 1

2
1


 • [1 0 − 1]

[
hy
] = 1

4


 1 2 1

0 0 0
−1 −2 −1


 = 1

4


 1

0
−1


 • [1 2 1] (51.110)

Again, hx and hy are separable. Each filter takes the derivative in one direction using Eq. (51.107
ii) and smoothes in the orthogonal direction using a one-dimensional version of a triangular filter
as described in section 51.9.4.

Alternative gradient filters – The variety of techniques available from one-dimensional
signal processing for the design of digital filters offers us powerful tools for designing one-dimensional
versions of hx and hy. Using the Parks-McClellan filter design algorithm, for example, we can choose
the frequency bands where we want the derivative to be taken and the frequency bands where we
want the noise to be suppressed. The algorithm will then produce a real, odd filter with a minimum
length that meets the specifications.

As anexample, ifwewant afilter thathasderivative characteristics in apassband (withweight 1.0) in
the frequency range 0.0 ≤ � ≤ 0.3π and a stopband (with weight 3.0) in the range 0.32π ≤ � ≤ π ,
then the algorithm produces the following optimized seven sample filter:

[hx] = [hy]t = 1

16348
[−3571 8212− 15580 0 15580− 8212 3571] (51.111)

The gradient can then be calculated as in Eq. (51.103).
Gaussian gradient filters – In modern digital image processing, one of the most common

techniques is to use a Gaussian filter (see section 51.9.4) to accomplish the required smoothing and
one of the derivatives listed in Eq. (51.107). Thus, we might first apply the recursive Gaussian in
Eq. (51.97) followed by Eq. (51.107 ii) to achieve the desired, smoothed derivative filters hx and hy.
Further, for computational efficiency, we can combine these two steps as:

w[n] =
(
B

2

)
(a[n+ 1] − a[n− 1])+ (b1w[n− 1] + b2w[n− 2] + b3w[n− 3])/b0

c[n] = Bw[n] + (b1c[n+ 1] + b2c[n+ 2] + b3c[n+ 3])/b0 (51.112)

where the various coefficients are defined in Eq. (51.99). The first (forward) equation is applied from
n = 0 up to n = N − 1 while the second (backward) equation is applied from n = N − 1 down to
n = 0.

Summary – Examples of the effect of various derivative algorithms on a noisy version of
Fig. 51.30(a) (SNR) = 29dB) are shown in Figs. 51.31(a-c). The effect of various magnitude gradient
algorithms on Fig. 51.30(a) are shown in Figs. 51.32(a-c). After processing, all images are contrast
stretched as in Eq. (51.77) for display purposes.

The magnitude gradient takes on large values where there are strong edges in the image. Appro-
priate choice of σ in the Gaussian-based derivative (Fig. 51.31(c)) or gradient (Fig. 51.32(c)) permits
computation of virtually any of the other forms — simple, Prewitt, Sobel, etc. In that sense, the
Gaussian derivative represents a superset of derivative filters.

Second Derivatives

It is, of course, possible to compute higher-order derivatives of functions of two variables. In
image processing, as we shall see in sections 51.10.2 and 51.10.3, the second derivatives or Laplacian
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FIGURE 51.31: Application of various algorithms for hx — the horizontal derivative. (a) Simple
Derivative — Eq. (51.107)ii; (b) Sobel — Eq. (51.110); (c) Gaussian (σ = 1.5) and Eq. (51.107)ii.

FIGURE 51.32: Various algorithms for the magnitude gradient, |∇al. (a) Simple Derivative —
Eq. (51.107)ii; (b) Sobel — Eq. (51.110); (c) Gaussian (σ = 1.5) and Eq. (51.107)ii.

play an important role. The Laplacian is defined as:

∇2a = ∂2a

∂x2
+ ∂2a

∂y2
= (h2x ⊗ a)+ (

h2y ⊗ a
)

(51.113)

where h2x and h2y are second derivative filters. In the frequency domain, we have for the Laplacian
filter [from Eq. (51.27)]:

∇2a = F
↔ −

(
u2 + ν2

)
A(u, ν) (51.114)

The transfer function of a Laplacian corresponds to a parabola H(u, ν) = −(u2 + ν2).
Basic second derivative filter – This filter is specified by:[

h2x
] = [

h2y
]t = [1 − 2 1] (51.115)

and the frequency spectrum of this filter, in each direction, is given by:

H(�) = F {1 − 2 1} = −2(1 − cos�) (51.116)

over the frequency range −π ≤ � ≤ π . The two, one-dimensional filters can be used in the manner
suggested by Eq. (51.113) or combined into one, two-dimensional filter as:

[h] =

 0 1 0

1 −4 1
0 1 0


 (51.117)

and used as in Eq. (51.84).
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Frequency domain Laplacian – This filter is the implementation of the general recipe given
in Eq. (51.92) and for the Laplacian filter takes the form:

c[m, n] = F−1
{
−
(
�2 +92

)
A(�,9)

}
(51.118)

Gaussian second derivative filter – This is the straightforward extension of the Gaussian
first derivative filter described above and can be applied independently in each dimension. We first
apply Gaussian smoothing with a σ chosen on the basis of the problem specification. We then apply
the desired second derivative filter Eq. (51.115) or Eq. (51.118). Again, there is the choice among the
various Gaussian smoothing algorithms.

For efficiency, we can use the recursive implementation and combine the two steps — smoothing
and derivative operation — as follows:

w[n] = B(a[n] − a[n− 1])+ (b1w[n− 1] + b2w[n− 2] + b3w[n− 3])/b0

c[n] = B(w[n+ 1] − w[n])+ (b1c[n+ 1] + b2c[n+ 2] + b3c[n+ 3])/b0 (51.119)

where the various coefficients are defined in Eq. (51.99). Again, the first (forward) equation is applied
from n = 0 up to n = N −1 while the second (backward) equation is applied from n = N −1 down
to n = 0.

Alternative Laplacian filters – Again one-dimensional digital filter design techniques offer
us powerful methods to create filters that are optimized for a specific problem. Using the Parks-
McClellan design algorithm, we can choose the frequency bands where we want the second derivative
to be taken and the frequency bands where we want the noise to be suppressed. The algorithm will
then produce a real, even filter with a minimum length that meets the specifications.

As an example, if we want a filter that has second derivative characteristics in a passband (with
weight 1.0) in the frequency range 0.0 ≤ � ≤ 0.3π and a stopband (with weight 3.0) in the range
0.32π ≤ � ≤ π , then the algorithm produces the following optimized seven sample filter:

[hx] = [hy]t = 1

11043
[−3448 10145 1495− 16383 1495 10145− 3448] (51.120)

The Laplacian can then be calculated as in Eq. (51.113).
SDGD filter – A filter that is especially useful in edge finding and object measurement is the

Second-Derivative-in-the-Gradient-Direction (SDGD) filter. This filter uses five partial derivatives:

Axx = ∂2a

∂x2
Axy = ∂2a

∂x∂y
Ax = ∂a

∂x

Ayx = ∂2a

∂x∂y
Ayy = ∂2a

∂y2
Ay = ∂a

∂y
(51.121)

Note that Axy = Ayx , which accounts for the five derivatives.
This SDGD combines the different partial derivatives as follows:

SDGD(a) = AxxA
2
x + 2AxyAxAy + AyyA

2
y

A2
x + A2

y

(51.122)

As one might expect, the large number of derivatives involved in this filter implies that noise
suppression is important and that Gaussian derivative filters — both first and second order — are
highly recommended, if not required. It is also necessary that the first and second derivative filters
have essentially the same passbands and stopbands. This means that if the first derivative filter
h1x is given by [1 0 − 1] Eq. (51.107 ii) then the second derivative filter should be given by
h1x ⊗ h1x = h2x = [1 0 − 2 0 1].

c©1999 by CRC Press LLC



Summary –Theeffectsof thevarious secondderivativefilters are illustrated inFigs.51.33(a-
e). All images were contrast stretched for display purposes using Eq. (51.78) and the parameters 1%
and 99%.

FIGURE 51.33: Various algorithms for the Laplacian and Laplacian-related filters. (a) Laplacian
— Eq. (51.117); (b) Fourier parabola — Eq. (51.118); (c) Gaussian (σ = 1.0) and Eq. (51.117);
(d) “Designer” — Eq. (51.120); and (e) SDGD (σ = 1.0)— Eq. (51.122).

Other Filters

An infinite number of filters, both linear and nonlinear, are possible for image processing. It is,
therefore, impossible to describe more than the basic types in this section. The description of others
can be found be in the reference literature (see section 51.11) as well as in the applications literature.
It is important to use a small consistent set of test images that are relevant to the application area to
understand the effect of a given filter or class of filters. The effect of filters on images can be frequently
understood by the use of images that have pronounced regions of varying sizes to visualize the effect
on edges or by the use of test patterns such as sinusoidal sweeps to visualize the effects in the frequency
domain. The former have been used previously (Figs. 51.21, 51.23 and 51.30 to 51.33), and the latter
are demonstrated in Fig. 51.34.

51.9.6 Morphology-Based Operations

In section 51.1, we defined an image as an (amplitude) function of two, real (coordinate) variables
a(x, y) or two discrete variables a[m, n]. An alternative definition of an image can be based on the
notion that an image consists of a set (or collection) of either continuous or discrete coordinates. In
a sense, the set corresponds to the points or pixels that belong to the objects in the image. This is
illustrated in Fig. 51.35 which contains two objects or sets A and B. Note that the coordinate system is
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FIGURE 51.34: Various convolution algorithms applied to sinusoidal test image. (a) Lowpass filter,
(b) bandpass filter, and (c) highpass filter.

required. For the moment, we will consider the pixel values to be binary as discussed in section 51.2.1
and 51.9.2. Further, we shall restrict our discussion to discrete space (Z2). More general discussions
can be found in Giardina and Dougherty [4], Gonzales and Woods [5], and Heijmans [7].

FIGURE 51.35: A binary image containing two objects sets A and B.

The object A consists of those pixels α that share some common property:
Object -

A = {
α|property(a) == TRUE

}
(51.123)

As an example, object B in Fig. 51.35 consists of {[0,0], [1,0], [0,1]}.
The background of A is given by Ac (the complement of A) which is defined as those elements that

are not in A:
Background -

Ac = {α|α 6∈ A} (51.124)

In Fig. 51.3, we introduced the concept of neighborhood connectivity. We now observe that if an
object A is defined on the basis of C-connectivity (C = 4,6, or 8) then the background Ac has a
connectivity given by 12 - C. The necessity for this is illustrated for the Cartesian grid in Fig. 51.36.

Fundamental Definitions

The fundamental operations associated with an object are the standard set operations union,
intersection, and complement {∪,∩,c } plus translation:
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FIGURE 51.36: A binary image requiring careful definition of object and background connectivity.

Translation – Given a vector x and a set A, the translation, A + x, is defined as:

A + x = {α + x|α ∈ A} (51.125)

Note that, since we are dealing with a digital image composed of pixels at integer coordinate
positions (Z2), this implies restrictions on the allowable translation vectors x.

The basic Minkowski set operations — addition and subtraction — can now be defined. First we
note that the individual elements that comprise B are not only pixels but also vectors as they have a
clear coordinate position with respect to [0,0]. Given two sets A and B :

Minkowski addition - A ⊕ B =
⋃
β∈B

(A + β) (51.126)

Minkowski subtraction - A 	 B =
⋂
β∈B

(A + β) (51.127)

Dilation and Erosion

From these two Minkowski operations, we define the fundamental mathematical morphology
operations dilation and erosion:

Dilation - D(A,B) = A ⊕ B =
⋃
β∈B

(A + β) (51.128)

Erosion - E(A,B) = A 	 (−B) =
⋂
β∈B

(A − β) (51.129)

where −B = {−β|β ∈ B}. These two operations are illustrated in Fig. 51.37 for the objects defined
in Fig. 51.35.

While either set A or B can be thought of as an “image”, A is usually considered as the image
and B is called a structuring element. The structuring element is to mathematical morphology what the
convolution kernel is to linear filter theory.

Dilation, in general, causes objects to dilate or grow in size; erosion causes objects to shrink. The
amount and the way that they grow or shrink depend on the choice of the structuring element.
Dilating or eroding without specifying the structural element makes no more sense than trying to
lowpass filter an image without specifying the filter. The two most common structuring elements
(given a Cartesian grid) are the 4-connected and 8-connected sets, N4 and N8. They are illustrated
in Fig. 51.38.

Dilation and erosion have the following properties:

Commutative - D(A,B) = A ⊕ B = B ⊕ A = D(B,A) (51.130)
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FIGURE 51.37: A binary image containing two object sets A and B. The three pixels in B are
“color-coded” as is their effect in the result. (a) Dilation D(A,B) and (b) Erosion E(A,B).

FIGURE 51.38: The standard structuring elements N4 and N8. (a) N4 and (b) N8.

Noncommutative - E(A,B) 6= E(B,A) (51.131)

Associative - A ⊕ (B ⊕ C) = (A ⊕ B)⊕ C (51.132)

Translation Invariance - A ⊕ (B + x) = (A ⊕ B)+ x (51.133)

Dc(A,B) = E(Ac,−B)

Duality - (51.134)

Ec(A,B) = D(Ac,−B)

With A as an object and Ac as the background, Eq. (51.134) says that the dilation of an object is
equivalent to the erosion of the background. Likewise, the erosion of the object is equivalent to the
dilation of the background.

Except for special cases:

Noninverses - D(E(A,B),B) 6= A 6= E(D(A,B),B) (51.135)

Erosion has the following translation property:

Translation Invariance - A 	 (B + x) = (A + x)	 B = (A 	 B)+ x (51.136)

Dilation and erosionhave the following importantproperties. For anyarbitrary structuring element
B and two image objects A1 and A2 such that A1 ⊂ A2(A1 is a proper subset of A2):

D(A1,B) ⊂ D(A2,B)

Increasing in A- (51.137)

E(A1,B) ⊂ E(A2,B)
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For two structuring elements B1 and B2 such that B1 ⊂ B2:

Decreasing in B - E (A,B1) ⊃ E (A,B2) (51.138)

The decomposition theorems below make it possible to find efficient implementations for morpho-
logical filters.

Dilation - A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C) = (B ∪ C)⊕ A (51.139)

Erosion - A 	 (B ∪ C) = (A 	 B) ∩ (A 	 C) (51.140)

Erosion - (A 	 B)	 C = A 	 (B ⊕ C) (51.141)

Multiple Dilations - nB = (B ⊕ B ⊕ B ⊕ · · · ⊕ B)︸ ︷︷ ︸
n times

(51.142)

An important decomposition theorem is due to Vincent. First, we require some definitions. A
convex set (inR2) is one for which the straight line joining any two points in the set consists of points
that are also in the set. Care must obviously be taken when applying this definition to discrete pixels
as the concept of a “straight line” must be interpreted appropriately in Z2. A set is bounded if each
of its elements has a finite magnitude, in this case distance to the origin of the coordinate system. A
set is symmetric if B = −B. The sets N4 and N8 in Fig. 51.38 are examples of convex, bounded,
symmetric sets.

Vincent’s theorem, when applied to an image consisting of discrete pixels, states that for a bounded,
symmetric structuring element B that contains no holes and contains its own center, [0,0] ∈ B:

D(A,B) = A ⊕ B = A ∪ (∂A ⊕ B) (51.143)

where ∂A is the contour of the object. That is, ∂A is the set of pixels that have a background pixel as
a neighbor. The implication of this theorem is that it is not necessary to process all the pixels in an
object in order to compute a dilation or [using Eq. (51.134)] an erosion. We only have to process the
boundary pixels. This also holds for all operations that can be derived from dilations or erosions. The
processing of boundary pixels instead of object pixels means that, except for pathological images,
computational complexity can be reduced from O(N2) to O(N) for an N × N image. A number
of “fast” algorithms can be found in the literature that are based on this result. The simplest dilation
and erosion algorithms are frequently described as follows.

Dilation – Take each binary object pixel (with value “1”) and set all background pixels
(with value “0”) that are C-connected to that object pixel to the value “1”.

Erosion – Take each binary object pixel (with value “1”) that is C-connected to a back-
ground pixel and set the object pixel value to “0”.

Comparison of these two procedures to Eq. (51.143) where B = NC=4 or NC=8 shows that they
are equivalent to the formal definitions for dilation and erosion. The procedure is illustrated for
dilation in Fig. 51.39.

Boolean Convolution

An arbitrary binary image object (or structuring element) A can be represented as

A ↔
+∞∑
k=−∞

+∞∑
j=−∞

a[j, k] • δ[m− j, n− k] (51.144)

where
∑

and • are the Boolean operations OR and AND as defined in Eqs. (51.81) and (51.82),
a[j, k] is a characteristic function that takes on the Boolean values “1” and “0” as follows:

a[j, k] =
{

1 a ∈ A

0 a 6∈ A
(51.145)
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FIGURE 51.39: Illustration of dilation. Original object pixels are in gray; pixels added through
dilation are in black. (a) B = N4 and (b) B = N8.

and δ[m, n] is a Boolean version of the Dirac delta function that takes on the Boolean values “1” and
“0” as follows:

δ[j, k] =
{

1 j = k = 0
0 otherwise

(51.146)

Dilation for binary images can therefore be written as:

D(A,B) =
+∞∑
k=−∞

+∞∑
j=−∞

a[j, k] • b[m− j, n− k] = a ⊗ b (51.147)

which, because BooleanOR and AND are commutative, can also be written as

D(A,B) =
+∞∑
k=−∞

+∞∑
j=−∞

a[m− j, n− k] • b[j, k] = b ⊗ a = D(B,A) (51.148)

Using De Morgan’s theorem:

(a + b) = ā • b̄ and (a • b) = ā + b̄ (51.149)

on Eq. (51.148) together with Eq. (51.134), erosion can be written as:

E(A,B) =
+∞∏
k=−∞

+∞∏
j=−∞

(
a[m− j, n− k] + b̄[−j,−k]) (51.150)

Thus, dilation and erosion on binary images can be viewed as a form of convolution over a Boolean
algebra.

In section 51.9.3 we saw that, when convolution is employed, an appropriate choice of the boundary
conditions for an image is essential. Dilation and erosion — being a Boolean convolution — are no
exception. The two most common choices are that either everything outside the binary image is “0”
or everything outside the binary image is “1”.

Opening and Closing

We can combine dilation and erosion to build two important higher order operations:

Opening - O(A,B) = A ◦ B = D(E(A,B),B) (51.151)

Closing - C(A,B) = A • B = E(D(A,−B),−B) (51.152)
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The opening and closing have the following properties:

Duality -
Cc(A,B) = O(Ac,B)

Oc(A,B) = C(Ac,B)
(51.153)

Translation -
O(A + x,B) = O(A,B)+ x

C(A + x,B) = C(A,B)+ x
(51.154)

For the opening with structuring element B and images A,A1, and A2, where A1 is a subimage
of A2(A1 ⊆ A2):

Antiextensivity - O(A,B) ⊆ A (51.155)

Increasing monotonicity - O(A1,B) ⊆ O(A2,B) (51.156)

Idempotence - O(O(A,B),B) = O(A,B) (51.157)

For the closing with structuring element B and images A,A1, and A2, where A1 is a subimage of
A2(A1 ⊆ A2):

Extensivity - A ⊆ C(A,B) (51.158)

Increasing monotonicity - C(A1,B) ⊆ C(A2,B) (51.159)

Idempotence - C(C(A,B),B) = C(A,B) (51.160)

The two properties given by Eqs. (51.155) and (51.158) are so important to mathematical mor-
phology that they can be considered as the reason for defining erosion with −B instead of B in
Eq. (51.129).

Hit-and-Miss Operation

The hit-or-miss operator was defined by Serra but we shall refer to it as the hit-and-miss operator
defined as follows. Given an image A and two structuring elements B1 and B2, the set definition
and Boolean definition are:

Hit-and-Miss -

HitMiss(A,B1,B2) =



E (A,B1) ∩ Ec (Ac,B2

)
E (A,B1) • E (Ā,B2

)
E (A,B1)− E

(
Ā,B2

) (51.161)

where B1 and B2 are bounded, disjoint structuring elements. (Note the use of the notation from
Eq. (51.81).) Two sets are disjoint if B1 ∩ B2 = Ø, the empty set. In an important sense the
hit-and-miss operator is the morphological equivalent of template matching, a well-known technique
for matching patterns based on cross-correlation. Here, we have a template B1 for the object and a
template B2 for the background.

Summary of the Basic Operations

Theresultsof theapplicationof thesebasicoperationsona test imageare illustrated inFig.51.40.
In this figure, the various structuring elements used in the processing are defined. The value “−”
indicates a “don’t care”. All three structuring elements are symmetric.

The results of processing are shown in Fig. 51.41 where the binary value “1” is shown in black and
the value “0” in white.
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FIGURE 51.40: Structuring elements B,B1, and B2 that are 3 × 3 and symmetric.

FIGURE 51.41: Examples of various mathematical morphology operations. (a) ImageA; (b) dilation
with 2B; (c) erosion with 2B; (d) opening with 2B; (e) closing with 2B; and (f) hit-and-miss with
B1 and B2.

The opening operation can separate objects that are connected in a binary image. The closing
operation can fill in small holes. Both operations generate a certain amount of smoothing on an
object contour given a “smooth” structuring element. The opening smoothes from the inside of the
object contour and the closing smoothes from the outside of the object contour. The hit-and-miss
example has found the 4-connected contour pixels. An alternative method to find the contour is
simply to use the relation:

4-connected contour- ∂A = A− E (A,N8) (51.162)

or
8-connected contour - ∂A = A− E (A,N4) (51.163)

Skeleton

The informal definition of a skeleton is a line representation of an object that is:

(i) one-pixel thick,
(ii) through the “middle” of the object, and
(iii) preserves the topology of the object.

(51.164)
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These are not always realizable. Fig. 51.42 shows why this is the case.

FIGURE 51.42: Counterexamples to the three requirements.

In the first example, Fig. 51.42(a), it is not possible to generate a line that is one pixel thick and in the
center of an object while generating a path that reflects the simplicity of the object. In Fig. 51.42(b) it is
not possible to remove a pixel from the 8-connected object and simultaneously preserve the topology
— the notion of connectedness — of the object. Nevertheless, there are a variety of techniques that
attempt to achieve this goal and to produce a skeleton.

A basic formulation is based on the work of Lantuéjoul. The skeleton subset Sk(A) is defined as:

Skeleton subsets - Sk(A) = E(A, kB)− [E(A, kB) ◦ B] k = 0,1, . . . K (51.165)

whereK is the largest value of k before the set Sk(A)becomes empty. [From Eq. (51.156),E(A, kB)◦
B ⊆ E(A, kB)]. The structuring element B is chosen (in Z2) to approximate a circular disc, that
is, convex, bounded, and symmetric. The skeleton is then the union of the skeleton subsets:

Skeleton - S(A) =
K⋃
k=0

Sk(A) (51.166)

An elegant side effect of this formulation is that the original object can be reconstructed given
knowledge of the skeleton subsets Sk(A), the structuring element B, andK :

Reconstruction - A =
K⋃
k=0

(Sk(A)⊕ kB) (51.167)

This formulation for the skeleton, however, doesnotpreserve the topology, a requirementdescribed
in Eq. (51.164).

An alternative point of view is to implement a thinning, an erosion that reduces the thickness of
an object without permitting it to vanish. A general thinning algorithm is based on the hit-and-miss
operation:

Thinning - Thin (A,B1,B2) = A − HitMiss (A,B1,B2) (51.168)

Depending on the choice of B1 and B2, a large variety of thinning algorithms — and through
repeated application skeletonizing algorithms — can be implemented.

A quite practical implementation can be described in another way. If we restrict ourselves to a
3 × 3 neighborhood, similar to the structuring element B = N8 in Fig. 51.40(a), then we can view
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the thinning operation as a window that repeatedly scans over the (binary) image and sets the center
pixel to “0” under certain conditions. The center pixel is not changed to “0” if and only if:

(i) an isolated pixel is found [e.g., Fig.51.43(a)],
(ii) removing a pixel would change the connectivity [e.g., Fig.51.43(b)],
(iii) removing a pixel would shorten a line [e.g., Fig.51.43(c)].

(51.169)

As pixels are (potentially) removed in each iteration, the process is called a conditional erosion.
Three test cases of Eq. (51.169) are illustrated in Fig. 51.43. In general, all possible rotations and
variations have to be checked. As there are only 512 possible combinations for a 3 × 3 window on a
binary image, this can be done easily with the use of a lookup table.

FIGURE 51.43: Test conditions for conditional erosion of the center pixel. (a) Isolated pixel, (b) con-
nectivity pixel, and (c) end pixel.

If only condition (i) is used, then each object will be reduced to a single pixel. This is useful if we
wish to count thenumberof objects in an image. If only condition (ii) is used, thenholes in theobjects
will be found. If conditions (i + ii) are used, each object will be reduced to either a single pixel if it
does not contain a hole or to closed rings if it does contain holes. If conditions (i+ ii+ iii) are used,
then the “complete skeleton” will be generated as an approximation to Eq. (51.164). Illustrations of
these various possibilities are given in Figs. 51.44(a) and (b).

Propagation

It is convenient to be able to reconstruct an image that has “survived” several erosions or to
fill an object that is defined, for example, by a boundary. The formal mechanism for this has several
names, including region-filling, reconstruction, and propagation. The formal definition is given by the
following algorithm. We start with a seed image S(0), a mask image A, and a structuring element B.
We then use dilations of S with structuring element B and masked by A in an iterative procedure as
follows:

Iteration k - S(k) =
[
Sk−1 ⊕ B

]
∩ A until S(k) = S(k−1) (51.170)

With each iteration, the seed image grows (through dilation) but within the set (object) defined
by A; S propagates to fill A. The most common choices for B are N4 or N8. Several remarks
are central to the use of propagation. First, in a straightforward implementation, as suggested by
Eq. (51.170), the computational costs are extremely high. Each iteration requiresO(N2) operations
for an N × N image, and with the required number of iterations this can lead to a complexity of
O(N3). Fortunately, a recursive implementation of the algorithm exists in which one or two passes
through the image are usually sufficient, meaning a complexity ofO(N2). Second, although we have
not paid much attention to the issue of object/background connectivity until now (see Fig. 51.36),
it is essential that the connectivity implied by B be matched to be connectivity associated with
the boundary definition of A [see Eqs. (51.162) and (51.163)]. Finally, as mentioned earlier, it is
important to make the correct choice (“0” or “1”) for the boundary condition of the image. The
choice depends on the application.
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FIGURE 51.44: Examples of skeleton and propagation. (a) Skeleton with end pixels, condition
Eq. (51.169)i+ii+iii; (b) skeleton without end pixels, condition Eq. (51.169)i+ii; (c) propagation with
N8.

Summary of Skeleton and Propagation

The application of these two operations on a test image is illustrated in Fig. 51.44. In (a) and (b)
of the figure the skeleton operation is shown with the end pixel condition [Eq. (51.169) i + ii + iii]
and without the end pixel condition [Eq. (51.169) i + ii]. The propagation operation is illustrated
in Fig. 51.44(c). The original image, shown in light gray, was eroded by E(A,6N8) to produce the
seed image shown in black. The original was then used as the mask image to produce the final result.
The border value in both images was “0”.

Several techniques based on the use of skeleton and propagation operations in combination with
other mathematical morphology operations will be given in section 51.10.

Gray-Value Morphological Processing

The techniques of morphological filtering can be extended to gray-level images. To simplify
matters, we will restrict our presentation to structuring elements, B, that comprise a finite number of
pixels and are convex and bounded. Now, however, the structuring element has gray values associated
with every coordinate position as does the image A.

Gray-level dilation, DG(•), is given by:

Dilation - DG(A, B) = max[j,k]∈B
{a[m− j, n− k] + b[j, k]} (51.171)

For a given output coordinate [m, n], the structuring element is summed with a shifted version of
the image and the maximum encountered over all shifts within the J ×K domain of B is used as the
result. Should the shifting require values of the image A that are outside theM × N domain of A,
then a decision must be made as to which model for image extension, as described in section 51.9.3,
should be used.

c©1999 by CRC Press LLC



Gray-level erosion, EG(•), is given by:

Erosion - EG(A, B) = min[j,k]∈B
{a[m+ j, n+ k] − b[j, k]} (51.172)

The duality between gray-level erosion and gray-level dilation — the gray-level counterpart of
Eq. (51.134) — is somewhat more complex than in the binary case:

Duality - EG(A,B) = −DG(−Ã,B) (51.173)

where “−Ã” means that a[j, k] → −a[−j,−k].
The definitions of higher order operations such as gray-level opening and gray-level closing are:

Opening - OG(A,B) = DG (EG(A,B),B) (51.174)

Closing- CG(A,B) = −OG(−A,−B) (51.175)

The important properties that were discussed earlier such as idempotence, translation invariance,
increasing in A, and so forth are also applicable to gray level morphological processing. The details
can be found in Giardina and Dougherty [4].

In many situations the seeming complexity of gray level morphological processing is significantly
reduced through the use of symmetric structuring elements where b[j, k] = b[−j,−k]. The most
common of these is based on the use of B = constant = 0. For this important case and using again
the domain [j, k] ∈ B, the definitions above reduce to:

Dilation - DG(A,B) = max[j,k]∈B
{a[m− j, n− k]} = max

B
(A) (51.176)

Erosion - EG(A,B) = min[j,k]∈B
{a[m− j, n− k]} = min

B
(A) (51.177)

Opening - OG(A,B) = max
B

(
min

B
(A)

)
(51.178)

Closing - CG(A,B) = min
B

(
max

B
(A)

)
(51.179)

The remarkable conclusion is that the maximum filter and the minimum filter, introduced in
section 51.9.4, are gray-level dilation and gray-level erosion for the specific structuring element given
by the shape of the filter window with the gray value “0” inside the window. Examples of these
operations on a simple one-dimensional signal are shown in Fig. 51.45.

For a rectangular window, J ×K , the two-dimensional maximum or minimum filter is separable
into two one-dimensional windows. Further, a one-dimensional maximum or minimum filter can
be written in incremental form (see section 51.9.3). This means that gray-level dilations and erosions
have a computational complexity per pixel that is O(constant), that is, independent of J andK (see
also Table 51.13).

The operations defined above can be used to produce morphological algorithms for smoothing,
gradient determination and a version of the Laplacian. All are constructed from the primitives for
gray-level dilation and gray-level erosion and in all cases the maximum and minimum filters are taken
over the domain [j, k] ∈ B.

Morphological Smoothing

This algorithm is based on the observation that a gray-level opening smoothes a gray-value
image from above the brightness surface given by the function a[m, n] and the gray-level closing
smoothes from below. We use a structuring element B based on Eqs. (51.176) and (51.177).
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FIGURE 51.45: Morphological filtering of gray-level data. (a) Effect of 15× 1 dilation and erosion;
(b) effect of 15× 1 opening and closing.

MorphSmooth(A,B) = CG (OG(A,B)B)

= min(max(max(min(A)))) (51.180)

Note that we have supressed the notation for the structuring element B under the max and min
operations to keep the notation simple. Its use, however, is understood.

Morphological Gradient

For linearfilters thegradientfilter yields a vector representation [Eq. (51.103)]with amagnitude
[Eq. (51.104)] and direction [Eq. (51.105)]. The version presented here generates a morphological
estimate of the gradient magnitude:

Gradient(A,B) = 1

2
(DG(A,B)− EG(A,B))

= 1

2
(max(A)− min(A)) (51.181)

Morphological Laplacian

The morphologically based Laplacian filter is defined by:

Laplacian(A,B) = 1

2

(
(DG(A,B)− A)− (A − EG(A,B))

)
= 1

2
(DG(A,B)+ EG(A,B)− 2A)

= 1

2
(max(A)+ min(A)− 2A) (51.182)

Summary of Morphological Filters

The effect of these filters is illustrated in Fig. 51.46. All images were processed with a 3 × 3
structuring element as described in Eqs. (51.176) through (51.182). Figure 51.46(e) was contrast
stretched fordisplaypurposesusingEq. (51.78)and theparameters1%and99%. Figures51.46(c),(d),
and (e) should be compared to Figs. 51.30, 51.32, and 51.33.
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FIGURE 51.46: Examples of gray-level morphological filters. (a) Dilation; (b) Erosion; (c) Smooth-
ing; (d) Gradient; and (e) Laplacian.

51.10 Techniques

The algorithms presented in section 51.9 can be used to build techniques to solve specific image
processing problems. Without presuming to present the solution to all processing problems, the
following examples are of general interest and can be used as models for solving related problems.

51.10.1 Shading Correction

The method by which images are produced — the interaction between objects in real space, the
illumination, and the camera — frequently leads to situations where the image exhibits significant
shading across the field of view. In some cases, the image might be bright in the center and decrease
in brightness as one goes to the edge of the field of view. In other cases, the image might be darker on
the left side and lighter on the right side. The shading might be caused by nonuniform illumination,
nonuniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In general, this shading
effect is undesirable. Eliminating it is frequently necessary for subsequent processing and especially
when image analysis or image understanding is the final goal.

Model of Shading

In general, we begin with a model for the shading effect. The illumination Iill(x, y) usually
interacts in a multiplicative with the object a(x, y) to produce the image b(x, y):

b(x, y) = Iill(x, y) • a(x, y) (51.183)
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with the object representing various imaging modalities such as:

a(x, y) =



r(x, y) reflectance model

10−OD(x,y) absorption model

c(x, y) fluorescence model

(51.184)

where at position (x, y), r(x, y) is the reflectance, OD(x, y) is the optical density, and c(x, y) is the
concentration of fluorescent material. Parenthetically, we note that the fluorescence model only holds
for low concentrations. The camera may then contribute gain and offset terms, as in Eq. (51.74), so
that:

c[m, n] = gain[m, n] • b[m, n] + offset[m, n]

Total shading -
= gain[m, n] • Iill[m, n] • a[m, n] + offset[m, n] (51.185)

In general, we assume that Iill[m, n] is slowly varying compared to a[m, n].

Estimate of Shading

We distinguish between two cases for the determination of a[m, n] starting from c[m, n]. In
both cases we intend to estimate the shading terms {gain[m, n] • Iill[m, n]} and {offset[m, n]}. While
in the first case we assume that we have only the recorded image c[m, n] with which to work, in the
second case we assume that we can record two, additional, calibration images.

Aposteriori estimate – In this case, we attempt to extract the shading estimate from c[m, n].
The most common possibilities are the following.

Lowpass filtering – We compute a smoothed version of c[m, n] where the smoothing is
large compared to the size of the objects in the image. This smoothed version is intended to be an
estimate of the background of the image. We then subtract the smoothed version from c[m, n] and
then restore the desired DC value. In formula:

Lowpass - â[m, n] = c[m, n] − LowPass {c[m, n]} + constant (51.186)

where â[m, n] is the estimate of a[m, n]. Choosing the appropriate lowpass filter means knowing
the appropriate spatial frequencies in the Fourier domain where the shading terms dominate.

Homomorphic filtering – We note that if the offset[m, n] = 0, then c[m, n] consists solely
of multiplicative terms. Further, the term {gain[m, n] • Iill[m, n]} is slowly varying while a[m, n]
presumably is not. We therefore take the logarithm of c[m, n] to produce two terms, one of which
is low frequency and one of which is high frequency. We suppress the shading by high pass filtering
the logarithm of c[m, n] and then take the exponent (inverse logarithm) to restore the image. This
procedure is based on homomorphic filtering as developed by Oppenheim and Stockham. In formula:

(i) c[m, n] = gain[m, n] • Iill[m, n] • a[m, n]

(ii) ln{c[m, n]} = ln


gain[m, n] • Iill[m, n]︸ ︷︷ ︸

slowly varying


+ ln


 a[m, n]︸ ︷︷ ︸

rapidly varying




(iii) HighPass{ln{c[m, n]}} ≈ ln{a[m, n]}

(iv) â[m, n] = exp
{
HighPass {ln{c[m, n]}}}

(51.187)
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Morphological filtering – We again compute a smoothed version of c[m, n] where the
smoothing is large compared to the size of the objects in the image but this time using morpho-
logical smoothing as in Eq. (51.180). This smoothed version is the estimate of the background of the
image. We then subtract the smoothed version from c[m, n] and then restore the desired DC value.
In formula:

â[m, n] = c[m, n] − MorphSmooth{c[m, n]} + constant (51.188)

Choosing the appropriate morphological filter window means knowing (or estimating) the size of
the largest objects of interest.

A priori estimate – If it is possible to record test (calibration) images through the camera’s
system, then the most appropriate technique for the removal of shading effects is to record two images
— BLACK[m, n] and WHITE[m, n]. The BLACK image is generated by covering the lens leading to
b[m, n] = 0 which in turn leads to BLACK[m, n] = offset[m, n]. The WHITE image is generated by
using a[m, n] = 1 which gives WHITE[m, n] = gain[m, n] • Iill[m, n]+ offset[m, n]. The correction
then becomes:

â[m, n] = constant • c[m, n] − BLACK[m, n]
WHITE[m, n] − BLACK[m, n] (51.189)

The constant term is chosen to produce the desired dynamic range.
The effects of these various techniques on the data from Fig. 51.45 are shown in Fig. 51.47. The

shading is a simple, linear ramp increasing from left to right; the objects consist of Gaussian peaks
of varying widths.

In summary, if it is possible to obtain BLACK and WHITE calibration images, then Eq. (51.189) is
to be preferred. If this is not possible, then one of the other algorithms will be necessary.

51.10.2 Basic Enhancement and Restoration Techniques

The process of image acquisition frequently leads (inadvertently) to image degradation. Due to
mechanical problems, out-of-focus blur, motion, inappropriate illumination, and noise, the quality
of the digitized image can be inferior to the original. The goal of enhancement is — starting from
a recorded image c[m, n] — to produce the most visually pleasing image â[m, n]. The goal of
restoration is — starting from a recorded image c[m, n] — to produce the best possible estimate
â[m, n] of the original image a[m, n]. The goal of enhancement is beauty; the goal of restoration is
truth.

The measure of success in restoration is usually an error measure between the original a[m, n]
and the estimate â[m, n] : E{â[m, n], a[m, n]}. No mathematical error function is known that corre-
sponds to human perceptual assessment of error. The mean-square error function is commonly used
because:

1. It is easy to compute;

2. It is differentiable, implying that a minimum can be sought;

3. It corresponds to “signal energy” in the total error; and

4. It has nice properties vis à vis Parseval’s theorem, Eqs. (51.22) and (51.23).

The mean-square error is defined by:

E{â, a} = 1

MN

M−1∑
m=0

N−1∑
n=0

∣∣â[m, n] − a[m, n]∣∣2 (51.190)

In some techniques, an error measure will not be necessary; in others it will be essential for
evaluation and comparative purposes.
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FIGURE 51.47: Comparison of various shading correction algorithms. The final result (e) is identical
to the original (not shown). (a) Shaded; (b) correction with lowpass filtering; (c) correction with
logarithmic filtering; (d) correction with max/min filtering; and (e) correction with test images.
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Unsharp Masking

A well-known technique from photography to improve the visual quality of an image is to
enhance the edges of the image. The technique is called unsharp masking. Edge enhancement means
first isolating the edges in an image, amplifying them, and then adding them back into the image.
Examination of Fig. 51.33 shows that the Laplacian is a mechanism for isolating the gray level edges.
This leads immediately to the technique:

â[m, n] = a[m, n] −
(
k • ∇2a[m, n]

)
(51.191)

The term k is the amplifying term and k > 0. The effect of this technique is shown in Fig. 51.48.

FIGURE 51.48: Edge enhanced compared to original. (Left) Original, (right) Laplacian-enhanced.

The Laplacian used to produce Fig. 51.48 is given by Eq. (51.120) and the amplification term k = 1.

Noise Suppression

The techniques available to suppress noise can be divided into those techniques that are based
on temporal information and those that are based on spatial information. By temporal information
we mean that a sequence of images {ap[m, n]|p = 1,2, . . . , P } is available that contains exactly the
same objects and that differs only in the sense of independent noise realizations. If this is the case
and if the noise is additive, then simple averaging of the sequence:

Temporal averaging- â[m, n] = 1

P

P∑
p=1

ap[m, n] (51.192)

will produce a result where the mean value of each pixel will be unchanged. For each pixel, however,
the standard deviation will decrease from σ to σ/

√
P .

If temporal averaging is not possible, then spatial averaging can be used to decrease the noise.
This generally occurs, however, at a cost to image sharpness. Four obvious choices for spatial
averagingare the smoothingalgorithms thathavebeendescribed insection51.9.4—Gaussianfiltering
[Eq. (51.93)], median filtering, Kuwahara filtering, and morphological smoothing [Eq. (51.180)].

Within the class of linear filters, the optimal filter for restoration in the presence of noise is given
by the Wiener filter. The word “optimal” is used here in the sense of minimum mean-square error
(mse). Because the square root operation is monotonic increasing, the optimal filter also minimizes
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the root mean-square error (rms). The Wiener filter is characterized in the Fourier domain, and for
additive noise that is independent of the signal it is given by:

HW(u, ν) = Saa(u, ν)

Saa(u, ν)+ Snn(u, ν)
(51.193)

where Saa(u, ν) is the power spectral density of an ensemble of random images {a[m, n]} and
Snn(u, ν) is the power spectral density of the random noise. If we have a single image, then
Saa(u, ν) = |A(u, ν)|2. In practice it is unlikely that the power spectral density of the uncon-
taminated image will be available. Because many images have a similar power spectral density that
can be modeled by Table 51.4-T.8, that model can be used as an estimate of Saa(u, ν).

A comparison of the five different techniques described above is shown in Fig. 51.49. The Wiener
filter was constructed directly from Eq. (51.193) because the image spectrum and the noise spectrum
were known. The parameters for the other filters were determined choosing that value (either σ or
window size) that led to the minimum rms.

FIGURE 51.49: Noise suppression using various filtering techniques. (a) Noisy image (SNR = 20
dB) rms = 25.7; (b) Wiener filter rms = 20.2; (c) Gauss filter (σ = 1.0) rms = 21.1; (d) Kuwahara
filter (5 × 5) rms = 22.4; (e) median filter 3 × 3 rms = 22.6; and (f) morphological smoothing
(3 × 3) rms = 26.2.

The root mean-square errors (rms) associated with the various filters are shown in Fig. 51.49. For
this specific comparison, the Wiener filter generates a lower error than any of the other procedures that
are examined here. The two linear procedures, Wiener filtering and Gaussian filtering, performed
slightly better than the three nonlinear alternatives.
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Distortion Suppression

The model presented above — an image distorted solely by noise — is not, in general, sophis-
ticated enough to describe the true nature of distortion in a digital image. A more realistic model
includes not only the noise but also a model for the distortion induced by lenses, finite apertures,
possible motion of the camera and/or an object, and so forth. One frequently used model is of an
image a[m, n] distorted by a linear, shift-invariant system ho[m, n] (such as a lens) and then con-
taminated by noise κ[m, n]. Various aspects of ho[m, n] and κ[m, n] have been discussed in earlier
sections. The most common combination of these is the additive model:

c[m, n] = (a[m, n] ⊗ ho[m, n])+ κ[m, n] (51.194)

The restoration procedure that is based on linear filtering coupled to a minimum mean-square
error criterion again produces a Wiener filter:

HW(u, ν) = H ∗
o (u, ν)Saa(u, ν)

|Ho(u, ν)|2 Saa(u, ν)+ Snn(u, ν)

= H ∗
o (u, ν)

|Ho(u, ν)|2 + (Snn(u, ν)/Saa(u, ν))
(51.195)

Once again Saa(u, ν) is the power spectral density of an image, Snn(u, ν) is the power spectral
density of the noise, and Ho(u, ν) = F{ho[m, n]}. Examination of this formula for some extreme
cases can be useful. For those frequencies where Saa(u, ν) � Snn(u, ν), where the signal spectrum
dominates the noise spectrum, the Wiener filter is given by 1/Ho(u, ν), the inverse filter solution.
For those frequencies where Saa(u, ν) � Snn(u, ν), where the noise spectrum dominates the sig-
nal spectrum, the Wiener filter is proportional to H ∗

o (u, ν), the matched filter solution. For those
frequencies whereHo(u, ν) = 0, the Wiener filterHW(u, ν) = 0 preventing overflow.

The Wiener filter is a solution to the restoration problem based on the hypothesized use of a
linear filter and the minimum mean-square (or rms) error criterion. In the example below, the image
a[m, n]was distorted by a bandpass filter and then white noise was added to achieve anSNR = 30dB.
The results are shown in Fig. 51.50.

FIGURE 51.50: Noise and distortion suppression using the Wiener filter, Eq.(51.195) and the median
filter. (a) Distorted, noisy image; (b) Wiener filter, rms = 108.4; (c) Median filter (3 × 3), rms =
40.9.

The rms after Wiener filtering but before contrast stretching was 108.4; after contrast stretching
with Eq. (51.77), the final result as shown in Fig. 51.50(b) has a mean-square error of 27.8. Using a
3×3median filter as shown in Fig. 51.50(c) leads to a rms error of 40.9 before contrast stretching and
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35.1 after contrast stretching. Although the Wiener filter gives the minimum rms error over the set of
all linear filters, the nonlinear median filter gives a lower rms error. The operation contrast stretching
is itself a nonlinear operation. The “visual quality” of the median filtering result is comparable to the
Wiener filtering result. This is due in part to periodic artifacts introduced by the linear filter which
are visible in Fig. 51.50(b).

51.10.3 Segmentation

In the analysis of the objects in images, it is essential that we can distinguish between the objects of
interest and “the rest”. This latter group is also referred to as the background. The techniques that are
used to find the objects of interest are usually referred to as segmentation techniques — segmenting
the foreground from background. In this section we will discuss two of the most common techniques
— thresholding and edge finding — and we will present techniques for improving the quality of the
segmentation result. It is important to understand that:

• there is no universally applicable segmentation technique that will work for all images,
and,

• no segmentation technique is perfect.

Thresholding

This technique is based on a simple concept. A parameter θ called the brightness threshold is
chosen and applied to the image a[m, n] as follows:

If a[m, n] ≥ θ a[m, n] = object = 1
Else a[m, n] = background = 0

(51.196)

This version of the algorithm assumes that we are interested in light objects on a dark background.
For dark objects on a light background we would use:

If a[m, n] < θ a[m, n] = object = 1
Else a[m, n] = background = 0

(51.197)

The output is the label “object” or “background” which, due to its dichotomous nature, can be
represented as a Boolean variable “1” or “0”. In principle, the test condition could be based on some
property other than simple brightness [for example, If (Redness {a[m, n]} ≥ θred)], but the concept
is clear.

The central question in thresholding then becomes: How do we choose the threshold θ? While
there is no universal procedure for threshold selection that is guaranteed to work on all images, there
is a variety of alternatives.

Fixed threshold – One alternative is to use a threshold that is chosen independently of
the image data. If it is known that one is dealing with very high-contrast images where the objects
are very dark and the background is homogeneous (section 51.10.1) and very light, then a constant
threshold of 128 on a scale of 0 to 255 might be sufficiently accurate. By accuracy we mean that the
number of falsely classified pixels should be kept to a minimum.

Histogram-derived thresholds – In most cases, the threshold is chosen from the brightness
histogram of the region or image that we wish to segment (see sections 51.3.5 and 51.9.1). An image
and its associated brightness histogram are shown in Fig. 51.51.

A variety of techniques has been devised to automatically choose a threshold starting from the
gray-value histogram, {h[b]|b = 0,1, . . . ,2B − 1}. Some of the most common ones are presented
below. Many of these algorithms can benefit from a smoothing of the raw histogram data to remove
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FIGURE 51.51: Pixels below the threshold (a[m, n] < θ)will be labeled as object pixels: those above
the threshold will be labeled as background pixels. (a) Image to be thresholded and (b) brightness
histogram of the image.

small fluctuations, but the smoothing algorithm must not shift the peak positions. This translates
into a zero-phase smoothing algorithm given below where typical values for W are 3 or 5:

hsmooth[b] = 1

W

(W−1)/2∑
w=−(W−1)/2

hraw[b − w] W odd (51.198)

Isodata algorithm – This iterative technique for choosing a threshold was developed by
Ridler and Calvard. The histogram is initially segmented into two parts using a starting threshold
value such as θ0 = 2B−1, half the maximum dynamic range. The sample mean (mf,0) of the gray
values associated with the foreground pixels and the sample mean (mb,0) of the gray values associated
with the background pixels are computed. A new threshold value θ1 is now computed as the average
of these two sample means. The process is repeated, based on the new threshold, until the threshold
value does not change any more. In formula:

θk = (
mf,k−1 +mb,k−1

)
/2 until θk = θk−1 (51.199)

Background-symmetry algorithm – This technique assumes a distinct and dominant peak
for the background that is symmetric about its maximum. The technique can benefit from smoothing
asdescribedabove [Eq. (51.198)]. Themaximumpeak(maxp) is foundbysearching for themaximum
value in the histogram. The algorithm then searches on the nonobject pixel side of that maximum to
find a p% point as in Eq. (51.39).

In Fig. 51.51(b), where the object pixels are located to the left of the background peak at brightness
183, this means searching to the right of that peak to locate, as an example, the 95% value. At this
brightness value, 5% of the pixels lie to the right of (are above) that value. This occurs at brightness
216 in Fig. 51.51(b). Because of the assumed symmetry, we use as a threshold a displacement to
the left of the maximum that is equal to the displacement to the right where the p% is found. For
Fig. 51.51(b) this means a threshold value given by 183− (216− 183) = 150. In formula:

θ = maxp − (
p% − maxp

)
(51.200)

This technique can be adapted easily to the case where we have light objects on a dark, dominant
background. Further, it can be used if the object peak dominates and we have reason to assume
that the brightness distribution around the object peak is symmetric. An additional variation on
this symmetry theme is to use an estimate of the sample standard deviation [s in Eq. (51.37)] based
on one side of the dominant peak and then use a threshold based on θ = maxp ± 1.96s (at the
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5% level) or θ = maxp ± 2.57s (at the 1% level). The choice of “+” or “−” depends on which
direction frommaxp is being defined as the object/background threshold. Should the distributions
be approximately Gaussian around maxp, then the values 1.96 and 2.57 will, in fact, correspond to
the 5% and 1% level.

Triangle algorithm – This technique due to Zack is illustrated in Fig. 51.52. A line is
constructed between the maximum of the histogram at brightness bmax and the lowest value bmin =
(p = 0)% in the image. The distance d between the line and the histogram h[b] is computed for all
values of b from b = bmin to b = bmax. The brightness value bo where the distance between h[bo]
and the line is maximal is the threshold value, that is, θ = bo. This technique is particularly effective
when the object pixels produce a weak peak in the histogram.
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FIGURE 51.52: The triangle algorithm is based on finding the value of b that gives the maximum
distance d.

The three procedures described above give the values θ = 139for the Isodata algorithm, θ = 150
for the background symmetry algorithm at the 5% level, and θ = 152for the triangle algorithm for
the image in Fig. 51.51(a).

Thresholding does not have to be applied to entire images but can be used on a region-by-region
basis. Chow and Kaneko developed a variation in which theM ×N image is divided into nonover-
lapping regions. In each region, a threshold is calculated and the resulting threshold values are put
together (interpolated) to form a thresholding surface for the entire image. The regions should be
of “reasonable” size so that there are a sufficient number of pixels in each region to make an estimate
of the histogram and the threshold. The utility of this procedure — like so many others — depends
on the application at hand.

Edge Finding

Thresholding produces a segmentation that yields all the pixels that, in principle, belong to
the object or objects of interest in an image. An alternative to this is to find those pixels that
belong to the borders of the objects. Techniques that are directed to this goal are termed edge
finding techniques. From our discussion in section 51.9.6 on mathematical morphology, specifically
Eqs. (51.162), (51.163), and (51.170), we see that there is an intimate relationship between edges and
regions.

Gradient-based procedure – The central challenge to edge finding techniques is to find
procedures that produce closed contours around the objects of interest. For objects of particularly
high SNR, this can be achieved by calculating the gradient and then using a suitable threshold. This
is illustrated in Fig. 51.53.

While the technique works well for the 30-dB image in Fig. 51.53(a), it fails to provide an accurate
determination of those pixels associated with the object edges for the 20-dB image in Fig. 51.53(b).
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FIGURE 51.53: Edge finding based on the Sobel gradient, Eq. (51.110), combined with the Isodata
thresholding algorithm Eq. (51.199). (a) SNR = 30dB and (b) SNR = 20dB.

A variety of smoothing techniques as described in section 51.9.4 and in Eq. (51.180) can be used to
reduce the noise effects before the gradient operator is applied.

Zero-crossing based procedure – A more modern view to handling the problem of edges in
noisy images is to use the zero crossings generated in the Laplacian of an image (section 51.9.5). The
rationale starts from the model of an ideal edge, a step function, that has been blurred by an OTF
such as Table 51.4.T.3 (out-of-focus), T.5 (diffraction-limited), or T.6 (general model) to produce
the result shown in Fig. 51.54.

35 40 45 50 55 60 65

Position

Blurred Edge

Gradient

Laplacian

Ideal Edge Position

FIGURE 51.54: Edge finding based on the zero crossing as determined by the second derivative, the
Laplacian. The curves are not to scale.

The edge location is, according to the model, at that place in the image where the Laplacian changes
sign, the zero crossing. As the Laplacian operation involves a second derivative, this means a potential
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enhancement of noise in the image at high spatial frequencies; see Eq. (51.114). To prevent enhanced
noise from dominating the search for zero crossings, a smoothing is necessary.

The appropriate smoothing filter from among the many possibilities described in section 51.9.4
should have, according to Canny, the following properties:

• In the frequency domain, (u, ν) or (�,9), the filter should be as narrow as possible to
provide suppression of high frequency noise, and;

• In the spatial domain, (x, y) or [m, n], the filter should be as narrow as possible to provide
good localization of the edge. A too wide filter generates uncertainty as to precisely where,
within the filter width, the edge is located.

The smoothing filter that simultaneously satisfies both these properties — minimum bandwidth
and minimum spatial width — is the Gaussian filter described in section 51.9.4. This means that
the image should be smoothed with a Gaussian of an appropriate σ followed by application of the
Laplacian. In formula:

ZeroCrossing{a(x, y)} =
{
(x, y)|∇2 {g2D(x, y)⊗ a(x, y)} = 0

}
(51.201)

where g2D(x, y) is defined in Eq. (51.93). The derivative operation is linear and shift-invariant as
defined in Eqs. (51.85) and (51.86). This means that the order of the operators can be exchanged
[Eq. (51.4)] or combined into one single filter [Eq. (51.5)]. This second approach leads to the
Marr-Hildreth formulation of the “Laplacian-of-Gaussians” (LoG) filter:

ZeroCrossing {a(x, y)} = {(x, y)|LoG(x, y)⊗ a(x, y) = 0} (51.202)

where

LoG(x, y) = x2 + y2

σ 4
g2D(x, y)− 2

σ 2
g2D(x, y) (51.203)

Given the circular symmetry, this can also be written as:

LoG(r) =
(
r2 − 2σ 2

2πσ 6

)
e−

(
r2/2σ2

)
(51.204)

This two-dimensional convolution kernel, which is sometimes referred to as a“Mexican hat filter”,
is illustrated in Fig. 51.55.

FIGURE 51.55: LoG filter with σ = 1.0. (a) −LoG(x, y) and (b) LoG(r).
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PLUS-based procedure – Among the zero crossing procedures for edge detection, perhaps
the most accurate is the PLUS filter as developed by Verbeek and Van Vliet. The filter is defined,
using Eqs. (51.121) and (51.122) as:

PLUS(a) = SDGD(a)+ Laplace(a)

=
(
AxxA

2
x + 2AxyAxAy + AyyA

2
y

A2
x + A2

y

)
+ (
Axx + Ayy

)
(51.205)

Neither the derivation of the PLUS’s properties nor an evaluation of its accuracy are within
the scope of this section. Suffice it to say that, for positively curved edges in gray value images, the
Laplacian-based zero crossing procedure overestimates the position of the edge and the SDGD-based
procedure underestimates the position. This is true in both two-dimensional and three-dimensional
images with an error on the order of (σ/R)2 where R is the radius of curvature of the edge. The
PLUS operator has an error on the order of (σ/R)4 if the image is sampled at, at least, 3× the usual
Nyquist sampling frequency as in Eq. (51.56) or if we choose σ ≥ 2.7and sample at the usual Nyquist
frequency.

All of the methods based on zero crossings in the Laplacian must be able to distinguish between zero
crossings and zero values. While the former represent edge positions, the latter can be generated by
regions that arenomore complex thanbilinear surfaces, that is,a(x, y) = a0+a1•x+a2•y+a3•x•y.
To distinguish between these two situations, we first find the zero crossing positions and label them as
“1” and all other pixels as “0”. We then multiply the resulting image by a measure of the edge strength
at each pixel. There are various measures for the edge strength that are all based on the gradient as
described in section 51.9.5 and Eq. (51.181). This last possibility, use of a morphological gradient
as an edge strength measure, was first described by Lee, Haralick, and Shapiro and is particularly
effective. After multiplication the image is then thresholded (as above) to produce the final result.
The procedure is shown in Fig. 51.56.

FIGURE 51.56: General strategy for edges based on zero crossings.

The results of these two edge finding techniques based on zero crossings,LoG filtering andPLUS
filtering, are shown in Fig. 51.57 for images with a 20-dB SNR.

Edge finding techniques provide, as the name suggests, an image that contains a collection of edge
pixels. Should the edge pixels correspond to objects, as opposed to say simple lines in the image, then
a region-filling technique such as Eq. (51.170) may be required to provide the complete objects.
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FIGURE 51.57: Edge finding using zero crossing algorithms LoG and PLUS. In both algorithms
σ = 1.5. (a) Image SNR = 20dB; (b) LoG filter; and (c) PLUS filter.

Binary Mathematical Morphology

The various algorithms that we have described for mathematical morphology in section 51.9.6
can be put together to form powerful techniques for the processing of binary images and gray level
images. As binary images frequently result from segmentation processes on gray level images, the
morphological processing of the binary result permits the improvement of the segmentation result.

Salt-or-pepper filtering – Segmentation procedures frequently result in isolated “1” pixels
in a “0” neighborhood (salt) or isolated “0” pixels in a “1” neighborhood (pepper). The appropriate
neighborhood definition must be chosen such as in Fig. 51.3. Using the lookup table formulation
for Boolean operations in a 3 × 3 neighborhood that was described in association with Fig. 51.43,
salt filtering and pepper filtering are straightforward to implement. We weight the different positions
in the 3 × 3 neighborhood as follows:

Weights =

 w4 = 16 w3 = 8 w2 = 4
w5 = 32 w0 = 1 w1 = 2
w6 = 64 w7 = 128 w8 = 256


 (51.206)

For a 3 × 3 window in a[m, n] with values “0” or “1” we then compute:

sum = w0a[m, n] + w1a[m+ 1, n] + w2a[m+ 1, n− 1] +
w3a[m, n− 1] + w4a[m− 1, n− 1] + w5a[m− 1, n] + (51.207)

w6a[m− 1, n+ 1] + w7a[m, n+ 1] + w8a[m+ 1, n− 1]
The result, sum, is a number bounded by 0 ≤ sum ≤ 511.

Salt filter – The 4-connected and 8-connected versions of this filter are the same and are
given by the following procedure:

(i) Compute sum
(ii) If ((sum == 1) c[m, n] = 0

Else c[m, n] = a[m, n]
(51.208)
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Pepper filter – The 4-connected and 8-connected versions of this filter are the following
procedures:

4-connected 8-connected
(i) Compute sum (i) Compute sum
(ii) If ((sum == 170) (ii) If ((sum == 510)

c[m, n] = 1 c[m, n] = 1
Else Else

c[m, n] = a[m, n] c[m, n] = a[m, n]

(51.209)

Isolate objects with holes – To find objects with holes, we can use the following procedure
which is illustrated in Fig. 51.58.

(i) Segment image to produce binary mask representation

(ii) Compute skeleton without end pixels — Eq. (51.169) (51.210)

(iii) Use salt filter to remove single skeleton pixels

(iv) Propagate remaining skeleton pixels into original binary mask — Eq. (51.170)

The binary objects are shown in gray and the skeletons, after application of the salt filter, are shown
as a black overlay on the binary objects. Note that this procedure uses no parameters other than
the fundamental choice of connectivity; it is free from “magic numbers”. In the example shown in
Fig. 51.58, the 8-connected definition was used as well as the structuring elements B = N8.

FIGURE 51.58: Isolation of objects with holes using morphological operations. (a) Binary image;
(b) skeleton after salt filter; and (c) objects with holes.

Filling holes in objects – To fill holes in objects, we use the following procedure which is
illustrated in Fig. 51.59.

(i) Segment image to produce binary representation of objects
(ii) Compute complement of binary image as a mask image
(iii) Generate a seed image as the border of the image
(iv) Propagate the seed into the mask — Eq. (51.170)
(v) Complement result of propagation to produce final result.

(51.211)

Themask image is illustrated in gray inFig. 51.59(a) and the seed image is shown inblack in that same
illustration. When the object pixels are specified with a connectivity ofC = 8, then the propagation
into the mask (background) image should be performed with a connectivity of C = 4, that is,
dilations with the structuring element B = N4. This procedure is also free of “magic numbers”.
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FIGURE 51.59: Filling holes in objects. (a) Mask and seed images and (b) objects with holes filled.

Removing border-touching objects – Objects that are connected to the image border are
not suitable for analysis. To eliminate them we can use a series of morphological operations that are
illustrated in Fig. 51.60.

(i) Segment image to produce binary mask image of objects

(ii) Generate a seed image as the border of the image (51.212)

(iii) Propagate the seed into the mask — Eq. (51.170)

(iv) Compute XOR of the propagation result and the mask image as final result.

The mask image is illustrated in gray in Fig. 51.60(a) and the seed image is shown in black in
that same illustration. If the structuring element used in the propagation is B = N4, then objects
are removed that are 4-connected with the image boundary. If B = N8 is used, then objects that
8-connected with the boundary are removed.

FIGURE 51.60: Removing objects touching borders. (a) Mask and seed images and (b) remaining
objects.

Exo-skeleton – The exo-skeleton of a set of objects is the skeleton of the background that
contains the objects. The exo-skeleton produces a partition of the image into regions each of which
contains one object. The actual skeletonization [Eq. (51.169)] is performed without the preservation
of end pixels and with the border set to “0”. The procedure is described below and the result is
illustrated in Fig. 51.61.
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FIGURE 51.61: Exo-skeleton.

(i) Segment image to produce binary image
(ii) Compute complement of binary image
(iii) Compute skeleton using Eq. (51.169) i + ii with border set to “0”.

(51.213)

Touching objects – Segmentation procedures frequently have difficulty separating slightly
touching, yet distinct, objects. The following procedure provides a mechanism to separate these
objects and makes minimal use of “magic numbers”. The exo-skeleton produces a partition of the
image into regions each of which contains one object. The actual skeletonization is performed
without the preservation of end pixels and with the border set to “0”. The procedure is illustrated in
Fig. 51.62.

(i) Segment image to produce binary image

(ii) Compute a “small number” of erosions with B = N4

(iii) Compute exo-skeleton of eroded result (51.214)

(iv) Complement exo-skeleton result

(v) Compute AND of original binary image and the complemented exo-skeleton.

The eroded binary image is illustrated in gray in Fig. 51.62(a) and the exo-skeleton image is shown in
black in that same illustration. An enlarged section of the final result is shown in Fig. 51.62(b) and the
separation is easily seen. This procedure involves choosing a small, minimum number of erosions,
but the number is not critical as long as it initiates a coarse separation of the desired objects. The
actual separation is performed by the exo-skeleton which, itself, is free of “magic numbers”. If the
exo-skeleton is 8-connected, then the background separating the objects will be 8-connected. The
objects themselves will be disconnected according to the 4-connected criterion. (See section 51.9.6
and Fig. 51.36.)

Gray-Value Mathematical Morphology

As we have seen is section 51.10.1, gray-value morphological processing techniques can be used
for practical problems such as shading correction. In this section, several other techniques will be
presented.

Top-hat transform – The isolation of gray-value objects that are convex can be accom-
plished with the top-hat transform as developed by Meyer. Depending on whether we are dealing
with light objects on a dark background or dark objects on a light background, the transform is
defined as:

Light objects - TopHat(A,B) = A − (A ◦ B) = A − max
B

(
min

B
(A)

)
(51.215)
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FIGURE 51.62: Separation of touching objects. (a) Eroded and exo-skeleton images and (b) objects
separated (detail).

Dark objects - TopHat(A,B) = (A • B)− A = min
B

(
max

B
(A)

)
− A (51.216)

where the structuring element B is chosen to be bigger than the objects in question and, if possible, to
have a convex shape. Because of the properties given in Eqs. (51.155) and (51.158), TopHat(A,B) ≥
0. An example of this technique is shown in Fig. 51.63.

The original image including shading is processed by a 15× 1 structuring element as described
in Eqs. (51.215) and (51.216) to produce the desired result. Note that the transform for dark objects
has been defined in such a way as to yield “positive” objects as opposed to “negative” objects. Other
definitions are, of course, possible.

Thresholding – A simple estimate of a locally varying threshold surface can be derived
from morphological processing as follows:

Threshold surface - θ [m, n] = 1

2
(max(A)+ min(A)) (51.217)

Once again, we suppress thenotation for the structuring elementB under the max andminoperations
to keep the notation simple. Its use, however, is understood.

Local contrast stretching – Using morphological operations, we can implement a technique
for local contrast stretching. That is, the amount of stretching that will be applied in a neighborhood
will be controlled by the original contrast in that neighborhood. The morphological gradient defined
in Eq. (51.181) may also be seen as related to a measure of the local contrast in the window defined
by the structuring element B:

LocalContrast (A,B) = max(A)− min(A) (51.218)

The procedure for local contrast stretching is given by:

c[m, n] = scale • A − min(A)

max(A)− min(A)
(51.219)

The max and min operations are taken over the structuring element B. The effect of this procedure
is illustrated in Fig. 51.64. It is clear that this local operation is an extended version of the point
operation for contrast stretching presented in Eq. (51.77).

Using standard test images (as we have seen in so many examples in this chapter) illustrates the
power of this local morphological filtering approach.
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FIGURE 51.63: Top-hat transforms. (a) Original; (b) light object transform; and (c) dark object
transform.

FIGURE 51.64: Local contrast stretching.
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52.1 Introduction

Digital representation of images is important for digital transmission and storage on different media
suchasmagneticor laserdisks. However, pictorialmaterial requires vast amountsofbits if represented
throughdirectquantization. Asanexample, anSVGAcolor image requires3×600×800bytes = 1, 44
Mbytes when each color component is quantized using 1 byte per pixel, the amount of bytes that
can be stored on one standard 3.5-inch diskette. It is therefore evident that compression (often called
coding) is necessary for reducing the amount of data [33].

In this chapter we address three fundamental questions concerning image compression:

• Why is image compression possible?

• What are the theoretical coding limits?

• Which practical compression methods can be devised?

The first two questions concern statistical and structural properties of the image material and
human visual perception. Even if we were able to answer these questions accurately, the methodol-

1Parts of this manuscript are based on Ramtad, T.A., Aase, S.O., and Husøy, J.H., Subband Compression of Images —
Principles and Examples, Elsevier Science Publishers BV, North Holland, 1995. Permission to use the material is given by
ELSEVIER Science Publishers BV.
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ogy for image compression (third question) does not follow thereof. That is, the practical coding
algorithms must be found otherwise. The bulk of the chapter will review image coding principles
and present some of the best proposed still image coding methods.

The prevailing technique for image coding is transform coding. This is part of the JPEG (Joint
Picture Expert Group) standard [14] as well as a part of all the existing video coding standards
(H.261, H.263, MPEG-1, MPEG-2) [15, 16, 17, 18]. Another closely related technique, subband
coding, is in some respects better, but has not yet been recognized by the standardization bodies. A
third technique, differential coding, has not been successful for still image coding, but is often used to
code the lowpass-lowpass band in subband coders, and is an integral part of hybrid video coders for
removal of temporal redundancy. Vector quantization (VQ) is the ultimate technique if there were
no complexity constraints. Because all practical systems must have limited complexity, VQ is usually
used as a component in a multi-component coding scheme. Finally, fractal or attraclor coding is based
on an idea far from other methods, but it is, nevertheless, strongly related to vector quantization.

For natural images, no exact digital representation exists because the quantization, which is an
integral part of digital representations, is a lossy technique. Lossy techniques will always add noise,
but the noise level and its characteristics can be controlled and depend on the number of bits per
pixel as well as the performance of the method employed. Lossless techniques will be discussed as a
component in other coding methods.

52.1.1 Signal Chain

We assume a model where the input signal is properly bandlimited and digitized by an appropriate
analog-to-digital converter. All subsequent processing in the encoder will be digital. The decoder is
also digital up to the digital-to-analog converter, which is followed by a lowpass reconstruction filter.

Under idealized conditions, the interconnection of the signal chain excluding the compression
unit will be assumed to be noise-free. (In reality, the analog-to-digital conversion will render a noise
power which can be approximated by 12/12, where 1 is the quantizer interval. This interval depends
on the number of bits, and we assume that it is so high that the contribution to the overall noise
from this process is negligible). The performance of the coding chain can then be assessed from the
difference between the input and output of the digital compression unit disregarding the analog part.

Still images must be sampled on some two-dimensional grid. Several schemes are viable choices,
and there are good reasons for selecting nonrectangular grids. However, to simplify, rectangular sam-
pling will be considered only, and all filtering will be based on separable operations, first performed
on the rows and subsequently on the columns of the image. The theory is therefore presented for
one-dimensional models, only.

52.1.2 Compressibility of Images

There are two reasons why images can be compressed:

• All meaningful images exhibit some form of internal structure, often expressed through
statistical dependencies between pixels. We call this property signal redundancy.

• The human visual system is not perfect. This means that certain degradations cannot be
perceived by human observers. The degree of allowable noise is called irrelevancy or visual
redundancy. If we furthermore accept visual degradation, we can exploit what might be
termed tolerance.

In this section we make some speculations about the compression potential resulting from redun-
dancy and irrelevancy.

The two fundamental concepts in evaluating a coding schemearedistortion, whichmeasures quality
in the compressed signal, and rate, which measures how costly it is to transmit or store a signal.
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Distortion is a measure of the deviation between the encoded/decoded signal and the original
signal. Usually, distortion is measured by a single number for a given coder and bit rate. There are
numerous ways of mapping an error signal onto a single number. Moreover, it is hard to conceive
that a single number could mimic the quality assessment performed by a human observer. An easy-
to-use and well-known error measure is the mean square error (mse). The visual correctness of this
measure is poor. The human visual system is sensitive to errors in shapes and deterministic patterns,
but not so much in stochastic textures. The mse defined over the entire image can, therefore, be
entirely erroneous in the visual sense. Still, mse is the prevailing error measure, and it can be argued
that it reflects well small changes due to optimization in a given coder structure, but poor as for the
comparison between different models that create different noise characteristics.

Rate is defined as bits per pixel and is connected to the information content in a signal, which can
be measured by entropy.

A Lower Bound for Lossless Coding

To define image entropy, we introduce the set S containing all possible images of a certain size
and call the number of images in the set NS. To exemplify, assume the image set under consideration
has dimension 512× 512 pixels and each pixel is represented by 8 bits. The number of different
images that exist in this set is 2512×512×8, an overwhelming number!

Given the probability Pi of each image in the set S, where i ∈ NS is the index pointing to the
different images, the source entropy is given by

H = −
∑
i∈NS

Pi log2 Pi . (52.1)

The entropy is a lower bound for the rate in lossless coding of the digital images.

A Lower Bound for Visually Lossless Coding

In order to incorporate perceptual redundancies, it is observed that all the images in the given
set cannot be distinguished visually. We therefore introduce visual entropy as an abstract measure
which incorporates distortion.

We now partition the image set into disjoint subsets, S i , in which all the different images have
similar appearance. One image from each subset is chosen as the representation image. The collection
of these NR representation images constitutes a subset R, that is a set spanning all distinguishable
images in the original set.

Assume that image i ∈ R appears with probability P̂i . Then the visual entropy is defined by

HV = −
∑

i∈NR

P̂i log2 P̂i . (52.2)

The minimum attainable bit rate is lower bounded by this number for image coders without visual
degradation.

52.1.3 The Ideal Coding System

Theoretically, we can approach the visual entropy limit using an unrealistic vector quantizer (VQ), in
conjunction with an ideal entropy coder. The principle of such an optimal coding scheme is described
next.

The set of representation images is stored in what is usually called a codebook. The encoder
and decoder have similar copies of this codebook. In the encoding process, the image to be coded
is compared to all the vectors in the codebook applying the visually correct distortion measure.
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The codebook member with the closest resemblance to the sample image is used as the coding
approximation. The corresponding codebook index (address) is entropy coded and transmitted to
the decoder. The decoder looks up the image located at the address given by the transmitted index.

Obviously, the above method is unrealistic. The complexity is beyond any practical limit both in
terms of storage and computational requirement. Also, the correct visual distortion measure is not
presently known. We should therefore only view the indicated coding strategy as the limit for any
coding scheme.

52.1.4 Coding with Reduced Complexity

In practical coding methods, there are basically two ways of avoiding the extreme complexity of ideal
VQ. In the first method, the encoder operates on small image blocks rather than on the complete
image. This is obviously suboptimal because the method cannot profit from the redundancy offered
by large structures in an image. But the larger the blocks, the better the method. The second strategy
is very different and applies some preprocessing on the image prior to quantization. The aim is to
remove statistical dependencies among the image pixels, thus avoiding representation of the same
information more than once. Both techniques are exploited in practical coders, either separately or
in combination.

A typical image encoder incorporating preprocessing is shown in Fig. 52.1.

FIGURE 52.1: Generic encoder structure block diagram. D = decomposition unit, Q = quantizer,
B = coder for minimum bit-representation.

Thefirstblock (D)decomposes the signal intoa setof coefficients. Thecoefficients are subsequently
quantized (in Q), and are finally coded to a minimum bit representation (in B). This model is correct
for frequency domain coders, but in closed loop differential coders (DPCM), the decomposition and
quantization is performed in the same block, as will be demonstrated later. Usually the decomposition
is exact. In fractal coding, the decomposition is replaced by approximate modeling.

Let us consider the decoder and introduce a series expansion as a unifying description of the different
image representation methods:

x̂(l) =
∑

k

âkφk(l) . (52.3)

The formula represents the recombination of signal components. Here {âk} are the coefficients (the
parameters in the representation), and {φk(l)} are the basis functions. A major distinction between
coding methods is their set of basis functions, as will be demonstrated in the next section.

The completedecoder consists of threemajorparts as shown inFig. 52.2. Thefirst block (I ) receives
the bit representation which it partitions into entities representing the different coder parameters
and decodes them. The second block (Q−1) is a dequantizer which maps the code to the parametric
approximation. The third block (R) reconstructs the signal from the parameters using the series
representation.
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FIGURE 52.2: Block diagram of generic decoder structure. I = bit-representation decoder, Q−1 =
inverse quantizer, R = signal reconstruction unit.

The second important distinction between compression structures is the coding of the series
expansion coefficients in terms of bits. This is dealt with in section 52.3.

52.2 Signal Decomposition

As introduced in the previous section, series expansion can be viewed as a common tool to describe
signal decomposition. The choice of basis functions will distinguish different coders and influence
such features as coding gain and the types of distortions present in the decoded image for low bit rate
coding. Possible classes of basis functions are:

1. Block-oriented basis functions.

• The basis functions can cover the whole signal length L. L linearly independent
basis functions will make a complete representation.

• Blocks of size N ≤ L can be decomposed individually. Transform coders operate in
this way. If the blocks are small, the decomposition can catch fast transients. On
the other hand, regions with constant features, such as smooth areas or textures,
require long basis functions to fully exploit the correlation.

2. Overlapping basis functions:
The length of the basis functions and the degree of overlap are important parameters.
The issue of reversibility of the system becomes nontrivial.

• In differential coding, one basis function is used over and over again, shifted by one
sample relative to the previous function. In this case, the basis function usually
varies slowly according to some adaptation criterion with respect to the local signal
statistics.

• In subband coding using a uniform filter bank, N distinct basis functions are used.
These are repeated over and over with a shift between each group by N samples.
The length of the basis functions is usually several times larger than the shifts ac-
commodating for handling fast transients as well as long-term correlations if the
basis functions taper off at both ends.

• The basis functions may be finite (FIR filters) or semi-infinite (IIR filters).

Both time domain and frequency domain properties of the basis functions are indicators of the
coder performance. It can be argued that decomposition, whether it is performed by a transform
or a filter bank, represents a spectral decomposition. Coding gain is obtained if the different output
channels are decorrelated. It is therefore desirable that the frequency responses of the different basis
functions are localized and separate in frequency. At the same time, they must cover the whole
frequency band in order to make a complete representation.
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The desire to have highly localized basis functions to handle transients, with localized Fourier
transforms to obtain good coding gain, are contradictory requirements due to the Heisenberg uncer-
tainty relation [33] between a function and its Fourier transform. The selection of the basis functions
must be a compromise between these conflicting requirements.

52.2.1 Decomposition by Transforms

When nonoverlapping block transforms are used, the Karhunen-Loève transform decorrelates, in
a statistical sense, the signal within each block completely. It is composed of the eigenvectors of
the correlation matrix of the signal. This means that one either has to know the signal statistics in
advance or estimate the correlation matrix from the image itself.

Mathematically the eigenvalue equation is given by

Rxxhn = λnhn . (52.4)

If the eigenvectors are column vectors, the KLT matrix is composed of the eigenvectors hn, n =
0, 1, · · · , N − 1, as its rows:

K = [
h0h1 . . . hN−1

]T
. (52.5)

The decomposition is performed as
y = Kx . (52.6)

The eigenvalues are equal to the power of each transform coefficient.
In practice, the so-called Cosine Transform (of type II) is usually used because it is a fixed transform

and it is close to the KLT when the signal can be described as a first-order autoregressive process with
correlation coefficient close to 1.

The cosine transform of length N in one dimension is given by:

y(k) =
√

2

N
α(k)

N−1∑
n=0

x(n) cos
(2n + 1)kπ

2N
, k = 0, 1, · · · , N − 1 , (52.7)

where

α(0) = 1√
2

and α(k) = 1 for k 6= 0 . (52.8)

The inverse transform is similar except that the scaling factor α(k) is inside the summation.
Many other transforms have been suggested in the literature (DFT, Hadamard Transform, Sine

Transform, etc.), but none of these seem to have any significance today.

52.2.2 Decomposition by Filter Banks

Uniform analysis and synthesis filter banks are shown in Fig. 52.3.
In the analysis filter bank the input signal is split in contiguous and slightly overlapping frequency

bands denoted subbands. An ideal frequency partitioning is shown in Fig. 52.4.
If the analysis filter bank was able to decorrelate the signal completely, the output signal would be

white. For all practical signals, complete decorrelation requires an infinite number of channels.
In the encoder the symbol ↓ N indicates decimation by a factor of N . By performing this deci-

mation in each of the N channels, the total number of samples is conserved from the system input
to decimator outputs. With the channel arrangement in Fig. 52.4, the decimation also serves as a
demodulator. All channels will have a baseband representation in the frequency range [0, π/N] after
decimation.
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FIGURE 52.3: Subband coder system.

FIGURE 52.4: Ideal frequency partitioning in the analysis channel filters in a subband coder.

The synthesis filter bank, as shown in Fig. 52.3, consists of N branches with interpolators indicated
by ↑ N and bandpass filters arranged as the filters in Fig. 52.4.

The reconstruction formula constitutes the following series expansion of the output signal:

x̂(l) =
N−1∑
n=0

∞∑
k=−∞

en(k)gn(l − kN) , (52.9)

where {en(k), n = 0, 1, . . . , N − 1, k = −∞, . . . ,−1, 0, 1, . . . ,∞} are the expansion coefficients
representing the quantized subband signals and {gn(k), n = 0, 1, . . . , N} are the basis functions,
which are implemented as unit sample responses of bandpass filters.

Filter Bank Structures

Through the last two decades, an extensive literature on filter banks and filter bank structures
has evolved. Perfect reconstruction (PR) is often considered desirable in subband coding systems. It
is not a trivial task to design such systems due to the downsampling required to maintain a minimum
sampling rate. PR filter banks are often called identity systems. Certain filter bank structures
inherently guarantee PR.

It is beyond the scope of this chapter to give a comprehensive treatment of filter banks. We shall
only present different alternative solutions at an overview level, and in detail discuss an important
two-channel system with inherent perfect reconstruction properties.

We can distinguish between different filter banks based on several properties. In the following,
five classifications are discussed.

1. FIR vs. IIR filters — Although IIR filters have an attractive complexity, their inherent
long unit sample response and nonlinear phase are obstacles in image coding. The
unit sample response length influences the ringing problem, which is a main source of
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objectionabledistortion in subbandcoders. Thenonlinearphasemakes theedgemirroring
technique [30] for efficient coding of images near their borders impossible.

2. Uniform vs. nonuniform filter banks — This issue concerns the spectrum partioning
in frequency subbands. Currently it is the general conception that nonuniform filter
banks perform better than uniform filter banks. There are two reasons for that. The first
reason is that our visual system also performs a nonuniform partioning, and the coder
should mimic the type of receptor for which it is designed. The second reason is that
the filter bank should be able to cope with slowly varying signals (correlation over a large
region) as well as transients that are short and represent high frequency signals. Ideally,
the filter banks should be adaptive (and good examples of adaptive filter banks have been
demonstrated in the literature [2, 11]), but without adaptivity one filter bank has to be a
good compromise between the two extreme cases cited above. Nonuniform filter banks
can give the best tradeoff in terms of space-frequency resolution.

3. Parallel vs. tree-structured filter banks — The parallel filter banks are the most general,
but tree-structured filter banks enjoy a large popularity, especially for octave band (dyadic
frequency partitioning) filter banks as they are easily constructed and implemented. The
popular subclass of filter banks denoted wavelet filter banks or wavelet transforms belong
to this class. For octave band partioning, the tree-structured filter banks are as general as
the parallel filter banks when perfect reconstruction is required [4].

4. Linear phase vs. nonlinear phase filters — There is no general consensus about the
optimality of linear phase. In fact, the traditional wavelet transforms cannot be made
linear phase. There are, however, three indications that linear phase should be chosen.
(1) The noise in the reconstructed image will be antisymmetrical around edges with
nonlinear phase filters. This does not appear to be visually pleasing. (2) The mirror
extension technique [30] cannot be used for nonlinear phase filters. (3) Practical coding
gain optimizations have given better results for linear than nonlinear phase filters.

5. Unitary vs. nonunitary systems—Aunitaryfilterbankhas the sameanalysis and synthesis
filters (except for a reversal of the unit sample responses in the synthesis filters with respect
to the analysis filters to make the overall phase linear). Because the analysis and synthesis
filters play different roles, it seems plausible that they, in fact, should not be equal. Also,
the gain can be larger, as demonstrated in section 52.2.3, for nonunitary filter banks as
long as straightforward scalar quantization is performed on the subbands.

Several other issues could be taken into consideration when optimizing a filter bank. These are,
among others, the actual frequency partitioning including the number of bands, the length of the
individual filters, and other design criteria than coding gain to alleviate coding artifacts, especially
at low rates. As an example of the last requirement, it is important that the different phases in the
reconstruction process generate the same noise; in other words, the noise should be stationary rather
than cyclo-stationary. This may be guaranteed through requirements on the norms of the unit sample
responses of the polyphase components [4].

The Two-Channel Lattice Structure

A versatile perfect reconstruction system can be built from two-channel substructures based
on lattice filters [36]. The analysis filter bank is shown in Fig. 52.5. It consists of delay-free blocks
given in matrix forms as

η =
[

a b

c d

]
, (52.10)

and single delays in the lower branch between each block. At the input, the signal is multiplexed into
the two branches, which also constitutes the decimation in the analysis system.
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FIGURE 52.5: Multistage two-channel lattice analysis lattice filter bank.

FIGURE 52.6: Multistage two-channel polyphase synthesis lattice filter bank.

A similar synthesis filter structure is shown in Fig. 52.6. In this case, the lattices are given by the
inverse of the matrix in Eq. 52.10:

η−1 = 1

ad − bc

[
d −b

−c a

]
, (52.11)

and the delays are in the upper branches. It is not hard to realize that the two systems are inverse
systems provided ad − bc 6= 0, except for a system delay.

As the structure can be extended as much as wanted, the flexibility is good. The filters can be
made unitary or they can have a linear phase. In the unitary case, the coefficients are related through
a = d = cosφ and b = −c = sinφ, whereas in the linear phase case, the coefficients are a = d = 1
and b = c. In the linear phase case, the last block (ηL) must be a Hadamard transform.

Tree Structured Filter Banks

In tree-structured filter banks, the signal is first split in two channels. The resulting outputs
are input to a second stage with further separation. This process can go on as indicated in Fig. 52.7
for a system where at every stage the outputs are split further until the required resolution has been
obtained.

Tree-structured systems have a rather high flexibility. Nonuniform filter banks are obtained by
splitting only some of the outputs at each stage. To guarantee perfect reconstruction, each stage in
the synthesis filter bank (Fig. 52.7) must reconstruct the input signal to the corresponding analysis
filter.

52.2.3 Optimal Transforms/Filter Banks

The gain in subband and transform coders depends on the detailed construction of the filter bank as
well as the quantization scheme.

Assumethat theanalysisfilterbankunit sample responsesaregivenby{hn(k), n = 0, 1, . . . , N−1}.
The corresponding unit sample responses of the synthesis filters are required to have unit norm:

L−1∑
k=0

g2
n(k) = 1 .
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FIGURE 52.7: Left: Tree structured analysis filter bank consisting of filter blocks where the signal
is split in two and decimated by a factor of two to obtain critical sampling. Right: Corresponding
synthesis filter bank for recombination and interpolation of the signals.

The coding gain of a subband coder is defined as the ratio between the noise using scalar quan-
tization (PCM) and the subband coder noise incorporating optimal bit-allocation as explained in
section 52.3:

GSBC =
[

N−1∏
n=0

σ 2
xn

σ 2
x

]−1/N

(52.12)

Here σ 2
x is the variance of the input signal while {σ 2

xn
, n = 0, 1 . . . , N −1} are the subband variances

given by

σ 2
xn

=
∞∑

l=−∞
Rxx(l)

∞∑
j=−∞

hn(j)hn(l + j) (52.13)

=
∫ π

−π

Sxx(e
jω)|Hn(e

jω)|2dω

2π
. (52.14)

The subband variances depend both on the filters and the second order spectral information of the
input signal.

For images, the gain is often estimated assuming that the image can be modeled as a first order
Markov source (also called an AR(1) process) characterized by

Rxx(l) = σ 2
x 0.95|l| . (52.15)

(Strictly speaking, the model is valid only after removal of the image average).
We consider the maximum gain using this model for three special cases. The first is the transform

coder performance, which is an important reference as all image and video coding standards are
based on transform coding. The second is for unitary filter banks, for which optimality is reached by
using ideal brick-wall filters. The third case is for nonunitary filter banks, often denoted biorthogonal
when the perfect reconstruction property is guaranteed. In the nonunitary case, halfwhitening is
obtained within each band. Mathematically this can be seen from the optimal magnitude response
for the filter in channel n:

|Hn(e
jω)| =

{
c2

[
Sxx(ejω)

σ2
x

]−1/4
for ω ∈ ±[πn

N
,

π(n+1)
N

]
0 otherwise,

(52.16)
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where c2 is a constant that can be selected for correct gain in each band.
The inverse operation must be performed in the synthesis filter to make completely flat responses

within each band.
In Fig. 52.8, we give optimal coding gains as a function of the number of channels.

FIGURE 52.8: Maximum coding gain as function of the number of channels for different one-
dimensional coders operating on a first order Markov source with one-delay correlation ρ = 0.95.
Lower curve: Cosine transform. Middle curve: Unitary filter bank. Upper curve: Unconstrained
filter bank. Nonunitary case.

52.2.4 Decomposition by Differential Coding

In closed-loop differential coding, the generic encoder structure (Fig. 52.1) is not valid as the quantizer
is placed inside a feedback loop. The decoder, however, behaves according to the generic decoder
structure. Basic block diagrams of a closed-loop differential encoder and the corresponding decoder
are shown in Figs. 52.9(a) and (b), respectively.

In the encoder, the input signal x is represented by the bit-stream b. Q is the quantizer and Q−1

the dequantizer, but QQ−1 6= 1, except for the case of infinite resolution in the quantizer. The
signal d , which is quantized and transmitted by some binary code, is the difference between the input
signal and a predicted value of the input signal based on previous outputs and a prediction filter with
transfer function G(z) = 1/(1−P(z)). Notice that the decoder is a substructure of the encoder, and
that x̃ = x in the limiting case of infinite quantizer resolution. The last property guarantees exact
representation when discarding quantization.

Introducing the inverse z-transform of G(z) as g(l), the reconstruction is performed on the
dequantized values as

x̃(l) =
∞∑

k=0

e(k)g(l − k) . (52.17)

The output is thus a linear combination of unit sample responses excited by the sample amplitudes
at different times and, can be viewed as a series expansion of the output signal. In this case, the basis
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FIGURE 52.9: (a) DPCM encoder. (b) DPCM decoder.

functions are generated by shifts of a single basis function [the unit sample response g(l)] and the
coefficients represent the coded difference signal e(n).

With an adaptive filter the basis function will vary slowly, depending on some spectral modification
derived from the incoming samples.

52.3 Quantization and Coding Strategies

Quantization is the means of providing approximations to signals and signal parameters by a finite
number of representation levels. This process is nonreversible and thus always introduces noise. The
representation levels constitute a finite alphabet which is usually represented by binary symbols, or
bits. The mapping from symbols in a finite alphabet to bits is not unique. Some important techniques
for quantization and coding will be reviewed next.

52.3.1 Scalar Quantization

The simplest quantizer is the scalar quantizer. It can be optimized to match the probability density
function (pdf) of the input signal.

A scalar quantizer maps a continuous variable x to a finite set according to the rule

x ∈ Ri H⇒ Q[x] = yi , (52.18)

where Ri = (xi, xi+1), i = 1, . . . , L, are nonoverlapping, contiguous intervals covering the real
line, and (·, ·) denotes open, half open, or closed intervals. {yi, i = 1, 2, . . . , L} are referred to
as representation levels or reconstruction values. The associated values {xi} defining the partition are
referred to as decision levels or decision thresholds. Fig. 52.10 depicts the representation and decision
levels.

FIGURE 52.10: Quantization notation.
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In a uniform quantizer, all intervals are of the same length and the representation levels are the
midpoints in each interval. Furthermore, in a uniform threshold quantizer, the decision levels form
a uniform partitioning of the real line, while the representation levels are the centroids (see below)
in each decision interval. Strictly speaking, uniform quantizers consist of an infinite number of
intervals. In practice, the number of intervals is adapted to the dynamic range of the signal. All other
quantizers are non-uniform.

The optimization task is to minimize the average distortion between the original samples and the
appropriate representation levels given the number of levels. This is the so-called pdf-optimized
quantizer. Allowing for variable rate per symbol, the entropy constrained quantizer can be used.
These schemes are described in the following two subsections.

The Lloyd-Max Quantizer

The Lloyd-Max quantizer is a scalar quantizer where the 1st order signal pdf is exploited to
increase the quantizer performance. It is therefore often referred to as a pdf-optimized quantizer. Each
signal sample is quantized using the same number of bits. The optimization is done by minimizing
the total distortion of a quantizer with a given number L of representation levels. For an input signal
X with pdf pX(x), the average mean square distortion is

D =
L∑

i=1

∫ xi+1

xi

(x − yi)
2pX(x)dx . (52.19)

Minimization of D leads to the following implicit expressions connecting the decision and repre-
sentation levels:

xk,opt = 1

2
(yk,opt + yk−1,opt ), k = 1, . . . , L − 1 (52.20)

x0,opt = −∞ (52.21)

xL,opt = ∞ (52.22)

yk,opt =
∫ xk+1,opt

xk,opt
xpX(x)dx∫ xk+1,opt

xk,opt
pX(x)dx

, k = 0, . . . , L − 1 . (52.23)

Equation 52.20 indicates that the decision levels should be the midpoints between neighboring
representation levels, while Eq. 52.23 requires that the optimal representation levels are the centroids
of the pdf in the appropriate interval.

The equations can be solved iteratively [21]. For high bit rates it is possible to derive approximate
formulas assuming that the signal pdf is flat within each quantization interval [21].

In most practical situations the pdf is not known, and the optimization is based on a training set.
This will be discussed in section 52.3.2.

Entropy Constrained Quantization

When minimizing the total distortion for a fixed number of possible representation levels,
we have tacitly assumed that every signal sample is coded using the same number of bits: log2 L

bits/sample. If we allow for a variable number of bits for coding each sample, a further rate-distortion
advantage is gained. TheLloyd-Maxsolution is thenno longeroptimal. Anewoptimization isneeded,
leading to the entropy constrained quantizer.

At high bit rates, the optimum is reached when using a uniform quantizer with an infinite number
of levels. At low bit rates, uniform quantizers perform close to optimum provided the representation
levels are selected as the centroids according to Eq. 52.23. The performance of the entropy constrained
quantizer is significantly better than the performance of the Lloyd-Max quantizer [21].
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A standard algorithm for assigning codewords of variable length to the representation levels was
given by Huffman [12]. The Huffman code will minimize the average rate for a given set of proba-
bilities and the resulting average bit rate will be close to the entropy bound. Even closer performance
to the bound is obtained by arithmetic coders [32].

At high bit rates, scalar quantization on statistically independent samples renders a bit rate which is
at least 0.255 bits/sample higher than the rate distortion bound irrespective of the signal pdf. Huffman
coding of the quantizer output typically gives a somewhat higher rate.

52.3.2 Vector Quantization

Simultaneous quantization of several samples is referred to as vector quantization (VQ) [9], as men-
tioned in the introductory section. VQ is a generalization of scalar quantization:

A vector quantizer maps a continuous N-dimensional vector x to a discrete-valued N-dimensional
vector according to the rule

x ∈ Ci H⇒ Q[x] = yi , (52.24)

where Ci is an N-dimensional cell. The L possible cells are nonoverlapping and contiguous and
fill the entire geometric space. The vectors {yi} correspond to the representation levels in a scalar
quantizer. In a VQ setting the collection of representation levels is referred to as the codebook. The
cells Ci , also called Voronoi regions, correspond to the decision regions, and can be thought of as solid
polygons in the N-dimensional space.

In the scalar case, it is trivial to test if a signal sample belongs to a given interval. In VQ an indirect
approach is utilized via a fidelity criterion or distortion measure d(·, ·):

Q[x] = yi ⇐⇒ d(x, yi ) ≤ d(x, yj ), j = 0, . . . , L − 1 . (52.25)

When the best match, yi , has been found, the index i identifies that vector and is therefore coded
as an efficient representation of the vector. The receiver can then reconstruct the vector yi by looking
up the contents of cell number i in a copy of the codebook. Thus, the bit rate in bits per sample in
this scheme is log2 L/N when using straightforward bit-representation for i. A block diagram of
vector quantization is shown in Fig. 52.11.

FIGURE 52.11: Vector quantization procedure.
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In the previous section we stated that scalar entropy coding was sub-optimal, even for sources
producing independent samples. The reason for the sub-optimal performance of the entropy con-
strained quantizer is a phenomenon called sphere packing. In addition to obtaining good sphere
packing, a VQ scheme also exploits both correlation and higher order statistical dependencies of a
signal. The higher order statistical dependency can be thought of as “a preference for certain vectors”.
Excellent examples of sphere packing and higher order statistical dependencies can be found in [28].

In principle, the codebook design is based on the N-dimensional pdf. But as the pdf is usually not
known, the codebook is optimized from a training data set. This set consists of a large number of
vectors that are representative for the signal source. A sub-optimal codebook can then be designed
using an iterative algorithm, for example the K-means or LBG algorithm [25].

Multistage Vector Quantization

To alleviate the complexity problems of vector quantization, several methods have been sug-
gested. They all introduce some structure into the codebook which makes fast search possible. Some
systems also reduce storage requirements, like the one we present in this subsection. The obtainable
performance is always reduced, but the performance in an implementable coder can be improved.

Fig. 52.12 illustrates the encoder structure.

FIGURE 52.12: K-stage VQ encoder structure showing the successive approximation of the signal
vector.

The first block in the encoder makes a rough approximation to the input vector by selecting
the codebook vector which, upon scaling by e1, is closest in some distortion measure. Then this
approximation is subtracted from the input signal. In the second stage, the difference signal is
approximated by a vector from the second codebook scaled by e2. This procedure continues in K

stages, and can be thought of as a successive approximation to the input vector. The indices {i(k), k =
1, 2, · · · , K} are transmitted as part of the code for the particular vector under consideration.

Compared to unstructured VQ, this method is suboptimal but has a much lower complexity than
the optimal case due to the small codebooks that can be used.

A special case is the mean-gain-shape VQ [9], where one stage only is kept, but in addition the
mean is represented separately.

In all multistage VQs, the code consists of the codebook address and codes for the quantized
versions of the scaling coefficients.

52.3.3 Efficient Use of Bit-Resources

Assume we have a signal that can be split in classes with different statistics. As an example, after
applying signal decomposition, the different transform coefficients typically have different variances.
Assume also that we have a pool of bits to be used for representing a collection of signal vectors from
the different classes, or we try to minimize the number of bits to be used after all signals have been
quantized. These two situations are described below.
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Bit Allocation

Assume that a signal consists of N components {xi, i = 1, 2, · · · , N} forming a vector x where
the variance of component number i is equal to σ 2

xi
and all components are zero mean.

Wewant toquantize thevectorx using scalarquantizationoneachof the components andminimize
the total distortion with the only constraint that the total number of bits to be used for the whole
vector be fixed and equal to B. Denoting the quantized signal components Qi(xi), the average
distortion per component can be written as

DDS = 1

N

N∑
i=1

E[xi − Qi(xi)]2 = 1

N

N∑
i=1

Di , (52.26)

where E[ · ] is the expectation operator, and the subscript DS stands for decomposed source.
The bit-constraint is given by

B =
N∑

i=1

bi , (52.27)

where bi is the number of bits used to quantize component number i.
Minimizing DDS with Eq. 52.27 as a constraint, we obtain the following bit assignment

bj = B

N
+ 1

2
log2

σ 2
xj[∏N

n=1 σ 2
xn

]1/N
. (52.28)

This formula will in general render noninteger and even negative values of the bit count. So-called
“greedy” algorithms can be used to avoid this problem.

To evaluate the coder performance, we use coding gain. It is defined as the distortion advantage of
the component-wise quantization over a direct scalar quantization at the same rate. For the example
at hand, the coding gain is found to be

GDS =
1
N

∑N
j=1 σ 2

xj

(
∏N

j=1 σ 2
nj

)1/N
. (52.29)

The gain is equal to the ratio between the arithmetic mean and the geometric mean of the component
variances. The minimum value of the variance ratio is equal to 1when all the component variances are
equal. Otherwise, the gain is larger than one. Using the optimal bit allocation, the noise contribution
is equal in all components.

If we assume that the different components are obtained by passing the signal through a bank
of bandpass filters, then the variance from one band is given by the integral of the power spectral
density over that band. If the process is non-white, the variances are more different the more colored
the original spectrum is. The maximum possible gain is obtained when the number of bands tends
to infinity [21]. Then the gain is equal to the maximum gain of a differential coder which again is
inversely proportional to the spectral flatness measure [21] given by

γ 2
x = exp[∫ π

−π
ln Sxx(e

jω) dω
2π

]∫ π

−π
Sxx(ejω) dω

2π

, (52.30)

where Sxx(e
jω) is the spectral density of the input signal. In both subband coding and differential

coding, the complexity of the systems must approach infinity to reach the coding gain limit.
To be able to apply bit allocation dynamically to non-stationary sources, the decoder must receive

information about the local bit allocation. This can be done either by transmitting the bit allocation
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table, or the variances from which the bit allocation was derived. For real images where the statistics
vary rapidly, the cost of transmitting the side information may become costly, especially for low rate
coders.

Rate Allocation

Assume we have the same signal collection as above. This time we want to minimize the number
of bits to be used after the signal components have been quantized. The first order entropy of the
decomposed source will be selected as the measure for the obtainable minimum bit-rate when scalar
representation is specified.

To simplify, assume all signal components are Gaussian. The entropy of a Gaussian source with
zero mean and variance σ 2

x and statistically independent samples quantized by a uniform quantizer
with quantization interval 1 can, for high rates, be approximated by

HG(X) = 1

2
log2(2πe(σx/1)2) . (52.31)

The ratedifference [24]betweendirect scalarquantizationof the signal collectionusingoneentropy
coder and the rate when using an adapted entropy coder for each component is

1H = HPCM − HDS = 1

2
log2

σ 2
x

[∏N
i=1 σ 2

xi
]1/N

, (52.32)

provided the decomposition is power conserving, meaning that

σ 2
x =

N∑
i=1

σ 2
xi

. (52.33)

The coding gain in Eq. 52.29 and the rate gain in Eq. 52.32 are equivalent for Gaussian sources.
In order to exploit this result in conjunction with signal decomposition, we can view each output

component as a stationary source, each with different signal statistics. The variances will depend on
the spectrum of the input signal. From Eq. 52.32 and Eq. 52.33 we see that the rate difference is larger
the more different the channel variances are.

To obtain the rate gain indicated by Eq. 52.32, different Huffman or arithmetic coders [9] adapted
to the rate given in Eq. 52.31 must be employed. In practice, a pool of such coders should be generated
and stored. During encoding, the closest fitting coder is chosen for each block of components. An
index indicating which coder was used is transmitted as side information to enable the decoder to
reinterpret the received code.

52.4 Frequency Domain Coders

In this section we present the JPEG standard and some of the best subband coders that have been
presented in the literature.

52.4.1 The JPEG Standard

The JPEG coder [37] is the only internationally standardized still image coding method. Presently
there is an international effort to bring forth a new, improved standard under the title JPEG2000.

The principle can be sketched as follows: First, the image is decomposed using a two-dimensional
cosine transform of size 8 × 8. Then, the transform coefficients are arranged in an 8 × 8 matrix
as given in Fig. 52.13, where i and j are the horizontal and vertical frequency indices, respectively.
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A vector is formed by a scanning sequence which is chosen to make large amplitudes, on average,
appear first, and smaller amplitudes at the end of the scan. In this arrangement, the samples at the
end of the scan string approach zero. The scan vector is quantized in a non-uniform scalar quantizer
with characteristics as depicted in Fig. 52.14.

FIGURE 52.13: Zig-zag scanning of the coefficient matrix.

FIGURE 52.14: Non-uniform quantizer characteristic obtained by combining a midtread uniform
quantizer and a thresholder. 1 is the quantization interval and T is the threshold.

Due to the thresholder, many of the trailing coefficients in the scan vector are set to zero. Often the
zero values appear in clusters. This property is exploited by using runlength coding, which basically
amounts to finding zero-runs. After runlength coding, each run is represented by a number pair
(a, r) where the number a is the amplitude and r is the length of the run. Finally, the number pair
is entropy coded using the Huffman method, or arithmetic coding.

The thresholding will increase the distortion and lower the entropy both with and without decom-
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position, although not necessarily with the same amounts.
As can be observed from Fig. 52.13, the coefficient in position (0,0) is not part of the string. This

coefficient represents the block average. After collecting all block averages in one image, this image
is coded using a DPCM scheme [37].

Coding results for three images are given in Fig. 52.16.

52.4.2 Improved Coders: State-of-the-Art

Many coders that outperform JPEG have been presented in the scientific literature. Most of these
are based on subband decomposition (or the special case: wavelet decomposition). Subband coders
have a higher potential coding gain by using filter banks rather than transforms, and thus exploiting
correlations over larger image areas. Figure 52.8 shows the theoretical gain for a stochastic image
model. Visually, subband coders can avoid the blocking-effects experienced in transform coders
at low bit-rates. This property is due to the overlap in basis functions in subband coders. On the
other hand, Gibb’s phenomenon is more prevalent in subband coders and can cause severe ringing
in homogeneous areas close to edges. The detailed choice and optimization of the filter bank will
strongly influence the visual performance of subband coders. The other factor which decides the
codingquality is thedetailedquantizationof the subbandsignals. Thefinalbit-representationmethod
does not effect the quality, only the rate for a given quality.

Depending on the bit-representation, the total rate can be preset for some coders, and will depend
on some quality factor specified for other coders. Even though it would be desirable to preset the
visual quality in a coder, this is a challenging task, which has not yet been satisfactorily solved.

In the following we present four subband coders with different coding schemes and different filter
banks.

Subband Coder Based on Entropy Coder Allocation [24]

This coder uses an 8 × 8 uniform filter bank optimized for reducing blocking and ringing
artifacts, plus maximizing the coding gain [1]. The lowpass-lowpass band is quantized using a fixed
rate DPCM coder with a third-order two-dimensional predictor. The other subband signals are
segmented into blocks of size 4×4, and each block is classified based on the block power. Depending
on the block power, each block is allocated a corresponding entropy coder (implemented as an
arithmetic coder). The entropy coders have been preoptimized by minimizing the first-order entropy
given the number of available entropy coders (See section 52.3.3). This number is selected to balance
the amount of side information necessary in the decoder to identify the correct entropy decoder and
the gain by using more entropy coders. Depending on the bit-rate, the number of entropy coders is
typically 3 to 5. In the presented results, three arithmetic coders are used. Conditional arithmetic
coding has been used to represent the side information efficiently.

Coding results are presented in Fig. 52.16 under the name “Lervik”.

Zero-Tree Coding

Shapiro [35] introduced a method that exploits some dependency between pixels in corre-
sponding location in the bands of an octave band filter bank. The basic assumed dependencies are
illustrated in Fig. 52.15. The low-pass band is coded separately. Starting in any location in any of
the other three bands of same size, any pixel will have an increasing number of descendants as one
passes down the tree representing information from the same location in the original image. The
number of corresponding pixels increases by a factor of four from one level to the next. When used
in a coding context, the tree is terminated at any zero-valued pixel (obtained after quantization using
some threshold) after which all subsequent pixels are assumed to be zero as well. Due to the growth
by a factor of four between levels, many samples can be discarded this way.
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FIGURE 52.15: Zero-tree arrangement in an octave-band decomposed image.

What is the underlying mechanism that makes this technique work so well? On one hand, the
image spectrum falls off rapidly as a function of frequency for most images. This means that there
is a tendency to have many zeros when approaching the leaves of the tree. Our visual system is
furthermore more tolerant to high frequency errors. This should be compared to the zig-zag scan in
the JPEGcoder. On theotherhand, viewed fromapure statistical angle, the subbands areuncorrelated
if the filter bank has done what is required from it! However, the statistical argument is based on
the assumption of “local ergodicity”, which means that statistical parameters derived locally from
the data have the same mean values everywhere. With real images composed of objects with edges,
textures, etc. these assumptions do not hold. The “activity” in the subbands tends to appear in the
same locations. This is typical at edges. One can look at these connections as energy correlations
among the subbands. The zero-tree method will efficiently cope with these types of phenomena.

Shapiro furthermore combined the zero-tree representation with bit-plane coding. Said [34] went
one step further and introduced what he calls set partitioning. The resulting algorithm is simple
and fast, and is embedded in the sense that the bit-stream can be cut off at any point in time in the
decoder, and the obtained approximation is optimal using that number of bits. The subbands are
obtained using the 9/7 biorthogonal spline filters [38].

Coding results from Said’s coder are shown in Fig. 52.16 and marked “Said”.

Pyramid VQ and Improved Filter Bank

This coder is based on bit-allocation, or rather, allocation of vector quantizers of different
sizes. This implies that the coder is fixed rate, that is, we can preset the total number of bits for an
image. It is assumed that the subband signals have a Laplacian distribution, which makes it possible
to apply pyramid vector quantizers [6]. These are suboptimal compared to trained codebook vector
quantizers, but significantlybetter than scalar quantizerswithout increasing the complexity toomuch.

The signal decomposition in the encoder is performed using an 8 × 8 channel uniform filter
bank [1], followed by an octave-band filter bank of three stages operating on the resulting lowpass-
lowpass band. The uniform filter bank is nonunitary and optimized for coding gain. The building
blocks of the octave band filter bank have been carefully selected from all available perfect recon-
struction, two-channel filter systems with limited FIR filter orders.

Coding results from this coder are shown in Figs. 52.16 and are marked “Balasingham”.
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Trellis Coded Quantization

Joshi [22] has presented what is presently the “state-of-the-art” coder. Being based on trellis
coded quantization [29], the encoder is more complex than the other coders presented. Furthermore,
it does not have the embedded character of Said’s coder.

The filter bank employed has 22 subbands. This is obtained by first employing a 4×4uniform filter
bank, followed by a further split of the resulting lowpass-lowpass band using a two-stage octave band
filter bank. All filters in the curves shown in the next section are 9/7 biorthogonal spline filters [38].

The encoding of the subbands is performed in several stages:

• Separate classification of signal blocks in each band.

• Rate allocation among all blocks.

• Individual arithmetic coding of the trellis-coded quantized signals in each class.

The trellis coded quantization [7] is a method that can reach the rate distortion bound in the same
way as vector quantization. It uses search methods in the encoder, which adds to its complexity. The
decoder is much simpler.

Coding results from this coder are shown in Fig. 52.16 and are marked “Joshi”.

Frequency Domain Coding Results

The five coders presented above are compared in this section. All of them are simulated using
the three images “Lenna”, “Barbara”, and “Goldhill” of size 512 × 512. These three images have quite
different contents in terms of spectrum, textures, edges, and so on. Fig. 52.16 shows the PSNR as a
function of bit-rate for the five coders. The PSNR is defined as

PSNR = 10 log10




2552

1
NM

N∑
n=1

M∑
m=1

(x(n, m) − x̂(n, m))2


 . (52.34)

As is observed, the coding quality among the coders varies when exposed to such different stimuli.
The exception is that all subband coders are superior to JPEG, which was expected from the use of
better decomposition as well as more clever quantization and coding strategies. Joshi’s coder is best
for “Lenna” and “Goldhill” at high rates. Balasingham’s coder is, however, better for “Barbara” and
for “Goldhill” at low rates. These results are interpreted as follows. The Joshi coder uses the most
elaborate quantization/coding scheme, but the Balasingham coder applies a better filter bank in two
respects. First, it has better high frequency resolution, which explains that the “Barbara” image, with
a relatively high frequency content, gives a better result for the latter coder. Second, the improved
low frequency resolution of this filter bank also implies better coding at low rates for “Goldhill”.

From the results above, it is also observed that the Joshi coder performs well for images with a
lowpass character such as the “Lenna” image, especially at low rates. In these cases there are many
“zeros” to be represented, and the zero-tree coding can typically cope well with zero-representations.

A combination of several of the aforementioned coders, picking up their best components, would
probably render an improved system.

52.5 Fractal Coding

This section is placed towards the end of the chapter because fractal coding deviates in many respects
fromthegeneric coderon theonehand, buton theotherhandcanbecompared tovectorquantization.
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FIGURE 52.16: Coding results. Top: “Lenna”, middle: “Barbara”, bottom: “Goldhill”.
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A good overview of the field can be found in [8].
Fractal coding (also called attractor coding) is based on Banach’s fixed point theorem and exploits

self-similarity or partial self-similarity among different scales of a given image. A nonlinear transform
gives the fractal image representation. Iterative operations using this transform starting from any
initial image will converge to the image approximation, called the attractor. The success of such a
scheme will rest upon the compactness, in terms of bits, of the description of the nonlinear transform.
A classical example of self-similarity is Michael Barnsley’s fern, where each branch is a small copy
of the complete fern. Even the branches are composed of small copies of itself. A very compact
description can be found for the class of images exhibiting self similarity. In fact, the fern can be
described by 24 numbers, according to Barnsley.

Self-similarity is a dependency among image elements (possibly objects) that is not described by
correlation, but can be called affine correlation.

There is an enormous potential for image compression if images really have the self-similarity
property. However, there seems to be no reason to believe that global self-similarity exists in any
complex image created, e.g., by photographing natural or man-made scenes. The less requiring
notion of partial self-similarity among image blocks of different scales has proven to be fruitful [19].

In this section we will, in fact, present a practical fractal coder exploiting partial self-similarity
among different scales, which can be directly compared to mean-gain-shape vector quantization
(MGSVQ). The difference between the two systems is that the vector quantizer uses an optimized
codebook based on data from a large collection of different images, whereas the fractal coder uses
a self codebook, in the sense that the codebook is generated from the image itself and implicitly and
approximately transmitted to the receiver as part of the image code. The question is then, “Is the
‘adaptive’ nature of the fractal codebook better than the statistically optimized codebook of standard
vector quantization?”

We will also comment on other models and give a brief status of fractal compression techniques.

52.5.1 Mathematical Background

The code of an image in the language of fractal coding is given as the bit-representation of a nonlinear
transform T . The transform defines what is called the collage xc of the image. The collage is found
by

xc = T x ,

where x is the original image.
The collage is the object we try to make resemble the image as closely as possible in the encoder

through minimization of the distortion function

D = d(x, xc) . (52.35)

Usually the distortion function is chosen as the Euclidean distance between the two vectors. The
decoder cannot reconstruct the collage as it depends on the knowledge of the original image, and not
only the transform T . We therefore have to accept reconstruction of the image with less accuracy.

The reconstruction algorithm is based on Banach’s fixed point theorem: If a transform T is con-
tractive or eventually contractive [26], the fixed point theorem states that the transform then has a
unique attractor or fixed point given by

xT = T xT , (52.36)

and that the fixed point can be approached by iteration from any starting vector according to

xT = lim
n→∞ T ny; ∀y ∈ X , (52.37)
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where X is a normed linear space.
The similarity between the collage and the attractor is indicated from an extended version of the

collage theorem [27]:
Given an original image x and its collage T x where ‖x − T x‖ ≤ ε, then

‖x − xT ‖ ≤ 1 − sK
1

(1 − s1)(1 − sK)
ε (52.38)

where s1 and sK are the Lipschitz constants of T and T K , respectively, provided |s1| < 1 and |sK | < 1.
Provided the collage is a good approximation of the original image and the Lipschitz constants are

small enough, there will also be similarity between the original image and the attractor.
In the special case of fractal block coding, a given image block (usually called a domain block) is

supposed to resemble another block (usually called a range block) after some affine transformation.
The transformation that is most commonly used moves the image block to a different position while
shrinking the block, rotating it or shuffling the pixels, and adding what we denote a fixed term, which
could be some predefined function with possible parameters to be decided in the encoding process.
In most natural images it is not difficult to find affine similarity, e.g., in the form of objects situated at
different distances and positions in relation to the camera. In standard block coding methods, only
local statistical dependencies can be utilized. The inclusion of affine redundancies should therefore
offer some extra advantage.

In this formalism we do not see much resemblance with VQ. However, the similarities and differ-
ences between fractal coding and VQ were pointed out already in the original work by Jacquin [20].
We shall, in the following section, present a specific model that enforces further similarity to VQ.

52.5.2 Mean-Gain-Shape Attractor Coding

It has been proven [31] that in all cases where each domain block is a union of range blocks, the
decoding algorithms for sampled images where the nonlinear part (fixed term) of the transform is
orthogonal to the image transformed by the linear part, full convergence is reached after a finite and
small number of iterations. In one special case there are no iterations at all [31], and then xT = T x.
We shall discuss only this important case here because it has an important application potential due
to its simplicity in the decoder, but, more importantly, we can more clearly demonstrate the similarity
to VQ.

Codebook Formation

In the encoder two tasks have to be performed, the codebook formation and the codebook
search, to find the best representation of the transform T with as few bits as possible.

First the image is split in non-overlapping blocks of size L × L so that the complete image is
covered.

The codebook construction goes as follows:

• Calculate the mean value m in each block.

• Quantize the mean values, resulting in the approximation m̂, and transmit their code to
the receiver.
These values will serve two purposes:

1. They are the additive, nonlinear terms in the block transform.

2. They are the building elements for the codebook.

All the following steps must be performed both in the encoder and the decoder.
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• Organize the quantized mean values as an image so that it becomes a block averaged and
downsampled version of the original image.

• Pick blocks of size L × L in the obtained image. Overlap between blocks is possible.

• Remove the mean values from each block. The resulting blocks constitute part of the
codebook.

• Generate new codebook vectors by a predetermined set of mathematical operations
(mainly pixel shuffling).

With the procedure given, the codebook is explicitly known in the decoder, because the mean
values also act as the nonlinear part of the affine transforms. The codebook vectors are orthogonal
to the nonlinear term due to the mean value removal.

Observe also that the block decimation in the encoder must now be chosen as L×L, which is also
the size of the blocks to be coded.

The Encoder

The actual encoding is similar to traditional product code VQ.
In our particular case, the image block in position (k, l) is modeled as

x̂k,l = m̂k,l + α̂k,lρ
(i) , (52.39)

where m̂k,l is the quantized mean value of the block, ρ(i) is codebook vector number i, and α̂k,l is a
quantized scaling factor.

To optimize the parameters, we minimize the Euclidean distance between the image block and the
given approximation,

d = ‖xk,l − x̂k,l‖ . (52.40)

This minimization is equivalent to the maximization of

P (i) = 〈xk,l, ρ
(i)〉2

‖ρ(i)‖2
, (52.41)

where 〈u, v〉denotes the inner product betweenu andv over one block. If vector number j maximizes
P , then the scaling factor can be calculated as

αk,l = 〈xk,l, ρ
(j)〉

‖ρ(j)‖2
. (52.42)

The Decoder

In the decoder, the codebook can be regenerated, as previously described, from the mean
values. The decoder reconstructs each block according to Eq. 52.39 using the transmitted, quantized
parameters. In the particular case given above, the following procedure is followed:

Denote by c an image composed of subblocks of size L×L which contains the correct mean values.
The decoding is then performed by

x1 = T c = Ac + c , (52.43)

where A is the linear part of the transform. The operation of A can be described blockwise.

• It takes a block from c of size L2 × L2,

• shrinks it to size L × L after averaging over subblocks of size L × L,

• subtracts from the resulting block its mean value,
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• performs the prescribed pixel shuffling,

• multiplies by the scaling coefficient,

• and finally inserts the resulting block in the correct position.

Notice that x1 has the correct mean value due to c, and because Ac does not contribute to the block
mean values. Another observation is that each block of size L × L is mapped to one pixel.

The algorithm just described is equivalent to the VQ decoding given earlier.
The iterative algorithm indicated by Banach’s fixed point theorem can be used also in this case.

The above described algorithm is the first iteration. In the next iteration we get

x2 = Ax1 + c = A(Ac) + Ac + c . (52.44)

But A(Ac) = 0 because A and Ac are orthogonal, therefore x2 = x1. The iteration can, of course,
be continued without changing the result. Note also that Ac = Ax, where x is the original image!

We will stress the important fact that as the attractor and the collage are equivalent in the nonit-
erative case, we have direct control of the attractor, unlike any other fractal coding method.

Experimental Comparisons with the Performance of MSGVQ

It is difficult to conclude from theory alone as to the performance of the attractor coder model.
Experiments indicate, however, that for this particular fractal coder the performance is always worse
than for the VQ with optimized codebook for all images tested [23]. The adaptivity of the self
codebook, does not seem to outcompete the VQ codebook which is optimal in a statistical sense.

52.5.3 Discussion

The above model is severely constrained through the required relation between the block size (L×L)
and the decimation factor (alsoL×L). Better coding results are obtained by using smaller decimation
factors, typically 2 × 2.

Even with small decimation factors, no pure fractal coding technique has, in general, been shown
to outperform vector quantization of similar complexity.

However, fractal methods have potential in hybrid block coding. It can efficiently represent edges
and other deterministic structures where a shrunken version of another block is likely to resemble the
block we are trying to represent. For instance, edges tend to be edges also after decimation. On the
other hand, many textures can be hard to represent, as the decimation process requires that another
texture with different frequency contents be present in the image to make a good approximation.

Using several block coding methods, where for each block the best method in a distortion-rate
sense is selected, has been proven to give good coding performance [5, 10].

On the practical side, the fractal encoders have a very high complexity. Several methods have been
suggested to alleviate this problem. These methods include limited search regions in the vicinity of
the block to be coded, clustering of codebook vectors, and hierarchical search at different resolutions.

The iteration-free decoder is one of the fastest decoders obtainable for any coding method.

52.6 Color Coding

Any color image can be split in three color components and thereafter coded individually for each
component. If this is done on the RGB (Red, Green, Blue) components, the bit rate tends to be
approximately three times as high as for black and white images.

However, there are many other ways of decomposing the colors. The most used representations
split the image in a luminance component and two chrominance components. Examples are so-called
YUV and YIQ representations. One rationale for doing this kind of splitting is that the human visual
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system has different resolution for luminance and chrominance. The chrominance sampling can
therefore be performed at a lower resolution, from two to eight times lower resolution depending on
the desired quality and the interpolation method used to reconstruct the image. A second rationale
is that the RGB components in most images are strongly correlated and therefore direct coding of the
RGB components results in repeated coding of the same information. The luminance/chrominance
representations try to decorrelate the components.

The transform between RGB and the luminance and chrominance components (YIQ) used in
NTSC is given by 

 Y

I

Q


 =


 0.299 0.587 0.114

0.596 −0.274 −0.322
0.058 −0.523 0.896





 R

G

B


 . (52.45)

There are only minor differences between the suggested color transforms. It is also possible to design
the optimal decomposition based on the Karhunen-Loève transform. The method could be made
adaptive by deriving a new transform for each image based on an estimated color correlation matrix.

We shall not go further into the color coding problem, but state that it is possible to represent color
by adding 10 to 20% to the luminance component bit rate.
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53.1 Introduction

Digital images and video, acquired by still cameras, consumer camcorders, or even broadcast-quality
video cameras, are usually degraded by some amount of blur and noise. In addition, most electronic
camerashave limitedspatial resolutiondeterminedby thecharacteristicsof the sensorarray. Common
causes of blur are out-of-focus, relative motion, and atmospheric turbulence. Noise sources include
film grain, thermal, electronic, and quantization noise. Further, many image sensors and media have
known nonlinear input-output characteristics which can be represented as point nonlinearities. The
goal of image and video (image sequence) restoration is to estimate each image (frame or field) as it
would appear without any degradations, by first modeling the degradation process, and then applying
an inverse procedure. This is distinct from image enhancement techniques which are designed to
manipulate an image in order to produce more pleasing results to an observer without making
use of particular degradation models. On the other hand, superresolution refers to estimating an
image at a resolution higher than that of the imaging sensor. Image sequence filtering (restoration
and superresolution) becomes especially important when still images from video are desired. This
is because the blur and noise can become rather objectionable when observing a “freeze-frame”,
although they may not be visible to the human eye at the usual frame rates. Since many video signals
encountered in practice are interlaced, we address the cases of both progressive and interlaced video.
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The problem of image restoration has sparked widespread interest in the signal processing commu-
nity over the past 20 or 30 years. Because image restoration is essentially an ill-posed inverse problem
which is also frequently encountered in various other disciplines such as geophysics, astronomy, med-
ical imaging, and computer vision, the literature that is related to image restoration is abundant. A
concise discussion of early results can be found in the books by Andrews and Hunt [1] and Gonzalez
and Woods [2]. More recent developments are summarized in the book by Katsaggelos [3], and re-
view papers by Meinel [4], Demoment [5], Sezan and Tekalp [6], and Kaufman and Tekalp [7]. Most
recently, printing high-quality still images from video sources has become an important application
for multi-frame restoration and superresolution methods. An in-depth coverage of video filtering
methods can be found in the book Digital Video Processing by Tekalp [8]. This chapter summarizes
key results in digital image and video restoration.

53.2 Modeling

Every image restoration/superresolution algorithm is based on an observation model, which relates
the observed degraded image(s) to the desired “ideal” image, and possibly a regularization model,
which conveys the available a priori information about the ideal image. The success of image restora-
tion and/or superresolution depends on how good the assumed mathematical models fit the actual
application.

53.2.1 Intra-Frame Observation Model

Let the observed and ideal images be sampled on the same 2-D lattice 3. Then, the observed blurred
and noisy image can be modeled as

g = s(Df ) + v (53.1)

where g, f , and v denote vectors representing lexicographical ordering of the samples of the observed
image, ideal image, and a particular realization of the additive (random) noise process, respectively.
The operator D is called the blur operator. The response of the image sensor to light intensity is
represented by the memoryless mapping s(·), which is, in general, nonlinear. (This nonlinearity has
often been ignored in the literature for algorithm development.)

The blur may be space-invariant or space-variant. For space-invariant blurs, D becomes a convo-
lution operator, which has block-Toeplitz structure; and Eq. (53.1) can be expressed, in scalar form,
as

g (n1, n2) = s


 ∑

(m1,m2)∈Sd

d (m1, m2) f (n1 − m1, n2 − m2)


 + v (n1, n2) (53.2)

where d(m1, m2) and Sd denote the kernel and support of the operator D, respectively. The kernel
d(m1, m2) is the impulse response of the blurring system, often called the point spread function
(PSF). In case of space-variant blurs, the operator D does not have a particular structure; and the
observation equation can be expressed as a superposition summation

g (n1, n2) = s


 ∑

(m1,m2)∈Sd (n1,n2)

d (n1, n2; m1, m2) f (m1, m2)


 + v (n1, n2) (53.3)

where Sd(n1, n2) denotes the support of the PSF at the pixel location (n1, n2).
The noise is usually approximated by a zero-mean, white Gaussian random field which is additive

and independent of the image signal. In fact, it has been generally accepted that more sophisticated
noise models do not, in general, lead to significantly improved restorations.
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53.2.2 Multispectral Observation Model

Multispectral images refer to image data with multiple spectral bands that exhibit inter-band cor-
relations. An important class of multispectral images are color images with three spectral bands.
Suppose we have K spectral bands, each blurred by possibly a different PSF. Then, the vector-matrix
model (53.1) can be extended to multispectral modeling as

g = Df + v (53.4)

where

g
.=




g1
...

gK


 , f

.=



f 1
...

f K


 , v

.=



v1
...

vK




denote N2K × 1 vectors representing the multispectral observed, ideal, and noise data, respectively,
stacked as composite vectors, and

D .=



D11 · · · D1K

...
. . .

...

DK1 · · · DKK




is an N2K × N2K matrix representing the multispectral blur operator. In most applications, D is
block diagonal, indicating no inter-band blurring.

53.2.3 Multiframe Observation Model

Suppose a sequence of blurred and noisy imagesgk(n1, n2), k = 1, . . . , L, corresponding to multiple
shots (from different angles) of a static scene sampled on a 2-D lattice or frames (fields) of video
sampled (at different times) on a 3-D progressive (interlaced) lattice, is available. Then, we may
be able to estimate a higher-resolution “ideal” still image f (m1, m2) (corresponding to one of the
observed frames) sampled on a lattice, which has a higher sampling density than that of the input
lattice. The main distinction between the multispectral and multiframe observation models is that
here the observed images are subject to sub-pixel shifts (motion), possibly space-varying, which
makes high-resolution reconstruction possible. In the case of video, we may also model blurring due
to motion within the aperture time to further sharpen images.

To this effect, each observed image (frame or field) can be related to the desired high-resolution
ideal still-image through the superposition summation [8]

gk (n1, n2) = s


 ∑

(m1,m2)∈Sd (n1,n2;k)

dk (n1, n2; m1, m2) f (m1, m2)


 + vk (n1, n2) (53.5)

where the support of the summation over the high-resolution grid (m1, m2) at a particular observed
pixel (n1, n2; k) depends on the motion trajectory connecting the pixel (n1, n2; k) to the ideal image,
the size of the support of the low-resolution sensor PSF ha(x1, x2) with respect to the high resolution
grid, and whether there is additional optical (out-of-focus, motion, etc.) blur. Because the relative
positions of low- and high-resolution pixels in general vary by spatial coordinates, the discrete sensor
PSF is space-varying. The support of the space-varying PSF is indicated by the shaded area in Fig. 53.1,
where the rectangle depicted by solid lines shows the support of a low-resolution pixel over the high-
resolution sensor array. The shaded region corresponds to the area swept by the low-resolution pixel
due to motion during the aperture time [8].
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FIGURE 53.1: Illustration of the discrete system PSF.

Note that the model (53.5) is invalid in case of occlusion. That is, each observed pixel (n1, n2; k)

can be expressed as a linear combination of several desired high-resolution pixels (m1, m2), provided
that (n1, n2; k) is connected to (m1, m2) by a motion trajectory. We assume that occlusion regions
can be detected a priori using a proper motion estimation/segmentation algorithm.

53.2.4 Regularization Models

Restoration is an ill-posedproblemwhichcanbe regularizedbymodeling certainaspectsof thedesired
“ideal” image. Images can be modeled as either 2-D deterministic sequences or random fields. A
priori information about the ideal image can then be used to define hard or soft constraints on the
solution. In the deterministic case, images are usually assumed to be members of an appropriate
Hilbert space, such as a Euclidean space with the usual inner product and norm. For example, in the
context of set theoretic restoration, the solution can be restricted to be a member of a set consisting
of all images satisfying a certain smoothness criterion [9]. On the other hand, constrained least
squares (CLS) and Tikhonov-Miller regularization use quadratic functionals to impose smoothness
constraints in an optimization framework.

In the random case, models have been developed for the pdf of the ideal image in the context of
maximum a posteriori (MAP) image restoration. For example, Trussell and Hunt [10] have proposed
a Gaussian distribution with space-varying mean and stationary covariance as a model for the pdf
of the image. Geman and Geman [11] proposed a Gibbs distribution to model the pdf of the image.
Alternatively, if the image is assumed to be a realization of a homogeneous Gauss-Markov random
process, then it can be statistically modeled through an autoregressive (AR) difference equation [12]

f (n1, n2) =
∑

(m1,m2)∈Sc

c (m1, m2) f (n1 − m1, n2 − m2) + w (n1, n2) (53.6)

where {c(m1, m2) : (m1, m2) ∈ Sc} denote the model coefficients, Sc is the model support (which
may be causal, semi-causal, or non-causal), and w(n1, n2) represents the modeling error which is
Gaussian distributed. The model coefficients can be determined such that the modeling error has
minimum variance [12]. Extensions of (53.6) to inhomogeneous Gauss-Markov fields was proposed
by Jeng and Woods [13].

53.3 Model Parameter Estimation

In this section, we discuss methods for estimating the parameters that are involved in the observation
and regularization models for subsequent use in the restoration algorithms.
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53.3.1 Blur Identification

Blur identification refers to estimation of both the support and parameters of the PSF {d(n1, n2) :
(n1, n2) ∈ Sd}. It is a crucial element of image restoration because the quality of restored images is
highly sensitive to errors in the PSF [14]. An early approach to blur identification has been based on
the assumption that the original scene contains an ideal point source, and that its spread (hence the
PSF) can be determined from the observed image. Rosenfeld and Kak [15] show that the PSF can
also be determined from an ideal line source. These approaches are of limited use in practice because
a scene, in general, does not contain an ideal point or line source and the observation noise may not
allow the measurement of a useful spread.

Models for certain types of PSF can be derived using principles of optics, if the source of the
blur is known [7]. For example, out-of-focus and motion blur PSF can be parameterized with a few
parameters. Further, they are completely characterizedby their zeros in the frequency-domain. Power
spectrum and cepstrum (Fourier transform of the logarithm of the power spectrum) analysis methods
have been successfully applied in many cases to identify the location of these zero-crossings [16, 17].
Alternatively, Chang et al. [18] proposed a bispectrum analysis method, which is motivated by the
fact that bispectrum is not affected, in principle, by the observation noise. However, the bispectral
method requires much more data than the method based on the power spectrum. Note that PSFs,
which do not have zero crossings in the frequency domain (e.g., Gaussian PSF modeling atmospheric
turbulence), cannot be identified by these techniques.

Yet another approach for blur identification is the maximum likelihood (ML) estimation approach.
The ML approach aims to find those parameter values (including, in principle, the observation noise
variance) that have most likely resulted in the observed image(s). Different implementations of the
ML image and blur identification are discussed under a unifying framework [19]. Pavlović and
Tekalp [20] propose a practical method to find the ML estimates of the parameters of a PSF based on
a continuous domain image formation model.

In multi-frame image restoration, blur identification using more than one frame at a time becomes
possible. For example, the PSF of a possibly space-varying motion blur can be computed at each
pixel from an estimate of the frame-to-frame motion vector at that pixel, provided that the shutter
speed of the camera is known [21].

53.3.2 Estimation of Regularization Parameters

Regularization model parameters aim to strike a balance between the fidelity of the restored image to
the observed data and its smoothness. Various methods exist to identify regularization parameters,
such as parametric pdf models, parametric smoothness constraints, and AR image models. Some
restoration methods require the knowledge of the power spectrum of the ideal image, which can be
estimated, for example, from an AR model of the image. The AR parameters can, in turn, be estimated
from the observed image by a least squares [22] or an ML technique [63]. On the other hand,
non-parametric spectral estimation is also possible through the application of periodogram-based
methods to a prototype image [69, 23]. In the context of maximum a posteriori (MAP) methods, the a
priori pdf is often modeled by a parametric pdf, such as a Gaussian [10] or a Gibbsian [11]. Standard
methods for estimating these parameters do not exist. Methods for estimating the regularization
parameter in the CLS, Tikhonov-Miller, and related formulations are discussed in [24].

53.3.3 Estimation of the Noise Variance

Almost all restoration algorithms assume that the observation noise is a zero-mean, white random
process that is uncorrelated with the image. Then, the noise field is completely characterized by its
variance, which is commonly estimated by the sample variance computed over a low-contrast local
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region of the observed image. As we will see in the following section, the noise variance plays an
important role in defining constraints used in some of the restoration algorithms.

53.4 Intra-Frame Restoration

Westartbyfirst lookingat somebasic regularized restorationstrategies, in thecaseof anLSIblurmodel
withnopointwisenonlinearity. The effect of thenonlinearmapping s(.) is discussed inSection 53.4.2.
Methods that allow PSFs with a random components are summarized in Section 53.4.3. Adaptive
restoration for ringing suppression and blind restoration are covered in Sections 53.4.4 and 53.4.5,
respectively. Restoration of multispectral images and space-varying blurred images are addressed in
Sections 53.4.6 and 53.4.7, respectively.

53.4.1 Basic Regularized Restoration Methods

When the mapping s(.) is ignored, it is evident from Eq. (53.1) that image restoration reduces to
solving a set of simultaneous linear equations. If the matrix D is nonsingular (i.e., D−1 exists) and
the vector g lies in the column space of D (i.e., there is no observation noise), then there exists a
unique solution which can be found by direct inversion (also known as inverse filtering). In practice,
however, we almost always have an underdetermined (due to boundary truncation problem [14]) and
inconsistent (due to observation noise) set of equations. In this case, we resort to a minimum-norm
least-squares solution. A least squares (LS) solution (not unique when the columns of D are linearly
dependent) minimizes the norm-square of the residual

JLS(f )
.= ||g − Df ||2 (53.7)

LS solution(s) with the minimum norm (energy) is (are) generally known as pseudo-inverse solu-
tion(s) (PIS).

Restoration by pseudo-inversion is often ill-posed owing to the presence of observation noise [14].
This follows because the pseudo-inverse operator usually has some very large eigenvalues. For ex-
ample, a typical blur transfer function has zeros; and thus, its pseudo-inverse attains very large
magnitudes near these singularities as well as at high frequencies. This results in excessive amplifi-
cation at these frequencies in the sensor noise. Regularized inversion techniques attempt to roll-off
the transfer function of the pseudo-inverse filter at these frequencies to limit noise amplification.
It follows that the regularized inverse deviates from the pseudo-inverse at these frequencies which
leads to other types of artifacts, generally known as regularization artifacts [14]. Various strategies
for regularized inversion (and how to achieve the right amount of regularization) are discussed in
the following.

Singular-Value Decomposition Method

The pseudo-inverse D+ can be computed using the singular value decomposition (SVD) [1]

D+ =
R∑

i=0

λ
−1/2
i ziu

T
i (53.8)

where λi denote the singular values, zi and ui are the eigenvectors of DT D and DDT , respectively,
and R is the rank of D. Clearly, reciprocation of zero singular-values is avoided since the summation
runs to R, the rank of D. Under the assumption that D is block-circulant (corresponding to a
circular convolution), the PIS computed through Eq. (53.8) is equivalent to the frequency domain

c©1999 by CRC Press LLC



pseudo-inverse filtering

D+(u, v) =
{

1/D(u, v) if D(u, v) 6= 0

0 if D(u, v) = 0
(53.9)

where D(u, v) denotes the frequency response of the blur. This is because a block-circulant matrix
can be diagonalized by a 2-D discrete Fourier transformation (DFT) [2].

Regularization of the PIS can then be achieved by truncating the singular value expansion (53.8)
to eliminate all terms corresponding to small λi (which are responsible for the noise amplification)
at the expense of reduced resolution. Truncation strategies are generally ad-hoc in the absence of
additional information.

Iterative Methods (Landweber Iterations)

Several image restoration algorithms are based on variations of the so-called Landweber itera-
tions [25, 26, 27, 28, 31, 32]

f k+1 = f k + RDT
(
g − Df k

)
(53.10)

where R is a matrix that controls the rate of convergence of the iterations. There is no general way
to select the best C matrix. If the system (53.1) is nonsingular and consistent (hardly ever the case),
the iterations (53.10) will converge to the solution. If, on the other hand, (53.1) is underdetermined
and/or inconsistent, then (53.10) converges to a minimum-norm least squares solution (PIS). The
theory of this and other closely related algorithms are discussed by Sanz and Huang [26] and Tom
et al. [27]. Kawata and Ichioka [28] are among the first to apply the Landweber-type iterations to
image restoration, which they refer to as “reblurring” method.

Landweber-type iterative restoration methods can be regularized by appropriately terminating
the iterations before convergence, since the closer we are to the pseudo-inverse, the more noise
amplification we have. A termination rule can be defined on the basis of the norm of the residual
image signal [29]. Alternatively, soft and/or hard constraints can be incorporated into iterations to
achieve regularization. The constrained iterations can be written as [30, 31]

f k+1 = C
[
f k + RDT

(
g − Df k

)]
(53.11)

where C is a nonexpansive constraint operator, i.e., ||C(f 1) − C(f 2)|| ≤ ||f 1 − f 2||, to guarantee
the convergence of the iterations. Application of Eq. (53.11) to image restoration has been extensively
studied (see [31, 32] and the references therein).

Constrained Least Squares Method

Regularized image restoration can be formulated as a constrained optimization problem, where
a functional ||Q(f )||2 of the image is minimized subject to the constraint ||g − Df ||2 = σ 2. Here
σ 2 is a constant, which is usually set equal to the variance of the observation noise. The constrained
least squares (CLS) estimate minimizes the Lagrangian [34]

JCLS(f ) = ||Q(f )||2 + α
(
||g − Df ||2 − σ 2

)
(53.12)

whereα is theLagrangemultiplier. TheoperatorQ is chosensuch that theminimizationofEq. (53.12)
enforces some desired property of the ideal image. For instance, if Q is selected as the Laplacian
operator, smoothness of the restored image is enforced. The CLS estimate can be expressed, by taking
the derivative of Eq. (53.12) and setting it equal to zero, as [1]

f̂ =
(
DH D + γQH Q

)−1
DH g (53.13)
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where H stands for Hermitian (i.e., complex-conjugate and transpose). The parameter γ = 1
α

(the

regularization parameter) must be such that the constraint ||g − Df ||2 = σ 2 is satisfied. It is often
computed iteratively [2]. A sufficient condition for the uniqueness of the CLS solution is that Q−1

exists. For space-invariant blurs, the CLS solution can be expressed in the frequency domain as [34]

F̂ (u, v) = D∗(u, v)

|D(u, v)|2 + γ |L(u, v)|2G(u, v) (53.14)

where ∗ denotes complex conjugation. A closely related regularization method is the Tikhonov-Miller
(T-M) regularization [33, 35]. T-M regularization has been applied to image restoration [31, 32, 36].
Recently, neural network structures implementing the CLS or T-M image restoration have also been
proposed [37, 38].

Linear Minimum Mean Square Error Method

The linear minimum mean square error (LMMSE) method finds the linear estimate which
minimizes the mean square error between the estimate and ideal image, using up to second order
statistics of the ideal image. Assuming that the ideal image can be modeled by a zero-mean homoge-
neous random field and the blur is space-invariant, the LMMSE (Wiener) estimate, in the frequency
domain, is given by [8]

F̂ (u, v) = D∗(u, v)

|D(u, v)|2 + σ 2
v /|P(u, v)|2G(u, v) (53.15)

where σ 2
v is the variance of the observation noise (assumed white) and |P(u, v)|2 stands for the

power spectrum of the ideal image. The power spectrum of the ideal image is usually estimated from
a prototype. It can be easily seen that the CLS estimate (53.14) reduces to the Wiener estimate by
setting |L(u, v)|2 = σ 2

v /|P(u, v)|2 and γ = 1.
A Kalman filter determines the causal (up to a fixed lag) LMMSE estimate recursively. It is based

on a state-space representation of the image and observation models. In the first step of Kalman
filtering, a prediction of the present state is formed using an autoregressive (AR) image model and
the previous state of the system. In the second step, the predictions are updated on the basis of the
observed image data to form the estimate of the present state. Woods and Ingle [39] applied 2-D
reduced-update Kalman filter (RUKF) to image restoration, where the update is limited to only those
state variables in a neighborhood of the present pixel. The main assumption here is that a pixel is
insignificantly correlated with pixels outside a certain neighborhood about itself. More recently, a
reduced-order model Kalman filtering (ROMKF), where the state vector is truncated to a size that is on
the order of the image model support has been proposed [40]. Other Kalman filtering formulations,
including higher-dimensional state-space models to reduce the effective size of the state vector, have
been reviewed in [7]. The complexity of higher-dimensional state-space model based formulations,
however, limits their practical use.

Maximum A posteriori Probability Method

The maximum a posteriori probability (MAP) restoration maximizes thea posteriori probability
density function (pdf) p(f |g), i.e., the likelihood of a realization of f being the ideal image given
the observed data g. Through the application of the Bayes rule, we have

p(f |g) ∝ p(g|f )p(f ) (53.16)

where p(g|f ) is the conditional pdf of g given f (related to the pdf of the noise process) and p(f ) is
the a priori pdf of the ideal image. We usually assume that the observation noise is Gaussian, leading
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to

p(g|f ) = 1

(2π)N/2 |Rv|1/2
exp

{
−1/2 (g − Df )T R−1

v (g − Df )
}

(53.17)

where Rv denotes the covariance matrix of the noise process. Unlike the LMMSE method, the MAP
method uses complete pdf information. However, if both the image and noise are assumed to be
homogeneous Gaussian random fields, the MAP estimate reduces to the LMMSE estimate, under a
linear observation model.

Trussell and Hunt [10] used non-stationary a priori pdf models, and proposed a modified form of
the Picard iteration to solve the nonlinear maximization problem. They suggested using the variance
of the residual signal as a criterion for convergence. Geman and Geman [11] proposed using a Gibbs
random field model for the a priori pdf of the ideal image. They used simulated annealing procedures
to maximize Eq. (53.16). It should be noted that the MAP procedures usually require significantly
more computation compared to, for example, the CLS or Wiener solutions.

Maximum Entropy Method

A number of maximum entropy (ME) approaches have been discussed in the literature, which
vary in the way that the ME principle is implemented. A common feature of all these approaches,
however, is their computational complexity. Maximizing the entropy enforces smoothness of the
restored image. (In the absence of constraints, the entropy is highest for a constant-valued image).
One important aspect of the ME approach is that the nonnegativity constraint is implicitly imposed
on the solution because the entropy is defined in terms of the logarithm of the intensity.

Frieden was the first to apply the ME principle to image restoration [41]. In his formulation, the
sum of the entropy of the image and noise, given by

JME1(f ) = −
∑

i

f (i) ln f (i) −
∑

i

n(i) ln n(i) (53.18)

is maximized subject to the constraints

n = g − Df (53.19)∑
i

f (i) = K
.=

∑
i

g(i) (53.20)

which enforce fidelity to the data and a constant sum of pixel intensities. This approach requires the
solution of a system of nonlinear equations. The number of equations and unknowns are on the
order of the number of pixels in the image. The formulation proposed by Gull and Daniell [42] can
be viewed as another form of Tikhonov regularization (or constrained least squares formulation),
where the entropy of the image

JME2(f ) = −
∑

i

f (i) ln f (i) (53.21)

is the regularization functional. It is maximized subject to the following usual constraints

||g − Df ||2 = σ 2
v (53.22)∑

i

f (i) = K
.=

∑
i

g(i) (53.23)

on the restored image. The optimization problem is solved using an ascent algorithm. Trussell [43]
showed that in the case of a prior distribution defined in terms of the image entropy, the MAP
solution is identical to the solution obtained by this ME formulation. Other ME formulations were
also proposed [44, 45]. Note that all ME methods are nonlinear in nature.
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Set-Theoretic Methods

In set-theoretic methods, first a number of “constraint sets” are defined such that their members
are consistent with the observations and/or some a priori information about the ideal image. A set-
theoretic estimate of the ideal image is then defined as a feasible solution satisfying all constraints,
i.e., any member of the intersection of the constraint sets. Note that set-theoretic methods are, in
general, nonlinear.

Set-theoretic methods vary according to the mathematical properties of the constraint sets. In
the method of projections onto convex sets (POCS), the constraint sets Ci are closed and convex in
an appropriate Hilbert space H. Given the sets Ci , i = 1, . . . , M , and their respective projection
operators Pi , a feasible solution is found by performing successive projections as

f k+1 = PMPM−1 . . . P1f k ; k = 0, 1, . . . (53.24)

where f 0 is the initial estimate (a point in H). The projection operators are usually found by solving
constrained optimization problems. In finite-dimensional problems (which is the case for digital
image restoration), the iterations converge to a feasible solution in the intersection set [46, 47, 48].
It should be noted that the convergence point is affected by the choice of the initialization. However,
as the size of the intersection set becomes smaller, the differences between the convergence points
obtained by different initializations become smaller. Trussell and Civanlar [49] applied POCS to
image restoration. For examples of convex constraint sets that are used in image restoration, see [23].
A relationship between the POCS and Landweber iterations were developed in [10].

A special case of POCS is the Gerchberg-Papoulis type algorithms where the constraint sets are
either linear subspaces or linear varieties [50]. Extensions of POCS to the case of nonintersecting
sets [51] and nonconvex sets [52] have been discussed in the literature. Another extension is the
method of fuzzy sets (FS), where the constraints are defined in terms of FS. More precisely, the
constraints are reflected in the membership functions defining the FS. In this case, a feasible solution is
defined as one that has a high grade of membership (e.g., above a certain threshold) in the intersection
set. The method of FS has also been applied to image restoration [53].

53.4.2 Restoration of Images Recorded by Nonlinear Sensors

Image sensors and media may have nonlinear characteristics that can be modeled by a pointwise
(memoryless) nonlinearity s(.). Common examples are photographic film and paper, where the
nonlinear relationship between the exposure (intensity) and the silver density deposited on the film
or paper is specified by a “d − loge” curve. The modeling of sensor nonlinearities was first addressed
by Andrews and Hunt [1]. However, it was not generally recognized that results obtained by taking
the sensor nonlinearity into account may be far more superior to those obtained by ignoring the
sensor nonlinearity, until the experimental work of Tekalp and Pavlović [54, 55].

Except for theMAPapproach, noneof thealgorithmsdiscussedaboveareequipped tohandle sensor
nonlinearity in a straightforward fashion. A simple approach would be to expand the observation
model with s(.) into its Taylor series about the mean of the observed image and obtain an approximate
(linearized) model, which can be used with any of the above methods [1]. However, the results do not
show significant improvement over those obtained by ignoring the nonlinearity. The MAP method
is capable of taking the sensor nonlinearity into account directly. A modified Picard iteration was
proposed in [10], assuming both the image and noise are Gaussian distributed, which is given by

f̂ k+1 = f̄ k + Rf DT SbR
−1
n

[
g − s

(
Df k

)]
(53.25)

where f̄ denotes non-stationary image mean, Rf and Rn are the correlation matrices of the ideal
image and noise, respectively, and Sb is a diagonal matrix consisting of the derivatives of s(.) evaluated
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at b = Df . It is the matrix Sb that maps the difference [g − s( Df k )] from the observation domain
to the intensity domain.

An alternative approach, which is computationally less demanding, transforms the observed den-
sity domain image to the exposure domain [54]. There is a convolutional relationship between
the ideal and blurred images in the exposure domain. However, the additive noise in the density
domain manifests itself as multiplicative noise in the exposure domain. To this effect, Tekalp and
Pavlović [54] derive an LMMSE deconvolution filter in the presence of multiplicative noise under
certain assumptions. Their results show that accounting for the sensor nonlinearity may dramatically
improve restoration results [54, 55].

53.4.3 Restoration of Images Degraded by Random Blurs

Basic regularized restoration methods (reviewed in Section 53.4.1) assume that the blur PSF is a
deterministic function. A more realistic model may be

D = D̄ + 1D (53.26)

where D̄ is the deterministic part (known or estimated) of the blur operator and 1D stands for the
random component. Random component may represent inherent random fluctuations in the PSF,
for instance due to atmospheric turbulence or random relative motion, or it may model the PSF
estimation error.

A naive approach would be to employ the expected value of the blur operator in one of the
restoration algorithms discussed above. The resulting restoration, however, may be unsatisfactory.
Slepian [56] derived the LMMSE estimate, which explicitly incorporated the random component of
the PSF. The resulting Wiener filter requires the a priori knowledge of the second order statistics of
the blur process. Ward et al. [57, 58] also proposed LMMSE estimators. Combettes and Trussell [59]
addressed restoration of random blurs within the framework of POCS, where fluctuations in the PSF
are reflected in the bounds defining the residual constraint sets. The method of total least squares
(TLS) has been used in the mathematics literature to solve a set of linear equations with uncertainties
in the system matrix. The TLS method amounts to finding the minimum perturbations on D and g

to make the system of equations consistent. A variation of this principle has been applied to image
restoration with random PSF by Mesarovic et al. [60]. Various authors have shown that modeling
the uncertainty in the PSF (by means of a random component) reduces ringing artifacts that are due
to using erroneous PSF estimates.

53.4.4 Adaptive Restoration for Ringing Reduction

Linear space-invariant (LSI) restoration methods introduce disturbing ringing artifacts which orig-
inate around sharp edges and image borders [36]. A quantitative analysis of the origins and charac-
teristics of ringing and other restoration artifacts was given by Tekalp and Sezan [14]. Suppression
of ringing may be possible by means of adaptive filtering, which tracks edges or image statistics such
as local mean and variance.

Iterative and set-theoretic methods are well-suited for adaptive image restoration with ringing
reduction. Lagendijk et al. [36]have extendedMiller regularization toadaptive restorationbydefining
the solution in a weighted Hilbert space, in terms of norms weighted by space-variant weights. Later,
Sezan and Tekalp [9] extended the method of POCS to the space-variant case by introducing a region-
based bound on the signal energy. In both methods, the weights and/or the regions were identified
from the degraded image. Recently, Sezan and Trussell [23] have developed constraints based on
prototype images for set-theoretic image restoration with artifact reduction.

Kalman filtering can also be extended to adaptive image restoration. For a typical image, the
homogeneity assumption will hold only over small regions. Rajala and de Figueiredo [61] used an
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off-line visibility function to segment the image according to the local spatial activity of the picture
being restored. Later, a rapid edge adaptive filter based on multiple image models to account for
edges with various orientations was developed by Tekalp et al. [62]. Jeng and Woods [13] developed
inhomogeneous Gauss-Markov field models for adaptive filtering, and maximum entropy methods
were used for ringing reduction [45]. Results show a significant reduction in ringing artifacts in
comparison to LSI restoration.

53.4.5 Blind Restoration (Deconvolution)

Blind restoration refers to methods that do not require prior identification of the blur and regular-
ization model parameters. Two examples are simultaneous identification and restoration of noisy
blurred images [63] and image recovery from Fourier phase information [64]. Lagendijk et al. [63]
applied the E-M algorithm to blind image restoration, which alternates between ML parameter iden-
tification and minimum mean square error image restoration. Chen et al. [64] employed the POCS
method to estimate the Fourier magnitude of the ideal image from the Fourier phase of the observed
blurred image by assuming a zero-phase blur PSF so that the Fourier phase of the observed image is
undistorted. Both methods require the PSF to be real and symmetric.

53.4.6 Restoration of Multispectral Images

A trivial solution to multispectral image restoration, when there is no inter-band blurring, may be to
ignore the spectral correlations among different bands and restore each band independently, using
one of the algorithms discussed above. However, algorithms that are optimal for single-band imagery
may no longer be so when applied to individual spectral bands. For example, restoration of the red,
green, and blue bands of a color image independently usually results in objectionable color shift
artifacts.

To this effect, Hunt and Kubler [65] proposed employing the Karhunen-Loeve (KL) transform
to decorrelate the spectral bands so that an independent-band processing approach can be applied.
However, because the KL transform is image dependent, they then recommended using the NTSC
YIQ transformation as a suboptimum but easy-to-use alternative. Experimental evidence shows
that the visual quality of restorations obtained in the KL, YIQ, or another luminance-chrominance
domain are quite similar [65]. In fact, restoration of only the luminance channel suffices in most
cases. This method applies only when there is no inter-band blurring. Further, one should realize that
the observation noise becomes correlated with the image under a non-orthogonal transformation.
Thus, filtering based on the assumption that the image and noise are uncorrelated is not theoretically
founded in the YIQ domain.

Recent efforts in multispectral image restoration are concentrated on making total use of the
inherent correlations between the bands [66, 67]. Applying the CLS filter expression (53.13) to the

observation model (53.4) with QH Q = R−1
f Rv , we obtain the multispectral Wiener estimate f̂ ,

given by [68]

f̂ =
(
DT D + R−1

f Rv

)−1 DT g (53.27)

where

Rf
.=




Rf ;11 · · · Rf ;1K

...
. . .

...

Rf ;K1 · · · Rf ;KK


 , and Rv

.=




Rv;11 · · · Rv;1K

...
. . .

...

Rv;K1 · · · Rv;KK




Here Rf ;ij
.= E{f if

T
j } and Rv;ij

.= E{viv
T
j }, i, j = 1, 2, . . . , K denote the inter-band, cross-

correlation matrices. Note that if Rf ;ij = 0 for i 6= j, i, j = 1, 2, . . . , K , then the multiframe
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estimate becomes equivalent to stacking the K single-frame estimates obtained independently.

Direct computation of f̂ through Eq. (53.27) requires inversion of a N2L×N2L matrix. Because
the blur PSF is not necessarily the same in each band and the inter-band correlations are not shift-
invariant, the matrices D, Rf , and Rv are not block-Toeplitz; thus, a 3-D DFT would not diagonalize
them. However, assuming LSI blurs, each Dk is block Toeplitz. Furthermore, assuming each image
and noise band are wide-sense stationary, Rf ;ij and Rv;ij are also block-Toeplitz. Approximating
the block-Toeplitz submatrices Di , Rf ;ij , and Rv;ij by block-circulant ones, each submatrix can be
diagonalized by a separate 2-D DFT operation so that we only need to invert a block matrix with
diagonal sub-blocks. Galatsanos and Chin [66] proposed a method that successively partitions the
matrix to be inverted and recursively computes the inverse of these partitions. Later Ozkan et al. [68]
has shown that the desired inverse can be computed by inverting N2 submatrices, each K × K , in
parallel. The resulting numerically stable filter was called the cross-correlated multiframe (CCMF)
Wiener filter.

The multispectral Wiener filter requires the knowledge of the correlation matrices Rf and Rv .
If we assume that the noise is white and spectrally uncorrelated, the matrix Rv is diagonal with all
diagonal entries equal to σ 2

v . Estimation of the multispectral correlation matrixRf can be performed
by either the periodogram method or 3-D AR modeling [68]. Sezan and Trussell [69] show that the
multispectral Wiener filter is highly sensitive to the cross-power spectral estimates, which contain
phase information. Other multispectral restoration methods include Kalman filtering approach of
Tekalp and Pavlović [67], least squares approaches of Ohyama et al. [70] and Galatsanos et al. [71], and
set-theoretic approach of Sezan and Trussell [23, 69] who proposed multispectral image constraints.

53.4.7 Restoration of Space-Varying Blurred Images

In principle, all basic regularization methods apply to the restoration of space-varying blurred images.
However, because Fourier transforms cannot be utilized to simplify large matrix operations (such
as inversion or singular value decomposition) when the blur is space-varying, implementation of
some of these algorithms may be computationally formidable. There exist three distinct approaches
to attack the space-variant restoration problem: (1) sectioning, (2) coordinate transformation, and
(3) direct approaches.

The main assumption in sectioning is that the blur is approximately space-invariant over small
regions. Therefore, a space-varying blurred image can be restored by applying the well-known
space-invariant techniques to local image regions. Trussell and Hunt [73] propose using iterative
MAP restoration within rectangular, overlapping regions. Later, Trussell and Fogel proposed using
a modified Landweber iteration [21]. A major drawback of sectioning methods is generation of
artifacts at the region boundaries. Overlapping the contiguous regions somewhat reduces these
artifacts, but does not completely suppress them.

Most space-varying PSF vary continuously from pixel to pixel (e.g., relative motion with acceler-
ation) violating the basic premise of the sectioning methods. To this effect, Robbins et al. [74] and
then Sawchuck [75] proposed a coordinate transformation (CTR) method such that the blur PSF in
the transformed coordinates is space-invariant. Then, the transformed image can be restored by a
space-invariant filter and then transformed back to obtain the final restored image. However, the
statistical properties of the image and noise processes are affected by the CTR, which should be taken
into account in restoration filter design. The results reported in [74] and [75] have been obtained by
inverse filtering; and thus, this statistical issue was of no concern. Also note that the CTR method is
applicable to a limited class of space-varying blurs. For instance, blurring due to depth of field is not
amenable to CTR.

The lack of generality of sectioning and CTR methods motivates direct approaches. Iterative
schemes, Kalman filtering, and set-theoretic methods can be applied to restoration of space-varying
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blurs in a computationally feasible manner. Angel and Jain [76] propose solving the superposition
Eq. (53.3) iteratively using a conjugate gradient method. Application of constrained iterative methods
was discussed in [30]. More recently, Ozkan et al. [72] developed a robust POCS algorithm for space-
varying image restoration, where they defined a closed, convex constraint set for each observed
blurred image pixel (n1, n2), given by:

Cn1,n2 =
{
y : |r(y)(n1, n2)| ≤ δ0

}
(53.28)

and

r(y) (n1, n2)
.= g (n1, n2) −

∑
(m1,m2)∈Sd (n1,n2)

d (n1, n2; m1, m2) y (m1, m2) (53.29)

is the residual at pixel (n1, n2) associated with y, which denotes an arbitrary member of the set.
The quantity δ0 is an a priori bound reflecting the statistical confidence with which the actual image

is a member of the set Cn1,n2. Since r(f )(n1, n2) = v(n1, n2), the bound δ0 is determined from
the statistics of the noise process so that the ideal image is a member of the set within a certain
statistical confidence. The collection of bounded residual constraints over all pixels (n1, n2) enforces
the estimate to be consistent with the observed image.

The projection of an arbitrary x(i1, i2) onto each Cn1,n2 is defined as:

Pn1,n2 [x (i1, i2)] =


x (i1, i2) + r(x)(n1,n2)−δ0∑
o1

∑
o2

h2(n1,n2;o1,o2)
h (n1, n2; i1, i2) if r(x) (n1, n2) > δ0

x (i1, i2) if − δ0 ≤ r(x) (n1, n2) ≤ δ0

x (i1, i2) + r(x) (n1, n2) + δ0∑
o1

∑
o2

h2 (n1, n2; o1, o2)
h (n1, n2; i1, i2) if r(x) (n1, n2) < −δ0

(53.30)

The algorithm starts with an arbitrary x(i1, i2), and successively projects onto each Cn1,n2. This is
repeated until convergence [72]. Additional constraints, such as bounded energy, amplitude, and
limited support, can be utilized to improve the results.

53.5 Multiframe Restoration and Superresolution

Multiframe restoration refers to estimating the ideal image on a lattice that is identical with the obser-
vation lattice, whereas superresolution refers to estimating it on a lattice that has a higher sampling
density than the observation lattice. They both employ the multiframe observation model (53.5),
which establishes a relation between the ideal image and observations at more than one instance.
Several authors eluded that the sequential nature of video sources can be statistically modeled by
means of temporal correlations [68, 71]. Multichannel filters similar to those described for multi-
spectral restoration were thus proposed for multiframe restoration. Here, we only review motion-
compensated (MC) restoration and superresolution methods, because they are more effective.

53.5.1 Multiframe Restoration

The sequential nature of images in a video source can be used to better estimate the PSF parameters,
regularization terms, and the restored image. For example, the extent of a motion blur can be
estimated from interframe motion vectors, provided that the aperture time is known. The first MC
approach was the motion-compensated multiframe Wiener filter (MCMF) proposed by Ozkan et
al. [68] who considered the case of frame-to-frame global translations. Then, the auto power spectra
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of all frames are the same and the cross spectra are related by a phase factor which can be estimated
from the motion information. Given the motion vectors (one for each frame) and the auto power
spectrum of the reference frame, they derived a closed-form solution, given by

F̂k(u, v) =
Sf ;k(u, v)

N∑
i=1

S∗
f ;i (u, v)D∗

i (u, v)Gi(u, v)

N∑
i=1

|Sf ;i (u, v)Di(u, v)|2 + σ 2
v

, (53.31)

where k is the index of the ideal frame to be restored, N is the number of available frames, and
Pf ;ki(u, v) = Sf ;k(u, v)S∗

f ;i (u, v) denotes the cross power spectrum between the frames k and i

in factored form. The fact that such a factorization exists was shown in [68] for the case of global
translational motion. The MCMF yields the biggest improvement when the blur PSF changes from
frame-to-frame. This is because the summation in the denominator may not be zero at any frequency,
even though each termDi(u, v)may have zeros at certain frequencies. The case of space-varying blurs
may be considered as a special case of the last section which covers superresolution with space-varying
restoration.

53.5.2 Superresolution

When the interframe motion is subpixel, each frame, in fact, contains some “new” information that
can be utilized to achieve superresolution. Superresolution refers to high-resolution image expan-
sion, which aims to remove aliasing artifacts, blurring due to sensor PSF, and optical blurring given the
observation model (53.5). Provided that enough frames with subpixel motion are available, the ob-
servation model becomes invertible. It can be easily seen, however, that superresolution from a single
observed image is ill-posed because we have more unknowns than equations, and there exist infinitely
many expanded images that are consistent with the model (53.5). Therefore, single-frame nonlinear
interpolation (also called image expansion and digital zooming) methods for improved definition
image expansion employ additional regularization criteria, such as edge-preserving smoothness con-
straints [77, 78]. (It is well-known that no new high-frequency information can be generated by LSI
interpolation techniques, including ideal band-limited interpolation, hence the need for nonlinear
methods.)

Several early motion-compensated methods are in the form of two-stage interpolation-restoration
algorithms [79, 80]. They arebasedon thepremise that pixels fromall observed frames canbemapped
back onto a desired frame, based on estimated motion trajectories, to obtain an upsampled reference
frame. However, unless we assume global translational motion, the upsampled reference frame is
nonuniformly sampled. In order to obtain a uniformly spaced upsampled image, interpolation onto
a uniform sampling grid needs to be performed. Image restoration is subsequently applied to the
upsampled image to remove the effect of the sensor blur. However, these methods do not use an
accurate image formation model, and cannot remove aliasing artifacts.

Motion-compensated (multiframe) superresolution methods that are based on the model (53.5)
can be classified as those that aim to eliminate (1) aliasing only, (2) aliasing and LSI blurs, and (3) alias-
ing and space-varying blurs. In addition, some of these methods are designed for global translational
motion only, while others can handle space-varying motion fields with occlusion. Multiframe super-
resolution was first introduced by Tsai and Huang [81] who exploited the relationship between the
continuous and discrete Fourier transforms of the undersampled frames to remove aliasing errors,
in the special case of global motion. Their formulation has been extended by Kim et. al. [82] to take
into account noise and blur in the low-resolution images, by posing the problem in the least squares
sense. A further refinement by Kim and Su [83] allowed blurs that are different for each frame of
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low-resolution data, by using a Tikhonov regularization. However, the resulting algorithm did not
treat the formation of blur due to motion or sensor size, and suffers from convergence problems.

Inspection of the model (53.5) suggests that the superresolution problem can be stated in the
spatio-temporal domain as the solution of a set of simultaneous linear equations. Suppose that
the desired high-resolution frames are M × M , and we have L low-resolution observations, each
N × N . Then, from Eq. (53.5), we can set up at most L × N × N equations in M2 unknowns to
reconstruct a particular high-resolution frame. These equations are linearly independent provided
that all displacements between the successive frames are at subpixel amounts. (Clearly, the number
of equations will be reduced by the number of occlusion labels encountered along the respective
motion trajectories.) In general, it is desirable to set up an overdetermined system of equations, i.e.,
L > R2 = M2/N2, toobtainamore robust solution in thepresenceofobservationnoise. Because the
impulse response coefficients hik(n1, n2; m1, m2) are spatially varying, and hence the system matrix
is not block-Toeplitz, fast methods to solve them are not available. Stark and Oskui [86] proposed
a POCS method to compute a high resolution image from observations obtained by translating
and/or rotating an image with respect to a CCD array. Irani and Peleg [84, 85] employed iterative
methods. Patti et al. [87] extended the POCS formulation to include sensor noise and space-varying
blurs. Bayesian approaches were also employed for superresolution [88]. The extension of the POCS
method with space-varying blurs is explained in the following.

53.5.3 Superresolution with Space-Varying Restoration

The POCS method described here addresses the most general form of the superresolution problem
based on the model (53.5). The formulation is quite similar to the POCS approach presented for
intraframe restoration of space-varying blurred images. In this case, we define a different closed,
convex set for each observed low-resolution pixel (n1, n2, k) (which can be connected to the desired
frame i by a motion trajectory) as

Cn1,n2;i,k =
{
xi (m1, m2) : |r(xi )

k (n1, n2) | ≤ δ0

}
, 0 ≤ n1, n2 ≤ N − 1, k = 1, . . . , L (53.32)

where

r
(xi )
k (n1, n2)

.= gk (n1, n2) −
M−1∑
m1=0

M−1∑
m2=0

xi (m1, m2) hik (m1, m2; n1, n2)

and δ0 represents the confidence that we have in the observation and is set equal to cσv , where σv is
the standard deviation of the noise and c ≥ 0 is determined by an appropriate statistical confidence
bound. These sets define high-resolution images that are consistent with the observed low-resolution
frames within a confidence bound that is proportional to the variance of the observation noise. The
projection operator which projects onto Cn1,n2;i,k can be deduced from Eq. (53.30) [8]. Additional
constraints, such as amplitude and/or finite support constraints, can be utilized to improve the results.
Excellent reconstructions have been reported using this procedure [68, 87].

A few observations about the POCS method are in order: (1) While certain similarities exist
between the POCS iterations and the Landweber-type iterations [79, 84, 85], the POCS method can
adapt to the amount of the observation noise, while the latter generally cannot. (2) The POCS method
finds a feasible solution, that is, a solution consistent with all available low-resolution observations.
Clearly, the more observations (more frames with reliable motion estimation) we have, the better the
high-resolution reconstructed image ŝi (m1, m2) will be. In general, it is desirable that L > M2/N2.
Note, however, that thePOCSmethodgenerates a reconstructed imagewithanynumberLof available
frames. The number L is just an indicator of how large the feasible set of solutions will be. Of course,
the size of the feasible set can be further reduced by employing other closed, convex constraints in
the form of statistical or structural image models.
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53.6 Conclusion

At present, factors that limit the success of digital image restoration technology include lack of reliable
(1) methods for blur identification, especially identification of space-variant blurs, (2) methods to
identify imaging system nonlinearities, and (3) methods to deal with the presence of artifacts in
restored images. Our experience with the restoration of real-life blurred images indicates that the
choice of a particular regularization strategy (filter) has a small effect on the quality of the restored
images as long as the parameters of the degradation model, i.e., the blur PSF and the SNR, and any
imaging system nonlinearity is properly compensated. Proper compensation of system nonlinearities
also plays a significant role in blur identification.
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54.1 Introduction

The scanning format of a video signal is a major determinant of general picture quality. Specifi-
cally, it determines such aspects as stationary and dynamic resolution, motion portrayal, aliasing,
scanning structure visibility, and flicker. Various formats have been designed and standardized to
strike a particular balance between quality, cost, transmission capacity, and compatibility with other
standards.

The field of video scanning format conversion is concerned with the translation of video signals
from one format into another. It consists of two basic parts: temporal interpolation and spatial
interpolation. A particular case is de-interlacing, which poses an inseparable spatio-temporal inter-
polation problem.

Vertical and temporal interpolation cause practical and fundamental difficulties in achieving high-
quality scanning format conversion. This is because the conditions of the sampling theorem are
generally not met in video signals. If they were satisfied, standard conversions of arbitrary accuracy
would be possible using suitable linear filters.

The earlier conversion methods neglected the fundamental problems and, consequently, negatively
influenced the resolution and the motion portrayal. More recent algorithms apply motion vectors to
predict the position of moving objects at unregistered temporal instances to improve the quality of
the picture at the output format. A so-called motion estimator extracts these vectors from the input

c©1999 by CRC Press LLC



signal. The motion vectors partly solve the fundamental problems, but the demands on the motion
estimator for scanning format conversion are severe.

In this section we shall first briefly indicate why we can expect that the importance of scanning
format conversion will grow. Then we discuss in more detail the fundamental problems of temporal
interpolation of video signals. Next we provide a concise overview of the basic methods in scanning
format conversion, focused on temporal sampling rate conversion and de-interlacing. Finally, we
give an overview of motion estimation algorithms, which are crucial in the more advanced scanning
format convertors.

54.2 Conversion vs. Standardization

Scanning formats have been designed in the past to strike a particular compromise between quality,
cost, transmission capacity, and compatibility with other standards. There were three main formats
in use a decade ago: 50 Hz interlaced, 60 Hz interlaced, and 24 (or 25) Hz progressive (film). With
the arrival of video-conferencing, HDTV, workstations, and PCs, many new video formats have
appeared. These include low end formats such as CIF and QCIF with smaller picture size and lower
frame rates, progressive and interlaced HDTV formats at 50 Hz and 60 Hz, and other video formats
used on computer workstations and enhanced television displays with field rates up to 100 Hz. It will
be clear that the problem of scanning format conversion is of a growing importance, despite many
attempts to globally standardize video formats.

54.3 Problems with Linear Sampling Rate Conversion Applied to
Video Signals

High-quality scanning format conversion is difficult to achieve, as the conditions of the sampling
theorem are generally not met in video signals. The solution of Sample Rate Conversion (SRC)
for systems satisfying the conditions of the sampling theory is well known for arbitrary sampling
ratios [1].

Figure 54.1 illustrates the procedure for a ratio of 2. To arrive at the double output sampling rate,
in a first step, zero-valued samples are inserted between every input pair of samples. In a second
step, a low-pass filter (LPF) at the output rate is applied to remove the first repeat spectrum from the
input data. In case of a temporal SRC, the interpolating LPF has to be a temporal LPF, i.e., a filter
including picture delays. Though feasible, this makes it a fairly expensive filter.

A more complicated, though still not fundamental, problem occurs at the signal acquisition stage.
Since scenes do occur with almost unlimited spatial and/or temporal bandwidth, the sampling theo-
rem requires that this signal be low-pass filtered prior to the scanning process. Interlaced scanning, as
commonly applied, even demands two-dimensional prefiltering in the vertical-temporal frequency
plane. In a video system, it is the camera that samples the scene in a vertical and temporal sense;
therefore, the prefilter has to be realized in the optical path. Although there are considerable practical
problems achieving this filtering, it would apparently bring down the problem of temporal inter-
polation of video images to the common sampling rate conversion problem. The next section will
show, however, that in addition to the practical problems there is a fundamental problem as well.

54.3.1 Temporal Interpolation

Considering the eye’s sine-wave temporal frequency response for full brightness potential and full
field display [2], as shown in Fig. 54.2, temporal prefiltering with a bandwidth of 75 Hz at first sight
seems sufficient. The fundamental problem now is that the relation shown in Fig. 54.2 holds for
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FIGURE 54.1: Consecutive steps in upsampling with a factor of two.

temporal frequencies as they occur at the retina of the observer. These frequencies, however, equal
the frequencies at the display only if the eye is stationary with respect to this display. Particularly
with the eye tracking objects moving on the screen, this assumption is no longer valid. For a tracking
observer very high temporal frequencies on the screen can be transformed to much lower frequencies
or even DC at the retina. Consequently, suppression of these frequencies, with an interpolating
lowpass filter, results in excessive blurring of moving objects as will be discussed next.

Figure 54.3 shows, in a time-discrete representation, a simple object, a square, moving with a
constant velocity. Again, in this example, we consider up-sampling with a factor of two. Therefore,
the true position of the object is available at every second temporal position only (e.g., the odd
numbered samples). The “tracking observer” views along the motion trajectory, represented with a
line in the illustration, which results in a stationary image of the object on the retina. If the output
field sampling frequency exceeds the cutoff temporal frequency of the human visual system,1 the
viewer will have the illusion that the object is continuously present.

Therefore, the object is actually seen at a position corresponding with the motion trajectory. If
now, e.g., in the 6th output field, the object is interpolated according to SRC theory, weighted copies
of the object from surrounding fields resulting from the interpolating LPF are displayed. Figure 54.3
illustrates the case of a symmetrical transversal lowpass filter. In this situation, the viewer sees the
object at the correct position but also various attenuated and displaced copies (the impulse response
of the interpolating temporal filter) of the object in a neighborhood. The attenuation depends on the
coefficientsof the interpolatingfilter, and thedistancebetween thecopies is related to thedisplacement

1Actually the picture update frequency may be even as low as 16 Hz, to guarantee smooth perceived motion (see, e.g., [3]).
The higher display rates are merely necessary to prevent the annoying large area flicker.
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FIGURE 54.2: The contrast sensitivity of the human observer (y-axis) for large areas of uniform
brightness, as a function of the temporal frequency (x-axis).

FIGURE 54.3: The effect of temporal interpolation for an object tracking observer. The field numbers
are counted at the output field rate.

of the moving object in a field period. For the object-tracking observer, therefore, the temporal LPF
is transformed into a spatial LPF. For an object velocity of one pixel per field period (one pel/field),
its frequency characteristic equals the temporal frequency characteristic of the interpolating LPF.2 1
pel/field is a slow motion, as in broadcast picture material; velocities in a range exceeding 16 pel/field
do occur. Thus, the spatial blur caused by the SRC process becomes unacceptable even for moderate
object velocities.

54.3.2 Vertical Interpolation and Interlaced Scanning
Much similar to the situation of field rate conversion, it may seem that sequential scan conversion is
an up-sampling problem for which SRC-theory provides an adequate solution. However, straight-
forward, one-dimensional, up-sampling in the vertical frequency domain is incorrect as the data is
clearly sub-Nyquist sampled due to interlace.

If, more correctly, the sequential scan conversion is considered as a two-dimensional up-sampling
problem in the vertical-temporal frequency domain, we arrive at a discussion similar to the one

2It is assumed here that both filters are normalized to their respective sampling frequency.
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in Section 54.3.1: the problem cannot be solved as we do not know the temporal frequency at the
retina of a movement-tracking observer. It is possible to disregard this problem and to perform a
two-dimensional SRC, implicitly assuming a stationary viewer and prefiltered information. Such
systems were described and have been implemented for studio applications. With the older image
pick-up tubes the results can be satisfactory, as these devices have a poor dynamic resolution. When
modern (CCD-)cameras are used, however, the limitations of the assumptions become obvious.

54.4 Alternatives for Sampling Rate Conversion Theory

With the problem of linear interpolation of video signals clarified, we will discuss alternative algo-
rithms developed over time. These algorithms fall into two categories. A first category simplifies
the interpolation filter prescribed by SRC-theory, considering that a completely correct solution is
impossible anyway. The resulting “simple algorithms” are more attractive for hardware realization
than the method from which they are derived and under certain conditions can perform quite simi-
larly. The second category includes the most “advancedalgorithms” for scanning format conversion.
These methods can be characterized by their common attempt to interpolate the 3-D image data in
the direction in which the correlation is highest. The difference between the various options lies
mainly in the number of possible directions, and dimensions, which are considered. The imple-
mentation can show various linear interpolation filters controlled by one or more detectors, or a
multi-dimensional nonlinear filter that has an inherent edge adaptivity. As this description allows a
large number of algorithms, we will illustrate it with some important examples.

54.4.1 Simple Algorithms

SRC-theory in the temporal and vertical frequency domain is not applicable due to the missing
prefilter in common video systems. A sophisticated linear interpolation filter therefore makes little
sense. Any interpolating (spatio-)temporal low-pass filter will suppress original temporal frequency
components as well as aliased signal components, as they occupy, by definition, the same spectrum.
As the first effect is desired and the second not, the transfer function of the filter strikes a compromise
between alias and blurring. Repetition of the most recent sample in this sense is optimal for the
dynamic resolution and worst for alias. A strong temporal low-pass filter suppresses much (not
necessarily all) alias and yields a poor dynamic resolution. The annoyance of the temporal alias
depends on the input and output picture frequency, and particularly their difference. In the easiest
case, both frequencies are high and their difference 50 Hz or more. In the worst case, input and
output picture rate are low and their difference in the order of 10 Hz. In case of an annoying beat
frequency, an interpolating LPF usually improves picture quality, otherwise the best compromise is
closer to repetition of the most recent sample.

54.4.2 Advanced Algorithms

As indicated before, these methods are characterized by their common attempt to interpolate the 3-D
image data in the direction in which the correlation is highest. To this end they either have an explicit
or implicit detector to find this direction. In case of (1-D) temporal interpolation the explicit detector
is usually called a motion detector, for 2-D spatial interpolation it is called an edge detector, while
the most advanced device estimating the optimal spatio-temporal (3-D) interpolation direction is
usually called a motion estimator. The interpolation filter can be recursive or transversal, and can
have any number of taps, but a transversal filter with one or two taps is the most common choice.
For a two taps FIR approach we can write the interpolated video signal Fint, in picture n, at spatial
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position x = (x, y)T as a function of the input video signal F(x, n):

Fint(x, n) = 0.5

[
F

(
x +

(
δ1
δ2

)
, n + δ3

)
+ F

(
x −

(
δ1
δ2

)
, n − δ3

)]
(54.1)

In this terminology a motion detector controls δ3, an edge detector δ1, and δ2, while a motion
estimator can be applied to determine δ1, δ2, and δ3.

Algorithms with a Motion Detector

To detect motion, the difference between two successive pictures is calculated. It is too simple,
however, to expect this signal to become zero in a picture part without moving objects. The common
problems with the detection are noise and alias. Additional problems occurring in some systems are
color subcarriers causing non-stationarities in colored regions, interlace causing nonstationarities in
vertically detailed picture parts, and timing jitter of the sampling clock which is particularly harmful
in detailed areas.

All these problems imply that the output of the motion detector usually is not a binary, but rather
a multi-level signal, indicating the probability of motion. Usual (but not always valid) assumptions
made to improve the detector are:

1. Noise is small and signal is large.

2. The spectrum part around the color carrier carries no motion information.

3. Low-frequency energy in the signal is larger than in the noise and alias.

4. Moving objects are large compared to a pixel.

The general structure of the motion detector resulting from these assumptions is depicted in
Figure 54.4. As can be seen, the difference signal is first low-pass (and carrier reject) filtered to profit

FIGURE 54.4: General structure of a motion detector.

from (54.2) and (54.3). It also makes the detector less “nervous” for timing jitter in detailed areas.
After the rectification another low-pass filter improves the consistency of the motion signal, based
on assumption (54.4). Finally, the nonlinear (but monotonous) transfer function in the last block
translates the signal in a probability figure for the motion Pm, using (54.1). This last function may
have to be adapted to the expected noise level. Low-pass filters are not necessarily linear. More than
one detector can be used, working on more than just two pictures in the neighborhood of the current
image, and a logical or linear combination of their outputs may lead to a more reliable indication of
motion.

The motion detector (MD) is applied to switch or fade between two processing modes, one of
which is optimal for stationary and the other for moving image parts. Examples are:

• De-interlacing. The MD fades between intra-field interpolation (line-averaging, or edge
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dependent spatial interpolation) and inter-field interpolation (repetition of the previous
field, averaging of neighboring fields, etc.).

• Field rate doubling on interlaced video: The MD fades between repetition of fields (best
dynamic resolution without motion compensation for moving picture parts) and repe-
tition of frames (best spatial resolution in stationary image parts).

To slightly elaborate on the first example of de-interlacing, we define the interpolated pixel
Xm(x, n) in a moving picture part as:

Xm

(
x, n

) = 0.5

[
F

(
x −

(
0
1

)
, n

)
+ F

(
x +

(
0
1

)
, n

)]
(54.2)

while for stationary picture parts the interpolated pixel Xs(x, n) is taken as:

Xs

(
x, n

) = F
(
x, n − 1

)
(54.3)

and taking the probability of motion Pm, from the motion detector into account, the output is given
by:

Fint

(
x, n

) = PmXm

(
x, n

)+ (1 − P(m))Xs

(
x, n

)
(54.4)

In most practical cases the output Pm has a nonlinear relation with the actual probability.

Algorithms with an Edge Detector

To detect the orientation of a spatial edge, usually the differences between pairs of spatially
neighboring pixels are calculated. Again it is a bit unrealistic to expect that a zero difference is a
reliable indication of a spatial direction in which the signal is stationary. The same problems (noise,
alias, carriers, timing-jitter) occur as with motion detection. The edge detector (ED) is applied to
switch or fade between at least two but usually more processing modes, each of them optimal for
interpolation of a certain orientation of the spatial edge. Examples are:

• De-interlacing. The ED fades between vertical line-averaging and diagonal averaging
(+/ − 45◦, or even more angles).

• Up-conversion to a higher resolution format. A simple bi-linear interpolation filter is
applied with its coefficients adapted to the output of the edge detector.

FIGURE 54.5: Identification of pixels as applied for direction dependent spatial interpolation.
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In Fig. 54.5, X is the pixel to be interpolated for the sequential scan conversion and the result
applying pixels in a neighborhood (A, B, C, D, E and F ) is either Xa, Xb, or Xc, where:

Xa = 0.5[A + F ] = 0.5

[
F

(
x −

(
1
1

)
, n

)
+ F

(
x +

(
1
1

)
, n

) ]
(54.5)

and:

Xb = 0.5[B + E] = 0.5

[
F

(
x −

(
0
1

)
, n

)
+ F

(
x +

(
0
1

)
, n

) ]
(54.6)

and:

Xc = 0.5[C + D] = 0.5

[
F

(
x +

( +1
−1

)
, n

)
+ F

(
x +

( −1
+1

)
, n

) ]
(54.7)

The selection of Xa, Xb, or Xc to the interpolated output Fint is controlled by a luminance gradient
indication calculated from the same neighborhood:

Fint

(
x, n

) =




Xa , (|A − F | < |C − D| ∧ |A − F | < |B − E|)
Xb , (|B − E| ≤ |A − F | ∧ |B − E| ≤ |C − D|)
Xc , (|C − D| < |A − F | ∧ |C − D| < |B − E|)

(54.8)

In this example, the gradient is calculated on the same pixels that are used in the interpolation step.
This is not necessarily the case. Similar to the earlier described motion detector, it is advantageous to
filter the video signal prior to and/or after the rectification in Eq. (54.8). Also the decision, i.e., the
optimal interpolation angle, can be low-pass filtered to improve the consistency of the interpolation
angle. Finally, the edge dependent interpolation can be combined with (motion adaptive or motion
compensated) temporal interpolation to improve the interpolation quality of near horizontal edges.

Implicit Detection in Nonlinear Interpolation Filters

Many nonlinear interpolation methods have been described. Most popular is the class of
order statistical filters. Combinations with linear (bandsplitting) filters are known, optimizing the
interpolation for individual spectrum parts. We will limit ourselves to some basic examples here.

An illustration of a basic inherently adapting filter is shown in Figure 54.6. The line to be inter-

FIGURE 54.6: Sequential scan conversion with three-tap vertical-temporal median filtering. The
thin lines show which pixels are input for the median filter.
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polated is found as the median of the spatially neighboring lines (a and b) and the corresponding
line (c) from the previous field:

Fint(x, n) = median [a, b, c] =

median

[
F

(
x +

(
0
1

)
, n

)
, F

(
x −

(
0
1

)
, n

)
, F

(
x, n − 1

) ]
(54.9)

with:

median (X, Y, Z) =




X, (Y ≤ X ≤ Z ∨ Z ≤ X ≤ Y )

Y, (X < Y ≤ Z ∨ Z ≤ Y < X)

Z, (otherwise)

(54.10)

The inherent adaptation to edges is understood as follows: In case of a temporal edge (i.e., motion)
larger than the spatial edge (i.e., vertical detail), the difference between a and b is relatively small
compared to their difference with c. Therefore, an intra-field interpolation results (a or b is copied).
In case of a non-moving vertical edge, the difference between a and b will be relatively large compared
to the difference between c and a or b. In this case, the inter-field interpolation (c is copied) is most
likely.

It is possible to combine edge detectors with non-linear filters, e.g., a so-called weighted median
filter. In a weighted median filter, the (integer) weight given to a sample indicates the number of
times its value is included in the input of the filter to the ranking stage. An increase of this weight
increases the chance this sample value is selected as the median. It therefore provides a method,
using the output of an edge detector with uncertainties, to statistically improve the performance of
the interpolation.

We will again use Fig. 54.5 to identify the location of the pixels used in the interpolation. The
output value for the pixel position indicated with X results as:

Fint

(
x, n

) = median

[
A, B, C, D, E, F, α · X−1, β · B + E

2

]
, (α, β ∈ N) (54.11)

with:

X−1 = F
(
x, n − 1

)
, A = F

(
x −

(
1
1

)
, n

)
, B = F

(
x −

(
0
1

)
, n

)
, . . . . . . . . .

(54.12)
as illustrated in Fig. 54.5. The weighting (α and β) implies that an assumed “important” pixel is fed
more than once to the median calculating circuit:

α · A = A, A, A . . . . . . . . . A, A

α times
(54.13)

The combination arises if a motion detector is used to control the weighting factors of the pixel from
the previous field and that of the value found by line averaging. A large value of α increases the
probability of field insertion, while a large β causes an increased probability of line averaging.

Although the examples in this sectionare limited tode-interlacing, it shouldbenoted thatproposals
exist for field rate conversion as well.

Algorithms with a Motion Estimator

The idea to interpolate picture content in the direction in which it is most correlated can be
extended to a three-dimensional case. This results in an interpolation along the motion trajectory.
Figure 54.7 defines the motion trajectory as the line that connects identical picture parts in a sequence
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FIGURE 54.7: Identical picture parts of successive images lie on the motion trajectory. Its projection
in the image plane is the motion vector.

of pictures. The projection of this motion trajectory between two successive pictures on the image
plane, called the motion vector, is also shown in this figure. Not all temporal information changes
can be described adequately as object velocities: e.g., fades and concealed or obscured background.
Nevertheless, this method has the strongest physical background, as due to their inertia it always
takes time for objects to completely disappear, or change geometry, resulting in a strong correlation
of successive images after compensation for motion. This is in contrast to spatial (edge adaptive)
interpolation for which there is a statistical but no physical background.

Knowledge of motion vectors allows us to interpolate image data at any temporal instance between
two successive pictures. The most common form uses motion compensated averaging according to:

Fint

(
x, n + α

) = 1/2 · [ F
(
x − αD

(
x, n

)
, n
)

+ F
(
x + (1 − α)D

(
x, n

)
, n + 1

) ]
, (0 ≤ α ≤ 1) (54.14)

whereD(x, n) is theobjectdisplacementatpositionx = (x, y)T estimatedbetweenfieldsnandn+1,
while α determines the temporal instance for which the interpolated data has to be valid. However,
all previously mentioned interpolation methods that involve a temporal component can be used as a
basis of a motion compensated interpolation. So linear, nonlinear, motion adaptive, edge adaptive,
and inherently adapting interpolation methods can be upgraded toward their motion-compensated
counterparts. Furthermore, bandsplitting can be used to sophisticate the interpolation.

We will not elaborate further on these methods as they follow straightforward from the earlier text.
We will make an exception, however, for temporal interpolation on interlaced signals, as this poses
non-trivial problems even with knowledge of local motion.

Motion Compensated De-Interlacing

In general, the pixels required for the motion compensated interpolation do not exist in the
time discrete input signal, e.g., due to non-integer velocities. In the horizontal domain this problem
can be solved with linear SRC-theory, but not in the vertical domain. Three solutions for this problem
have been proposed:

1. Application of a generalized sampling theory (GST).
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2. Straight extension of the motion vector into earlier pictures until it points (almost) to an
existing pixel.

3. Recursive de-interlacing of the signal.

The implication of GST is that it is possible to perfectly reconstruct a signal sampled at 1/n times
the Nyquist rate if n independent sets of samples describe the signal. The de-interlacing problem is a
specific case for which n = 2. The required two sets are the current field and the motion compensated
previous field, respectively. If the two do not coincide, i.e., the object does not have an odd integer
vertical motion vector component, the independency constraint is fulfilled, and the problem can
theoretically be solved. Practical problems are:

a. The velocity can have an odd vertical component.

b. Perfect reconstruction requires the use of pixels from many lines, for which the velocity
need not be constant.

c. For nearly odd integer valued vertical velocities, noise may be enhanced.

Solution 2 is valid only if we assume the velocity constant over a larger temporal interval. This
is a rather severe limitation which makes the method practically useless. Solution 3 is based on the
assumption that it is possible at some time to have a perfectly de-interlaced picture in a memory.
Once this is true, the picture is used to de-interlace the next input field. With motion compensation,
this solution can be perfect as the de-interlaced picture in the memory allows the use of SRC-theory
also in the vertical domain. If this new de-interlaced field is written in the memory, it can be used to
de-interlace the next incoming field. Limitations of this method are:

a. Propagation of motion vector and interpolation errors.

b. Even a perfectly de-interlaced picture can contain alias in the vertical domain in the
common case of a camera without an optical prefilter.

In practice, problem a is the more serious one, particularly for nearly odd vertical velocities.
Although there are restrictions, motion compensated interpolation techniques for field rate up-

conversion and de-interlacing provide the most advanced option. However, they require nontrivial
algorithms to measure object displacements between consecutive images. These motion estimation
methods therefore shall be discussed more extensively in the next section.

54.5 Motion Estimation

This section provides an overview of motion estimation algorithms developed over time. The esti-
mators applicable for scanning format conversion require additional constraints which are discussed
in the last part of this section.

54.5.1 Pel-Recursive Estimators

The category of pel-recursive motion estimators can be derived from iterative methods that use a
previously calculated motion vector Di−1 to find the result vector Di according to:

Di = Di−1 + update (54.15)

Several algorithms based on iteration can be found in the literature. A common form applies iterative
minimization of the squared value of the displaced frame difference (DFD) along the steepest
gradient of the luminance function:

Di = Di−1 − 1

2
· α ·

(
δ/δDi−1

x

δ/δDi−1
y

)
DFD2

(
x, Di−1, n

)
(54.16)
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where the DFD is defined as:

DFD
(
x, Di−1, n

)
= F

(
x, n

)− F
(
x − Di−1, n − 1

)
(54.17)

and:

Di =
(

Di
x

Di
y

)
(54.18)

As before, n stands for the field or picture number. The constant α is positive and determines the
speed of convergence and the accuracy of the estimate. The value of α is limited to a maximum, since
instability or a noisy estimation result can occur for higher values. Equation (54.16) can be rewritten
as:

Di = Di−1 − α · DFD
(
x, Di−1, n

)
·
(

δ/δx

δ/δy

)
F
(
x − Di−1, n

)
(54.19)

The method is known as “steepest descent algorithm”. The updating process can be stopped after a
fixed number of iterations, at the moment the update term falls under a threshold, or in case slow
convergence or even divergence is detected. Rather than iterating the estimation process in a fixed
position of the picture, the estimated result from a previously scanned position in the same picture
can be used as the prediction for the present location. We shall then speak of a spatial recursive
process, and if for every pixel an update is calculated, the name “pel-recursive motion estimation” is
commonly used. The spatial prediction can be based on either a single previously calculated result,
in which case the convergence shall be one-dimensional, or on a number of earlier calculated vectors.
In case more than one vector is used, the design can select the best according to a criterion before
or after updating, e.g., the smallest DFD or a weighted average can be calculated The coefficients
that determine the weighting can be based on statistical properties of the vector field. Depending on
the choice of the relative positions in the picture from which prediction vectors are taken, a one- or
two-dimensional convergence can result. In the case of temporal recursion, a further refinement can
be obtained by motion compensating the prediction values from the preceding field before weighting
them with the values from the present field.

The algorithm can be improved by calculating the update term from a group of pixels rather than
from only one pixel. This is then referred to as “gradient summed error algorithm”:

Di = Di−1 − α ·
∑

x∈ group

[
DFD

(
x, Di−1, n

)
·
(

δ/δx

δ/δy

)
F
(
x − Di−1, n

) ]
(54.20)

Again the group can extend into a one-, two-, or three-dimensional neighborhood. Weighted aver-
aging is an option and weights can be adapted to image statistics. In case of gradients taken from a
temporally neighboring position, motion compensation can be applied prior to weighting with the
spatial neighboring gradients.

Simplifications of the algorithm are possible. Particularly the prevention of multiplication is useful,
and possible, e.g., by only using the sign of the gradient to determine the direction of the update with
a fixed length.

In the literature, many variants of the steepest descent or gradient summed error algorithm are
described, which mainly differ from the above-mentioned algorithms in that the convergence speed
determining constant α is substituted by variables to adapt the estimator to local picture statistics.

54.5.2 Block-Matching Algorithm

In block-matching motion estimation algorithms, a displacement vector is assigned to the center X

of a block of pixel positions B(X) in the current field n by searching a similar block within a search
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area SA(X), also centered at X, but in the previous field n − 1. The similar block has a center that
is shifted with respect to X over the displacement vector D(X, n). To find D(X, n), a number of
candidate vectors C are evaluated applying an error measure ∈ (C, X, n) to quantify block similarity.
Figure 54.8 illustrates the procedure.

FIGURE 54.8: Block of size X ×Y in current field n and trial block in search area SA(X) in previous
field n − 1, shifted over candidate vector C.

More formally, CSmax is defined as the set of candidate vectors C, describing all possible displace-
ments (integer on the pixel grid) with respect to X within the search area SA(X) in the previous
image:

CSmax = {
C | − N ≤ Cx ≤ +N, − M ≤ Cy ≤ +M

}
(54.21)

where N and M are constants limiting SA(X). Furthermore, a block B(X) centered at X and of size
X × Y consisting of pixel positions x in the present field n, is now considered:

B
(
X
) = {

x|Xx − X/2 ≤ x ≤ Xx + X/2 ∧ Xy − Y/2 ≤ y ≤ Xy + Y/2
}

(54.22)

The displacement vector D(X, n) resulting from the block-matching process is a candidate vector
C which yields the minimum value of an error function ∈ (C, X, n):

D
(
X, n

) ∈ {C ∈ CSmax| ∈ (C, X, n
) ≤∈ (F, X, n

)∀F ∈ CSmax
}

(54.23)

If the vector D(X, n) with the smallest matching error is assigned to all pixel positions x in the block
B(X):

∀x ∈ B(X):

D
(
x, n

) ∈ {C ∈ CSmax| ∈ (C, X, n
) ≤∈ (F, X, n

)∀F ∈ CSmax
}

(54.24)

rather than to the center pixel only, a large reduction of computations is achieved. As an implication,
consecutive blocks B(X) are not overlapping.

The error value for a given candidate vector C is a function (COST) of the luminance values of
the pixels in the current block and those of the shifted block from a previous field, summed over the
block B(X):

∈ (C, X, n
) =

∑
x∈B(X)

COST
[
F
(
x, n

)
, F

(
x − C, n − p

) ]
(54.25)
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A common choice for p is either 1 or 2, depending on whether the signal is interlaced or not.
Although the COST function itself can be rather straightforward and simple to implement, the

high repetition factor for this calculation creates a huge burden. To save calculational effort in block-
matching motion estimation algorithms, several methods have been published. The usual ingredients
are:

1. The use of a simpler COST function.

2. Estimation on sub-sampled picture material.

3. Design of a clever search strategy, preventing that all possible vectors need to be checked.

Concerning option 1, there is almost general consensus. The most popular choice thus far for the
error function is the Summed Absolute Difference (SAD) criterion:

∈ (C, X, n
) = SAD

(
C, X, n

) =
∑

x∈B(X)

|F (x, n
)
, −F

(
x − C, n − p

) | (54.26)

Most important alternatives are the Mean Square Error (MSE), and the Normalized Cross Correlation
Function (NCCF) criterion. The simpler error functions that have been designed will not be discussed
here, as the economizing hardly ever justifies the performance loss.

Option 2 is straightforward and has little negative effect on the performance with sub-sampling
factors up to four. Option 3 is the most effective, and will be dealt with separately in the next section.

54.5.3 Search Strategies

Sub-Sampled Full Search

In the most straightforward search strategy for all candidate vectors C in the search area, the
matching error for a block B(X) of pixel positions is calculated. The method is referred to as full
search, exhaustive search, or brute force block-matching. To economize the calculational effort, the
matching errors of only half of the possible result vectors D(X, n) can be calculated in a first step,
using a first candidate set CS1 which is a subset of CSmax. Figure 54.9 illustrates this option, further
showing the candidate vectors in the second step of the algorithm.

FIGURE 54.9: Candidate vectors tested in the second step around D1(X, n) for sub-sampled full
search block-matching. The grid shown is the pixel grid.
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N-Step Search

The idea to adapt the search area from coarse to fine is not limited to a two-step process. As
illustrated in Fig. 54.10, the first step of a three-step block-matcher performs a search on a coarse grid
consisting of only nine candidate vectors in the entire search area. The second step includes a finer
search, with eight candidate vectors around the best matching vector of the first step, and finally in

FIGURE 54.10: Illustration of the three-step search. Vectors resulting from the steps are indicated
with the step number. The candidates in each step are shaded as in a, b, and c, respectively.

the third step a search on the full resolution grid is performed, with another eight candidates around
the best vector of the second step. Note that a search range of +/ − 6 pels is assumed; other search
areas require modifications, either resulting in less accurate vectors or in more consecutive steps.
Generalizations to N-steps block-matching are obvious.

Related is the 2-D logarithmic, or cross-search, method that checks five vectors per step, one
in the middle, four symmetrically around it (two with a different x-component and two with a
different y-component). Again, four vectors are checked around the result, and the distance between
the candidates is halved when the best matching vector is the middle one. Hence, the number of
consecutive steps depends on the resulting vector, which is a drawback, as the hardware has to be
designed for the worst case situation and cannot profit from a low average number of steps.

One-at-a-Time-Search

Yet a further reduction of candidate vectors can be realized if the two-dimensional optimization
problem is split into two separate one-dimensional optimizations. The candidate set, for step i of
the algorithm, CSi(X, n), is adapted during the process, as in the previously discussed algorithms,
but contains only three candidate vectors C(X, n). Departing from vector 0, this method performs
a search for the minimum error along the x-axis of the search area:

CSi
x

(
X, n

) =
{
C|C = Di−1 (X, n

)+ U, Ux = 0 ∨ ±1, Uy = 0
}

(54.27)

The procedure is repeated N times until DN(X, n) = DN−1(X, n). From this minimum a search
is started parallel to the y-axis and repeated M times until DM+N(X, n) = DD+N−1(X, n).

In its simplest form, shown in Fig. 54.11, the process stops at this minimum and the estimated
motion vector D(x, n) = DM+N(X, n) for all pixel positions x in B(X). It is possible, however, to
refine the result by repeating the OTS procedure, departing with every iteration from the previous
result DM+N(X, n).
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FIGURE 54.11: One-at-a-time search (OTS) block-matching. The new candidate vectors that have
to be evaluated for a number of successive steps is indicated.

A problem of all efficient search techniques is the risk of converging to a local rather than the global
minimum of the match error function. The coarser the initial grid of candidate vectors is, the higher
this risk. It can be reduced by prefiltering the video information prior to the motion estimation,
but this introduces inaccuracies in detailed picture parts. If the prefiltering and the block size are
adapted separately for every step in the search procedure, we arrive at the hierarchical block-matching
algorithms, dealt with in the next subsection.

54.6 Motion Estimation and Scanning Format Conversion

In situationswheremotionvectors are generated for temporal interpolationofpictures, it is important
that thevectors represent the real velocitiesofobjects, or the“true-motion”as it is called, in thepicture.
None of the described motion estimators is guaranteed to yield true motion vectors. They generate
a vector that yields the “best match” or the minimal displaced frame difference and often even only
the local best match, or the local minimum of the DFD.

To improve this relation between estimated displacement vectors and actual object velocity, meth-
ods have been designed which modify either the algorithm or the displacement vectors. The common
solution is based on the observation that the velocity field does not usually contain many fine details.
In other words, the motion vector field is spatially consistent: large areas (objects, background) with
identical vectors usually exist. Object inertia further causes velocity fields to be temporally consistent.
To improve consistency, a number of methods have been proposed. Two classes can be distinguished,
combinations of which are possible:

• Methods, that perform a post-processing on the output vector field to improve the consis-
tency.

• Methods in which a smoothness constraint is integrated in the estimator.

Postprocessing can be straightforward, applying basically low-pass filtering to improve the spatial
and/or temporal consistency or smoothness of the vector field generated by any motion estimation
algorithm. Often thefilter is anonlinearone; themedianparticularly ispopularas it is edgepreserving.
More sophisticated methods in this class merely use the output vector field of the estimator to initialize
a simulated annealing or genetic optimization algorithm using a new cost function, usually including
smoothness constraints.

Integrated solutions can be expected to realize a better performance than the straightforward
representatives of the first class at a lower expense than the sophisticated processing methods. The
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constraint can either be explicit, e.g., by adding a “discontinuity penalty” to the error criterion of a
block-matcher:

%
(
C, X, n

) =
∑

x∈B(X)

∣∣F (x, n
)
, −F

(
x − C, n − 1

)∣∣
+ α ·

∥∥∥∥D
(

X, −
(

X

0

)
, n

)
− C

∥∥∥∥+ β ·
∥∥∥∥D

(
X, −

(
0
Y

)
, n

)
− C

∥∥∥∥ (54.28)

(where the values of α and β determine the smoothness and it is proposed to adapt their value in
the neighborhood of edges in the image), or implicit through hierarchy or recursion, which will be
discussed separately. Again, both classes can be combined.

54.6.1 Hierarchical Motion Estimation

Hierarchical motion estimators realize a consistent velocity field by initializing local estimators with a
global estimate, often in more than two steps. In sub-band coding terminology, a resolution pyramid
is built and coarse vectors are estimated on the low frequency band. The result is used as a prediction
for a more accurate estimate at the next sub-band, which contains higher frequencies, etc. At the
top of the pyramid, the signal is strongly prefiltered and sub-sampled. The bandwidth of the filter
increases and the sub-sampling factors decrease, going down in the hierarchy, until the full resolution
is reached on the lowest hierarchical level.

Thevalueof themotionvector infieldnathierarchical level l, Di−1(X, n, l), andusing logarithmic
search, is found as:

Di−1
(
X, n, l

) ∈


{
DN

(
X, n, l − 1

)}
, (i = 1)

{
C ∈ CSi−1 (X, n, l

) |% (C, X, n
) ≤ %

(
F, X, n

)
, ∀F ∈ CSi−1 (X, n, l

)}
, (i > 1)

(54.29)

where the search area is defined as:

CSi
(
X, n, l

) =
{
C|C = Di−1 (X, n, l

)+ U , Ux = 0 ∨ ±2N−i ∧ Uy = 0 ∨ 2N−i
}

,

i = 1 . . . N, l = 1 . . . L (54.30)

DN(X, n, l − 1) is the result vector for the block at position X in field n in the last (N th) step of
the logarithmic search, at one higher (l − 1) hierarchical level.

The method is also referred to as multi-resolution, or multi-grid motion estimation. The initial
block size can be the total image, which prevents limitation of the consistency to parts of the picture.
The inverted approach has also been published, performing block-matching on initially small blocks,
which are grown to larger sizes until the minimum of the match error is considered clearly distinct.
Combinations with other than the logarithmic search strategy are possible, and the hierarchical
method is not limited to block-matching algorithms either.

Phase Plane Correlation

An important variant of a two step hierarchical motion estimation is a method called phase
plane correlation (PPC). This algorithm is an extension of earlier Fourier techniques for motion
estimation, which were capable of generating global displacement vectors only. In the PPC algorithm
a two-level hierarchy is proposed.

In the first hierarchical level, on fairly large blocks (typically 64 by 64), a limited number of
candidate vectors, usually less than 10, is generated, which are fed to the second level. Here one of
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FIGURE 54.12: Hierarchical block-matching. Results from an estimation process at a down-sampled
image are used to initialize the next estimation process on a higher resolution image.

these candidate vectors is assigned as the resulting vector to a much smaller area (typically 1 by 1 up
to 8 by 8, is reported) inside the large initial block.

The name of the method refers to the procedure used for generating the candidate vectors in the
first step. For the block in the current field n, the Discrete Fourier Transform (DFT) of the luminance
function F(x, n) will be notated as G(f , n). The so-called phase difference matrix PD(x, n) is
calculated according to:

PD
(
x, n

) = F−1


 G

(
f , n

)
· G∗

(
f , n − p

)
| G

(
f , n

)
| · | G

(
f , n − p

)
|


 (54.31)

The resulting matrix or “correlation surface” exhibits peaks corresponding to the relative displace-
ment of the information in the two blocks. The Fourier transformation reduces the computational
complexity, and enables simple filtering in the frequency domain. Most important is the significantly
increased sharpness of the correlation peaks by normalizing each frequency component prior to the
reverse transformation. A “peak hunting” algorithm is applied to find the largest peaks in the phase
difference matrix, which correspond to the best matching candidate vectors. Sub-pixel accuracy
better than a tenth of a pixel can be achieved by fitting a quadratic curve through the elements in this
matrix. For interlaced video signals, p = 2 is the common choice.

The peaks in the phase plane can be applied to identify the most likely candidate vectors C(x, n)

for a consecutive block-matching algorithm, evaluating all candidates in each sub-block in the area
to which the phase plane corresponds.

54.6.2 Recursive Search Block-Matching

Rather than calculating promising candidate vectors for a block-matching algorithm on a lower res-
olution level or in the frequency domain on larger blocks, the recursive search block-matcher takes
spatial and/or temporal “prediction vectors” from a 3-D neighborhood. This implicitly assumes spa-
tial and/or temporal consistency. If the assumption is false, this consistency in the vector field results
anyway, as there are no other candidate vectors available. As far as the predictions are concerned,
there is a strong similarity with the pel-recursive algorithms, and the various options described there
are globally valid here too. Figure 54.13 illustrates a proposed choice of predictions.

The most common updating process involves a single, or a very few, update vectors added to either
of the prediction vectors. It was suggested, for example, to apply a candidate set CS(X, n):
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FIGURE 54.13: Relative position of current block and blocks from which prediction vectors can be
taken in a recursive search block-matcher.

CS
(
X, n

) =
{

C ∈ CSmax|C = D

(
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(
X
Y

)
, n

)
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(
X, n

) ∨ C = D

(
X −

(−X
Y

)
, n

)
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(
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) }

∪
{
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(
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(
X
Y

)
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)
, D

(
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(−X
Y

)
, n

)
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(
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(
0

2Y

)
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) }
(54.32)

where the update vectors Ua(X, n) and Ub(X, n) may be alternatingly available, and taken from a
limited fixed integer update set, such as:

USi =
{ (

0
0

)
,

(
0
1

)
,

(
0

−1

)
,

(
0
2

)
,

(
0

−2

)
,(

1
0

)
,

( −1
0

)
,

(
3
0

)
,

( −3
0

) }
(54.33)

Result vectors can have sub-pixel accuracy, if the update set (also) contains fractional update values.
Quarter pel resolution, for example, is realized with adding:

USf =
{ (

0
0.25

)
,

(
0

−0.25

)
,

(
0.25

0

)
,

( −0.25
0

) }
(54.34)

The method is very efficient and realizes, due to the inherent smoothness constraint, very coherent
and close to true-motion vector fields, most suitable for scanning format conversion.
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The image and video processing literature is rich with video compression algorithms.
This chapter overviews the basic blocks of most video compression systems, discusses
some important features required by many applications, e.g., scalability and error re-
silience, and reviews the existing video compression standards such as H.261, H.263,
MPEG-1, MPEG-2, and MPEG-4.

55.1 Introduction

Video sources produce data at very high bit rates. In many applications, the available bandwidth is
usually very limited. For example, the bit rate produced by a 30 frame/s color common intermediate
format (CIF) (352 × 288) video source is 73 Mbits/s. In order to transmit such a sequence over a
64 Kbits/s channel (e.g., ISDN line), we need to compress the video sequence by a factor of 1140. A
simple approach is to subsample the sequence in time and space. For example, if we subsample both
chroma components by 2 in each dimension, i.e., 4:2:0 format, and the whole sequence temporally
by 4, the bit rate becomes 9.1 Mbits/s. However, to transmit the video over a 64 kbits/s channel, it
is necessary to compress the subsampled sequence by another factor of 143. To achieve such high
compression ratios, we must tolerate some distortion in the subsampled frames.

Compression can be either lossless (reversible) or lossy (irreversible). A compression algorithm is
lossless if the signal can be reconstructed from the compressed information; otherwise it is lossy. The
compression performance of any lossy algorithm is usually described in terms of its rate-distortion
curve, which represents the potential trade-off between the bit rate and the distortion associated with
the lossy representation. The primary goal of any lossy compression algorithm is to optimize the
rate-distortion curve over some range of rates or levels of distortion. For video applications, rate
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is usually expressed in terms of bits per second. The distortion is usually expressed in terms of the
peak-signal-to-noise ratio (PSNR) per frame or, in some cases, measures that try to quantify the
subjective nature of the distortion.

In addition to good compression performance, many other properties may be important or even
critical to the applicability of a given compression algorithm. Such properties include robustness
to errors in the compressed bit stream, low complexity encoders and decoders, low latency require-
ments, and scalability. Developing scalable video compression algorithms has attracted considerable
attention in recent years. Generally speaking, scalability refers to the potential to effectively decom-
press subsets of the compressed bit stream in order to satisfy some practical constraint, e.g., display
resolution, decoder computational complexity, and bit rate limitations.

The demand for compatible video encoders and decoders has resulted in the development of
differentvideocompressionstandards. The international standardsorganization(ISO)hasdeveloped
MPEG-1 to store video on compact discs, MPEG-2 for digital television, and MPEG-4 for a wide
range of applications including multimedia. The international telecommunication union (ITU) has
developed H.261 for video conferencing and H.263 for video telephony.

All existing video compression standards are hybrid systems. That is, the compression is achieved
in two main stages. The first stage, motion compensation and estimation, predicts each frame from
its neighboring frames, compresses the prediction parameters, and produces the prediction error
frame. The second stage codes the prediction error. All existing standards use block-based discrete
cosine transform (DCT) to code the residual error. In addition to DCT, others non-block-based
coders, e.g., wavelets and matching pursuit, can be used.

In this chapter, we will provide an overview of hybrid video coding systems. In Section 55.2, we
discuss the main parts of a hybrid video coder. This includes motion compensation, signal decompo-
sitions and transformations, quantization, and entropy coding. We compare various transformations
such as DCT, subband, and matching pursuit. In Section 55.3, we discuss scalability and error re-
silience in video compression systems. We also describe a non-hybrid video coder that provides
scalable bit-streams [28]. Finally, in Section 55.4, we review the key video compression standards:
H.261, H.263, MPEG 1, MPEG 2, and MPEG 4.

55.2 Motion Compensated Video Coding

Virtually all video compression systems identify and reduce four basic types of video data redun-
dancy: inter-frame (temporal) redundancy, interpixel redundancy, psychovisual redundancy, and
coding redundancy. Figure 55.1 shows a typical diagram of a hybrid video compression system.
First the current frame is predicted from previously decoded frames by estimating the motion of
blocks or objects, thus reducing the inter-frame redundancy. Afterwards to reduce the interpixel
redundancy, the residual error after frame prediction is transformed to another format or domain
such that the energy of the new signal is concentrated in few components and these components
are as uncorrelated as possible. The transformed signal is then quantized according to the desired
compression performance (subjective or objective). The quantized transform coefficients are then
mapped to codewords that reduce the coding redundancy. The rest of this section will discuss the
blocks of the hybrid system in more detail.

55.2.1 Motion Estimation and Compensation

Neighboring frames in typical video sequences are highly correlated. This inter-frame (temporal)
redundancy can be significantly reduced to produce a more compressible sequence by predicting
each frame from its neighbors. Motion compensation is a nonlinear predictive technique in which
the feedback loop contains both the inverse transformation and the inverse quantization blocks, as
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FIGURE 55.1: Motion compensated coding of video.

shown in Fig. 55.1.
Most motion compensation techniques divide the frame into regions, e.g., blocks. Each region

is then predicted from the neighboring frames. The displacement of the block or region, d , is not
fixed and must be encoded as side information in the bit stream. In some cases, different prediction
models are used to predict regions, e.g., affine transformations. These prediction parameters should
also be encoded in the bit stream.

To minimize the amount of side information, which must be included in the bit stream, and to
simplify the encoding process, motion estimation is usually block based. That is, every pixel Ei in a
given rectangular block is assigned the same motion vector, d . Block-based motion estimation is an
integral part of all existing video compression standards.

55.2.2 Transformations

Most image and video compression schemes apply a transformation to the raw pixels or to the residual
error resulting from motion compensation before quantizing and coding the resulting coefficients.
The function of the transformation is to represent the signal in a few uncorrelated components. The
most common transformations are linear transformations, i.e., the multi-dimensional sequence of
input pixel values, f [Ei], is represented in terms of the transform coefficients, t[Ek], via

f [Ei] =
∑

Ek
t[Ek]wEk[Ei] (55.1)

for some wEk[Ei]. The input image is thus represented as a linear combination of basis vectors, wEk .
It is important to note that the basis vectors need not be orthogonal. They only need to form an
over-complete set (matching pursuits), a complete set (DCT and some subband decompositions), or
very close to complete (some subband decompositions). This is important since the coder should be
able to code a variety of signals. The remainder of the section discusses and compares DCT, subband
decompositions, and matching pursuits.

The DCT

There are two properties desirable in a unitary transform for image compression: the energy
should be packed into a few transform coefficients, and the coefficients should be as uncorrelated
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as possible. The optimum transform under these two constraints is the Karhunen-Loéve transform
(KLT) where the eigenvectors of the covariance matrix of the image are the vectors of the trans-
form [10]. Although the KLT is optimal under these two constraints, it is data-dependent, and is
expensive to compute. The discrete cosine transform (DCT) performs very close to KLT especially
when the input is a first order Markov process [10].

The DCT is a block-based transform. That is, the signal is divided into blocks, which are indepen-
dently transformed using orthonormal discrete cosines. The DCT coefficients of a one-dimensional
signal, f , are computed via

tDCT[Nb + k] = 1√
N




N−1∑
i=0

f [Nb + i], k = 0

N−1∑
i=0

√
2f [Nb + i] cos

(2i + 1)kπ

2N
, 1 ≤ k < N

∀b (55.2)

where N is the size of the block and b denotes the block number.
The orthonormal basis vectors associated with the one-dimensional DCT transformation of

Eq. (55.2) are

wDCT

k
[i] = 1√

N

{
1, k = 0, 0 ≤ i < N√

2 cos(2i+1)kπ
2N

, 1 ≤ k < N, 0 ≤ i < N
(55.3)

Figure 55.2(a) shows these basis vectors for N = 8.

FIGURE 55.2: DCT basis vectors (N = 8): (a) one-dimensional and (b) separable two-dimensional.

The one-dimensional DCT described above is usually separably extended to two dimensions for
image compression applications. In this case, the two-dimensional basis vectors are formed by the
tensor product of one-dimensional DCT basis vectors and are given by

wDCT

Ek [Ei] = wDCT

k1,k2
[i1, i2] 1= wDCT

k1
[i1] · wDCT

k2
[i2]; 0 ≤ k1, k2, i1, i2 < N
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Figure 55.2(b) shows the two-dimensional basis vectors for N = 8.
The DCT is the most common transform in video compression. It is used in the JPEG still image

compression standard, and all existing video compression standards. This is because it performs
reasonably well at different bit rates. Moreover, there are fast algorithms and special hardware chips
to compute the DCT efficiently.

The major objection to the DCT in image or video compression applications is that the non-
overlapping blocks of basis vectors, wEk , are responsible for distinctly “blocky” artifacts in the de-
compressed frames, especially at low bit rates. This is due to the quantization of the transform
coefficients of a block independent from neighboring blocks. Overlapped DCT representation ad-
dresses this problem [15]; however, the common solution is to post-process the frame by smoothing
the block boundaries [18, 22].

Due to bit rate restrictions, some blocks are only represented by one or a small number of coarsely
quantized transformcoefficients, hence thedecompressedblockwill only consistof thesebasis vectors.
This will cause artifacts commonly known as ringing and mosquito noise.

Figure 55.8(b) shows frame 250 of the 15 frame/s CIF Coast-guard sequence coded at 112 Kbits/s
using a DCT hybrid video coder.1 This figure provides a good illustration of the “blocking” artifacts.

Subband Decomposition

The basic idea of subband decomposition is to split the frequency spectrum of the image into
(disjoint) subbands. This is efficient when the image spectrum is not flat and is concentrated in a few
subbands, which is usually the case. Moreover, we can quantize the subbands differently according
to their visual importance.

As for the DCT, we begin our discussion of subband decomposition by considering only a one-
dimensional source sequence, f [i]. Figure 55.3 provides a general illustration of an N-band one-
dimensional subband system. We refer to the subband decomposition itself as analysis and to the

FIGURE 55.3: 1D, N-band subband analysis and synthesis block diagrams. (Source: Taubman, D.,
Chang, E., and Zakhor, A., Directionality and scalability in subband image and video compression,
in Image Technology: Advances in Image Processing, Multimedia, and Machine Vision, Jorge L.C. Sanz,
Ed., Springer-Verlag, New York, 1996. With permission).

inverse transformation as synthesis. The transformation coefficients of bands 1, 2, . . . , N are denoted
by the sequences u1[k], u2[k], . . . , uN [k], respectively. For notational convenience and consistency
with the DCT formulation above, we write t SB[·] for the sequence of all subband coefficients, arranged

1It is coded using H.263 [3], which is an ITU standard.
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according to t SB[(β−1)+Nk] = uβ [k], where 1 ≤ β ≤ N is the subband number. These coefficients
are generated by filtering the input sequence with filters H1, . . . , HN and downsampling the filtered
sequences by a factor of N , as depicted in Fig. 55.3. In subband synthesis, the coefficients for each
band are upsampled, interpolated with the synthesis filters, G1, . . . , GN , and the results summed to
form a reconstructed sequence, f̃ [i], as depicted in Fig. 55.3.

If the reconstructed sequence, f̃ [i], and the source sequence, f [i], are identical, then the subband
system is referred to as perfect reconstruction (PR) and the corresponding basis set is a complete
basis set. Although perfect reconstruction is a desirable property, near perfect reconstruction (NPR),
for which subband synthesis is only approximately the inverse of subband analysis, is often sufficient
in practice. This is because distortion introduced by quantization of the subband coefficients, t SB[k],
usually dwarfs that introduced by an imperfect synthesis system.

The filters, H1, . . . , HN , are usually designed to have band-pass frequency responses, as indicated
in Fig. 55.4, so that the coefficients uβ [k] for each subband, 1 ≤ β ≤ N , represent different spectral
components of the source sequence.

FIGURE 55.4: Typical analysis filter magnitude responses. (Source: Taubman, D., Chang, E., and Za-
khor, A., Directionality and scalability in subband image and video compression, in Image Technology:
Advances in Image Processing, Multimedia, and Machine Vision, Jorge L.C. Sanz, Ed., Springer-Verlag,
New York, 1996. With permission).

The basis vectors for subband decomposition are the N-translates of the impulse responses,
g1[i], . . . , gN [i], of synthesis filters G1, . . . , GN . Specifically, denoting the kth basis vector as-
sociated with subband β by wSB

Nk+β−1, we have

wSB

Nk + β − 1[i] = gβ [i − Nk] (55.4)

Figure 55.5 illustrates five of the basis vectors for a particularly simple, yet useful, two-band PR
subband decomposition, with symmetric FIR analysis and synthesis impulse responses. As shown in
Fig. 55.5 and in contrast with the DCT basis vectors, the subband basis vectors overlap.

As for the DCT, one-dimensional subband decompositions may be separably extended to higher
dimensions. By this we mean that a one-dimensional subband decomposition is first applied along
one dimension of an image or video sequence. Any or all of the resulting subbands are then further
decomposed into subbands along another dimension and so on. Figure 55.6 depicts a separable two-
dimensional subband system. For video compression applications, the prediction error is sometimes
decomposed into subbands of equal size.

Two-dimensional subband decompositions have the advantage that they do not suffer from the
disturbing blocking artifacts exhibited by the DCT at high compression ratios. Instead, the most
noticeable quantization-induced distortion tends to be ‘ringing’ or ‘rippling’ artifacts, which become
most bothersome in the vicinity of image edges. Figures 55.11(c) and 55.8(c) clearly show this
effect. Figure 55.11 shows frame 210 of the Ping-pong sequence compressed using a scalable, three-
dimensional subband coder [28] at 1.5 Mbits/s, 300 Kbits/s, and 60 Kbits/s. As the bit rate decreases,
we notice loss of detail and introduction of more ringing noise. Figure 55.8(c) shows frame 250 of
the Coast-guard sequence compressed at 112 Kbits/s using a zerotree scalable coder [16]. The edges
of the trees and the boat are affected by ringing noise.
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FIGURE 55.5: Subband basis vectors with N = 2, h1[−2 . . . 2] = √
2 ·

(−1
8, 1

4, 3
4, 1

4, −1
8), h2[−2 . . . 0] = √

2 · (−1
4, 1

2, −1
4), g1[−1 . . . 1] = √

2 · (1
4, 1

2, 1
4), and

g2[−1 . . . 3] = √
2 · (−1

8, −1
4, 3

4, −1
4, −1

8).hi and gi are the impulse responses of the Hi (analysis)
and Gi (synthesis) filters, respectively. (Source: Taubman, D., Chang, E., and Zakhor, A., Direction-
ality and scalability in subband image and video compression, in Image Technology: Advances in
Image Processing, Multimedia, and Machine Vision, Jorge L.C. Sanz, Ed., Springer-Verlag, New York,
1996. With permission).

Matching Pursuit

Representing a signal using an over-complete basis set implies that there is more than one
representation for the signal. For coding purposes, we are interested in representing the signal with
the fewest basis vectors. This is an NP-complete problem [14]. Different approaches have been
investigated to find or approximate the solution. Matching pursuits is a multistage algorithm, which
in each stage finds the basis vector that minimizes the mean-squared-error [14].

Suppose we want to represent a signal f [i] using basis vectors from an over-complete dictionary
(basis set) G. Individual dictionary vectors can be denoted as:

wγ [i] ∈ G. (55.5)

Here γ is an indexing parameter associated with a particular dictionary element. The decomposition
begins by choosing γ to maximize the absolute value of the following inner product:

t =< f [i], wγ [i] >, (55.6)

where t is the transform (expansion) coefficient. A residual signal is computed as:

R[i] = f [i] − t wγ [i]. (55.7)

This residual signal is then expanded in the same way as the original signal. The procedure continues
iteratively until either a set number of expansion coefficients are generated or some energy threshold
for the residual is reached. Each stage k yields a dictionary structure specified by γk , an expansion
coefficient t[k], and a residual Rk , which is passed on to the next stage. After a total of M stages, the
signal can be approximated by a linear function of the dictionary elements:

f̂ [i] =
M∑

k=1

t[k]wγk
[i]. (55.8)
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FIGURE 55.6: Separable spatial subband pyramid. Two level analysis system configuration and
subband passbands shown. (Source: Taubman, D., Chang, E., and Zakhor, A., Directionality and
scalability in subband image and video compression, in Image Technology: Advances in Image Process-
ing, Multimedia, and Machine Vision, Jorge L.C. Sanz, Ed., Springer-Verlag, New York, 1996. With
permission).

The above technique has useful signal representation properties. For example, the dictionary
element chosen at each stage is the element that provides the greatest reduction in mean square error
between the true signal f [i] and the coded signal f̂ [i]. In this sense, the signal structures are coded
in order of importance, which is desirable in situations where the bit budget is limited. For image and
video coding applications, this means that the most visible features tend to be coded first. Weaker
image features are coded later, if at all. It is even possible to control which types of image features are
coded well by choosing dictionary functions to match the shape, scale, or frequency of the desired
features.

An interesting feature of the matching pursuit technique is that it places very few restrictions on
the dictionary set. The original Mallat and Zhang paper considers both Gabor and wave-packet
function dictionaries, but such structure is not required by the algorithm itself [14]. Mallat and
Zhang showed that if the dictionary set is at least complete, then f̂ [i] will eventually converge to
f [i], though the rate of convergence is not guaranteed [14]. Convergence speed and thus coding
efficiency are strongly related to the choice of dictionary set. However, true dictionary optimization
can be difficult because there are so few restrictions. Any collection of arbitrarily sized and shaped
functions can be used with matching pursuits, as long as completeness is satisfied.

Bergeaud and Mallat used the matching pursuit technique to represent and process images [1].
Neff and Zakhor have used the matching pursuit technique to code the motion prediction error
signal [20]. Their coder divides each motion residual into blocks and measures the energy of each
block. The center of the block with the largest energy value is adopted as an initial estimate for the
inner product search. A dictionary of Gabor basis vectors, shown in Fig. 55.7, is then exhaustively
matched to an S × S window around the initial estimate. The exhaustive search can be thought of as
follows. Each N × N dictionary structure is centered at each location in the search window, and the
inner product between the structure and the corresponding N ×N region of image data is computed.
The largest inner-product is then quantized. The location, basis vector index, and quantized inner
product are then coded together.

Video sequences coded using matching pursuit do not suffer from either blocking or ringing
artifacts, because the basis vectors are only coded when they are well-matched to the residual signal.
As bit rate decreases, the distortion introduced by matching pursuit coding takes the form of a
gradually increasing blurriness (or loss of detail). Since matching pursuits involves exhaustive search,
it is more complex than DCT approaches, especially at high bit rates.
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FIGURE 55.7: Separable two-dimensional 20× 20Gabor dictionary.

Figure 55.8(d) shows frame 250 of the 15 frame/s CIF Coast-guard sequence coded at 112 Kbits/s
using the matching pursuit video coder described by Neff and Zakhor [20]. This frame does not
suffer from the blocky artifacts, which affect the DCT coders as shown in Fig. 55.8(b). Moreover, it
does not suffer from the ringing noise, which affects the subband coders as shown in Figs. 55.8(c)
and 55.11(c).

55.2.3 Discussion

Figure 55.8 shows frame 250 of the 15 frame/s CIF Coast-guard sequence coded at 112 Kbits/s using
DCT, subband, and matching pursuit coders. The DCT coded frame suffers from blocking artifacts.
The subband coded frame suffers from ringing artifact.

Figure 55.9 compares the PSNR performance of the matching pursuit coder [20] to a DCT (H.263)
coder [3] and a zerotree subband coder [16] when coding the Coast-guard sequence at 112 Kbits/s.
The matching pursuit coder [20] in this example has consistently higher PSNR than the H.263 [3]
and the zerotree subband [16] coders. Table 55.1 shows the average luminance PSNRs for different
sequences at different bit rates. In all examples mentioned in Table 55.1, the matching pursuit coder
has higher average PSNR than the DCT coder. The subband coder has the lowest average PSNR.

TABLE 55.1 The Average Luminance PSNR of Different

Sequences at Different Bit Rates When Coding Using a DCT Coder

(H.263) [3], Zero-Tree Subband Coder (ZTS) [16], and Matching

Pursuit Coder (MP) [20]
Rate PSNR (dB)

Sequence Format Bit Frame DCT ZTS MP

Container-ship QCIF 10 K 7.5 29.43 28.01 31.10
Hall-Monitor QCIF 10 K 7.5 30.04 28.44 31.27
Mother-Daughter QCIF 10 K 7.5 32.50 31.07 32.78
Container-ship QCIF 24 K 10.0 32.77 30.44 34.26
Silent-Voice QCIF 24 K 10.0 30.89 29.41 31.71
Mother-Daughter QCIF 24 K 10.0 35.17 33.77 35.55
Coast-Guard QCIF 48 K 10.0 29.00 27.65 29.82
News CIF 48 K 7.5 30.95 29.97 31.96
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FIGURE 55.8: Frame 250 of Coast-guard sequence, original shown in (a), coded at 112 Kbits/s
using (b) DCT based coder (H.263) [3], (c) zerotree subband coder [16], and (d) matching pursuit
coder [20]. Blocking artifacts can be noticed on the DCT coded frame. Ringing artifacts can be
noticed on the subband coded frame.

55.2.4 Quantization

Motion compensation and residual error decomposition reduce the redundancy in the video signal.
However, to achieve low bit rates, we must tolerate some distortion in the video sequence. This is
because we need to map the residual and motion information to a fewer collection of codewords to
meet the bit rate requirements.

Quantization, in a general sense, is the mapping of vectors (or scalars) of an information source
into a finite collection of codewords for storage or transmission [8]. This involves two processes:
encoding and decoding. The encoder blocks the source {t[i]} into vectors of length n, and maps each
vector T n ∈ T n into a codeword c taken from a finite set of codewords C. The decoder maps the
codeword c into a reproduction vector Yn ∈ Yn where Y is a reproduction alphabet. If n = 1, it is
called scalar quantization. Otherwise, it is called vector quantization.

The problem of optimum mean squared scalar quantization for a given reproduction alphabet size
was independently solved by Lloyd [13] and Max [17]. They found that if t is a real scalar random
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FIGURE 55.9: Frame-by-frame distortion of the luminance component of the Coast-guard sequence,
reconstructed from112Kbits/sH.263bit stream(solid line) [3], a zerotree subbandbit-stream(dotted
line) [16], and from a matching pursuit bit stream (dashed line) [20]. Consistently, the matching
pursuit coder had the highest PSNR while the DCT coder had the lowest PSNR.

variable with continuous probability density function pt (t), then the quantization thresholds are

t̂k = rk + rk−1

2
, (55.9)

which is the geometric mean of the interval (rk−1, rk], where

rk =

∫ t̂k+1

t̂k

xpx(x)dx

∫ t̂k+1

t̂k

px(x)dx

(55.10)

are the reconstruction levels. Iterative numerical methods are required to solve for the reconstruction
and quantization levels.

The simplest scalar quantizer is the uniform quantizer for which the reconstruction intervals are
of equal length. The uniform quantizer is optimal when the coefficients have a uniform distribution.
Moreover, due to its simplicity and good general performance, it is commonly used in coding systems.

A fundamental result of Shannon’s rate distortion theory is that better performance can be achieved
by coding vectors instead of scalars, even if the source is memoryless [8, 19]. Linde et al. [12]
generalized the Lloyd-Max algorithm to vector quantization. Vector quantization exploits spatial
redundancy in images, a function also served by the transformation block of Fig. 55.1, so it is
sometimes applied directly to the image or video pixels [19].

Memory can be incorporated into scalar quantization by predicting the current sample from the
previous samples and quantizing the residual error, e.g., linear predictive coding.

The human visual system is sensitive to some frequency bands more than others. So, humans tol-
erate more losses in some bands and less in others. In practice, the DCT coefficients corresponding
to a particular frequency are grouped together to form a band, or in the case of subband decomposi-
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tion, the bands are simply the subband channels. Different quantizers are then applied to each band
according to its visual importance.

55.2.5 Coding of Quantized Symbols

The simplest method to code quantized symbols is to assign a fixed number of bits per symbol. For an
alphabet of L symbols, this approach requires dlog2 Le bits per symbol. This method, however, does
not exploit the coding redundancy in the symbols. Coding redundancy is eliminated by minimizing
the average number of bits per symbol. This is achieved by giving fewer bits to more frequent symbols
and more bits to less frequent symbols. Huffman [9] or arithmetic coding [21] schemes are usually
used for this purpose.

In image and video coding, a significant number of the transform coefficients are zeros. Moreover,
the “significant” DCT transform coefficients (low frequency coefficients) of a block can be predicted
from the neighboring blocks resulting in a larger number of zero coefficients. To code the zero coeffi-
cients, run-length is performed on a reordered version of the transform coefficients. Figure 55.10(a)
shows a commonly used zigzag scan to code 8 × 8 block DCT coefficients. Figure 55.10(b) shows a
scan used to code subband coefficients commonly known as zero-tree coding [24]. The basic idea
behind zero-tree coding is that if a coefficient in a lower frequency band (coarse scale) is zero or
insignificant, then all the coefficients of the same orientation at higher frequencies (finer scales) are
very likely to be zero or insignificant [16, 24]. Thus, the subband coefficients are organized in a data
structure design based on this observation.

FIGURE 55.10: (a) A common scan for an 8 × 8 block DCT. (b) A common scan for subband
decompositions (zero-tree).

55.3 Desirable Features

Some video applications require the encoder to provide more than good compression performance.
For example, it is desirable to have scalable video compression schemes so that different users with
different bandwidth, resolution, or computational capabilities can decode from the same bit-stream.

c©1999 by CRC Press LLC



Cellular applications require the coder to provide a bit-stream that is robust when transmission errors
occur. Other features include object-based manipulation of the bit-stream and the ability to perform
content search. This section addresses two important desired features, namely scalability and error
resilience.

55.3.1 Scalability

Developing scalable video compression algorithms has attracted considerable attention in recent
years. Scalable compression refers to encoding a sequence in such a way so that subsets of the encoded
bit-stream correspond to compressed versions of the sequence at different rates and resolutions.
Scalable compression is useful in today’s heterogeneous networking environment in which different
users have different rate, resolution, display, and computational capabilities.

In rate scalability, appropriate subsets are extracted in order to trade distortion for bit rate at a fixed
display resolution. Resolution-scalability, on the other hand, means that extracted subsets represent
the image or video sequence at different resolutions. Rate- and resolution-scalability usually also
provide a means of scaling the computational demands of the decoder. Resolution-scalability is
best thought of as a property of the transformation block of Fig. 55.1. Both the DCT and subband
transformations may be used to provide resolution-scalability. Rate-scalability, however, is best
thought of as a property of the quantization and coding blocks.

Hybrid video coders can achieve scalability using multi-layer schemes. For example, in a two
layer rate-scalable coder, the first layer codes the video at a low bit rate, while the second layer codes
the residual error based on the source material and what has been coded thus far. These layers
are usually called the base and enhancement layers. Such schemes, however, do not support fully
scalable video, i.e., they can only provide a few levels of scalability, e.g., a few rates. The bottleneck
is motion compensation, which is a nonlinear feedback predictor. To understand this, observe that
the storage block of Fig. 55.1 is a memory element, storing values f̃ [Ei] or t̃[Ek], recovered during
decoding, until they are required for prediction. In scalable compression algorithms, the value of
f̃ [Ei] or t̃[Ek], obtained during decoding, depends on constraints, which may be imposed after the
bit-stream has been generated. For example, if the algorithm is to permit rate scalability, then the
value of f̃ [Ei] or t̃[Ek] obtained by decoding a low rate subset of the bit-stream can be expected to be a
poorer approximation to f [Ei] or t[Ek], respectively, than the value obtained by decoding from a higher
rate subset of the bit-stream. This ambiguity presents a difficulty for the compression algorithm,
which must select a particular value for f̃ [Ei] or t̃[Ek] to serve as a prediction reference.

This inherent non-scalability of motion compensation is particularly problematic for video com-
pression where scalability and motion compensation are both highly desirable features. As a solution,
Taubman and Zakhor [28, 29] used three-dimensional subband decompositions to code video. They
first compensated for the camera pan motion, then used three-dimensional subband decomposition.
The coefficients in each subband are then quantized by a layered quantizer in order to generate a fully
scalable video with fine granularity of bit rates. Temporal filtering, however, introduces significant
overall latency, a critical parameter for interactive video compression applications. To reduce this
effect, it is possible to use a 2-tap temporal filter, which results in one frame of delay.

As a visual demonstration of the quality tradeoff inherent to rate-scalable video compression,
Fig. 55.11 shows frame 210 of the Ping-pong video sequence, decompressed at bit rates of 1.5
Mbits/s, 300kbits/s, and 60 kbits/s for monochrome display using the scalable coder developed by
Taubman and Zakhor [28]. As the bit rate decreases, the frame is less detailed and suffers more from
ringing noise, i.e., the visual quality decreases. Figure 55.12 shows the PSNR characteristics of the
scalable coder and MPEG-1 coder as a function of bit rate. The curve corresponding to the scalable
coder corresponds to one encoded bit-stream decoded at arbitrary bit rates, while the three points
for the MPEG-1 coder correspond to three different encoded bit-streams encoded and decoded at
these different rates. As seen the scalable codec offers a fine granularity of available bit rates with
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little or no loss in PSNR as compared to MPEG-1 codec.

FIGURE 55.11: Frame 210 of PING-PONG sequence decoded from scalable bit stream at (a) 1.5
Mbits/s, (b) 300 Kbits/s, and (c) 60 Kbits/s [28]. (Source: Taubman, D., Chang, E., and Zakhor,
A., Directionality and scalability in subband image and video compression, in Image Technology:
Advances in Image Processing, Multimedia, and Machine Vision, Jorge L.C. Sanz, Ed., Springer-Verlag,
New York, 1996. With permission).

Real time software only implementation of scalable video codec has also received a great deal of
attention over the past few years. Tan et al. [27] have recently proposed a real-time software only
implementation of the modified version of the algorithm in [28] by replacing the arithmetic coding
with block coding. The resulting scalable coder is symmetric in encoding and decoding complexity
and can encode up to 17 frames/s for rates as high as 1 Mbits/s on a 171 MHz Ultra-Sparc workstation.

55.3.2 Error Resilience

When transmitting video over noisy channels, it is important for bit-streams to be robust to trans-
mission errors. It is also important, in case of errors, for the error to be limited to a small region
and not to propagate to other areas. If the coder is using fixed-length codes, the error will be limited
to the region of the bit-stream where it occurred and the rest of the bit-stream will not be affected.
Unfortunately, fixed-length codes do not provide good compression performance, especially since
the histogram of the transform coefficients has a significant peak around low frequency.
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FIGURE 55.12: Rate-distortion curves for PING-PONG sequence. Overall PSNR values for Y, U, and
V components for the codec in [28] are plotted against the bit rate limit imposed on the rate-scalable
bit stream prior to decompression. MPEG-1 distortion values are also plotted as connected dots for
reference. (Source: Taubman, D., Chang, E., and Zakhor, A., Directionality and scalability in subband
image and video compression, in Image Technology: Advances in Image Processing, Multimedia, and
Machine Vision, Jorge L.C. Sanz, Ed., Springer-Verlag, New York, 1996. With permission).

In order to achieve such features when using variable length codes, the bit-stream is usually
partitioned into segments that can be independently decoded. Thus, if a segment is lost, only that
region of the video is affected. A segment is usually a small part of a frame. If an error occurs, the
decoder should have enough information to know the beginning and the end of a segment. Therefore,
synchronization codes are added to the beginning and end of each segment. Moreover, to limit the
error to a smaller part of the segment, reversible variable length codes may be used [26]. So, if an error
occurs, the decoder will advance to the next synchronization code and can decode in the backward
direction till the error is reached.

As is evident, there is a tradeoff between good compression performance and error resilience. In
order to reduce the cost of error resilient codes, some approaches jointly optimize the source and
channel codes [6, 23].

55.4 Standards

In this section we review the major video compression standards. Essentially, these schemes are based
on the building blocks introduced in Section 55.2. All these standards use the DCT. Table 55.2 sum-
marizes the basic characteristics and functionalities supported by existing standards. Sections 55.4.2,
55.4.3, and 55.4.5 outline the Motion Picture Experts Group (MPEG) standards for video compres-
sion. Sections 55.4.1 and 55.4.4 review the CCITT H.261 and H.263 standards for digital video
communications. This section lists the standards according to their chronological order in order to
provide an understanding of the progress of the video compression standardization process.
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TABLE 55.2 Summary of the Functionalities and Characteristics of the Existing

Standards
ITU ISO

Attribute H.261 H.263 MPEG-1 MPEG-2 MPEG-4

Applications Video- Video- CD storage Broadcast Wide range
conferencing phone (multimedia)

Bit rate 64K - 1M < 64K 1.0 - 1.5M 2 - 10M 5K - 4M

Material Progressive Progressive Progressive, Progressive, Progressive,
interlaced interlaced interlaced

Object Rectangular Arbitrary Rectangular Rectangular Arbitrary
shape (simple)

Residual Coding

Transform 8 × 8 DCT 8 × 8 DCT 8 × 8 DCT 8 × 8 DCT 8 × 8 DCT

Quantizer Uniform Uniform Weighted Weighted Weighted
uniform uniform uniform

Motion Compensation

Type Block Block Block Block Block, sprites

Block size 16× 16 16× 16, 16× 16 16× 16 16× 16,
8 × 8 8× 8

Prediction Forward Forward, Forward, Forward, Forward,
type backward backward backward backward
Accuracy One pixel Half pixel Half pixel Half pixel Half pixel
Loop filter Yes No No No No

Scalability

Temporal No Yes Yes Yes Yes
Spatial No Yes No Yes Yes
Bit rate No Yes No Yes Yes
Object No No No No Yes

55.4.1 H.261

Recommendation H.261 of the CCITT Study Group XV was adopted in December 1990 [2] as a
video compression standard to be used for video conferencing applications. The bit rates supported
by H.261 are p × 64 Kbits/s, where p is in the range 1 to 30. H.261 supports two source formats:
CIF (352× 288 luminance and 176× 144 chrominance) and QCIF (176× 144 luminance and
88× 72 chrominance). The chrominance components are subsampled by two in both the vertical
and horizontal directions.

The transformation used in H.261 is the 8 × 8 block-DCT. Thus, there are four luminance (Y)
DCT blocks for each pair of U and V chrominance DCT blocks. These six DCT blocks are collectively
referred to as a macro-block. The macro-blocks are grouped together to construct a group of blocks
(GOB), which relates to 11 × 3 region of macro-blocks. Each macro-block may individually be
specified as intra-coded or inter-coded. The Intra-coded blocks are coded independently of the
previous frame and so do not conform to the model of Fig. 55.1. They are used when successive
frames are not related, such as during scene changes, and to avoid excessive propagation of the effects
of communication errors. Inter-coded blocks use the motion compensation predictive feedback
loop of Fig. 55.1 to improve compression performance. The motion estimation scheme is based on
16× 16pixel blocks. Each macro-block is predicted from the previous frame and is assigned exactly
one motion vector with one pixel accuracy.

The data for each frame consists of a picture header that includes a start code, a temporal reference
for the current coded picture, and the source format. The picture header is followed by the GOB
layer. The data of each GOB has a header that includes a start code to indicate the beginning of a
GOB, the GOB number to indicate the position of the GOB, and all information necessary to code
each GOB independently. This will limit the loss if an error occurs during the transmission of a GOB.
The header of the GOB is followed by the motion data, then followed by the block information.
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55.4.2 MPEG-1

The first (MPEG) video compression standard [7], MPEG-1, is intended primarily for progressive
video at 30 frames/s. The targeted bit rate is in the range 1.0 to 1.5 Mbits/s. MPEG-1 was designed
to store video on compact discs. Such applications require MPEG-1 to support random access to
the material on the disc, fast forward and backward searches, reverse playback, and audio visual
synchronization. MPEG-1 is also a hybrid coder that is based on the 8 × 8 block DCT and 16× 16
motion compensated macro-blocks with half pixel accuracy.

The most significant departure from H.261 in MPEG-1 is the introduction of the concept of
bi-directional prediction, together with that of group of pictures (GOP). These concepts may be
understood with the aid of Fig. 55.13. Each GOP commences with an intra-coded picture (frame),
denoted I in the figure. The motion compensated predictive feedback loop of Fig. 55.1 is used to
compress the subsequent inter-coded frames, marked P. Finally, the bi-directionally predicted frames,
marked B in Fig. 55.13, are coded using motion compensated prediction based on both previous
and successive I or P frames. Bidirectional prediction conforms essentially to the model of Fig. 55.1,
except that the prediction signal is given by

af̃ [Ei − E
d

f

Ei ] + bf̃ [Ei − Edb
Ei ]

In this notation, f̃ is a reconstructed frame,
E

d
f

Ei (h
f

Ei , v
f

Ei , nf ), where (h
f

Ei , v
f

Ei ) is a forward motion

vector describing the motion from the previous I or P frame, and nf is the frame distance to this

previous I or P frame. Similarly, Edb
Ei = (hb

Ei , v
b
Ei , −nb), where (hb

Ei , v
b
Ei ) is a backward motion vector

describing the motion to the next I or P frame, and nb is the temporal distance to that frame. The
weights a and b are given either by

a = 1
b = 0

,
a = 0
b = 1

, or
a = nb/(nf + nb)

b = nf /(nf + nb)

corresponding to forward, backward, and average prediction, respectively. Each bi-directionally
predicted macro-block is independently assigned one of these three prediction strategies.

FIGURE 55.13: MPEG’s group of pictures (GOP). Arrows represent direction of prediction. (Source:
Taubman, D., Chang, E., and Zakhor, A., Directionality and scalability in subband image and video
compression, in Image Technology: Advances in Image Processing, Multimedia, and Machine Vision,
Jorge L.C. Sanz, Ed., Springer-Verlag, New York, 1996. With permission).

An MPEG-1 decoder can reconstruct the I and P frames without the need to decode the B frames.
This is a form of temporal scalability and is the only form of scalability supported by MPEG-1.
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55.4.3 MPEG-2

The second MPEG standard, MPEG-2, targets 60 fields/s interlaced television; however, it also sup-
ports progressive video. The targeted bit rate is between 2 Mbits/s and 10 Mbits/s. MPEG supports
frames sizes up to 214 − 1 in each direction; however, the most popular formats are CCIR 601
(720× 480), CIF (352× 288), and SIF (352× 240). The chrominance can be sampled in either the
4:2:0 (half as many samples in the horizontal and vertical directions), 4:2:2 (half as many samples in
the horizontal direction only), or 4:4:4 (full chrominance size) formats.

MPEG-2 supports scalability by offering four tools: data partitioning, signal-to-noise-ratio (SNR)
scalability, spatial scalability, and temporal scalability. Data partitioning can be used when two chan-
nels are available. The bit-stream is partitioned into two streams according to their importance. The
most important stream is transmitted in the more reliable channel for better error resilience perfor-
mance. SNR (rate), spatial, and temporal scalable bit-streams are achieved through the definition of
a two-layer coder. The sequence is encoded into two bit-streams called lower and enhancement layer
bit-streams. The lower bit-stream can be encoded independently from the enhancement layer using
an MPEG-2 basic encoder. The enhancement layer is combined with the lower layer to get a higher
quality sequence. The MPEG-2 standard supports hybrid scalabilities by combining these tools.

55.4.4 H.263

The international telecommunication union recommended H.263 standard to be used for video
telephony (video coding for narrow telecommunications channels) [3]. Although, the bit rates
specified are smaller than 64 Kbits/s, H.263 is also suitable for higher bit rates. H.263 supports three
source formats: CIF (352×288luminance and 176×144chrominance), QCIF (176×144luminance
and 88× 72chrominance), and sub-QCIF (128× 96 luminance and 64× 48chrominance).

The transformation used in H.263 is the 8× 8 block-DCT. As in H.261, a macro-block consists of
four luminance and two chrominance blocks. The motion estimation scheme is based on 16× 16
and 8× 8 pixel blocks. It alternates between them according to the residual error in order to achieve
better performance. Each inter-coded macro-block is assigned one or four motion vectors with half
pixel accuracy. Motion estimation is done in both forward and backward directions.

H.263 provides a scalable bit-stream in the same fashion MPEG-2 does. This includes temporal,
spatial, and rate (SNR) scalabilities. Moreover, H.263 has been extended to support coding of video
objects of arbitrary shape. The objects are segmented and then coded the same way rectangular
objects are coded with slight modification at the boundaries of the object. The shape information is
embedded in the chrominance part of the stream by assigning the least used color to the parts outside
the object in the rectangular frame. The decoder uses the color information to detect the object in
the decoded stream.

55.4.5 MPEG-4

The moving picture expert group is developing a video standard that targets a wide range of appli-
cations including Internet multimedia, interactive video games, video-conferencing, video-phones,
multimedia storage, wireless multimedia, and broadcasting applications. Such a wide range of ap-
plications needs a large range of bit rates, thus MPEG-4 supports a bit rate range of 5 Kbits/s to 4
Mbits/s. In order to support multimedia applications effectively, MPEG-4 supports synthetic and
natural image and video in both progressive and interlaced formats. It is also required to provide
object-based scalabilities (temporal, spatial, and rate) and object-based bit-stream manipulation,
editing, and access [5, 25]. Since it is also intended to be used in wireless communications, it should
be robust to high error rates. The standard is expected to be finalized in 1998.
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56.1 Introduction

Digital television is being widely adopted for various applications ranging from high-end applica-
tions, such as studio recording, to consumer applications, such as digital cable TV and digital DBS
(Direct Broadcasting Satellite) TV. For example, several digital video tape recording standards, using
component format (D1 and D5), composite format (D2 and D3), or compressed component formats
(Digital Betacam) are commonly used by broadcasters and TV studios [1]. These standards preserve
the best possible picture quality at the expense of high data rates, ranging from approximately 150 to
300 Mbps. When captured in a digital format, the picture quality can be free from degradation dur-
ing multiple generations of recording and playback, which is extremely attractive to studio editing.
However, transmission of these high data-rate signals may be hindered due to lack of transmission
media with an adequate bandwidth. Although it is possible, the associated transmission cost will be
very high. The bit rate requirement for high definition television (HDTV) is even more demanding,
which may exceed 1 Gbps in an uncompressed form. Therefore, data compression is essential for
economical transmission of digital TV/HDTV.

Before motion-compensated DCT coding technology became mature in recent years, transmission
of high-quality digital television used to be carried out at 45 Mbps using DPCM techniques. Today,
by incorporating advanced motion-compensated DCT coding, comparable picture quality can be
achieved at about one-third of the rate required by DPCM-coded video. For entertainment applica-
tions, the requirement on picture quality can be relaxed a little bit to allow more TV channels to fit
into the same bandwidth. It is generally agreed that 3 to 4 Mbps for movie-originated or low-activity
interlaced video (talk shows, etc.) materials is acceptable, and 6-8 Mbps for high-activity interlaced
video (sports, etc.) is acceptable. The targeted bit rate for HDTV transmission is usually around

c©1999 by CRC Press LLC



20 Mbps, which is chosen to match the available digital bandwidth of terrestrial broadcast channels
allocated for conventional TV signals.

56.2 EDTV/HDTV Standards

The concept of HDTV system and efficient transmission format was originally explored by researches
at NHK (Japan Broadcasting Corp.) more than 20 years ago [2] in order to offer superior picture qual-
ity while conserving bandwidth. Main HDTV features, including more scan lines, higher horizontal
resolution, wider aspect ratio, better color representation, and higher frame rate, were identified.
With these new features, HDTV is geared to offer picture quality close to that of 35-mm prints.
However, the transmission of such a signal will require a very wide bandwidth. During the last 20
years, intensive research efforts have been engaged toward video coding to reduce bandwidth.

Currently there are two dominant HDTV production formats being used worldwide; one is the
1125-line/60-Hz system primarily used in Japan and the U.S. and the other is the 1250-line/50-Hz
system primarily used in Europe. The main scanned raster characteristics of these two formats are
listed in Table 56.1. The nominal bandwidth of the luminance component is about 30 MHz (in some
cases, 20 MHz was quoted). Roughly speaking, the HDTV signal can carry about six times as much
information as a conventional TV signal.

TABLE 56.1 Main Scanned Raster Characteristics of the 1125-line/60-Hz

System and the 1250-line/50-Hz System
Total scan lines Active lines Scanning Aspect

Format per frame per frame format ratio Field rate

1 1125 1035 2:1 interlaced 16:9 60.00/59.94

2 1250 1152 2:1 interlaced 16:9 50.00

Development of HDTV transmission techniques in the early days was focused on bandwidth-
compatible approaches that use the same analog bandwidth as a conventional TV signal. In some
cases, in order to conserve bandwidth or to offer compatibility with an existing conventional signal
or display, a compromised system—Enhanced or Extended Definition TV—was developed instead.
The EDTV signal does not offer the picture quality and resolution required for an HDTV signal;
however, it enhances the picture quality/resolution of conventional TV.

56.2.1 MUSE System

The most well-known early development in HDTV coding is the MUSE (Multiple Sub-Nyquist
Sampling Encoding) system at NHK [3, 4]. The main concept of the MUSE system is adaptive
spatial-temporal subsampling. Since human eyes have better spatial sensitivity for stationary or
slow-moving scenes, the full spatial resolution is preserved while the temporal resolution is reduced
for these scenes in the MUSE system. For fast moving scenes, the spatial sensitivity of human eyes
declines so that reducing the spatial resolution will not significantly affect perceived picture quality.
The MUSE signal is intended for analog transmission with a baseband bandwidth of 8.1 MHz,
which can be fitted into a satellite transponder for a conventional analog TV signal. However, it
should be noted that most signal processing employed in the MUSE system is in the digital domain.
The MUSE coding technique was later modified to reduce bandwidth requirement for transmission
over 6-MHz terrestrial broadcasting channels (Narrow-MUSE) [5]. Currently, MUSE-based HDTV
programming is being broadcast regularly through a DBS in Japan.
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56.2.2 HD-MAC System

A development similar to the MUSE was initiated in Europe as well. The system, HD-MAC (High-
Definition Multiplexed Analog Component), is also based on the concept of adaptive spatial-temporal
subsampling. Depending on the amount of motion, each block, consisting of 8×8pixels, is classified
into either the 20-, 40-, or 80-ms mode [6]. For a fast-moving block (the 20-ms mode), it is
transmitted at the full temporal resolution, but at 1/4 spatial resolution. For a stationary or slow-
moving block (the 80-ms mode), it is transmitted at full spatial resolution, but at 1/4 temporal
resolution (25/4 frames/sec). For the 40-ms block, it is transmitted at half spatial and half temporal
resolutions. The mode associated with each block is transmitted as side information through a digital
channel at a bit rate nearly 1 Mbps. The subsampling process of the HD-MAC system is illustrated
in Fig. 56.1, where the numbers indicate the corresponding fields of transmitted pixels and the “·”
indicates a pixel not transmitted.

FIGURE 56.1: Adaptive spatial-temporal subsampling of the HD-MAC system. (a) The 80-ms mode
for stationary to very-slow moving scenes, (b) the 40-ms mode for medium-speed moving scenes,
and (c) the 20-ms mode for fast moving scene.

56.2.3 HDTV in North America

HDTV development in North America started much later than that in Japan and Europe. The
Advisory Committee on Advanced Television Services (ACATS) was formed in 1987 to advise Federal
Communications Commission (FCC) on the facts and circumstances regarding advanced television
systems for terrestrial broadcasting. The proposed systems in early days were all intended for analog
transmission [7]. However, the direction of U.S. HDTV development took a 180-degree turn in
1990 since General Instrument (GI) entered the U.S. HDTV race by submitting an all-digital HDTV
system proposal to the FCC. The final contender in the U.S. HDTV race consisted of one analog
system (Narrow-MUSE) and four digital systems, which all employed motion compensated DCT
coding. Extensive testings on the five proposed systems were conducted in 1991 and 1992 and the
testing concluded that there are major advantages in the performance of the digital HDTV systems
and only the digital system shall be considered as the standard. However, none of these four digital
systems was ready to be selected as the standard without implementing improvements.

With the encouragement from ACATS, the four U.S. HDTV proponents formed the Grand Alliance
(GA) to combine their efforts for developing a better system. Two HDTV scan formats were adopted
by the GA. The main parameters are shown in Table 56.2. The lower-resolution format, 1280× 720,
is only used for progressive source materials while the high-resolution format, 1920× 1080, can
be used for both progressive and interlaced source materials. The digital formats of GA HDTV are
carefully designed to accommodate the square-pixel feature, which provides better interoperability
with digital video/graphics in the computer environment. Since the main structure of MPEG-2
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system and video coding standards were settled at that time and the MPEG-2 video coding standard
provides extension to accommodate HDTV formats, the GA adopted MPEG-2 system and video
coding (Main Profile (MP) at High Level (HL)) standards for the U.S. HDTV, instead of creating
another standard [8]. However, the GA HDTV adopted the AC-3 audio compression standard [9]
instead of the MPEG-2 Layer 1 and Layer 2 audio coding.

TABLE 56.2 Main Scanned Raster Characteristics of the GA HDTV

Input Signals
Active Active lines Scanning

samples/line per frame format Aspect ratio Frame rate

60.00/59.94
1280 720 1:1 progressive 16:9 square pixels 30/29.97

24/23.976

30/29.97
1920 1080 1:1 progressive 16:9 square pixels 24/23.976

1920 1080 2:1 interlaced 16:9 square pixels 30/29.97

56.2.4 EDTV

EDTV refers to the TV signal that offers quality between the conventional TV and HDTV. Usually,
EDTV has the same number of scan lines as the conventional TV, but offers better horizontal res-
olution. Though it is not a required feature, most EDTV systems offer a wide aspect ratio. When
the compatibility with a conventional TV signal is of concern, the additional information (more
horizontal details, side panels, etc.) required by the EDTV signal is embedded in the unused spatial-
temporal spectrum (called spectrum holes) of the conventional TV signal and can be transmitted in
either an analog or digital form [10, 11]. When the compatibility with the conventional TV is not
required, EDTV can use the component format to avoid the artifacts caused by mixing of chromi-
nance and luminance signals in the composite format. For example, several MAC (Multiplexed
Analog Component) systems for analog transmission were adopted in Europe for DBS and cable TV
applications [12, 13]. Usually, these signals offer better horizontal resolution and better color fidelity.
There were many fully digital TV systems developed in the past. These systems that used adequate
spatial resolution and higher bit rates were likely to achieve superior quality to the conventional TV
and were qualified as EDTV [14]. Nevertheless, an efficient EDTV system is already embedded in
the MPEG-2 video coding standard. Within the context of the standard, the 16:9 aspect ratio and
horizontal and vertical resolutions exceeding the conventional TV can be specified in the “Sequence
Header”. When coded with adequate bit rates, the resulting signal can be qualified as EDTV.

56.3 Hybrid Analog/Digital Systems

Today, existing conventional TV sets and other home video equipment represent a massive invest-
ment by consumers. The introduction of any new video system that is not compatible with the
existing system may face strong resistance in initial acceptance and may take a long time to penetrate
households. One way to circumvent this problem during the transition period is to “simulcast” a
program in both formats. The redundant conventional TV, being simulcast in a separate channel,
can be phased out gradually when most households are able to receive the EDTV or HDTV signal.
Intuitively, a more bandwidth efficient approach may be achieved if the transmitted conventional
TV signal can be incorporated as a baseline signal and only the enhancement signal is transmitted
in an additional channel (called “augmentation channel”). In order to facilitate the compatibility,
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an analog conventional TV signal has to be transmitted to allow conventional TV sets to receive
the signal. On the other hand, digital video compression techniques may be employed to code the
enhancement signals in order to accomplish the best compression efficiency. Such systems belong to
the category of hybrid analog/digital system. A generic system structure for the hybrid analog/digital
approach is shown in Fig. 56.2. Due to the interlacing processing used in TV standards, there are some
unused holes in the spatial-temporal spectrum [15], which can be used to carry partial enhancement
components as shown in Fig. 56.2.

FIGURE 56.2: A generic hybrid analog digital HDTV coding system.

The Advanced Compatible Television System II (ACTV-II), developed by the consortium of NBC,
RCA, and the David Sarnoff Research Center during the U.S. ATV standardization process, is an
example of a hybrid system. The ACTV-II signal uses a 6-MHz channel to carry an NTSC compat-
ible ACTV-I signal and uses an additional 6-MHz channel to carry the enhancement signal. The
ACTV-I consists of a main signal, which is fully compatible with the conventional NTSC signal, and
enhancement components (luminance horizontal details, luminance vertical-temporal details, and
side-panel details of the wide-screen signal), which are transmitted in 3-D spectrum holes of the
NTSC signal. The differences between the input HDTV signal and the ACTV-I signal are digitally
coded using 4-band subband coding. The digitally coded video difference signal and digital audio
signal require a total bandwidth of 20 Mbps and are expected to fit into the 6-MHz bandwidth by
using the 16-QAM modulation. The enhancement components of the ACTV-I signal are digitally
processed (time expansion and compression) and transmitted in an analog format. Nevertheless,
they could be digitally compressed and transmitted, which would result in a hybrid analog/digital
ACTV-I signal. For users with conventional TV sets, conventional TV pictures (4:3 aspect ratio) will
be displayed. For users with an ACTV-I decoder and a wide screen (16:9) TV monitor, the wide-
screen EDTV can be viewed by receiving the signal from the main channel. For those who have an
ACTV-II decoder and an HDTV monitor, the HDTV picture can be received by using signals from
both the main channel and the associated augmentation channel.

The HDS/NA system developed by Philips Laboratories is another example of hybrid analog/digital
system where the augmentation signal is carried in a 3-MHz channel [16]. The augmentation signal
consists of side panels to convert the aspect ratio from 4:3 to 16:9, and high-resolution spatial
components. The side panels from two consecutive frames are combined into one frame of panels
and are intraframe compressed by using DCT coding with a block size of 16× 16 pixels. Both the
horizontal and vertical high-resolution components are also compressed by intraframe DCT coding
with some modifications to take into account the characteristics of these signals. The augmentation
signals result in a total bit rate of 6 Mbps, which is expected to fit into a 3-MHz channel using
modulation schemes with efficiency of 2 bits/Hz. However, the HDS/NA system was later modified
into ananalog simulcast system, HDS/NA-6, whichoccupies only a 6-MHzbandwidth and is intended
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to be transmitted simultaneously with a conventional TV in a taboo channel.
The augmentation-based hybrid analog/digital approach may be more efficient than the simulcast

approach when both conventional TV and HDTV receivers have to be accommodated at the same
time. However, for the augmentation-based approach, the reconstruction of the HDTV signal relies
on the availability of the conventional TV signal, which implies that the main channel carrying
the conventional TV signal can never be eliminated. Due to the inefficient use of bandwidth by the
conventional analog TV signal, the overall bandwidth efficiency of the hybrid analog/digital approach
is inferior to that of the fully digital-based simulcast approach. Furthermore, the system complexity
of the hybrid approach is likely to be higher than that of the fully digital approach because it requires
both analog and digital types of processing.

56.4 Error Protection and Concealment

Video coding results in a very compact representation of digital video by removing its redundancy,
which leaves the compressed data very vulnerable to transmission errors. Usually, a single transmis-
sion error will only affect a single pixel for uncompressed data. However, due to the coding process
employed, such as DCT transform and motion-compensated inter-field/frame prediction, a single
transmission error may affect a whole block or blocks in consecutive frames. Furthermore, variable
length coding is extensively used in most video coding systems, which is even more susceptible to
transmission errors. For variable-length coded data, a single bit error may cause the decoder to lose
track of codeword boundaries and results in decoding errors in subsequent data. Generally speaking,
a single transmission error may result in noticeable picture impairment if no error concealment is
applied.

56.4.1 FEC

The first effort to protect the compressed digital video in an environment susceptible to transmission
errors should be to reduce transmission errors by employing forward error correction (FEC) coding.
FEC adds redundancy, just opposite to data compression, in order to protect the underlying data
from transmission errors. One trivial FEC example is to transmit each bit repeatedly, say three times.
A single bit error in each three transmitted bits can be easily corrected by a majority-vote circuit.
There are many known FEC techniques which can achieve much better protection without devoting
too much bandwidth to redundancy. Today, two types of FEC codes are popularly used for digital
transmission over various media. One is Reed-Solomon (RS) code, which belongs to the class of
block codes. The other is the convolutional code, which usually operates on continuous data.

The RS code appends a number of redundant bytes to a block of data to achieve error correction.
Usually 2n redundant bytes can correct up to nbyte errors. When a higher level protection is required,
more redundant bytes can be attached or alternatively the redundant bytes can be added to shorter
data blocks. For digital transmission using the MPEG-2 transport format, in order to maintain the
structure of the MPEG-2 transport packets, the (204,188) RS code has been particularly chosen by
many standards, which appends 16 redundant bytes to each MPEG-2 transport packet. On the other
hand, the U.S. GA-HDTV chose the (207,187) RS code, where the RS redundancy computation is
based on the 187-byte data block with the sync byte excluded.

The convolutional code is a powerful FEC code, which generates m output bits for every n input
bits. The code rate, r , is defined as r = n/m. The output bits are not only determined by the current
input bits, but also depend on previous input bits. The depth of the previous input data affecting the
output is called the constraint length, k. The output stream of the convolutional code is the result
of a generator function convolved with the input stream. Viterbi decoding is an efficient algorithm
to decode convolutionally coded data. The complexity of the Viterbi algorithm is proportional to
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2k . Therefore, longer constraint length results in higher decoding complexity. However, longer
constraint length also improves FEC performance. A lower rate convolutional code provides more
protection at the expense of higher redundancy. For a r = 1/2 and k = 7 convolutional code, a BER
of 10−2 can be reduced to below 10−5.

In order to maintain nearly error-free transmission, a very low BER has to be achieved. For
example, if an average error-free interval of two hours needs to be achieved for a 6-Mbps compressed
bit stream, the required BER is 2.3× 10−11. For some transmission media that have limited carrier-
to-noise ratio, such a low BER may not be achievable using the RS code or convolutional code alone.
However, an extremely powerful coding can be accomplished by concatenating the RS code and the
convolutional code, where the RS code (called outer code) is used toward the source or sink side and
the convolutional code (called inner code) is used toward the channel side. An interleaver to spread
bursts of errors is usually used between the inner and outer code in order to improve error correction
capability. The interleaver needs to be carefully designed so that the locations of the sync byte in
the ATM packets remain unchanged through the interleaver. A block diagram of the concatenated
RS code and convolutional code is shown in Fig.56.3. Some simulations showed that satisfactory
performance can be achieved by using the concatenate codes for digital video transmission over the
satellite link [17]. In [17], the overall BER is about 2−11, which corresponds to a BER of about 2·10−4

using the convolutional code only.

FIGURE 56.3: Block diagram of concatenated RS code and convolutional code.

56.4.2 Error Detection and Confinement

While FEC techniques can improve BER significantly, there are still chances that errors may occur. As
mentioned earlier, a single bit error may cause catastrophic effects on compressed digital video if pre-
caution is not exercised. To avoid the infinite error propagation, one needs to identify the occurrences
of errors and to confine the errors during decoding. Due to the use of variable length coding, a single
bit error in the compressed bit stream may cause the decoder to lose track of codeword boundaries.
Even though the decoder may regain code synchronization later, the number of decoded data may be
more or less than the actual number of samples transmitted, which will affect proper display of the
remaining samples. To avoid error propagation, compressed data need to be organized into smaller
self-contained data units with unique words to identify the beginning or boundaries of the data unit.
In case transmission errors occur in preceding data units, the current data unit can still be properly
decoded. In the MPEG-2 video coding standard, the slice is the smallest self-contained data unit,
which has a unique 32-bit slice start code and information regarding its location within a picture [18].
Therefore, a transmission error in one slice will not affect the proper decoding of subsequent slices.
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However, for inter-field/frame coded pictures, the artifacts in the error-contaminated slice will still
propagate to subsequent pictures, which use this slice as reference. Error concealment is a technique
to mitigate artifacts caused by transmission errors in the reconstructed picture.

56.4.3 Error Concealment

For DCT-based video coding, some analytic work was conducted in [19] to derive an optimal re-
construction method based on received blocks with missing DCT coefficients. The solution consists
of three linear interpolation in the spatial, temporal, and frequency domains from the boundary
data, reconstructed reference block, and received DCT block, respectively. When the complete block
is missing, the optimal solution becomes a linear combination of a block replaced by the corre-
sponding block in the previous frame and a spatially interpolated block from boundary pixels. This
method needs to go through an iterative process to restore damaged data when consecutive blocks are
corrupted by errors. The above concealment technique was further improved in [20, 21] by incorpo-
rating anadaptive spatial-temporal interpolation schemeandamulti-directional spatial interpolation
scheme.

When a temporal concealment scheme is used, the picture quality in the moving area can be
improved by incorporating a motion compensation technique The motion vector for a missing
or corrupted macroblock can be estimated from the motion vectors of surrounding macroblocks.
For example, the motion vector can be estimated based on the averaged motion vector from the
macroblocks above and below the underlying block, as suggested in the MPEG-2 video standard.
However, when the neighboring reference macroblocks are intra-coded, there are no motion vectors
associated with these macroblocks. The MPEG-2 video coding standard allows transmission of
the “concealment motion vectors” associated with intra-coded macroblocks, which can be used to
estimate the motion vector for the missing or corrupted macroblock.

56.4.4 Scalable Coding for Error Concealment

When the requirement of error-free transmission cannot be met, it may be useful to provide different
protection of underlying data according to the visual importance of the compressed data. This will
be useful for transmission media which have different delivery priorities or provide different levels
of FEC protection for underlying data. The data that can be used to reconstruct basic pictures are
usually treated as high-priority data while the data used to enhance the pictures are treated as low-
priority data. For these visually important data, high redundancy is used to offer more protection
(or high priority in a cell-based transport system). Therefore, the high-priority data can always be
reliably delivered. On the other hand, any errors in the low-priority data will only result in minor
degradation. Therefore, if any error is detected in the low-priority data, the affected data can be
discardedwithout significantlydegrading thepicturequality. Nevertheless, if concealment techniques
by spatial-temporal interpolation as described above can be applied to affected areas, this will further
improve picture quality. The scalable source coding processes the underlying signal in a hierarchical
fashion according to the spatial resolution, temporal resolution, or picture signal-to-noise ratio, and
organizes the compressed data into layers so that a lower-level data set can be used to reconstruct a
basic video sequence and the quality can be improved by adding higher levels. Many coding systems
can offer the scalable coding feature if the underlying data is carefully partitioned [22, 23]. The
MPEG-2 video coding standard also offers scalable extension to accommodate spatial, temporal, and
SNR scalability.
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56.5 Terrestrial Broadcasting

In conventional analog TV standards, in order to allow low-cost TV receivers to acquire the carrier and
subcarrier frequencies easily, the transmitted analog signals always contain these two frequencies in
high strength, which are the potential cause for co-channel and adjacent-channel interferences. This
problem becomes more prominent in the terrestrial broadcasting environment, where the transmitter
of an undesired signal (adjacent channel) may be much closer than that of a desired signal. The
strong undesired signal may interfere with the desired weak signal. Therefore, some of the terrestrial
broadcasting channels (taboo channels) are prohibited in the same coverage area in order to reduce
the potential interference. In digital TV transmission, the power spectrum of the signal is widespread
over the allocated spectrum, which substantially reduces the potential interference. On the other
hand, the bandwidth efficiency of digital coding may significantly increase the capacity of terrestrial
broadcasting. Therefore, digital video coding is a very attractive alternative to solving the channel
congestion problem in major cities.

56.5.1 Multipath Interference

Onenotorious impairmentof the terrestrial broadcasting channel is themultipath interference, which
manifests as the ghost effect in received pictures. For digital transmission, the multi-path interference
will cause signal distortion and degrade system performance. An effective way to cope with multipath
interference is to use adaptive equalization, which can restore the impaired signal by using a known
training data sequence. The GA HDTV system for terrestrial broadcasting adopted this method to
overcome the multipath problem [9]. A very different approach—Coded Orthogonal Frequency
Division Multiplexing (COFDM)— has been advocated in Europe for terrestrial broadcasting [10].
The COFDM technology employs multiple carriers to transport parallel data so that the data rate for
each carrier is very low. The COFDM system is carefully designed to ensure that the symbol duration
for each carrier is longer than the multipath delay. Consequently, the effect of multipath interference
will be significantly reduced. The carrier spacing of the COFDM system is carefully arranged so that
each subcarrier is orthogonal to the other subcarriers, which achieves high spectrum efficiency. A
performance simulation of COFDM for terrestrial broadcasting was reported in [24], which indicated
that COFDM is a viable alternative to digital transmission of 20 Mbps in a 6-MHz terrestrial channel.

56.5.2 Multi-Resolution Transmission

In terrestrial broadcasting, the carrier-to-noise ratio (CNR) of the received signal decreases gradually
when the distance between a receiver and the transmitter increases. In an analog transmission system,
the picture quality usually degrades gracefully when the CNR decreases. In a digital transmission
system, a lower CNR will result in a higher BER and the decoded picture contaminated by errors
may become unusable when the BER exceeds a certain threshold. A technique to extend the coverage
area of terrestrial broadcasting is to use scalable source coding in conjunction with multiresolution
(MR) channel coding [25, 26]. In MR modulation, the constellation of the modulated signal is
carefully organized in a hierarchical fashion so that a low-density modulation can be derived from
the constellation with high protection while a high-density modulation can be achieved by further
demodulation of the received signal. An example of MR modulation using QAM (Quadrature
Amplitude Modulation) is shown in Fig. 56.4, where the nonuniform constellation represents 4-
QAM/16-QAM MR modulation. The scalable source coding processes the underlying signal in a
hierarchical fashion according to the spatial resolution, temporal resolution, or picture signal-to-
noise ratio, and organizes the compressed data in layers so that a lower-level data set can be used
to reconstruct a basic video sequence and the quality can be improved by adding more levels. The
MPEG-2 video coding standard also offers scalable extension to accommodate spatial, temporal,
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and SNR scalability. In light of the fact that MPEG-2-based systems are being widely used for digital
satellite TV broadcasting and being adopted by the Digital Audio-Visual Interactive Council (DAVIC)
for the set-top box standard, MPEG-2-based scalable coding in conjunction with the MR modulation
likely will be used to offer graceful degradation in terrestrial broadcasting if it is desired.

FIGURE 56.4: The constellation of a MR modulation for a 4-QAM/16-QAM.

56.6 Satellite Transmission

Satellite video broadcasting provides an effective way for point-to-multipoint video distribution. It
has been widely used in video distribution to cable headends and to satellite TVRO (TV Receive Only)
users for years. Due to recent development in high-powered Kuband satellite transponders, satellite
video broadcasting to small home antennas becomes feasible. The cost of consumer satellite receive
systems, including receive dish antenna/LNB and Integrated Receiver/Decoder (IRD) falls below
U.S. $600 today and is expected to decline gradually. Furthermore, due to advances in digital video
compression technology, the capacity of the satellite transponder has been increased substantially.
Today, digital TV with 100 or more channels per satellite is being broadcast in North America.

In an analog satellite transmission system, the baseband video signal is FM modulated and trans-
mitted from an uplink site to geo-stationary satellite. The signal is received by the satellite and
retransmitted downward at a different frequency. At a receive site, the signal is received by the receive
antenna, block frequency converted to a lower frequency band, and carried through a coax cable to
an indoor IRD unit. A simplified system is shown in Fig. 56.5.

Due to constraint on the power limit, the satellite transmitters are normally operated in the
saturated mode, which introduces system nonlinearity and causes waveform distortion. The available
signal-to-noise ratio for satellite channels is usually much lower than that for cable channels. In order
toovercome thenonlinearity aswell as to improve the signal-to-noise ratio, theFMtechnique is always
used for analog TV transmission over satellites. For Ku-band applications, a 27-MHz bandwidth is
normally allocated to carry one analog TV signal.

For digital transmission over satellite, the QPSK (Quadrature Phase Shift Keying) modulation
is the most popular technique. The QAM (Quadrature Amplitude Modulation) technique, which
requires a linear system response, is not suitable for satellite applications. In the North American
region, the Ku-band DBS uses the 12/14 GHz frequency band (14 GHz for uplink and 12 GHz for
downlink), which allows the subscribers to use a smaller dish antenna. However, the Ku-band link is
more susceptible to rain fading than the C-band link and, therefore, more margin for rain fading is
required for the Ku-band link. Due to the typical low signal-to-noise ratio available for satellite links,
powerful coding techniques are required in order to achieve a high-quality link. For an MPEG-2 video
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FIGURE 56.5: A satellite video transmission system.

stream at 10 Mbit/s, an average of 1-h error-free transmission will require a BER of 2.778× 10−11.
Satellite link has been notorious for its nonlinearily and relatively low carrier-to-noise ratio. Due

to the nonlinearity, any amplitude modulation technique is discouraged in satellite environment.
Without forward error correction coding, typical satellite links can only achieve a BER around 10−2

to 10−5. This BER is far from the targeted quality of service for compressed digital video. As discussed
earlier, concatenated inner and outer codes are very effective for satellite communications, which can
reduce the BER to below 10−12 from 10−4.

Recently, European Broadcasting Union (EBU) launched a project intended to set a standard for
digital video transmission over satellite, cable, and Satellite Master Antenna TV (SMATV) channels. A
draft standard [27] was published by EBU/European Telecommunications Standards Institute (ETSI).
This draft specifies a powerful error correction scheme based on concatenation of convolutional and
Reed-Solomon (RS) codes as shown in Fig. 56.3. The convolutional code can be configured to operate
at different rates, including 1/2, 2/3, 3/4, 5/6, 7/8, and 1 to optimize the performance for transponder
power and bandwidth. At the receive end, Viterbi decoding with soft-decision is often used to decode
the convolutional code. By using the convolutional code alone, a BER between 10−3 and 10−8 may
be achieved for typical satellite links. However, this is still not adequate for real-time digital video
applications.

In order to further improve the BER performance, an outer code using the Reed-Solomon code is
applied to correct errors remaining uncorrected by the convolutional code. Channel errors generated
at the output of Viterbi decoder tend to occur in bursts. The Reed-Solomon code operates on byte-
oriented data and is effective in correcting burst errors. To improve the effectiveness of the RS code,
an interleaver is usually used between the convolutional code and the RS code. By using the (204,188)
RS code and a convolutional interleaver of depth 12, the BER of 2·10−4 for the convolutional code can
be improved to around 10−11. A recent report [28] showed that a BER around 10−11 can be achieved
for typical high-powered DBS with bit rates ranging from 23 to 41 Mbit/s by using concatenate
convolutional and RS codes.

56.7 ATM Transmission of Video

ATM is a cell-based transport technology that multiplexes fixed-length cells from a variety of sources
to a variety of remote locations. Each ATM cell consists of a 5-byte header and 48-byte payload.
The routing, flow control and payload type information is carried in the header, which is then
protected by a 1-byte error correction code. However, unlike the packet data communication, ATM
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is a connection-oriented protocol. Connections, either permanent, semi-temporary, or permanent,
between ATM users are established before data exchanges commence. The header information in each
cell determines to which port at an ATM switch the cell should be routed. This substantially reduces
the processing complexity required in a switching equipment. The flexibility of ATM technology
allows both constant rate and variable rate services to be easily offered through the network. Also, it
allows multimedia services, such as video, voice, and data of different characteristics to be multiplexed
into a single stream and delivered to customers.

56.7.1 ATM Adaptation Layer for Digital Video

In order to carry data units other than the 48-octets payload size in ATM cells, an adaptation layer
is needed. The ATM Adaptation Layer (AAL) provides for segmentation and reassembly (SAR) of
higher-layer data units and detection of errors in transmission. Five AALs are specified in ITU-T
Recommendation, I.363. AAL1 is intended for constant bit rate services while AAL2 is intended
for variable bit rate services with a required timing relationship between the source and destination.
AAL3/4 is intended for variable bit rate services that require bursty bandwidth. AAL5 is a simple and
efficient adaptation layer intended to reduce the complexity and overhead of AAL3/4. Both AAL1
and AAL5 have been seriously considered as a candidate for real-time digital video applications.
However, the AAL5 was adopted by the ATM Forum as the standard for Audiovisual Multimedia
Services (AMS) [29].

The standard process of ATM is undertaken by several international standard bodies such as ATM
Forum, and International Telecommunication Union–Transmission (ITU-T) Study Groups (SG) 9,
13, and 15. For digital television transmission, the MPEG-2 transport standard seems to be the sole
format being considered. MPEG-2 transport standard relies on frequent and low-jitter delivery of
transport stream (TS) packets containing PCR (Presentation Clock References) to recover the 27-
MHz clock at the receiving end. There are several key parameters in designing an AAL for digital
video, which include packaging efficiency, complexity, error handling capability and performance,
and PCR jitter. When AAL1 is employed, each MPEG-2 TS packet is mapped into 4 ATM cells as
shown in Fig. 56.6(a). A 1-byte AAL1 header is inserted into the first payload byte of each ATM cell.
The AAL1 header contains a sequence number field and a sequence number protection field. The
AAL1 uses the synchronous residual time stamp (SRTS) method to support source clock recovery.

The AAL5 specified in [29] maps N MPEG-2 Single Program TS (SPTS) packets into an AAL5-
SDU (service data unit) unless there are fewer than N TS packets left in the sequence. In the case
when there are fewer than N packets left in the SPTS, the last AAL5-SDU contains all the remaining
packets. The default value for N is 2, which results in a default SDU size of 376 bytes. This default
SDU along with an 8-byte trail fits nicely into the payloads of 8 ATM cells, as shown in Fig. 56.6(b).
The trailer contains a 2-byte alignment field, a 2-byte length indicator field, and a 4-byte CRC field.
For constant bit rate transmission, the MPEG-2 SPTS is considered as a constant packet rate (CPR)
stream of information, which implies that the interarrival time between packets of the MPEG-2 TS is
constant. In order to ensure satisfactory timing recovery, the time interval of the last byte containing
the PCR should be constant.

The AAL5 is meant for both constant bit rate and variable bit rate applications while the AAL1
is mainly intended for constant bit rate applications. The AAL5 contains a 4-byte CRC field and a
2-byte length indicator field to check the payload integrity. On the other hand, the AAL1 only offers
sequence integrity to detect lost cells. The most attractive factor of AAL5 is the wide support of major
service and equipment vendors.
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FIGURE 56.6: Mapping MPEG-2 TS packets into AAL PDU. (a) AAL-1 and (b) AAL5.

56.7.2 Cell Loss Protection

In the ATM environment, cells may be corrupted due to transmission errors or lost due to traffic
congestion. The transmission bit error rate usually is very small for fiber-based systems. However,
the cell loss due to congestion seems to be unavoidable in order to increase link utilization efficiency.
Depending on how compressed data is mapped into ATM cells, the loss of a single cell may corrupt a
number of cells. In the ATM header, there is 1-bit information to indicate the delivery priority of the
underlying payload. This priority bit can be used to cope with the cell loss issue. To take advantage
of the priority bit, the coding systems will have to separate the compressed data into high- and low-
priority layers and to pack the data into cells with a corresponding priority indicator. When network
congestion occurs, these cells labeled with low priority are subject to discarding at the switch. Since
the low-priority cells carry visually less important information, the impairments in the reconstructed
low-priority data will be less objectionable. Some two-layer coding techniques were proposed for
MPEG-2 video and have shown significant improvement over a single-layer coding under cell loss
circumstance [20, 21].
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57.1 Introduction

Static images and dynamic image sequences are the projection of time-varying three-dimensional
real world scenes onto a two-dimensional plane. As a result of this planar projection, depth in-
formation of objects in the scene is generally lost. Only by cues such as shadow, relative size and
sharpness, interposition, perspective factors, and object motion, can we form an impression of the
depth organization of the real world scene.

In a wide variety of image processing applications, explicit depth information is required in ad-
dition to the scene’s gray value information (representing intensities, color, densities, etc.) [2, 4, 7].
Examplesof suchapplications are found in3-Dvision (robot vision, photogrammetry, remote sensing
systems); in medical imaging (computer tomography, magnetic resonance imaging, microsurgery);
in remote handling of objects, for instance in inaccessible industrial plants or in space exploration;
and in visual communications aiming at virtual presence (conferencing, education, virtual travel and
shopping, virtual reality). In each of these cases, depth information is essential for accurate image
analysis or for enhancing the realism. In remote sensing the terrain’s elevation needs to be accurately
determined for map production, in remote handling an operator needs to have precise knowledge of
the three-dimensional organization of the area to avoid collisions and misplacements, and in visual
communications the quality and ease of information exchange significantly benefits from the high
degree of realism provided by scenes with depth.

Depth in real world scenes can be explicitly measured by a number of range sensing devices
such as by laser range sensors, structured light, or ultrasound. Often it is, however, undesirable or
unnecessary to have separate systems for acquiring the intensity and the depth information because

1This work was supported in part by the European Union under the RACE-II project DISTIMA and the ACTS project
PANORAMA.
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of the relative low resolution of the range sensing devices and because of the question of how to fuse
information from different types of sensors.

An often used alternative to acquire depth information is to record the real world scene from
different perspective viewpoints. In this way, multiple images or (preferably time-synchronized)
image sequences are obtained that implicitly contain the scene’s depth information. In the case that
multiple views of a single scene are taken without any specific relation between the spatial positions
of the viewpoints, such recordings are called multiview images. Generally speaking, when recordings
are obtained from an increasing number of different viewpoints, the 3-D surfaces and/or interior
structures of the real world scene can be reconstructed more accurately. The terms stereoscopic image
and stereoscopic image sequence are reserved for the special case that two perspective viewpoints are
recorded or computed such that they can be viewed by a human observer to produce the effect
of natural depth perception (see Fig. 57.1). Therefore, the two views are required to be recorded
under specific constraints such as the cameras’ separation, convergence angle, and alignment [8].
Stereoscopic images are not truly 3-D images since they merely contain information about the 2-D
projected real world surfaces plus the depth information at the perspective viewpoints. They are,
therefore, sometimes called 2.5-D images.

FIGURE 57.1: Illustration of system for stereoscopic image (sequence) recording, processing, trans-
mission, and display.

In the broadest meaning of the word, a digital stereoscopic system contains the following compo-
nents: stereoscopic camera setup, depth analysis of the digitized and recorded views, compression,
transmission or storage, decompression, preprocessing prior to display, and, finally, the stereoscopic
display system. The emphasis here is on the image processing components of this stereoscopic system;
that is, depth analysis, compression, and preprocessing prior to the stereoscopic display. Nonetheless,
we first briefly review the perceptual basis for stereoscopic systems and techniques for stereoscopic
recording and display in Section 57.2. The issue of depth or disparity analysis of stereoscopic images
is discussed in Section 57.3, followed by the application of compression techniques to stereoscopic
images in Section 57.4. Finally, Section 57.5 considers the issue of stereoscopic image interpolation
as a preprocessing step required for multiviewpoint stereoscopic display systems.

57.2 Acquisition and Display of Stereoscopic Images

The human perception of depth is brought about by the hardly understood brain process of fusing
two planar images obtained from slightly different perspective viewpoints. Due to the different
viewpoint of each eye, a small horizontal shift exists, called disparity, between corresponding image
points in the left and right view images on the retinas. In stereoscopic vision, the objects to which the
eyes are focused and accommodated have zero disparity, while objects to the front and to the back
have negative and positive disparity, respectively, as is illustrated in Figure 57.2. The differences in
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disparity are interpreted by the brain as differences in depth 1Z.

FIGURE 57.2: Stereoscopic vision, resulting in different disparities depending on depth.

In order to be able to perceive depth using recorded images, a stereoscopic camera is required
which consists of two cameras that capture two different, horizontally shifted perspective viewpoints.
This results in a shift (or disparity) of objects in the recorded scene between the left and the right
view depending on their depth. In most cases, the interaxial separation or baseline B between the
two lenses of the stereoscopic camera is in the same order as the eye distance E (6 to 8 cm). In a
simple camera model, the optical axes are assumed to be parallel. The depth Z and disparity d are
then related as follows:

d = λ
B

λ − Z
, (57.1)

where λ is the focal length of the cameras. Fig. 57.3(a) illustrates this relation for a camera with
B = 0.1 m and λ = 0.05m. A more complicated camera model takes into account the convergence
of the camera axes with angle β. The resulting relation between depth and disparity, which is a much
more elaborate expression in this case, is illustrated in Fig. 57.3(b) for the same camera parameters
and β = 1◦. It shows that, in this case, the disparity is not only dependent on the depth Z of an
object, but also on the horizontal object position X. Furthermore, a converging camera configuration
also leads to small vertical disparity components, which are, however, often ignored in subsequent
processing of the stereoscopic data. Figures. 57.4(a) and (b) show as an example a pair of stereoscopic
images encountered in video communications.

When recording stereoscopic image sequences, the camera setup should be such that, when dis-
playing the stereoscopic images, the resulting shifts between corresponding points in the left and
right view images on the display screen allow for comfortable viewing. If the observer is at a distance
Zs from the screen, then the observed depth Zobs and displayed disparity d are related as:

Zobs = Zs

E

E − d
. (57.2)

In the case that the camera position and focusing are changing dynamically, as is the case, for
instance, in stereoscopic television production where the stereoscopic camera may be zooming, the
camera geometry is controlled by a set of production rules. If the recorded images are to be used for
multiviewpoint stereoscopic display, a larger interaxial lens separation needs to be used, sometimes
even up to 1 m. In any case, the camera setup should be geometrically calibrated such that the
two cameras capture the same part of the real world scene. Furthermore, the two cameras and A/D
converters need to be electronically calibrated to avoid unbalances in gray value of corresponding
points in the left and right view image.
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FIGURE 57.3: (a) Disparity as a function of depth for a sample parallel camera configuration;
(b) disparity for a sample converging camera configuration.

The stereoscopic image pair should be presented such that each perspective viewpoint is seen
only by one of the eyes. Most practical state-of-the-art systems require viewers to wear special
viewing glasses [6]. In a time-parallel display system, the left and right view images are presented
simultaneously to the viewer. The views are separated by passive viewing glasses such as red-green
viewing glasses requiring the left and right view to be displayed in red and green, respectively, or
polarized viewing glasses requiring different polarization of the two views. In a time-sequential
stereoscopic display, the left and right view images are multiplexed in time and displayed at a double
field rate, for instance 100 or 120 Hz. The views are separated by means of the active synchronized
shuttered glasses that open and close the left and right eyeglasses depending on the viewpoint being
shown. Alternatively, lenticular display screens can be used to create spatial interference patterns
such that the left and right view images are projected directly into the viewer’s eyes. This avoids the
need of wearing viewing glasses.

57.3 Disparity Estimation

The key difference between planar and stereoscopic images and image sequences is that the latter
implicitly contains depth information in the form of disparity between the left and right view images.
Not only is the presence of disparity information essential to the ability of humans to perceive depth,
disparity can also be exploited for automated depth segmentation of real world scenes, and for
compression and interpolation of stereoscopic images or image sequences [1].
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FIGURE 57.4: The left (a) and right (b) view image from a stereoscopic image pair. (c) Disparity field
in the stereoscopic image pair represented as gray values (black is foreground, gray is background,
white is occlusion).

To be able to exploit disparity information in a stereoscopic pair in image processing applications,
the relation between the contents of the left view image and the right view image has to be established,
yielding the disparity (vector) field. The disparity field indicates for each point in the left view image
the relative shift of the corresponding point in the right view image and vice versa. Since some parts
of one view image may not be visible in the alternate view image due to occlusion, not all points in
the image pair can be assigned a disparity vector.

Disparity estimation is essentially a correspondenceproblem. Thecorrespondencebetween the two
images can be determined by either matching features or by operating on or matching of small patches
of gray values. Feature matching requires as a preprocessing step the extraction of appropriate features
from the images, such as object edges and corners. After obtaining the features, the correspondence
problem is first solved for the spatial locations at which the features occur, from which next the full
disparity field can be deduced by, for instance, interpolation or segmentation procedures. Feature-
based disparity estimation is especially useful in the analysis of scenes for robot vision applications [4,
11].

Disparityfieldestimationbyoperatingdirectlyon the imagegrayvalue information isnotunlike the
problem of motion estimation [11, 12]. The first difference is that disparity vectors are approximately
horizontallyoriented. Deviations fromthehorizontalorientationare causedby theconvergenceof the
camera axes and by differences between the camera optics. Usually vertical disparity components are
either ignored or rectified. A second difference is that disparity vectors can take on a much larger range
of values within a single image pair. Furthermore, the disparity field may have large discontinuities
associated with objects neighboring in the planar projection but having a very much different depth.
In those regions of the stereoscopic image pair where one finds large discontinuities in the disparity
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field due to abrupt depth changes, large regions of occlusion will be present. Estimation methods
for disparity fields must therefore be able not only to find the correspondence between information
in the left and right view images, but must also be able to detect and handle discontinuities and
occlusions [1].

Most disparity estimation algorithms used in stereoscopic communications rely on matching small
patches of gray values from one view to the gray values in the alternate view. The matching of this
small patch is not carried out in the entire alternate image, but only within a relatively small search
region to limit the computational complexity. Standard methods typically use a rectangular match
block of relatively small size (e.g., 8 × 8 pixels), as illustrated in Fig. 57.5. The relative horizontal

FIGURE 57.5: Block matching disparity estimation procedure by comparing a match block from the
left image to the blocks within a horizontally oriented search region in the right image.

shift between a match block and the block within the search region of the alternate image that results
in the smallest value of a criterion function used is then assigned as disparity vector to the center of
that match block. Often used criterion functions are the sum of squares and the sum of the absolutes
values of the differences between the gray values in the match block and the block being considered
in the search region [3, 12].

The above procedure is carried out for all pixels, first matching the blocks from the left view image
to the right view image, then vice versa. From the combination of the two resulting disparity fields and
the values of the criterion function, the final disparity field is computed, and occluding areas in the
stereoscopic image pair are detected. For instance, one way of detecting occlusions is a local abrupt
increase of the criterion function, indicating that no acceptable correspondence between the two
image pairs could be found locally. Fig. 57.4(c) illustrates the result of a disparity estimation process
as an image in which different gray values correspond to different disparities (and thus depth), and
in which "white" indicates occluding regions that can be seen in the left view image but that cannot
be seen in the right view image.

More advanced versions of the above block matching disparity estimator use hierarchical or recursive
approaches to improve the consistency or smoothness of the resulting disparity field, or are based on
the optical flow model often used in motion estimation. Other approaches use preprocessing steps to
determine the dominant disparity values that are then used as candidate solutions during the actual
estimation procedure. Finally, most recent approaches use advanced Markov random field models
for the disparity field and/or they make use of more complicated cost functions such as the disparity
space image. These approaches typically require exhaustive optimization procedures but they have
the potential of accurately estimating large discontinuities and of precisely detecting the presence of
occluding regions [1].

In image analysis problems, disparity estimation is often considered in combination with the
segmentation of the stereoscopic image pair. Joint disparity estimation and texture segmentation
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methods partition the image pair into spatially homogeneous regions of approximately equal depth.
Disparity estimation in image sequences is typically carried out independently on successive frame
pairs. Nevertheless, the need for temporal consistency of successive disparity fields often requires
temporal dependencies to be exploited by postprocessing of the disparity fields. If an image sequence
is recorded as an interlaced video signal, disparity estimation should be carried out on the individual
fields instead of frames to avoid confusion between motion displacements and disparity.

57.4 Compression of Stereoscopic Images

Compression of digital images and image sequences is necessary to limit the required transmission
bandwidth or storage capacity [3, 5]. One of the compression principles underlying the JPEG and
MPEG standards is to avoid transmitting or storing gray value information that is predictable from
the signal’s spatial or temporal past, i.e., information that is redundant. In both JPEG and MPEG,
this principle is exploited by a spatial DPCM system, while in MPEG motion-compensated temporal
prediction is also used to exploit temporal redundancies.

When dealing with stereoscopic image pairs, a third dimension of redundancy appears, namely
the mutual predictability of the two perspective views [9]. Although the left and right view images
are not identical, gray value information in, for instance, the left view image is highly predictable
from the right view image if the horizontal shift of corresponding points, i.e., the disparity, is taken
into account. Thus, instead of transmitting or storing both views of a stereoscopic image pair, only
the right view image is retained, together with the disparity field. Since the construction of the
left view image from the right view is not perfect due to errors in the estimated disparity field and
due to presence of occluding areas and perspective differences, some information of the disparity-
compensated prediction error of the left view (i.e., the difference between the predicted gray values
and the actual gray values in the left view image) also needs to be retained. Figure 57.6 shows the
disparity-compensated prediction and the disparity-compensated prediction error of the left view image
from Fig. 57.4(a) using the right view image in Fig. 57.4(b) and the disparity field in Fig. 57.4(c). In
most cases, the sum of the bit rates needed for coding the disparity vector field and the disparity-
compensated prediction error is much smaller than the bit rate needed for the left view image when
compressed without disparity compensation.

FIGURE57.6: (a)Disparity-compensatedprediction and (b)disparity-compensatedprediction error
of the left view image (scaled for maximal visibility) in Fig. 57.4. Black areas indicate a large error.
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In image sequence, left view images can be compressed efficiently by carrying out motion-
compensated prediction from previous left view images, by disparity-compensated prediction from
the corresponding right view image, or by a combination of the two by choosing for motion-
compensation or disparity-compensation on a block-by-block basis, as illustrated in Fig. 57.7(a).
Basically this is a direct extension of the MPEG compression standard with an additional prediction
mode for the left view image sequence. The effect of this additional (disparity-compensated) pre-
diction mode is that the variance of the prediction error of the left view image sequence is further
decreased [see Fig. 57.7(b)], meaning that more compression of the left view sequence is possible than
when independently compressing the two views of the stereoscopic sequence. Figure 57.8 schemati-
cally shows the architecture of a disparity- and motion-compensated encoder for stereoscopic video.

57.5 Intermediate Viewpoint Interpolation

The system illustrated in Fig. 57.1 assumes that the stereoscopic image captured by the cameras is
directly displayed at the receiver’s end. One of the shortcomings of such a two-channel stereoscopic
system is that shape and depth distortion occur when the stereoscopic images are viewed from an
off-center position. Furthermore, since the cameras are in a fixed position, the viewer’s (horizontal)
movements do not provide additional information about, for instance, objects that are partly oc-
cluded. The lack of this “look around” capability especially is a limiting factor in the truly realistic
visualization of a recorded real world scene.

Inamulti-channelormultiview stereoscopic system, multiple viewpointsof the samerealworld scene
are available. The stereoscopic display then shows only those two perspective views which correspond
as well as possible with the viewer’s position. To this end some form of tracking the viewer’s position
is necessary. The additional viewpoints could be obtained by installing more cameras at a wide range
of possible viewpoints. On grounds of complexity and costs the number of cameras will typically
be limited to three to five, meaning that not all possible positions of the viewer are covered in this
way. If, because of the viewer’s position, a view of the scene is needed from an unavailable camera
position, a virtual camera or intermediate viewpoint must be constructed from the available camera
viewpoints (see Fig. 57.9).

The construction of intermediate viewpoints is an interpolation problem, which has much in com-
mon with the problem of video standards conversion [11]. In its most simple form, the interpolated
viewpoint is merely a weighted average between the images from the nearest two camera viewpoints,
which are called the key images. Such a straightforward averaging ignores the presence of disparity
between the key images, yielding a highly blurred and essentially useless result [see Fig. 57.10(a)].
If, however, the disparity vector field between the two key images has been estimated and the areas
of occlusions are known, the interpolation can be carried out along the disparity axis, such that the
disparity information in the interpolated image corresponds exactly to the virtual camera position.
For the points where a correspondence exists between the two key images, this construction process
is called disparity-compensated interpolation, while for the occluding regions extrapolation has to be
carried out from the key images [10]. Figure 57.10(b) illustrates the result of intermediate viewpoint
interpolation on the stereoscopic image pair in Figs. 57.4(a) and (b).
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FIGURE 57.7: (a) Principle of joint disparity- and motion-compensated prediction for the left view
of a stereoscopic image sequence; (b) variance of the prediction error of the left view image sequence
whenusingmotion-compensation, disparity-compensation, or jointmotion-disparity compensation
on a block-by-block basis.
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FIGURE 57.8: Architecture of a disparity- and motion-compensated encoder for stereoscopic video.

FIGURE 57.9: Multiview stereoscopic system with interpolated intermediate viewpoint (virtual cam-
era).
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FIGURE 57.10: Interpolation of an intermediate viewpoint image of the stereoscopic pair in Fig. 57.4:
(a) without and (b) with taking into account the disparity information between the key frames.
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Image processing has moved into the mainstream, not only of the engineering world, but of society
in general. Personal computers are now capable of handling large graphics and images with ease,
and fast networks and modems transfer images in a fraction of the time required just a few years
ago. Image manipulation software is a common item on PCs, and CD-ROMs filled with images
and multimedia databases are standard fare in the realm of electronic publishing. Furthermore, the
development of areas such as data compression, neural networks and pattern recognition, computer
vision, and multimedia systems have all contributed to the use of and interest in image processing.
Likewise, the growth of image processing as an engineering discipline has fueled interest in these other
areas. As a result of this symbiotic growth, image processing has increasingly become a standard tool
in the repertoire of the engineer.

Because of the popularity of image processing, a large array of tools has emerged for accomplishing
various image processing tasks. In addition, a variety of image databases has been created to address
the needs of various specialty areas. In this article, we will survey some of the tools available for
accomplishing basic image processing tasks and indicate where they may be obtained. Furthermore,
wewill describe andprovidepointers to someof themost generallyuseful images and imagedatabases.
The goal is to identify a basic collection of images and software that will be of use to the nonspecialist.
It should also be of use to the specialist who needs a general tool in an area outside his or her specialty.

58.1 Image Processing Software

Image processing has become such a broad area that it is sometimes difficult to distinguish what might
be considered an image processing package from other software systems. The boundaries among
the areas of computer graphics, data visualization, and image processing have become blurred.
Furthermore, to discuss or even to list all the image processing software available would require
many pages and would not be particularly useful to the nonspecialist. Therefore, we emphasize a
representative set of image processing software packages that embody core capabilities in scientific
image processing applications. Core capabilities, in our view, include the following:
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• Image utilities: These include display, manipulation, and file conversion. Images come
in such a variety of formats that a package for converting images from one format to
another is essential. Furthermore, basic display and manipulation (cropping, rotating,
etc.) are essential for almost any image processing task. The ability to edit images using
cut-and-paste, draw, and annotate operations is also useful in many cases.

• Image filtering and transformation: These are necessary capabilities for most scientific
applications of image processing. Convolution, median filtering, FFTs, morphological
operations, scaling, and other image functions form the core of many scientific image
processing algorithms.

• Image compression: Anyone who works with images long enough will learn that they
require a large amountof storage space. Anumberof standard image compressionutilities
are available for storing images in compressed form and for retrieving compressed images
from image databases.

• Image analysis: Scientific image processing applications often have the goal of deriving
information from an image. Simple image analysis tools such as edge detection and
segmentation are powerful methods for gleaning important visual information.

• Programming and data analysis environment: While many image processing packages
have a wide variety of functions, a whole new level of utility and flexibility arises when
the image processing functions are built around a programming and/or data analysis en-
vironment. Programming environments allow for tailoring image processing techniques
to the specific task, developing new algorithms, and interfacing image processing tasks
with other scientific data analysis and numerical computational techniques.

Other capabilities include higher-level object recognition and other computer vision tasks, visual-
ization and rendering techniques, computed imaging such as medical image reconstruction, and
morphing and other special effects of the digital darkroom and the film industry. These areas require
highly specialized software and/or very specialized skills to apply the methods and are not likely to
be part of the image processing world of the nonspecialist.

The packages to be discussed here encompass as a group all of the core image processing capabilities
mentioned above. Because these packages offer such a wide variety and mix of functions, they defy
simple categorization. We have chosen to group the packages into three categories: general image
utilities, specialized utilities, and programming/analysis environments. Keep in mind, however, that
the distinctions among these groups is blurry at best. We have chosen to emphasize packages that
are freely distributable and available on the Internet because these can be obtained and used with a
minimum of expense and hassle.

58.1.1 General Image Utilities

netpbm

pbmplus is a set of tools that allows the user to convert to and from a large number of common
image formats. The package has its own intermediate formats so that the conversion routines can
be written to convert to or from one of these formats. The user can then convert to and from
any combination of formats by going through one of the intermediate formats. Functions are also
provided to convert from different color resolutions, such as from color to grayscale. Several other
functions do basic image manipulation such as cropping, rotating, and smoothing. The source is
available from
ftp://ftp.wustl.edu/graphics/graphics/packages/NetPBM/.
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xv

xv is an X11 utility that combines several important image handling functions. It can display
images in a wide variety of display formats, including binary, 8-bit, and 24-bit. It allows the user to
manipulate the colormap both in RGB and HSV space. It crops, resizes, smooths, rotates, detects
edges, and produces other special effects. In addition, it reads and writes a large variety of image
formats, so it can serve as a format conversion utility. Until recently, xv has been freely distributable.
The latest version, however, is shareware and requires a small fee to become a registered user. The
source is available from
http://www.trilon.com/xv.

NCSA Image

NCSA Image is available in versions for the Mac, DOS, and Unix (X11). The Unix version is
called ximage. ximage allows the user to display color images. It can also display the actual data in
the form of a spreadsheet. A number of other display options are available. Like xv, it allows for
manipulation of the colormap in a variety of ways. In addition, the user may display multiple images
as an animated sequence, either from disk or server memory. The functionality of NCSA Image is
augmented by other programs available from NCSA, including DataSlice for visualization tasks and
Reformat for converting image formats. The source is available from NCSA by ftp at
ftp://ftp.ncsa.uiuc.edu/Visualization/Image/.

ImageMagick

ImageMagick is an X11 package for display and interactive image manipulation. It reads and
writes a large number of standard formats, does standard operations such as cropping and rotating
as well as more specialized editing operations such as cutting, pasting, color filling, annotating,
and drawing. Separate utilities are provided for grabbing images from a display, for converting,
combining, resizing, blurring, adding borders, and doing many other operations. The source is
available by ftp from
ftp://ftp.x.org/contrib/applications/ImageMagick/.

NIH Image

NIH Image is available only in a Macintosh version. However, the popularity of NIH Image
among Mac users and the breadth of features justify inclusion of the package in this survey. It
reads/writes a small number of image formats, acquires images using compatible frame grabbers,
and displays. It allows image manipulation such as flipping, rotating, and resizing; and editing such
as drawing and annotating. It has a number of built-in enhancement and filtering functions: contrast
enhancement, smoothing, sharpening, median filtering, and convolution. It supports a number of
analysis operations such as edge detection and measurement of area, mean, centroid, and perimeter
of user-defined regions of interest. It also performs automated particle analysis. In addition, the
user can animate a set of images. NIH Image has a Pascal-like macro capability and the ability to add
precompiled plug-in modules. The source is available from NIH by ftp at
ftp://zippy.nimh.nih.gov/pub/nih-image/.

LaboImage

LaboImage is an X11 package for mouse- and menu-driven interactive image processing. It
reads/writes a special format as well as Sun raster format and displays grayscale and RGB and provides
dithering. Basic filtering operations are possible, as well as enhancement tasks such as background
subtraction and histogram equalization. It computes various measures such as histograms, image
statistics, and image power. Region outlining and object counting can be done as well. Images can
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be modified interactively at the pixel level, and an expert system is available for region segmentation.
LaboImage has a macro capability for combining operations. LaboImage can be obtained from
http://cuiwww.unige.ch/ftp/sgaico/research/geneve/vision/labo.html.

Paint Shop Pro

Paint Shop Pro is a Windows-based package for creating, displaying, and manipulating images.
It has a large number of image editing features, including painting, photo retouching, and color en-
hancement. It reads and writes a large number of formats. It includes several standard image process-
ing filters and geometrical transformations. It can be obtained from http://www.jasc.com/psp.html.
It is shareware and costs $69.

58.1.2 Specialized Image Utilities

Compression

JPEG is a standard for image compression developed by the Joint Photographic Experts Group.
Free, portable C code that implements JPEG compression and decompression has been developed by
the Independent JPEGGroup, avolunteerorganization. It is available fromftp://ftp.uu.net/graphics/jpeg.
The downloadable package contains source and documentation. The code converts between JPEG
and several other common image formats. A lossless JPEG implementation can be obtained from
ftp://ftp.cs.cornell.edu/pub/multimed/.

A fractal image compression program is available from ftp://inls.ucsd.edu/pub/young-fractal/.
The package contains source for both compression and decompression. A number of other fractal
compression programs are also available and can be found in the sci.fractal FAQ at
ftp://rtfm.mit.edu/pub/usenet/news.answers/sci/fractals-faq.

JBIG is a standard for binary image compression developed by the Joint Binary Images Group. A
JBIG coder/decoder can be obtained from ftp://nic.funet.fi/pub/graphics/misc/test-images/.

MPEG is a standard for video/audio compression developed by the Moving Pictures Experts Group.
A set of MPEG tools is available from ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg/. These
tools allow for encoding, decoding (playing), and analyzing the MPEG data.

H.261 and H.263 are standards for video compression for videophone applications. An H.261
coder/decoder is available from ftp://havefun.stanford.edu/pub/p64/. An H.263 video coder/decoder
is available from http://www.fou.telenor.no/brukere/DVC/h263 software/.

Computer Vision

Vista is an X11-based image processing environment specifically designed for computer vision
applications. It allows a variety of display and manipulation options. It has a library that lets the user
easily create applications with menus, mouse interaction, and display options. Vista defines a very
flexible data format that represents a variety of images, collections of images, or other objects. It also
has the ability to add new objects or new image attributes without changing existing software or data
files. It does edge detection and linking, optical flow estimation and camera calibration, and viewing
of images and edge vectors. Vista includes routines for common image processing operations such
as convolution, FFTs, simple enhancement tasks, scaling, cropping, and rotating. Vista is available
from
http://www.cs.ubc.ca/nest/lci/vista/vista.html.
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58.1.3 Programming/Analysis Environments

Khoros

Khoros is a comprehensive software development and data analysis environment. It allows the
user to perform a large variety of image and signal processing and visualization tasks. A graphical
programming environment called Cantata allows the user to construct programs visually using a data
flowgraph approach. It has a user interface design tool with automatic code generation for writing
customized applications. Software objects (programs) are accessible from the command line, from
within Cantata, and in libraries.

A large set of standard numerical and statistical algorithms are available within Khoros. Common
image processing operations such as FFTs, convolution, median filtering, and morphological oper-
ators are available. In addition, a variety of image display and geometrical manipulation programs,
animation, and colormap editing are included. Khoros has a very general data model that allows for
images of up to five dimensions.

Khoros is free-access software — it is available for downloading free of charge but cannot be dis-
tributedwithout a license. It canbeobtained fromKhoralResearch, Inc., at ftp://ftp.khoral.com/pub/.
Note that the Khoros distribution is quite large and requires significant disk space.

MATLAB

MATLAB is a general numerical analysis and visualization environment. Matrices are the
underlying data structure in MATLAB, and this structure lends itself well to image processing ap-
plications. All data in MATLAB is represented as double-precision, which makes the calculations
more precise and interaction more convenient. However, it may also mean that MATLAB uses more
memory and processing time than necessary.

A large number of numerical algorithms and visualization options are available with the standard
package. The Image Processing Toolbox provides a great deal of added functionality for image
processing applications. It reads/writes several of themost common image formats; does convolution,
FFTs, median filtering, histogram equalization, morphological operations, two-dimensional filter
design, general nonlinear filtering, colormap manipulation, and basic geometrical manipulation. It
also allows for a variety of display options, including surface warping and movies.

MATLAB is an interactive environment, which makes interactive image processing and manipula-
tion convenient. One can also add functionality by creating scripts or functions that use MATLAB’s
functions and other user-added functions. Additionally, one can add functions that have been writ-
ten in C or Fortran. Conversely, C or Fortran programs can call MATLAB and MATLAB library
functions. MATLAB is commercial software. More information on MATLAB and how to obtain it
can be found through the homepage of The Mathworks, Inc., at http://www.mathworks.com/.

PV-Wave

PV-Wave is a general graphical/visualizationandnumerical analysis environment. It canhandle
images of arbitrary dimensionality — 2-D, 3-D, and so on. The user can specify the data type of each
data structure, which allows for flexibility but may be inconvenient for interactive work.

PV-Wave contains a large collection of visualization and rendering options, including colormap
manipulation, volume rendering, and animation. In addition, the IMSL library is available through
PV-Wave. Basic image processing operations such as convolution, FFTs, median filtering, morpho-
logical operations, and contrast enhancement are included.

Like MATLAB, PV-Wave is an interactive environment. One can create scripts or functions from
the PV-Wave language to add functionality. It can also call C or Fortran functions. PV-Wave can
be invoked from within C or Fortran too. PV-Wave is commercial software. More information on
PV-Wave can be found through the homepage of Visual Numerics, Inc., at http://www.vni.com/.
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58.2 Image Databases

A huge number of image databases and archives are available on the Internet now, and more are
continually being added. These databases serve various purposes. For the practicing engineer,
the primary value of an image database is for developing, testing, evaluating, or comparing image
processing and manipulation algorithms. Standard images provide a benchmark for comparing
various algorithms. Furthermore, standard test images can be selected so that their characteristics
are particularly suited to demonstrating the strengths and weaknesses of particular types of image
processing techniques. In some areas of image processing no real standards exist, although de facto
standards have arisen. In the discussion that follows, we provide pointers to some standard images,
some de facto standards, and a few other databases that might provide images of value to algorithm
work in image processing. We have deliberately steered away from images whose copyright is known
to prohibit use for research purposes. However, some of the images in the list have certain copyright
restrictions. Be sure to check any auxiliary information provided with the images before assuming
that they are public domain.

The images listed are in a variety of formats and may require conversion using one of the packages
discussed previously such as netpbm. We list the databases according to two categories: (1) form
and (2) content. By form, we mean that the images are organized according to the form of the image
— color, stereo, sequence, etc. By content, we mean that the images are grouped according to the
image content — faces, fingerprints, etc.

58.2.1 Images by Form

Binary Images
A set of standard CCITT fax test images has been made available for testing compression schemes.

These are binary images that have come from scanning actual documents. They can be found at
ftp://nic.funet.fi/pub/graphics/misc/test-images/ under ccitt[1-8].pbm.gz.

Grayscale Images
Acollectionofgrayscale imagescanbeobtained fromftp://ipl.rpi.edu/pub/image/still/canon/gray/.

A compilation of de facto standard images can be found at
http://www.sys.uea.ac.uk/Research/ResGroups/SIP/images ftp/index.html.
Note that the Lena image is copyrighted and should not be used in publications.

Color Images
A set of test images that were used by the JPEG committee in the development of the JPEG algorithm

are available from ftp://ipl.rpi.edu/pub/image/still/jpeg/bgr/.
These are 24-bit RGB images. Other 24-bit color images can be found at
ftp://ipl.rpi.edu/pub/image/still/canon/bgr/.
A set of miscellaneous images in JPEG and Kodak CD format can be found at
http://www.kodak.com/digitalImages/samples/samples.shtml.

Image Sequences
Image sequences may be intended for study of computer vision applications or video coding. A

huge set of sequences for computer vision applications are archived at
http://www.ius.cs.cmu.edu/idb/.
A set of sequences commonly used for video coding applications can be found at
ftp://ipl.rpi.edu/pub/image/sequence/.

Stereo Image Pairs
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Stereo image pairs are available from http://www.ius.cs.cmu.edu/idb/.

Texture Images
A large set of texture images can be found at

http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.
These images include textures from various angles and under different lighting conditions.

Face Images
The USENIX FACES database contains hundreds of face images in various formats. The database

is archived at ftp://ftp.uu.net/published/usenix/faces/.

Fingerprint Images
Fingerprint images can be obtained from ftp://sequoyah.ncsl.nist.gov/pub/databases/data/.

Medical Images
A variety of medical images are available over the Internet. An excellent collection of CT, MRI, and

cryosection images of the human body has been made available by the National Library of Medicine’s
The Visual Human Project. Samples of these images can be acquired at
http://www.nlm.nih.gov/research/visible/visible human.html.
A collection of over 3500 images that cover an entire human body is available via ftp and on tape by
signing a license agreement.

MRI and CT volume images are available from
ftp://omicron.cs.unc.edu/pub/projects/softlab.v/CHVRTD/.
PET images and other modalities can be found in
gopher://gopher.austin.unimelb.edu.au/11/images/petimages.

Astronomical Images
A collection of astronomical images can be found at

https//www.univ-rennesl.fr/ASTRO/astro.english.html.
Hubble telescope imagery can be obtained from http://archive.stsci.edu/archive.html.

Range Images
Range images are available from

http://www.eecs.wsu.edu/̃irl/3DDB/RID/, along with a list of other sources of range imagery, and
also from http://marathon.csee.usf.edu/range/DataBase.html.

The tools and databases discussed here should provide a convenient set of capabilities for the
nonspecialist. The capabilities that are readily available are not static, however. Image processing
will continue to become more and more mainstream, so we expect to see the development of image
processing tools representing greater variety and sophistication. The advent of the World Wide Web
will also stimulate further development and publishing of image databases on the Internet. Therefore,
image processing capabilities will continue to grow and will be more readily available. The items
discussed here are only a small sample of what will be available as time goes on.
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59.1 Introduction

Video processing has been a rapidly evolving field for telecommunications, computer, and media
industries. In particular, for real time video compression applications a growing economical signifi-
cance is expected for the next years. Besides digital TV broadcasting and videophone, services such
as multimedia education, teleshopping, or video mail will become audiovisual mass applications.

To facilitate worldwide interchange of digitally encoded audiovisual data, there is a demand for
international standards, defining coding methods, and transmission formats. International stan-
dardization committees have been working on the specification of several compression schemes. The
Joint Photographic Experts Group (JPEG) of the International Standards Organization (ISO) has
specified an algorithm for compression of still images [4]. The ITU proposed the H.261 standard for
video telephony and video conference [1]. The Motion Pictures Experts Group (MPEG) of ISO has
completed its first standard MPEG-1, which will be used for interactive video and provides a picture
quality comparable to VCR quality [2]. MPEG made substantial progress for the second phase of
standards MPEG-2, which will provide audiovisual quality of both broadcast TV and HDTV [3].
Besides the availability of international standards, the successful introduction of the named services
depends on the availability of VLSI components, supporting a cost efficient implementation of video
compression applications. In the following, we give a short overview of recent coding schemes and
discuss implementation alternatives. Furthermore, the efficiency estimation of architectural alter-
natives is discussed and implementation examples of dedicated and programmable architectures are
presented.
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59.2 Recent Coding Schemes

Recent video coding standards are based on a hybrid coding scheme that combines transform coding
and predictive coding techniques. An overview of these hybrid encoding schemes is depicted in
Fig. 59.1.

FIGURE 59.1: Hybrid encoding and decoding scheme.

The encoding scheme consists of the tasks motion estimation, typically based on blockmatching
algorithms, computation of the prediction error, discrete cosine transform (DCT), quantization (Q),
variable length coding (VLC), inverse quantization (Q−1), and inverse discrete cosine transform
(IDCT or DCT-1). The reconstructed image data are stored in an image memory for further predic-
tions. The decoder performs the tasks variable length decoding (VLC−1), inverse quantization, and
motion compensated reconstruction.

Generally, video processing algorithms can be classified in terms of regularity of computation and
data access. This classification leads to three classes of algorithms:

• Low-Level Algorithms — These algorithms are based on a predefined sequence of opera-
tions and a predefined amount of data at the input and output. The processing sequence
of low-level algorithms is predefined and does not depend on the values of data processed.
Typical examples of low-level algorithms are block matching or transforms such as the
DCT.

• Medium-Level Algorithms — The sequence and number of operations of medium-level
algorithms depend on the data. Typically, the amount of input data is predefined, whereas
theamountofoutputdata varies according to the inputdata values. With respect tohybrid
coding schemes, examples for these algorithms are quantization, inverse quantization, or
variable length coding.

• High-Level Algorithms — High-level algorithms are associated with a variable amount of
input and output data and a data-dependent sequence of operations. As for medium-
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level algorithms, the sequence of operations is highly data dependent. Control tasks of
the hybrid coding scheme can be assigned to this class.

Since hybrid coding schemes are applied for different video source rates, the required absolute
processing power varies in the range from a few hundred MOPS (Mega Operations Per Second) for
video signals in QCIF format to several GOPS (Giga Operations Per Second) for processing of TV
or HDTV signals. Nevertheless, the relative computational power of each algorithmic class is nearly
independent of the processed video format. In case of hybrid coding applications, approximately 90%
of the overall processing power is required for low-level algorithms. The amount of medium-level
tasks is about 7% and nearly 3% is required for high-level algorithms.

59.3 Architectural Alternatives

In terms of a VLSI implementation of hybrid coding applications, two major requirements can be
identified. First, the high computational power requirements have to be provided by the hardware.
Second, low manufacturing cost of video processing components is essential for the economic success
of an architecture. Additionally, implementation size and architectural flexibility have to be taken
into account.

Implementations of video processing applications can either be based on standard processors from
workstations or PCs or on specialized video signal processors. The major advantage of standard pro-
cessors is their availability. Application of these architectures for implementation of video processing
hardware does not require the time consuming design of new VLSI components. The disadvantage
of this implementation strategy is the insufficient processing power of recent standard processors.
Video processing applications would still require the implementation of cost intensive multiproces-
sor systems to meet the computational requirements. To achieve compact implementations, video
processing hardware has to be based on video signal processors, adapted to the requirements of the
envisaged application field.

Basically, two architectural approaches for the implementations of specialized video processing
components can be distinguished. Dedicated architectures aim at an efficient implementation of one
specific algorithm or application. Due to the restriction of the application field, the architecture
of dedicated components can be optimized by an intensive adaptation of the architecture to the
requirements of the envisaged application, e.g., arithmetic operations that have to be supported,
processing power, or communication bandwidth. Thus, this strategy will generally lead to compact
implementations. The major disadvantage of dedicated architecture is the associated low flexibility.
Dedicated components can only be applied for one or a few applications. In contrast to dedicated
approaches with limited functionality, programmable architectures enable the processing of different
algorithms under software control. The particular advantage of programmable architectures is the
increased flexibility. Changes of architectural requirements, e.g., due to changes of algorithms or
an extension of the aimed application field, can be handled by software changes. Thus, a generally
cost-intensive redesign of the hardware can be avoided. Moreover, since programmable architectures
cover a wider range of applications, they can be used for low-volume applications, where the design
of function specific VLSI chips is not an economical solution.

For both architectural approaches, the computational requirements of video processing appli-
cations demand for the exploitation of the algorithm-inherent independence of basic arithmetic
operations to be performed. Independent operations can be processed concurrently, which en-
ables the decrease of processing time and thus an increased through-put rate. For the architectural
implementation of concurrency, two basic strategies can be distinguished: pipelining and parallel
processing.

In case of pipelining several tasks, operations or parts of operations are processed in subsequent
steps in different hardware modules. Depending on the selected granularity level for the implemen-
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tation of pipelining, intermediate data of each step are stored in registers, register chains, FIFOs, or
dual-port memories. Assuming a processing time of TP for a non-pipelined processor module and
TD,IM for the delay of intermediate memories, we get in the ideal case the following estimation for
the throughput-rate RT,Pipe of a pipelined architecture applying NPipe pipeline stages:

RT,Pipe = 1
TP

NPipe
+ TD,IM

= NPipe

TP + NPipe · TD,IM

(59.1)

From this follows that the major limiting factor for the maximum applicable degree of pipelining is
the access delay of these intermediate memories.

The alternative to pipelining is the implementation of parallel units, processing independent data
concurrently. Parallel processing can be applied on operation level as well as on task level. Assuming
the ideal case, this strategy leads to a linear increase of processing power and we get:

RT,Par = NPar

TP

(59.2)

where NPar = number of parallel units.
Generally, both alternatives are applied for the implementation of high-performance video pro-

cessing components. In the following sections, the exploitation of algorithmic properties and the
application of architectural concurrency is discussed considering the hybrid coding schemes.

59.4 Efficiency Estimation of Alternative VLSI Implementations

Basically, architectural efficiency can be defined by the ratio of performance over cost. To achieve
a figure of merit for architectural efficiency we assume in the following that performance of a VLSI
architecture can be expressed by the achieved throughput rate RT and the cost is equivalent to the
required silicon area ASi for the implementation of the architecture:

E = RT

ASi

(59.3)

Besides the architecture, efficiency mainly depends on the applied semiconductor technology and the
design-style (semi-custom, full-custom). Therefore, a realistic efficiency estimation has to consider
the gains provided by the progress in semiconductor technology. A sensible way is the normalization
of the architectural parameters according to a reference technology. In the following we assume a
reference process with a grid length λ0 = 1.0micron. For normalization of silicon area, the following
equation can be applied:

ASi,0 = ASi

(
λ0

λ

)2

(59.4)

where the index 0 is used for the system with reference gate length λ0.
According to [7] the normalization of throughput can be performed by:

RT,0 = RT

(
λ

λ0

)1.6

(59.5)

From Eqs. (59.3), (59.4), and (59.5), the normalization for the architectural efficiency can be derived:

E0 = RT,0

ASi,0
= RT

ASi

(
λ

λ0

)3.6

(59.6)
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E can be used for the selection of the best architectural approach out of several alternatives. Moreover,
assuming a constant efficiency for a specific architectural approach leads to a linear relationship of
throughput rate and silicon area and this relationship can be applied for the estimation of the required
siliconarea for a specific application. Due to thepowerof 3.6 inEqu. (59.6), the chosen semiconductor
technology for implementation of a specific application has a significant impact on the architectural
efficiency.

In the following, examples of dedicated and programmable architectures for video processing
applications are presented. Additionally, the discussed efficiency measure is applied to achieve a
figure of merit for silicon area estimation.

59.5 Dedicated Architectures

Due to their algorithmic regularity and the high processing power required for the discrete cosine
transform and motion estimation, these algorithms are the first candidates for a dedicated imple-
mentation. As typical examples, alternatives for a dedicated implementation of these algorithms are
discussed in the following.

The discrete cosine transform (DCT) is a real-valued frequency transform similar to the Discrete
Fourier transform (DFT). When applied to an image block of size L × L, the two dimensional DCT
(2D-DCT) can be expressed as follows:

Yk,l =
L−1∑
i=0

L−1∑
j=0

xi,j · Ci,k · Cj,l (59.7)

where Cn,m =




1√
2

for m = 0

cos
[

(2n+1)mπ
2L

]
otherwise

with
(i, j)= coordinates of the pixels in the initial block
(k, l) = coordinates of the coefficients in the transformed block
xi,j = value of the pixel in the initial block
Yk,l = value of the coefficient in the transformed block

Computing a 2D DCT of size L × L directly according to Eq. (59.7) requires L4 multiplications
and L4 additions.

The required processing power for the implementation of the DCT can be reduced by the exploita-
tion of the arithmetic properties of the algorithm. The two-dimensional DCT can be separated into
two one-dimensional DCTs according to Eq. (59.8)

Yk,l =
L−1∑
i=0

Ci,k ·

L−1∑

j=0

xi,j · Cj,l


 (59.8)

The implementation of the separated DCT requires 2L3 multiplications and 2L3 additions. As an
example, the DCT implementation according to [9] is depicted in Fig. 59.2. This architecture is
based on two one-dimensional processing arrays. Since this architecture is based on a pipelined
multiplier/accumulator implementation in carry-save technique, vector merging adders are located
at the output of each array. The results of the 1D-DCT have to be reordered for the second 1D-DCT
stage. For this purpose, a transposition memory is used. Since both one-dimensional processor
arrays require identical DCT coefficients, these coefficients are stored in a common ROM.
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FIGURE 59.2: Separated DCT implementation according to [9].

Moving from a mathematical definition to an algorithm that can minimize the number of calcu-
lations required is a problem of particular interest in the case of transforms such as the DCT. The
1D-DCT can also be expressed by the matrix-vector product :

[Y] = [C][X] (59.9)

where [C] is an L × L matrix and [X] and [Y] 8-point input and output vectors. As an example, with
θ = p/16, the 8-points DCT matrix can be computed as denoted in Eq. (59.10)




Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7




=




cos 4θ cos 4θ cos 4θ cos 4θ cos 4θ cos 4θ cos 4θ cos 4θ
cosθ cos 3θ cos 5θ cos 7θ − cos 7θ − cos 5θ − cos 3θ − cosθ

cos 2θ cos 6θ − cos 6θ − cos 2θ − cos 2θ − cos 6θ cos 6θ cos 2θ
cos 3θ − cos 7θ − cosθ − cos 5θ cos 5θ cosθ cos 7θ − cos 3θ
cos 4θ − cos 4θ − cos 4θ cos 4θ cos 4θ − cos 4θ − cos 4θ cos 4θ
cos 5θ − cosθ cos 7θ cos 3θ − cos 3θ − cos 7θ cosθ − cos 5θ
cos 6θ − cos 2θ cos 2θ − cos 6θ − cos 6θ cos 2θ − cos 2θ cos 6θ
cos 7θ − cos 5θ cos 3θ − cosθ cosθ − cos 3θ cos 5θ − cos 7θ







x0
x1
x2
x3
x4
x5
x6
x7




(59.10)


Y0
Y2
Y4
Y6


 =




cos 4θ cos 4θ cos 4θ cos 4θ
cos 2θ cos 6θ − cos 6θ − cos 2θ
cos 4θ − cos 4θ − cos 4θ cos 4θ
cos 6θ − cos 2θ cos 2θ − cos 6θ







x0 + x7
x1 + x6
x2 + x5
x3 + x4


 (59.11)




Y1
Y3
Y5
Y7


 =




cosθ cos 3θ cos 5θ cos 7θ
cos 3θ − cos 7θ − cosθ − cos 5θ
cos 5θ − cosθ cos 7θ cos 3θ
cos 7θ − cos 5θ cos 3θ − cosθ







x0 + x7
x1 + x6
x2 + x5
x3 + x4


 (59.12)

More generally, the matrices in Eqs. (59.11) and (59.12) can be decomposed in a number of simpler
matrices, the composition of which can be expressed as a flowgraph. Many fast algorithms have been
proposed. Figure 59.3 illustrates the flowgraph of the B.G. Lee’s algorithms, which is commonly
used [10]. Several implementations using fast flow-graphs have been reported [11, 12].

Another approach thathasbeenextensivelyused isbasedon the techniqueofdistributedarithmetic.
Distributed arithmetic is an efficient way to compute the DCT totally or partially as scalar products.
To illustrate the approach, let us compute a scalar product between two length-M vectors C and X :

Y =
M−1∑
i=0

ci · xi with xi = −xi,0 +
B−1∑
j=1

xi,j · 2−j (59.13)

where {ci} are N-bit constants and {xi} are coded in B bits in 2s complement. Then Eq. (59.13) can
be rewritten as :

Y =
B−1∑
j=0

Cj · 2−j with Cj 6=0 =
M−1∑
i=0

cixi,j and C0 = −
M−1∑
i=0

cixi,0 (59.14)
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FIGURE 59.3: Lee FDCT flowgraph for the one-dimensional 8-points DCT [10].

The change of summing order in i and j characterizes the distributed arithmetic scheme in which the
initial multiplications are distributed to another computation pattern. Since the term Cj has only 2M

possible values (which depend on the xi,j values), it is possible to store these 2M possible values in a
ROM. An input set of M bits {x0,j , x1,j , x2,j , . . . , xM−1,j } is used as an address, allowing retrieval
of the Cj value. These intermediate results are accumulated in B clock cycles, for producing one Y

value. Figure 59.4 shows a typical architecture for the computation of a M input inner product. The
inverter and the MUX are used for inverting the final output of the ROM in order to compute C0.

FIGURE 59.4: Architecture of a M input inner product using distributed arithmetic.

Figure59.5 illustrates twotypicalusesofdistributedarithmetic forcomputingaDCT.Figure59.5(a)
implements the scalar products described by the matrix of Eq. (59.10). Figure 59.5(b) takes advantage
of a first stage of additions and substractions and the scalar products described by the matrices of
Eq. (59.11) and Eq. (59.12).

Properties of several dedicated DCT implementations have been reported in [6]. Figure 59.6
shows the silicon area as a function of the throughput rate for selected design examples. The design
parameters arenormalized toafictive1.0µmCMOSprocess according to thediscussednormalization
strategy. As a figure of merit, a linear relationship of throughput rate and required silicon area can
be derived:

αT,0 ≈ 0.5 mm2 / Mpel/s (59.15)

Equation (59.15) can be applied for the silicon area estimation of DCT circuits. For example,
assuming TV signals according to the CCIR-601 format and a frame rate of 25Hz, the source rate
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FIGURE 59.5: Architecture of an 8-point one-dimensional DCT using distributed arithmetic.
(a) Pure distributed arithmetic. (b) Mixed D.A.: first stage of flowgraph decomposition products of
8 points followed by 2 times 4 scalar products of 4 points.

equals 20.7 Mpel/s. As a figure of merit from Eq. (59.15) a normalized silicon area of about 10.4 mm2

can be derived. For HDTV signals the video source rate equals 110.6 Mpel/s and approximately 55.3
mm2 silicon area is required for the implementation of the DCT. Assuming an economically sensible
maximum chip size of about 100 mm2 to 150 mm2, we can conclude that the implementation of
the DCT does not necessarily require the realization of a dedicated DCT chip and the DCT core can
be combined with several other on-chip modules that perform additional tasks of the video coding
scheme.

For motion estimation several techniques have been proposed in the past. Today, the most im-
portant technique for motion estimation is block matching, introduced by [21]. Block matching
is based on the matching of blocks between the current and a reference image. This can be done
by a full (or exhaustive) search within a search window, but several other approaches have been

FIGURE 59.6: Normalized silicon area and throughput for dedicated DCT circuits.
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reported in order to reduce the computation requirements by using an “intelligent” or “directed”
search [17, 18, 19, 23, 25, 26, 27].

In case of an exhaustive search block matching algorithm, a block of size N × N pels of the current
image (reference block, denoted X) is matched with all the blocks located within a search window
(candidate blocks, denoted Y ) The maximum displacement will be denoted by w. The matching
criterium generally consists in computing the mean absolute difference (MAD) between the blocks.
Let x(i, j) be the pixels of the reference block and y(i, j) the pixels of the candidate block. The
matching distance (or distortion) D is computed according to Eq. (59.16). The indexes m and n

indicate the position of the candidate block within the search window. The distortion D is computed
for all the (2w+1)2 possible positions of the candidate block within the search window [Eq. (59.16)]
and the block corresponding to the minimum distortion is used for prediction. The position of this
block within the search window is represented by the motion vector v (59.17).

D(m, n) =
N−1∑
i=0

N−1∑
j=0

|x(i, j) − y(i + m, j + n)| (59.16)

v =
[

m

n

]
|Dmin (59.17)

The operations involved for computing D(m, n) and DMIN are associative. Thus, the order for
exploring the index spaces (i, j) and (m, n) are arbitrary and the block matching algorithm can
be described by several different dependence graphs. As an example, Fig. 59.7 shows a possible
dependence graph (DG) for w = 1 and N = 4. In this figure, AD denotes an absolute difference
and an addition, M denotes a minimum value computation.

FIGURE 59.7: Dependence graphs of the block matching algorithm. The computation of v (X, Y )

and D(m, n) are performed by 2D linear DGs.

The dependence graph for computing D(m, n) is directly mapped into a 2-D array of processing
elements (PE), while the dependence graph for computing v(X, Y ) is mapped into time (59.8).
In other words, block matching is performed by a sequential exploration of the search area, while
the computation of each distortion is performed in parallel. Each of the AD nodes of the DG is
implemented by an AD processing element (AD-PE). The AD-PE stores the value of x(i, j) and
receives the value of y(m + i, n + j) corresponding to the current position of the reference block in
the search window. It performs the subtraction and the absolute value computation, and adds the
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result to the partial result coming from the upper PE. The partial results are added on columns and a
linear array of adders performs the horizontal summation of the row sums, and computes D(m, n).
For each position (n, m) of the reference block, the M-PE checks if the distortion D(m, n) is smaller
than the previous smaller distortion value, and, in this case, updates the register which keeps the
previous smaller distortion value.

To transform this naive architecture into a realistic implementation, two problems must be solved:
(1) a reduction of the cycle time and (2) the I/O management.

1. The architecture of Fig. 59.8 implicitly supposes that the computation of D(m,n) can be
done combinatorially in one cycle time. While this is theoretically possible, the resulting
cycle time would be very large and would increase as 2N. Thus, a pipeline scheme is
generally added.

2. This architecture also supposes that each of the AD-PE receives a new value of y(m +
i, n + j) at each clock cycle.

FIGURE 59.8: Principle of the 2-D block-based architecture.

Since transmitting the N2 values from an external memory is clearly impossible, advantage must
be taken from the fact that these values belong to the search window. A portion of the search window
of size N∗(2w + N) is stored in the circuit, in a 2-D bank of shift registers able to shift in the up,
down, and right direction. Each of the AD-PEs has one of these registers and can, at each cycle, obtain
the value of y(m + i, n + j) that it needs. To update this register bank, a new column of 2w + N

pixels of the search area is serially entered in the circuit and is inserted in the bank of registers. A
mechanism must also be provided for loading a new reference with a low I/O overhead: a double
buffering of x(i, j) is required, with the pixels x′(i, j) of a new reference block serially loaded during
the computation of the current reference block (Fig. 59.9).

Figure 59.10 shows the normalized computational rate vs. normalized chip area for block matching
circuits. Since one MAD operation consists of three basic ALU operations (SUB, ABS, ADD), for a
1.0 micron CMOS process, we can derive from this figure that:

αT,0 ≈ 30mm2 + 1.9 mm2 / GOPS (59.18)

The first term of this expression indicates that the block matching algorithm requires a large storage
area (storage of parts of the actual and previous frame), which cannot be reduced even when the
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FIGURE 59.9: Practical implementation of the 2-D block-based architecture.

throughput is reduced. The second term corresponds to the linear dependency on computation
throughput. The second term has the same amount as that determined for the DCT for GADDS
because the three types of operations for the matching require approximately the same expense of
additions.

From equation Eq. (59.18), the silicon area required for the dedicated implementation of the
exhaustive search block matching strategy for a displacement of ±w pels can be derived by:

αT,0 ≈ 0.0057· (2w + 1)2 · RS + 30mm2 (59.19)

According to Eq. (59.19), a dedicated implementation of exhaustive search block matching for
telecommunication applications based on a source rate of RS = 1.01 Mpel/s (CIF format, 10 Hz
frame rate) and a maximum displacement of w = 15, the required silicon area can be estimated
to 35.5 mm2. For TV (RS = 10.4 Mpel/s) the silicon area for w = 31 can be estimated to 265
mm2. Estimating the required silicon area for HDTV signals and w = 31 leads to 1280 mm2 for

FIGURE 59.10: Normalized silicon area and computational rate for dedicated motion estimation
architectures.
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the fictive 1.0 µm CMOS process. From this follows that the implementation for TV and HDTV
applications will require the realization of a dedicated block matching chip. Assuming a recent 0.5
µm semiconductor processes the core size estimation leads to about 22 mm2 for TV signals and 106
mm2 for HDTV signals.

To reduce the high computational complexity required for exhaustive search block matching, two
strategies can be applied:

1. Decrease of the number of candidate blocks.

2. Decrease of the pels per block by subsampling of the image data.

Typically, (1) is implemented by search strategies in successive steps. As an example, a modified
scheme according to the original proposal of [25] will be discussed. In this scheme, the best match
vs−1 in the previous step s − 1 is improved in the present step s by comparison with displacements
±1s . The displacement vector vs for each step s is calculated according to

Ds(ms, ns) =
N−1∑
i=0

N−1∑
j=0

|x(i, j) − y (i + ms + q · 1s, j + ns + q · 1s) |

with q ∈ {−1, 0, 1} [
ms

ns

]
= vs−1 for s > 0

[
ms

ns

]
=

[
0
0

]
for s = 0

and

vs =
[

ms

ns

]
|Ds,min (59.20)

1s depends on the maximum displacement w and the number of search steps Ns . Typically, when
w = 2k − 1, Ns is set to k = log2(w + 1) and 1s = 2k−s+1. For example, for w = 15, four steps
with 1s = 8, 4, 2, 1 are performed. This strategy reduces the number of candidate blocks from
(2w + 1)2 in case of exhaustive search to 1 + 8 ∗ log2(w + 1), e.g., for w = 15 the number of
candidate blocks is reduced from 961 to 33 which leads to a reduction of processing power by a factor
of 29. For large block sizes N, the number of operations for the match can be further reduced by
combining the search strategy with subsampling in the first steps. Architectures for block matching
based on hierarchical search strategies are presented in [20, 22, 24, 30].

59.6 Programmable Architectures

According to the three ways for architectural optimization, adaptation, pipelining, and parallel pro-
cessing, three architectural classes for the implementation of video signal processors can be distin-
guished:

• Intensive Pipelined Architectures — These architectures are typically scalar architectures
that achieve high clock frequencies of several hundreds of MHz due to the exploitation
of pipelining.

• Parallel Data Paths — These architectures exploit data distribution for the increase of
computational power. Several parallel data paths are implemented on one processor die,
which leads in the ideal case to a linear increase of supported computational power. The
number of parallel data paths is limited by the semiconductor process, since an increase
of silicon area leads to a decrease of hardware yield.
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• Coprocessor Architectures — Coprocessors are known from general processor designs and
are often used for specific tasks, e.g., floating point operations. The idea of the adaptation
to specific tasks and increase of computational power without an increase of the required
semiconductor area has been applied by several designs. Due to their high regularity
and the high processing power requirements, low-level tasks are the most promising
candidates for an adapted implementation. The main disadvantage of this architectural
approach is the decrease of flexibility by an increase of adaptation.

59.6.1 Intensive Pipelined Architectures

Applying pipelining for the increase of clock frequency leads to an increased latency of the circuit.
For algorithms that require a data dependent control flow, this fact might limit the performance
gain. Additionally, increasing arithmetic processing power leads to an increase of data access rate.
Generally, the required data access rate cannot be provided by external memories. The gap between
provided external and required internal data access rate increases for processor architectures with
high clock frequency. To provide the high data access rate, the amount of internal memory which
provides a low access time has to be increased for high-performance signal processors. Moreover, it
is unfeasible to apply pipelining to speed-up on-chip memory. Thus, the minimum memory access
time is another limiting factor for the maximum degree of pipelining. At least speed optimization is
a time consuming task of the design process, which has to be performed for every new technology
generation.

Examples for video processors with high clock frequency are the S-VSP [39] and the VSP3 [40].
Due to intensive pipelining, an internal clock frequency of up to 300 MHz can be achieved. The
VSP3 consists of two parallel data paths, the Pipelined Arithmetic Logic Unit (PAU) and Pipelined
Convolution Unit (PCU) (Fig. 59.11). The relatively large on-chip data memory of size 114 kbit is
split into seven blocks, six data memories and one FIFO memory for external data exchange. Each
of the six data memories is provided with an address generation unit (AGU), which provides the
addressing modes “block”, “DCT”, and “zig-zag”. Controlling is performed by a Sequence Control
Unit (SCU) which involves a 1024x32bit instruction memory. A Host Interface Unit (HIU) and a
Timing Control Unit (TCU) for the derivation of the internal clock frequency are integrated onto
the VSP3 core.

The entire VSP3 core consists of 1.27 million transistors, implemented based on a 0.5 micron
BiCMOS technology on a 16.5 x 17.0-mm2 die. The VSP3 performs the processing of the CCITT-
H.261 tasks (neglecting Huffman coding) for one macroblock in 45 µs. Since realtime processing of
30Hz-CIF signals requires a processing time of less than 85 µs for one macroblock, a H.261 coder
can be implemented based on one VSP3.

59.6.2 Parallel Data Paths

In the previous section, pipelining was presented as a strategy for processing power enhancement.
Applying pipelining leads to a subdivision of a logic operation into sub-operations, which are pro-
cessed in parallel with increased processing speed. An alternative to pipelining is the distribution of
data among functional units. Applying this strategy leads to an implementation of parallel data paths.
Typically, each data path is connected to an on-chip memory which provides the access distributed
image segments.

Generally, two types of controlling strategies for parallel data paths can be distinguished. An
MIMD concept provides a private control unit for each data path, whereas SIMD-based controlling
provides a single common controller for parallel data paths. Compared to SIMD, the advantage of
MIMD is a greater flexibility and a higher performance for complex algorithms with highly data
dependent control flow. On the other hand, MIMD requires a significantly increased silicon area.
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FIGURE 59.11: VSP3 architecture [40].

Additionally, the access rate to the program memory is increased, since several controllers have to be
provided with program data. Moreover, a software-based synchronization of the data paths is more
complex. In case of an SIMD concept synchronization is performed implicitly by the hardware.

Since actualhybrid coding schemes require a large amountofprocessingpower for tasks that require
a data independent control flow, a single control unit for the parallel data path provides sufficient
processor performance. The controlling strategy has to provide the execution of algorithms that
require a data dependent control flow, e.g., quantization. A simple concept for the implementation
of a data dependent control flow is to disable the execution of instruction in dependence of the local
data path status. In this case, the data path utilization might be significantly decreased, since several
of the parallel data path idle while others perform the processing of image data. An alternative is a
hierarchical controlling concept. In this case, each data path is provided with a small local control
unit with limited functionality and the global controller initiates the execution of control sequences of
the local data path controllers. To reduce the required chip area for this controlling concept, the local
controller can be reduced to a small instruction memory. Addressing of this memory is performed
by the global control unit.

An example of a video processor based on parallel identical data path with a hierarchical controlling
concept is the IDSP [42] (Fig. 59.12). The IDSP processor includes four pipelined data processing
units (DPU0-DPU3), three parallel I/O ports (PIO0-PIO2), one 8 × 16-bit register file, five dual-
ported memory blocks of size 512 × 16-bit each, an address generation unit for the data memories,
and a program sequencer with 512 × 32-bit instruction memory and 32 × 32-bit boot ROM.

The data processing units consist of a three-stage pipeline structure based on a ALU, multiplier,
and an accumulator. This data path structure is well suited for L1 and L2 norm calculations and
convolution-like algorithms. The four parallel data paths support a peak computational power of
300 MOPS at a typical clock frequency of 25 MHz. The data required for parallel processing are
supplied by four cache memories (CM0-CM3) and a work memory (WM). Address generation for
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FIGURE 59.12: IDSP architecture [42].

these memories is performed by an address generation unit (AU) which supports address sequences
such as block scan, bit reverse, and butterfly. The three parallel I/O units contain a data I/O port, an
address generation unit, and a DMA control processor (DMAC).

The IDSP integrates 910,000 transistors in 15.2 × 15.2 mm2 using an 0.8 micron BiCMOS tech-
nology. For a full-CIF H.261 video codec four IDSP are required.

Another example of an SIMD-based video signal processor architecture based on identical parallel
data paths is the HiPAR-DSP [44] (Fig. 59.13). The processor core consists of 16 RISC data paths,
controlled by a common VLIW instruction word. The data paths contain a multiplier/accumulator
unit, a shift/round unit, an ALU, and a 16 × 16bit register file. Each data path is connected to a
private data cache. To support the characteristic data access pattern of several image processing tasks
efficiently, a shared memory with parallel data access is integrated on-chip and provides parallel and
conflict-free access to the data stored in this memory. The supported access patterns are “matrix”,
“vector” and “scalar”. Data exchange with external devices is supported by an on chip DMA unit and
a hypercube interface.

At present, a prototype of the HiPAR-DSP, based on four parallel data paths, is implemented.
This chip will be manufactured in a 0.6 micron CMOS technology and will require a silicon area of
about 180 mm2. One processor chip is sufficient for realtime decoding of video signals, according to
MPEG-2 Main Profile at Main Level. For encoding an external motion estimator is required.

In contrast to SIMD-based HiPAR-DSP architecture, the TMS320C80 (MVP) is based on an
MIMD approach [43]. The MVP consists of four parallel processors (PP) and one master processor
(Fig. 59.14). The processors are connected to 50-kbyte on-chip data memory via a global crossbar
interconnection network. A DMA controller provides the data transfer to an external data memory
and video I/O is supported by an on-chip video interface.

The master processor is a general-purpose RISC processor with an integral IEEE-compatible
floating-point unit (FPU). The processor has a 32-bit instruction word and can load or store 8-,
16-, 32-, and 64-bit data sizes. The master processor includes a 32 × 32-bit general purpose register
file. The master processor is intended to operate as the main supervisor and distributor of tasks
within the chip and is also responsible for the communication with external processors. Due to the
integrated FPU, the master processor will perform tasks such as audio signal processing and 3-D
graphics transformation.
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FIGURE 59.13: Architecture of the HiPAR-DSP [44].

The parallel processors architecture has been designed to perform typical DSP algorithms, e.g.,
filtering, DCT, and to support bit and pixel manipulations for graphics applications. The parallel
processors contain two address units, a program flow control unit, and a data unit with 32-bit ALU,
16 × 16-bit multiplier, and a barrel rotator.

The MVP has been designed using a 0.5 micron CMOS technology. Due to the supported flexibility,
about four million transistors on a chip area of 324 mm2 are required. A computational power of 2
GOPS is supported. A single MVP is able to encode CIF-30Hz video signals according to the MPEG-1
standard.

59.6.3 Coprocessor Concept

Most programmable architectures for video processing applications achieve an increase of processing
power by an adaptation of the architecture to the algorithmic requirements. A feasible approach is
the combination of a flexible programmable processor module with one or more adapted modules.
This approach leads to an increase of processing power for specific algorithms and leads a significant
decrease of required silicon area. The decrease of silicon area is caused by two effects. At first, the
implementation of the required arithmetic operations can be optimized, which leads to an area reduc-
tion. Second, dedicated modules require significantly less hardware expense for module controlling,
e.g., for program memory.

Typically, computation intensive tasks, such as DCT, block matching, or variable length coding, are
candidates for an adapted or even dedicated implementation. Besides the adaptation to one specific
task, mapping of several different tasks onto one adapted processor module might be advantageous.
For example, mapping successive tasks, such as DCT, quantization, inverse quantization, IDCT, onto
the same module reduces the internal communication overhead.

Coprocessor architectures that are based on highly adapted coprocessors achieve high compu-
tational power on a small chip area. The main disadvantage of these architectures is the limited
flexibility. Changes of the envisaged applications might lead to an unbalanced utilization of the
processor modules and therefore to a limitation of the effective processing power of the chip.

Applying the coprocessor concept opens up a variety of feasible architecture approaches, which
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FIGURE 59.14: TMS320C80 (MVP) [43].

differ in achievable processing power and flexibility of the architecture. In the following several ar-
chitectures are presented, which clarify the wide variety of sensible approaches for video compression
based on a coprocessor concept. Most of these architectures aim at an efficient implementation of
hybrid coding schemes. As a consequence, these architectures are based on highly adapted coproces-
sors.

A chip set for video coding has been proposed in [8]. This chip set consists of four devices: two
encoder options (the AVP1300E and AVP1400E), the AVP1400D decoder, and the AVP1400C system
controller. The AVP1300E has been designed for H.261 and MPEG-1 frame-based encoding. Full
MPEG-1 encoding (I-frame, P-frame, and B-frame) is supported by the AVP1400E. In the following,
the architecture of the encoder chips is presented in more detail.

The AVP1300E combines function oriented modules, mask programmable modules, and user
programmable modules (Fig. 59.15). It consists of a dedicated motion estimator for exhaustive
search block matching with a search area of +/− 15 pels. The variable length encoder unit contains
an ALU, a register array, a coefficient RAM, and a table ROM. Instructions for the VLE unit are stored
in a program ROM. Special instructions for conditional switching, run-length coding, and variable-
to-fixed-length conversion are supported. The remaining tasks of the encoder loop, i.e., DCT/IDCT,
quantization, and inverse quantization, are performed in two modules called SIMD processor and
quantization processor (QP). The SIMD processor consists of six parallel processors each with ALU,
multiplier-accumulator units. Program information for this module is again stored in a ROM
memory. The QP’s instructions are stored in a 1024 × 28-bit RAM. This module contains 16-bit
ALU, a multiplier, and a register file of size 144 × 16-bit. Data communication with external DRAMs
is supported by a memory management unit (MMAFC). Additionally, the processor scheduling is
performed by a global controller (GC).

Due to the adaptation of the architecture to specific tasks of the hybrid coding scheme, a single chip
of size 132 mm2 (at 0.9 micron CMOS technology) supports the encoding of CIF-30Hz video signals
according to the H.261 standard, including the computation intensive exhaustive search motion
estimation strategy. An overview of the complete chipset is given in [33].

The AxPe640V [37] is another typical example of the coprocessor approach (Fig. 59.16). To provide
high flexibility for a broad range of video processing algorithms, the two processor modules are fully
user programmable. A scalar RISC core supports the processing of tasks with data dependent control
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FIGURE 59.15: AVP encoder architecture [8].

flow, whereas the typically more computation intensive low level tasks with data independent control
flow can be executed by a parallel SIMD module.

The RISC core functions as a master processor for global control and for processing of tasks such
as variable length encoding and quantization. To improve the performance for typical video coding
schemes, the data path of the RISC core has been adapted to the requirements of quantization and
variable length coding, by an extension of the basic instruction set. A program RAM of size is
placed on-chip and can be loaded from an external PROM during start-up. The SIMD oriented
arithmetic processing unit (APU) contains four parallel datapaths with a subtracter-complementer-
multiplier pipeline. The intermediate results of the arithmetic pipelines are fed into a multi-operand
accumulator with shift/limit circuitry. The results of the APU can be stored in the internal local
memory or read out to the external data output bus.

Since both RISC core and APU include a private program RAM and address generation units, these
processor modules are able to work in parallel on different tasks. This MIMD-like concept enables
an execution of two tasks in parallel, e.g., DCT and quantization.

The AxPe640V is currently available in a 66-MHz version, designed in a 0.8 micron CMOS tech-
nology. A QCIF-10Hz H.261 codec can be realized with a single chip. To achieve higher computation
power several AxPe640V can be combined to a multiprocessor system. For example, three AxPe640V
are required for an implementation of a CIF-10Hz codec.

FIGURE 59.16: AxPe640V architecture [37].

The examples presented above clarify the wide range of architectural approaches for the VLSI
implementation of video coding schemes. The applied strategies are influenced by several demands,
especially the desired flexibility of the architecture and maximum cost for realization and manufac-
turing. Due to the high computational requirements of real time video coding, most of the presented
architectures apply a coprocessor concept with flexible programmable modules in combination with
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modules that are more or less adapted to specific tasks of the hybrid coding scheme. An overview of
programmable architectures for video coding applications is given in [6].

Equations (59.4) and (59.5) can be applied for the comparison of programmable architectures.
The result of this comparison is shown in Fig. 59.17, using the coding scheme according to ITU
recommendation H.261 as a benchmark. Assuming a linear dependency between throughput rate

FIGURE 59.17: Normalized silicon area and throughput (frame rate) for adapted and flexible pro-
grammable architectures for a H.261 codec.

and silicon area, a linear relationship corresponds to constant architectural efficiency, indicated by
the two grey lines in Fig. 59.17. According to these lines, two groups of architectural classes can be
identified. Thefirst groupconsists of adapted architectures, optimized forhybrid coding applications.
The architectures contain one or more adapted modules for computation intensive tasks, such as DCT
or block matching. It is obvious that the application field of these architectures is limited to a small
range of applications. This limitation is avoided by the members of the second group of architectures.
Most of these architectures do not contain function specific circuitry for specific tasks of the hybrid
coding scheme. Thus, they can be applied for wider variety of applications without a significant
loss of sustained computational power. On the other hand, these architectures are associated with
a decreased architectural efficiency compared to the first group of proposed architectures: Adapted
architectures achieve an efficiency gain of about 6 to 7.

For a typical video phone application a frame rate of 10 Hz can be assumed. For this application the
required normalized silicon area of about 130 mm2 is required for adapted programmable approaches
and approximately 950 mm2 are required for flexible programmable architectures. For a rough

c©1999 by CRC Press LLC



estimation of the required silicon area for an MPEG-2 decoder, we assume that the algorithmic
complexity of an MPEG-2 decoder for CCIR-601 signals is about half the complexity of an H.261
codec. Additionally, it has to be taken into account that the number of pixels per frame is about 5.3
times larger for CCIR signals than for CIF signals. From this the normalized implementation size of
an MPEG-2 decoder for CCIR-601 signals and a frame rate of 25 Hz can be estimated to 870 mm2

for an adapted architecture and 6333 mm2 for flexible programmable architecture. Scaling these
figures according to the defined scaling rules, a silicon area of about 71 mm2 and 520 mm2 can be
estimated for an implementation based on an 0.5 µm CMOS process. Thus, the realization of video
coding hardware for TV or HDTV based on flexible programmable processors still requires several
monolithic components.

59.7 Conclusion

Thepropertiesof recenthybrid coding schemes in termsofVLSI implementationhavebeenpresented.
Architectural alternatives for the dedicated realization of the DCT and block matching have been
discussed. Architectures of programmable video signal processors have been presented and compared
in terms of architectural efficiency. It has been shown that adapted circuits achieve a six to seven
times higher efficiency than flexible programmable circuits. This efficiency gap might decrease for
future coding schemes associated with a higher amount of medium- and high-level algorithms. Due
to their flexibility, programmable architectures will become more and more attractive for future VLSI
implementations of video compression schemes.
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A SENSOR ARRAY SYSTEM consists of a number of spatially-distributed elements, such as
dipoles, hydrophones, geophones or microphones, followed by receivers and a processor.
The array samples propagating wavefields in time and space. The receivers and the processor

vary in mode of implementation and complexity according to the types of signals encountered,
desired operation, and the adaptability of the array. For example, the array may be narrowband
or wideband and the processor may be for determining the directions of the sources of signals or
for beamforming to reject interfering signals and to enhance the quality of the desired signal in a
communication system. The broad range of applications and the multifaceted nature of technical
challenges for modern array signal processing have provided a fertile ground for contributions by
and collaborations among researchers and practitioners from many disciplines, particularly those
from the signal processing, statistics, and numerical linear algebra communities.

The following chapters present a sampling of the latest theory, algorithms, and applications related
to array signal processing. The range of topics and algorithms include some which have been in use
for more than a decade as well as some which are results of active current research. The sections on
applications give examples of current areas of significant research and development.

Modern array signal processing often requires the use of the formalism of complex variables in
modeling received signals and noise. Chapter 60 provides an introduction to complex random
processes which are useful for bandpass communication systems and arrays. A classical use for arrays
of sensors is to exploit the differences in the location (direction) of sources of transmitted signals to
perform spatial filtering. Such techniques are reviewed in Chapter 61.

Another common use of arrays is the estimation of informative parameters about the wavefields
impinging on the sensors. The most common parameter of interest is the direction of arrival (DOA)
of a wave. Subspace techniques have been advanced as means of estimating the DOAs of sources,
which are very close to each other, with high accuracy. The large number of developments in
such techniques is reflected in the topics covered in Chapters 62 to 66. Chapter 62 gives a general
overview of subspace processing for direction finding, while Chapter 63 discusses a particular type
of subspace algorithm which is extended to sensing of azimuth and elevation angles with planar
arrays. Most estimators assumeknowledgeof theneededstatistical characteristicsof themeasurement
noise. This requirement is relaxed in the approach given in Chapter 64. Chapter 65 extends the
capabilities of traditional sensors to those which can measure the complete electric and magnetic
field components and provides estimators which exploit such information. When signal sources
move, or when computational requirements for real-time processing prohibit batch estimation of the
subspaces, computationally efficient adaptive subspace updating techniques are called for. Chapter 66
presents many of the recent techniques which have been developed for this purpose. Before subspace
methods are used for estimating the parameters of the waves received by an array, it is necessary to
determine the number of sources which generate the waves. This aspect of the problem, often termed
detection, is discussed in Chapter 67.

An important area of application for arrays is in the field of communications, particularly as it
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pertains to emerging mobile and cellular systems. Chapter 68 gives an overview of a number of tech-
niques for improving the reception of signals in mobile systems, while Chapter 69 considers problems
which arise in beamforming in the presence of multipath signals—a common occurrence in mobile
communications. Chapter 70 discusses radar systems which employ sensor arrays, thereby providing
the opportunity for space-time signal processing for improved resolution and target detection.
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60.1 Introduction

Muchofmoderndigital signal processing is concernedwith the extractionof information fromsignals
whicharenoisy, orwhichbehave randomlywhile still revealing someattributeorparameterof a system
or environment under observation. The term in popular use now for this kind of computation is
statistical signal processing, and much of this Handbook is devoted to this very subject. Statistical
signal processing is classical statistical inference applied to problems of interest to electrical engineers,
with the added twist that answers are often required in “real time”, perhaps seconds or less. Thus,
computational algorithms are often studied hand-in-hand with statistics.

One thing that separates the phenomena electrical engineers study from that of agronomists,
economists, or biologists, is that the data they process are very often complex; that is, the data
points come in pairs of the form x + jy, where x is called the real part, y the imaginary part, and
j = √−1. Complex numbers are entirely a human intellectual creation: there are no complex
physical measurable quantities such as time, voltage, current, money, employment, crop yield, drug
efficacy, or anything else. However, it is possible to attribute to physical phenomena an underlying
mathematical model that associates complex causes with real results. Paradoxically, the introduction
of a complex-number-based theory can often simplify mathematical models.
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FIGURE 60.1: Quadrature demodulator.

Beyond their use in the development of analytical models, complex numbers often appear as
actual data in some information processing systems. For representation and computation purposes,
a complex number is nothing more than an ordered pair of real numbers. One just mentally attaches
the “j” to one of the two numbers, then carries out the arithmetic or signal processing that this
interpretation of the data implies.

One of the most well-known systems in electrical engineering that generates complex data from
real measurements is the quadrature, or IQ, demodulator, shown in Fig. 60.1. The theory behind this
system is as follows. A real bandpass signal, with bandwidth small compared to its center frequency,
has the form

s(t) = A(t) cos(ωct + φ(t)) (60.1)

where ωc is the center frequency, and A(t) and φ(t) are the amplitude and angle modulation,
respectively. By viewing A(t) and φ(t) together as the polar coordinates for a complex function g(t),
i.e.,

g(t) = A(t)ejφ(t) , (60.2)

we imagine that there is an underlying complex modulation driving the generation of s(t), and thus

s(t) = Re {g(t)ejωct } . (60.3)

Again, s(t) is physically measurable, whileg(t) is a mathematical creation. However, the introduction
of g(t) does much to simplify and unify the theory of bandpass communication. It is often the case
that information to be transmitted via an electronic communication channel can be mapped directly
into the magnitude and phase, or the real and imaginary parts, of g(t). Likewise, it is possible to
demodulate s(t), and thus “retrieve” the complex function g(t) and the information it represents.
This is the purpose of the quadrature demodulator shown in Fig. 60.1. In Section 60.2 we will
examine in some detail the operation of this demodulator, but for now note that it has one real input
and two real outputs, which are interpreted as the real and imaginary parts of an information-bearing
complex signal.

Any application of statistical inference requires the development of a probabilistic model for the
received or measured data. This means that we imagine the data to be a “realization” of a multivariate
random variable, or a stochastic process, which is governed by some underlying probability space of
which we have incomplete knowledge. Thus, the purpose of this section is to give an introduction to
probabilisticmodels for complexdata. The topics coveredare2nd-order stochasticprocesses and their
complex representations, the multivariate complex Gaussian distribution, and related distributions
which appear in statistical tests. Special attention will be paid to a particular class of random variables,
called circular complex random variables. Circularity is a type of symmetry in the distributions of
the real and imaginary parts of complex random variables and stochastic processes, which can be
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physically motivated in many applications and is almost always assumed in the statistical signal
processing literature. Complex representations for signals and the assumption of circularity are
particularly useful in the processing of data or signals from an array of sensors, such as radar antennas.
The reader will find them used throughout this chapter of the Handbook.

60.2 Complex Envelope Representations of Real Bandpass
Stochastic Processes

60.2.1 Representations of Deterministic Signals

The motivation for using complex numbers to represent real phenomena, such as radar or com-
munication signals, may be best understood by first considering the complex envelope of a real
deterministic finite-energy signal.

Let s(t) be a real signal with a well-defined Fourier transform S(ω). We say that s(t) is bandlimited
if the support of S(ω) is finite, that is,

S(ω) = 0 ω 6∈ B (60.4)

6= 0 ω ∈ B

where B is the frequency band of the signal, usually a finite union of intervals on the ω-axis such as

B = [−ω2, −ω1] ∪ [ω1, ω2] . (60.5)

The Fourier transform of such a signal is illustrated in Fig. 60.2.

FIGURE 60.2: Fourier transform of a bandpass signal.

Since s(t) is real, the Fourier transform S(ω) exhibits conjugate symmetry, i.e., S(−ω) = S∗(ω).
This implies that knowledge of S(ω), for ω ≥ 0 only, is sufficient to uniquely identify s(t).

The complex envelope of s(t), which we denote g(t), is a frequency-shifted version of the complex
signal whose Fourier transform is S(ω) for positive ω, and 0 for negative ω. It is found by the
operation indicated graphically by the diagram in Fig. 60.3, which could be written

g(t) = LPF{2s(t)e−jωct } . (60.6)

ωc is the center frequency of the bandB, and “LPF” represents an ideal lowpass filter whose bandwidth
is greater than half the bandwidth of s(t), but much less than 2ωc. The Fourier transform of g(t) is
given by

G(ω) = 2S(ω − ωc) |ω| < BW (60.7)

= 0 otherwise .
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FIGURE 60.3: Quadrature demodulator.

FIGURE 60.4: Fourier transform of the complex representation.

The Fourier transform of g(t), for s(t) as given in Fig. 60.2, is shown in Fig. 60.4.

The inverse operation which gives s(t) from g(t) is

s(t) = Re{g(t)ejωct } . (60.8)

Our interest in g(t) stems from the information it represents. Real bandpass processes can be
written in the form

s(t) = A(t) cos(ωct + φ(t)) (60.9)

where A(t) and φ(t) are slowly varying functions relative to the unmodulated carrier cos(ωct), and
carry information about the signal source. From the complex envelope representation ( 60.3), we
know that

g(t) = A(t)ejφ(t) (60.10)

and hence g(t), in its polar form, is a direct representation of the information-bearing part of the
signal.

In what follows we will outline a basic theory of complex representations for real stochastic pro-
cesses, instead of the deterministic signals discussed above. We will consider representations of
second-order stochastic processes, those with finite variances and correlations and well-defined spec-
tral properties. Two classes of signals will be treated separately: those with finite energy (such as
radar signals) and those with finite power (such as radio communication signals).
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60.2.2 Finite-Energy Second-Order Stochastic Processes

Let x(t) be a real, second-order stochastic process, with the defining property

E{x2(t)} < ∞ , all t . (60.11)

Furthermore, let x(t) be finite-energy, by which we mean

∫ ∞

−∞
E{x2(t)}dt < ∞ . (60.12)

The autocorrelation function for x(t) is defined as

Rxx(t1, t2) = E{x(t1)x(t2)} , (60.13)

and from (60.11) and the Cauchy-Schwartz inequality we know that Rxx is finite for all t1, t2.
The bi-frequency energy spectral density function is

Sxx(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
Rxx(t1, t2)e

−jω1t1e+jω2t2dt1dt2 . (60.14)

It is assumed that Sxx(ω1, ω2) exists and is well defined. In an advanced treatment of stochastic
processes (e.g., Loeve [1]) it can be shown that Sxx(ω1, ω2) exists if and only if the Fourier transform
of x(t) exists with probability 1; in this case, the process is said to be harmonizable.

If x(t) is the input to a linear time-invariant system H, and y(t) is the output process, as shown in
Fig. 60.5, then y(t) is also a second-order finite-energy stochastic process. The bi-frequency energy

FIGURE 60.5: LTI system with stochastic input and output.

spectral density of y(t) is

Syy(ω1, ω2) = H(ω1)H
∗(ω2)Sxx(ω1, ω2) . (60.15)

This last result aids in a natural interpretation of the function Sxx(ω, ω), which we denote as the
energy spectral density. For any process, the total energy Ex is given by

Ex = 1

2π

∫ ∞

−∞
Sxx(ω, ω)dω . (60.16)

If we pass x(t) through an ideal filter whose frequency response is 1 in the band B and 0 elsewhere,
then the total energy in the output process is

Ey = 1

2π

∫
B

Sxx(ω, ω)dω . (60.17)

This says that the energy in the stochastic process x(t) can be partitioned into different frequency
bands, and the energy in each band is found by integrating Sxx(ω, ω) over the band.
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We can define a bandpass stochastic process, with band B, as one that passes undistorted through
an ideal filter H whose frequency response is 1 within the frequency band and 0 elsewhere. More
precisely, if x(t) is the input to an ideal filter H, and the output process y(t) is equivalent to x(t) in
the mean-square sense, that is

E{(x(t) − y(t))2} = 0 all t , (60.18)

then we say that x(t) is a bandpass process with frequency band equal to the passband of H. This is
equivalent to saying that the integral of Sxx(ω1, ω2) outside of the region ω1, ω2 ∈ B is 0.

60.2.3 Second-Order Complex Stochastic Processes

A complex stochastic process z(t) is one given by

z(t) = x(t) + jy(t) (60.19)

where the real and imaginary parts, x(t) and y(t), respectively, are any two stochastic processes
defined on a common probability space. A finite-energy, second-order complex stochastic process
is one in which x(t) and y(t) are both finite-energy, second-order processes, and thus have all the
properties given above. Furthermore, because the two processes have a joint distribution, we can
define the cross-correlation function

Rxy(t1, t2) = E{x(t1)y(t2)} . (60.20)

By far the most widely used class of second-order complex processes in signal processing is the
class of circular complex processes. A circular complex stochastic process is one with the following
two defining properties:

Rxx(t1, t2) = Ryy(t1, t2) (60.21)

and
Rxy(t1, t2) = −Ryx(t1, t2) all t1, t2 . (60.22)

From Eqs. (60.21) and (60.22) we have that

E{z(t1)z∗(t2)} = 2Rxx(t1, t2) + 2jRyx(t1, t2) (60.23)

and furthermore
E{z(t1)z(t2)} = 0 (60.24)

for all t1, t2. This implies that all of the joint second-order statistics for the complex process z(t) are
represented in the function

Rzz(t1, t2) = E{z(t1)z∗(t2)} (60.25)

which we define unambiguously as the autocorrelation function for z(t). Likewise, the bi-frequency
spectral density function for z(t) is given by

Szz(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
Rzz(t1, t2)e

−jω1t1e+jω2t2dt1dt2 . (60.26)

The functions Rzz(t1, t2) and Szz(ω1, ω2) exhibit Hermitian symmetry, i.e.,

Rzz(t1, t2) = R∗
zz(t2, t1) (60.27)

and
Szz(ω1, ω2) = S∗

zz(ω2, ω1) . (60.28)
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However, there is no requirement that Szz(ω1, ω2) exhibit the conjugate symmetry for positive and
negative frequencies, given in Eq. (60.6), as is the case for real stochastic processes.

Other properties of real second-order stochastic processes given above carry over to complex
processes. Namely, if H is a linear time-invariant system with arbitrary complex impulse response
h(t), frequency response H(ω), and complex input z(t), then the complex output w(t) satisfies

Sww(ω1, ω2) = H(ω1)H
∗(ω2)Szz(ω1, ω2) . (60.29)

A bandpass circular complex stochastic process is one with finite spectral support in some arbitrary
frequency band B.

Complex stochastic processes undergo a frequency translation when multiplied by a deterministic
complex exponential. If z(t) is circular, then

w(t) = ejωctz(t) (60.30)

is also circular, and has bi-frequency energy spectral density function

Sww(ω1, ω2) = Szz(ω1 − ωc, ω2 − ωc) . (60.31)

60.2.4 Complex Representations of Finite-Energy Second-Order
Stochastic Processes

Let s(t) be a bandpass finite-energy second-order stochastic process, as defined in Section 60.2.2.
The complex representation of s(t) is found by the same down-conversion and filtering operation
described for deterministic signals:

g(t) = LPF{2s(t)e−jωct } . (60.32)

The lowpassfilter inEq. (60.32) is an idealfilter thatpasses thebasebandcomponentsof the frequency-
shifted signal, and attenuates the components centered at frequency −2ωc.

The inverse operation for Eq. (60.32) is given by

ŝ(t) = Re{g(t)ejωct } . (60.33)

Because the operation in Eq. (60.32) involves the integral of a stochastic process, which we define
using mean-square stochastic convergence, we cannot say that s(t) is identically equal to ŝ(t) in
the manner that we do for deterministic signals. However, it can be shown that s(t) and ŝ(t) are
equivalent in the mean-square sense, that is,

E{(s(t) − ŝ(t))2} = 0 all t . (60.34)

With this interpretation, we say that g(t) is the unique complex envelope representation for s(t).
The assumption of circularity of the complex representation is widespread in many signal process-

ing applications. There is an equivalent condition which can be placed on the real bandpass signal
that guarantees its complex representation has this circularity property. This condition can be found
indirectly by starting with a circular g(t) and looking at the s(t) which results.

Let g(t) be an arbitrary lowpass circular complex finite-energy second-order stochastic process.
The frequency-shifted version of this process is

p(t) = g(t)e+jωct (60.35)

and the real part of this is

s(t) = 1

2
(p(t) + p∗(t)) . (60.36)
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By the definition of circularity, p(t) and p∗(t) are orthogonal processes (E{p(t1)(p∗(t2))∗ = 0}) and
from this we have

Sss(ω1, ω2) = 1

4
(Spp(ω1, ω2) + Sp∗p∗(ω1, ω2) (60.37)

= 1

4
(Sgg(ω1 − ωc, ω2 − ωc) + S∗

gg(−ω1 − ωc, −ω2 − ωc)) .

Since g(t) is a baseband signal, the first term in Eq. (60.37) has spectral support in the first quadrant
in the (ω1, ω2) plane, where both ω1 and ω2 are positive, and the second term has spectral support
only for both frequencies negative. This situation is illustrated in Fig. 60.6.

FIGURE 60.6: Spectral support for bandpass process with circular complex representation.

It has been shown that a necessary condition for s(t) to have a circular complex envelope repre-
sentation is that it have spectral support only in the first and third quadrants of the (ω1, ω2) plane.
This condition is also sufficient: if g(t) is not circular, then the s(t) which results from the operation
in Eq. (60.33) will have non-zero spectral components in the second and fourth quadrants of the
(ω1, ω2) plane, and this contradicts the mean-square equivalence of s(t) and ŝ(t).

An interesting class of processes with spectral support only in the first and third quadrants is the
class of processes whose autocorrelation function is separable in the following way:

Rss(t1, t2) = R1(t1 − t2)R2

(
t1 + t2

2

)
. (60.38)

For these processes, the bi-frequency energy spectral density separates in a like manner:

Sss(ω1, ω2) = S1(ω1 − ω2)S2

(
ω1 + ω2

2

)
. (60.39)
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FIGURE 60.7: Spectral support for bandpass process with separable autocorrelation.

In fact, S1 is the Fourier transform of R2 and vice versa. If S1 is a lowpass function, and S2 is a
bandpass function, then the resulting product has spectral support illustrated in Fig. 60.7.

The assumption of circularity in the complex representation can often be physically motivated.
For example, in a radar system, if the reflected electromagnetic wave undergoes a phase shift, or if the
reflector position cannot be resolved to less than a wavelength, or if the reflection is due to a sum of
reflections at slightly different path lengths, then the absolute phase of the return signal is considered
random and uniformly distributed. Usually it is not the absolute phase of the received signal which
is of interest; rather, it is the relative phase of the signal value at two different points in time, or of
two different signals at the same instance in time. In many radar systems, particularly those used for
direction-of-arrival estimation or delay-Doppler imaging, this relative phase is central to the signal
processing objective.

60.2.5 Finite-Power Stochastic Processes

The second major class of second-order processes we wish to consider is the class of finite power
signals. A finite-power signal x(t) as one whose mean-square value exists, as in Eq. (60.4), but whose
total energy, as defined in Eq. (60.12), is infinite. Furthermore, we require that the time-averaged
mean-square value, given by

Px = lim
T →∞

1

2T

∫ T

−T

Rxx(t, t)dt , (60.40)

exist and be finite. Px is called the power of the process x(t).
The most commonly invoked stochastic process of this type in communications and signal process-

ing is the wide-sense-stationary process, one whose autocorrelation function Rxx(t1, t2) is a function
of the time difference t1 − t2 only. In this case, the mean-square value is constant and is equal to
the average power. Such a process is used to model a communication signal that transmits for a long
period of time, and for which the beginning and end of transmission are considered unimportant.
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A wide-sense-stationary (w.s.s.) process may be considered to be the limiting case of a partic-
ular type of finite-energy process, namely a process with separable autocorrelation as described by
Eqs. (60.38) and (60.39). If in Eq. (60.38) the function R2

(
t1+t2

2

)
is equal to a constant, then the pro-

cess is w.s.s. with second-order properties determined by the function R1(t1 − t2). The bi-frequency
energy spectral density function is

Sxx(ω1, ω2) = 2πδ(ω1 − ω2)S2

(
ω1 + ω2

2

)
(60.41)

where

S2(ω) =
∫ ∞

−∞
R1(τ )e−jωτ dτ . (60.42)

This last pair of equations motivates us to describe the second-order properties of x(t) with functions
of one argument instead of two, namely the autocorrelation functionRxx(τ ) and its Fourier transform
Sxx(ω), known as the power spectral density. From basic Fourier transform properties we have

Px = 1

2π

∫ ∞

−∞
Sxx(ω)dω . (60.43)

If w.s.s. x(t) is the input to a linear time-invariant system with frequency response H(ω) and
output y(t), then it is not difficult to show that

1. y(t) is wide-sense-stationary, and

2. Syy(ω) = |H(ω)|2Sxx(ω).

These last results, combined with Eq. (60.43), lead to a natural interpretation of the power spectral
density function. If x(t) is the input to an ideal bandpass filter with passband B, then the total power
of the filter output is

Py = 1

2π

∫
B

Sx(ω)dω . (60.44)

This shows how the total power in the process x(t) can be attributed to components in different
spectral bands.

60.2.6 Complex Wide-Sense-Stationary Processes

Two real stochastic processes x(t) and y(t), defined on a common probability space, are said to be
jointly wide-sense-stationary if:

1. Both x(t) and y(t) are w.s.s., and

2. The cross-correlation Rxy(t1, t2) = E{x(t1)y(t2)} is a function of t1 − t2 only.

For jointly w.s.s. processes, the cross-correlation function is normally written with a single argu-
ment, e.g., Rxy(τ ), with τ = t1 − t2. From the definition we see that

Rxy(τ ) = Ryx(−τ) . (60.45)

A complex wide-sense-stationary stochastic process z(t) is one that can be written

z(t) = x(t) + jy(t) (60.46)

where x(t) and y(t) are jointly wide-sense stationary. A circular complex w.s.s. process is one in
which

Rxx(τ ) = Ryy(τ ) (60.47)
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and
Rxy(τ ) = −Ryx(τ ) all τ . (60.48)

The reader is cautioned not to confuse the meanings of Eqs. (60.45) and (60.48).
For circular complex w.s.s. processes, it is easy to show that

E{z(t1)z(t2)} = 0 (60.49)

for all t1, t2, and therefore the function

Rzz(t1, t2) = E{z(t1)z∗(t2)} (60.50)

= 2Rxx(t1, t2) + 2jRyx(t1, t2)

defines all the second-order properties of z(t). All the quantities involved in Eq. (60.50) are functions
of τ = t1 − t2 only, and thus the single-argument function Rzz(τ ) is defined as the autocorrelation
function for z(t).

The power spectral density for z(t) is

Szz(ω) =
∫ ∞

−∞
Rzz(τ )e−jωτ dτ . (60.51)

Rzz(τ ) exhibits conjugate symmetry (Rzz(τ ) = R∗
zz(−τ)); Szz(ω) is non-negative but otherwise has

no symmetry constraints.
If z(t) is the input to a complex linear time-invariant system with frequency response H(ω), then

the output process w(t) is wide-sense-stationarity with power spectral density

Sww(ω) = |H(ω)|2Szz(ω) . (60.52)

A bandpass w.s.s. process is one with finite (possible asymmetric) support in frequency.
If z(t) is a circular w.s.s. process, then

w(t) = ejωctz(t) (60.53)

is also circular, and has power spectral density

Sww(ω) = Szz(ω − ωc) . (60.54)

60.2.7 Complex Representations of Real Wide-Sense-Stationary Signals

Let s(t) be a real bandpass w.s.s. stochastic process. The complex representation for s(t) is given by
the now-familiar expression

g(t) = LPF{2s(t)e−jωct } (60.55)

with inverse relationship
ŝ(t) = Re{g(t)ejωct } . (60.56)

In Eqs. (60.55) and (60.56), ωc is the center frequency for the passband of s(t), and the lowpass filter
has bandwidth greater than that of s(t) but much less than 2ωc. s(t) and ŝ(t) are equivalent in the
mean-square sense, implying that g(t) is the unique complex envelope representation for s(t).

For arbitrary real w.s.s. s(t), the circularity of the complex representation comes without any
additional conditions like the ones imposed for finite-energy signals. If w.s.s. s(t) is the input to a
quadrature demodulator, then the output signals x(t) and y(t) are jointly w.s.s., and the complex
process

g(t) = x(t) + jy(t) (60.57)
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is circular. There are various ways of showing this, with the simplest probably being a proof by
contradiction. If g(t) is a complex process that is not circular, then the process Re{g(t)ejωct } can be
shown to have an autocorrelation function with nonzero terms which are a function of t1 + t2, and
thus it cannot be w.s.s.

Communication signals are often modeled as w.s.s. stochastic processes. The stationarity results
from the fact that the carrier phase, as seen at the receiver, is unknown and considered random,
due to lack of knowledge about the transmitter and path length. This in turn leads to a circularity
assumption on the complex modulation.

In many communication and surveillance systems, the quadrature demodulator is an actual elec-
tronic subsystem which generates a pair of signals interpreted directly as a complex representation
of a bandpass signal. Often these signals are sampled, providing complex digital data for further
digital signal processing. In array signal processing, there are multiple such receivers, one behind
each sensor or antenna in a multi-sensor system. Data from an array of receivers is then modeled as
a vector of complex random variables. In the next section, we consider multivariate distributions for
such complex data.

60.3 The Multivariate Complex Gaussian Density Function

The discussions of Section 60.2 centered on the second-order (correlation) properties of real and
complex stochastic processes, but to this point nothing has been said about joint probability distri-
butions for these processes. In this section, we consider the distribution of samples from a complex
process in which the real and imaginary parts are Gaussian distributed. The key concept of this
section is that the assumption of circularity on a complex stochastic process (or any collection of
complex random variables) leads to a compact form of the density function which can be written
directly as a function of a complex argument z rather than its real and imaginary parts.

From a data processing point-of-view, a collection of N complex numbers is simply a collection
of 2N real numbers, with a certain mathematical significance attached to the N numbers we call
the “real parts” and the other N numbers we call the “imaginary parts”. Likewise, a collection of
N complex random variables is really just a collection of 2N real random variables with some joint
distribution in R

2N . Because these random variables have an interpretation as real and imaginary
parts of some complex numbers, and because the 2N-dimensional distribution may have certain
symmetries such as those resulting from circularity, it is often natural and intuitive to express joint
densities and distributions using a notation which makes explicit the complex nature of the quantities
involved. In this section we develop such a density for the case where the random variables have a
Gaussian distribution and are samples of a circular complex stochastic process.

Let zi , i = 1..N be a collection of complex numbers that we wish to model probabilistically. Write

zi = xi + jyi (60.58)

and consider the vector of numbers [x1, y1, .., xN, yN ]T as a set of 2N random variables with a
distribution over R

2N . Suppose further that the vector [x1, y1, .., xN, yN ]T is subject to the usual
multivariate Gaussian distribution with 2N × 1 mean vector µ and 2N × 2N covariance matrix R.
For compactness, denote the entire random vector with the symbol x. The density function is

fx(x) = (2π)
−2N

2 (detR)
−1
2 e− xTR−1x

2 . (60.59)

We seek a way of expressing the density function of Eq. (60.59) directly in terms of the complex
variable z, i.e., a density of the form fz(z). In so doing it is important to keep in mind what such
a density represents. fz(z) will be a non-negative real-valued function f : C

N → R
+, with the
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property that ∫
C

N
fz(z)dz = 1 . (60.60)

The probability that z ∈ A, where A is some subset of C
N , is given by

P(A) =
∫

A

fz(z)dz . (60.61)

The differential element dz is understood to be

dz = dx1dy1dx2dy2..dxNdyN . (60.62)

The most general form of the complex multivariate Gaussian density is in fact given by Eq. (60.59),
and further simplification requires further assumptions. Circularity of the underlying complex
process is one such key assumption, and it is now imposed. To keep the following development
simple, it is assumed that the mean vector µ is 0. The results for nonzero µ are not difficult to obtain
by extension.

Consider the four real random variables xi , yi , xk , yk . If these numbers represent the samples of a
circular complex stochastic process, then we can express the 4 × 4 covariance as

E







xi

yi

xk

yk


 [

xiyixkyk

]} = 1

2




αii 0 | αik −βik

0 αii | βik αik

− − − − −
αki −βki | αkk 0
βki αki | 0 αkk


 (60.63)

where
αik = 2E{xixk} = 2E{yiyk} (60.64)

and
βik = −2E{xiyk} = +2E{xkyi} . (60.65)

Extending this to the full 2N × 2N covariance matrix R, we have

R = 1

2




α11 0 | α12 −β12 | · · · | α1N −β1N

0 α11 | β12 α12 | · · · | β1N α1N

− − − − − − − − − − − −
α21 −β21 | α22 0 | · · · | α2N −β2N

β21 α21 | 0 α22 | · · · | β2N α2N

− − − − − − − − − − − −
· · | · · | · | · ·
· · | · · | · | · ·
· · | · · | · | · ·
− − − − − − − − − − − −

αN1 −βN1 | αN2 −βN2 | · · · | αNN 0
βN1 αN1 | βN2 αN2 | · · · | 0 αNN




. (60.66)

The key thing to notice about the matrix in Eq. (60.66) is that, because of its special structure, it
is completely specified by N2 real quantities: one for each of the 2 × 2 diagonal blocks, and two for
each of the 2 × 2 upper off-diagonal blocks. This is in contrast to the N(2N + 1) free parameters
one finds in an unconstrained 2N × 2N real Hermitian matrix.
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Consider now the complex random variables zi and zk . We have that

E{ziz
∗
i } = E{(xi + jyi )(xi − jyi )} (60.67)

= E{x2
i + y2

i } = αii

and

E{ziz
∗
k} = E{(xi + jyi )(xk − jyk)} (60.68)

= E{xixk + yiyk − jxkyi + jxiyk}
= αik + jβik .

Similarly
E{zkz∗

i } = αik − jβik (60.69)

and
E{zkz∗

k} = αkk . (60.70)

Using Eqs. (60.66) through (60.70), it is possible to write the following N × N complex Hermitian
matrix:

E{zzH} =




α11 | α12 + jβ12 | .. | α1N + jβ1N

− − − − − − − − − − − − − − −
α21 + jβ21 | α22 | ... | α2N + jβ2N

− − − − − − − − − − − − − − −
· | · | · | ·
· | · | · | ·
· | · | · | ·

− − − − − − − − − − − − − − −
αN1 + jβN1 | αN2 + jβN2 | .. | αNN




. (60.71)

Note that this complex matrix has exactly the same N2 free parameters as did the 2N × 2N real
matrix R in Eq. (60.66), and thus it tells us everything there is to know about the joint distribution
of the real and imaginary components of z. Under the symmetry constraints imposed on R, we can
define

C = E{zzH} (60.72)

and call this matrix the covariance matrix for z. In the 0-mean Gaussian case, this matrix parameter
uniquely identifies the multivariate distribution for z.

The derivation of the density function fz(z) rests on a set of relationships between the 2N ×1 real
vector x, and its N × 1 complex counterpart z. We say that x and z are isomorphic to one another,
and denote this with the symbol

z ≈ x . (60.73)

Likewise we say that the 2N ×2N real matrix R, given in Eq. (60.66), and the N ×N complex matrix
C, given in Eq. (60.71) are isomorphic to one another, or

C ≈ R . (60.74)

The development of the complex Gaussian density function fz(z) is based on three claims based
on these isomorphisms.

Proposition 1. If z ≈ x, and R ≈ C, then

xT(2R)x = zHCz . (60.75)
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Proposition 2. If R ≈ C, then
1

4
R−1 ≈ C−1 . (60.76)

Proposition 3. If R ≈ C, then

detR = | detC|2
(

1

2

)2N

. (60.77)

The density function fz(z) is found by substituting the results from Propositions 1 through 3
directly into the density function fx(x). This is possible because the mapping from z to x is one-to-
one and onto, and the Jacobian is 1 [see Eq. (60.62)]. We have

fz(z) = (2π)
−2N

2 (detR)
−1
2 e− xTR−1x

2 (60.78)

=
(

1

2

)−N

(2π)−N(detC)−1e−zHC−1z .

= π−N(detC)−1e−zHC−1z . (60.79)

At this point it is straightforward to introduce a non-zero mean µ, which is the complex vector
isomorphic to the mean of the real random vector x. The resulting density is

fz(z) = π−N(detC)−1e−(z−µ)HC−1(z−µ) . (60.80)

The density function in Eq. (60.80) is commonly referred to as the complex Gaussian density
function, although in truth one could be more general and have an arbitrary 2N-dimension Gaussian
distribution on the real and imaginary components of z. It is important to recognize that the use
of Eq. (60.80) implies those symmetries in the real covariance of x implied by circularity of the
underlying complex process. This symmetry is expressed by some authors in the equation

E{zzT} = 0 (60.81)

where the superscript “T” indicates transposition without complex conjugation. This comes directly
from Eqs. (60.24) and (60.49).

For many, the functional form of the complex Gaussian density in Eq. (60.80) is actually simpler
and cleaner than its N-dimensional real counterpart, due to elimination of the various factors of 2
which complicate it. This density is the starting point for virtually all of the multivariate analysis of
complex data seen in the current signal and array processing literature.

60.4 Related Distributions

In many problems of interest in statistical signal processing, the raw data may be complex and
subject to a complex Gaussian distribution described in the density function in Eq. (60.80). The
processing may take the form of the computation of a test statistic for use in a hypothesis test. The
density functions for these test statistics are then used to determine probabilities of false alarm and/or
detection. Thus, it is worthwhile to study certain distributions that are closely related to the complex
Gaussian in this way.

In this section we will describe and give the functional form for four densities related to the complex
Gaussian: the complex χ2, the complex F , the complex β, and the complex t . Only the “central”
versions of these distributions will be given, i.e., those based on 0-mean Gaussian data. The central
distributions are usually associated with the null hypothesis in a detection problem and are used to
compute probabilities of false alarm. The non-central densities, used in computing probabilities of
detection, do not exist in closed form but can be easily tabulated.
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60.4.1 Complex Chi-Squared Distribution

One very common type of detection problem in radar problems is the “signal present” vs. “signal
absent” decision problem. Often under the “signal absent” hypothesis, the data is zero-mean complex
Gaussian, with known covariance, whereas under the “signal present” hypothesis the mean is non-
zero, but perhaps unknown or subject to some uncertainty. A common test under these circumstances
is to compute the sum of squared magnitudes of the data points (after pre-whitening, if appropriate)
and compare this to a threshold. The resulting test statistic has a χ2-squared distribution.

Let z1..zN be N complex Gaussian random variables, independent and identically distributed with
mean 0 and variance 1 (meaning that the covariance matrix for the z vector is I). Define the real
non-negative random variable q according to

q =
N∑
i

|zi |2 . (60.82)

Then the density function for q is given by

fq(q) = 1

(N − 1)!q
N−1e−qU(q) . (60.83)

To establish this result, show that the density function for |zi |2 is a simple exponential. Equa-
tion (60.83) is the N-fold convolution of this exponential density function with itself.

We often say that q is χ2 with N complex degrees of freedom. A “complex degree of freedom” is
like two real degrees of freedom. Note, however, that Eq. (60.83) is not the usual χ2 density function
with 2N degrees of freedom. Each of the real variables going into the computation of q has variance
1
2 , not 1. fq(q) is a gamma density with an integer parameter N , and, like the complex Gaussian
density in Eq. (60.60), it is cleaner and simpler than its real counterpart.

60.4.2 Complex F Distribution

In some “signal present” vs. “signal absent” problems, the variance or covariance of the noise is not
known under the null hypothesis, and must be estimated from some auxiliary data. Then the test
statistic becomes the ratio of the sum of square magnitudes of the test data to the sum of square
magnitudes of the auxiliary data. The resulting test statistic is subject to a particular form of the
F -distribution.

Let q1 and q2 be two independent random variables subject to the χ2 distribution with N and M

complex degrees of freedom, respectively. Define the real, nonnegative random variable f according
to

f = q1

q2
. (60.84)

The density function for f is

ff(f ) = (N + M − 1)!
(N − 1)!(M − 1)!

f N−1

(1 + f )N+M
U(f ) . (60.85)

We say that f is subject to an F -distribution with N and M complex degrees of freedom.
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60.4.3 Complex Beta Distribution

An F -distributed random variable can be transformed in such a way that the resulting density has
finite support. The random variable b, defined by

b = 1

(1 + f)
, (60.86)

where f is an F -distributed random variable, has this property. The density function is given by

fb(b) = (N + M − 1)!
(N − 1)!(M − 1)!b

M−1(1 − b)N−1 (60.87)

on the interval 0 ≤ b ≤ 1, and is 0 elsewhere.
The random variable b is said to be beta-distributed, with N and M complex degrees of freedom.

60.4.4 Complex Student-t Distribution

In the “signal present” vs. “signal absent” problem, if the signal is known exactly (including phase)
then the optimal detector is a pre-whitener followed by a matched filter. The resulting test statistic is
complex Gaussian, and the detector partitions the complex plane into two half-planes which become
the decision regions for the two hypotheses. Now it may be that the signal is known, but the variance
of the noise is not. In this case, the Gaussian test statistic must be scaled by an estimate of the standard
deviation, obtained as before from zero-mean auxiliary data. In this case the test statistic is said to
have a complex t (or Student-t) distribution. Of the four distributions discussed in this section, this
is the only one in which the random variables themselves are complex: the χ2, F , and β distributions
all describe real random variables functionally dependent on complex Gaussians.

Let z and q be independent scalar random variables. z is complex Gaussian with mean 0 and
variance 1, and q is χ2 with N complex degrees of freedom. Define the random variable t according
to

t = z√
q/N

. (60.88)

The density of t is then given by

ft(t) = 1

π
(
1 + |t |2

N

)N+1
. (60.89)

This density is said to be “heavy-tailed” relative to the Gaussian, and this is a result in the uncertainty
in the estimate of the standard deviation. Note that as N → ∞, the denominator Eq. (60.88)
approaches 1 (i.e., the estimate of the standard deviation approaches truth) and thus ft(t) approaches

the Gaussian density π−1e−|t |2 as expected.

60.5 Conclusion

In this chapterwehaveoutlinedabasic theoryof complex randomvariables and stochasticprocesses as
they most often appear in statistical signal and array processing problems. The properties of complex
representations for real bandpass signals were emphasized, since this is the most common application
in electrical engineering where complex data appear. Models for both finite-energy signals, such as
radar pulses, and finite-power signals, such as communication signals, were developed. The key
notion of circularity of complex stochastic processes was explored, along with the conditions that
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a real stochastic process must satisfy in order for it to have a circular complex representation. The
complex multivariate Gaussian distribution was developed, again building on the circularity of the
underlying complex stochastic process. Finally, related distributions which often appear in statistical
inference problems with complex Gaussian data were introduced.

The general topic of random variables and stochastic processes is fundamental to modern signal
processing, and many good textbooks are available. Those by Papoulis [2], Leon-Garcia [3], and
Melsa and Sage [4] are recommended. The original short paper deriving the complex multivariate
Gaussian density function is by Wooding [5]; another derivation and related statistical analysis is
given in Goodman [6], whose name is more often cited in connection with complex random variables.
The monograph by Miller [7] has a mathematical flavor, and covers complex stochastic processes,
stochastic differential equations, parameter estimation, and least-squares problems. The paper by
Neeser and Massey [8] treats circular (which they call “proper”) complex stochastic processes and
their application in information theory. There is a good discussion of complex random variables
in Kay [9], which includes Cramer-Rao lower bounds and optimization of functions of complex
variables. Kelly and Forsythe [10] is an advanced treatment of inference problems for complex
multivariate data, and contains a number of appendices with valuable background information,
including one on distributions related to the complex Gaussian.
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61.1 Introduction

Systems designed to receive spatially propagating signals often encounter the presence of interference
signals. If the desired signal and interferers occupy the same temporal frequency band, then temporal
filtering cannot be used to separate signal from interference. However, desired and interfering signals
often originate from different spatial locations. This spatial separation can be exploited to separate
signal from interference using a spatial filter at the receiver.

A beamformer is a processor used in conjunction with an array of sensors to provide a versatile
form of spatial filtering. The term beamforming derives from the fact that early spatial filters were
designed to form pencil beams (see polar plot in Fig. 61.5(c)) in order to receive a signal radiating from
a specific location and attenuate signals from other locations. “Forming beams” seems to indicate
radiation of energy; however, beamforming is applicable to either radiation or reception of energy.
In this section we discuss formation of beams for reception, providing an overview of beamforming
from a signal processing perspective. Data independent, statistically optimum, adaptive, and partially
adaptive beamforming are discussed.

c©1999 by CRC Press LLC



Implementing a temporal filter requires processing of data collected over a temporal aperture.
Similarly, implementing a spatial filter requires processing of data collected over a spatial aperture.
A single sensor such as an antenna, sonar transducer, or microphone collects impinging energy over
a continuous aperture, providing spatial filtering by summing coherently waves that are in phase
across the aperture while destructively combining waves that are not. An array of sensors provides
a discrete sampling across its aperture. When the spatial sampling is discrete, the processor that
performs the spatial filtering is termed a beamformer. Typically a beamformer linearly combines
the spatially sampled time series from each sensor to obtain a scalar output time series in the same
manner that an FIR filter linearly combines temporally sampled data. Two principal advantages of
spatial sampling with an array of sensors are discussed below.

Spatial discrimination capability depends on the size of the spatial aperture; as the aperture in-
creases, discrimination improves. The absolute aperture size is not important, rather its size in
wavelengths is the critical parameter. A single physical antenna (continuous spatial aperture) capa-
ble of providing the requisite discrimination is often practical for high frequency signals because the
wavelength is short. However, when low frequency signals are of interest, an array of sensors can
often synthesize a much larger spatial aperture than that practical with a single physical antenna.

A second very significant advantage of using an array of sensors, relevant at any wavelength, is
the spatial filtering versatility offered by discrete sampling. In many application areas, it is necessary
to change the spatial filtering function in real time to maintain effective suppression of interfering
signals. This change is easily implemented in a discretely sampled system by changing the way in
which the beamformer linearly combines the sensor data. Changing the spatial filtering function of
a continuous aperture antenna is impractical.

This section begins with the definition of basic terminology, notation, and concepts. Succeeding
sections cover data-independent, statistically optimum, adaptive, and partially adaptive beamform-
ing. We then conclude with a summary.

Throughout this section we use methods and techniques from FIR filtering to provide insight
into various aspects of spatial filtering with beamformer. However, in some ways beamforming
differs significantly from FIR filtering. For example, in beamforming a source of energy has several
parameters that can be of interest: range, azimuth and elevation angles, polarization, and temporal
frequencycontent. Different signals areoftenmutually correlatedasa resultofmultipathpropagation.
The spatial sampling is often nonuniform and multidimensional. Uncertainty must often be included
in characterization of individual sensor response and location, motivating development of robust
beamforming techniques. These differences indicate that beamforming represents a more general
problem than FIR filtering and, as a result, more general design procedures and processing structures
are common.

61.2 Basic Terminology and Concepts

In this section we introduce terminology and concepts employed throughout. We begin by defining
the beamforming operation and discussing spatial filtering. Next we introduce second order statistics
of the array data, developing representations for the covariance of the data received at the array and
discussing distinctions between narrowband and broadband beamforming. Last, we define various
types of beamformers.

61.2.1 Beamforming and Spatial Filtering

Figure 61.1 depicts two beamformers. The first, which samples the propagating wave field in space,
is typically used for processing narrowband signals. The output at time k, y(k), is given by a linear
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combination of the data at the J sensors at time k :

y(k) =
J∑

l=1

w∗
l xl(k) (61.1)

where ∗ represents complex conjugate. It is conventional to multiply the data by conjugates of the
weights to simplify notation. We assume throughout that the data and weights are complex since in
many applications a quadrature receiver is used at each sensor to generate in phase and quadrature (I
and Q) data. Each sensor is assumed to have any necessary receiver electronics and an A/D converter
if beamforming is performed digitally.

FIGURE 61.1: A beamformer forms a linear combination of the sensor outputs. In (a), sensor
outputs are multiplied by complex weights and summed. This beamformer is typically used with
narrowband signals. A common broadband beamformer is illustrated in (b).

The second beamformer in Fig. 61.1 samples the propagating wave field in both space and time
and is often used when signals of significant frequency extent (broadband) are of interest. The output
in this case can be expressed as

y(k) =
J∑

l=1

K−1∑
p=0

w∗
l,pxl(k − p) (61.2)

where K − 1 is the number of delays in each of the J sensor channels. If the signal at each sensor is
viewed as an input, then a beamformer represents a multi-input single output system.

It is convenient to develop notation that permits us to treat both beamformers in Fig. 61.1 simul-
taneously. Note that Eqs. (61.1) and (61.2) can be written as

y(k) = wH x(k) (61.3)

byappropriatelydefiningaweightvectorw anddatavectorx(k). Weuse loweranduppercaseboldface
to denote vector and matrix quantities, respectively, and let superscript H represent Hermitian
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(complex conjugate) transpose. Vectors are assumed to be column vectors. Assume that w and x(k)

are N dimensional; this implies thatN = KJ when referring to Eq. (61.2) and N = J when referring
to Eq. (61.1). Except for Section 61.5 on adaptive algorithms, we will drop the time index and assume
that its presence is understood throughout the remainder of the paper. Thus, Eq. (61.3) is written
as y = wH x. Many of the techniques described in this section are applicable to continuous time as
well as discrete time beamforming.

The frequency response of an FIR filter with tap weights w∗
p, 1 ≤ p ≤ J and a tap delay of T

seconds is given by

r(ω) =
J∑

p=1

w∗
pe−jωT (p−1) . (61.4)

Alternatively
r(ω) = wH d(ω) (61.5)

where wH = [w∗
1 w∗

2 ...w∗
J ] and d(ω) = [1 ejωT ejω2T ...ejω(J−1)T ]H . r(ω) represents the

response of the filter1 to a complex sinusoid of frequency ω and d(ω) is a vector describing the phase
of the complex sinusoid at each tap in the FIR filter relative to the tap associated with w1.

Similarly, beamformer response is defined as the amplitude and phase presented to a complex plane
wave as a function of location and frequency. Location is, in general, a three dimensional quantity, but
often we are only concerned with one- or two-dimensional direction of arrival (DOA). Throughout
the remainder of the section we do not consider range. Figure 61.2 illustrates the manner in which
an array of sensors samples a spatially propagating signal. Assume that the signal is a complex plane
wave with DOA θ and frequency ω. For convenience let the phase be zero at the first sensor. This
implies x1(k) = ejωk and xl(k) = ejω[k−1l(θ)], 2 ≤ l ≤ J. 1l(θ) represents the time delay due to
propagation from the first to the lth sensor. Substitution into Eq. (61.2) results in the beamformer
output

y(k) = ejωk
J∑

l=1

K−1∑
p=0

w∗
l,pe−jω[1l(θ)+p] = ejωk r(θω) (61.6)

where 11(θ) = 0. r(θ, ω) is the beamformer response and can be expressed in vector form as

r(θ, ω) = wH d(θ, ω) . (61.7)

The elements of d(θ, ω) correspond to the complex exponentials ejω[1l(θ)+p] . In general it can be
expressed as

d(θ, ω) = [1 ejωτ2(θ) ejωτ3(θ) ...ejωτN (θ) ]H . (61.8)

where the τi(θ), 2 ≤ i ≤ N are the time delays due to propagation and any tap delays from the
zero phase reference to the point at which the ith weight is applied. We refer to d(θ, ω) as the array
response vector. It is also known as the steering vector, direction vector, or array manifold vector.
Nonideal sensor characteristics can be incorporated into d(θ, ω) by multiplying each phase shift by
a function ai(θ, ω), which describes the associated sensor response as a function of frequency and
direction.

The beampattern is defined as the magnitude squared of r(θ, ω). Note that each weight in w affects
both the temporal and spatial response of the beamformer. Historically, use of FIR filters has been
viewed as providing frequency dependent weights in each channel. This interpretation is somewhat

1An FIR filter is by definition linear, so an input sinusoid produces at the output a sinusoid of the same frequency. The
magnitude and argument of r(ω) are, respectively, the magnitude and phase responses.
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FIGURE 61.2: An array with attached delay lines provides a spatial/temporal sampling of propagating
sources. This figure illustrates this sampling of a signal propagating in plane waves from a source
located at DOA θ . With J sensors and K samples per sensor, at any instant in time the propagating
source signal is sampled at JK nonuniformly spaced points. T (θ), the time duration from the first
sample of the first sensor to the last sample of the last sensor, is termed the temporal aperture of
the observation of the source at θ . As notation suggests, temporal aperture will be a function of
DOA θ . Plane wave propagation implies that at any time k a propagating signal, received anywhere
on a planar front perpendicular to a line drawn from the source to a point on the plane, has equal
intensity. Propagation of the signal between two points in space is then characterized as pure delay.
In this figure, 1l(θ) represents the time delay due to plane wave propagation from the 1st (reference)
to the lth sensor.

incomplete since the coefficients in each filter also influence the spatial filtering characteristics of the
beamformer. As a multi-input single output system, the spatial and temporal filtering that occurs is
a result of mutual interaction between spatial and temporal sampling.

The correspondence between FIR filtering and beamforming is closest when the beamformer
operates at a single temporal frequency ωo and the array geometry is linear and equi-spaced as
illustrated in Fig. 61.3. Letting the sensor spacing be d , propagation velocity be c, and θ represent
DOA relative to broadside (perpendicular to the array), we have τi(θ) = (i − 1)(d/c)sinθ . In this
case we identify the relationship between temporal frequency ω in d(ω) (FIR filter) and direction θ in
d(θ, ωo) (beamformer) as ω = ωo(d/c)sinθ . Thus, temporal frequency in an FIR filter corresponds
to the sine of direction in a narrowband linear equi-spaced beamformer. Complete interchange
of beamforming and FIR filtering methods is possible for this special case provided the mapping
between frequency and direction is accounted for.

The vector notation introduced in (61.3) suggests a vector space interpretation of beamforming.
This point of view is useful both in beamformer design and analysis. We use it here in consideration
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FIGURE 61.3: The analogy between an equi-spaced omni-directional narrowband line array and a
single-channel FIR filter is illustrated in this figure.

of spatial sampling and array geometry. The weight vector w and the array response vectors d(θ, ω)

are vectors in an N-dimensional vector space. The angles between w and d(θ, ω) determine the
response r(θ, ω). For example, if for some (θ, ω) the angle between w and d(θ, ω) 90◦ (i.e., if w
is orthogonal to d(θ, ω)), then the response is zero. If the angle is close to 0◦, then the response
magnitude will be relatively large. The ability to discriminate between sources at different locations
and/or frequencies, say (θ1, ω1) and (θ2, ω2), is determined by the angle between their array response
vectors, d(θ1, ω1) and d(θ2, ω2).

The general effects of spatial sampling are similar to temporal sampling. Spatial aliasing corre-
sponds to an ambiguity in source locations. The implication is that sources at different locations have
the same array response vector, e.g., for narrowband sources d(θ1, ωo) and d(θ2, ωo). This can occur
if the sensors are spaced too far apart. If the sensors are too close together, spatial discrimination
suffers as a result of the smaller than necessary aperture; array response vectors are not well dis-
persed in the N dimensional vector space. Another type of ambiguity occurs with broadband signals
when a source at one location and frequency cannot be distinguished from a source at a different
location and frequency, i.e., d(θ1, ω1) = d(θ2, ω2). For example, this occurs in a linear equi-spaced
array whenever ω1sinθ1 = ω2sinθ2. (The addition of temporal samples at one sensor prevents this
particular ambiguity.)

A primary focus of this section is on designing response via weight selection; however, (61.7)
indicates that response is also a function of array geometry (and sensor characteristics if the ideal
omnidirectional sensor model is invalid). In contrast with single channel filtering where A/D con-
verters provide a uniform sampling in time, there is no compelling reason to space sensors regularly.
Sensor locations provide additional degrees of freedom in designing a desired response and can be
selected so that over the range of (θ, ω) of interest the array response vectors are unambiguous and
well dispersed in the N dimensional vector space. Utilization of these degrees of freedom can be-
come very complicated due to the multidimensional nature of spatial sampling and the nonlinear
relationship between r(θ, ω) and sensor locations.

61.2.2 Second Order Statistics

Evaluation of beamformer performance usually involves power or variance, so the second order
statistics of the data play an important role. We assume the data received at the sensors are zero
mean throughout this section. The variance or expected power of the beamformer output is given
by E{|y|2} = wH E{x xH }w. If the data are wide sense stationary, then Rx = E{x xH }, the data
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covariance matrix, is independent of time. Although we often encounter nonstationary data, the
wide sense stationary assumption is used in developing statistically optimal beamformers and in
evaluating steady state performance.

Suppose x represents samples from a uniformly sampled time series having a power spectral density
S(ω) and no energy outside of the spectral band [ωa, ωb]. Rx can be expressed in terms of the power
spectral density of the data using the Fourier transform relationship as

Rx = 1

2π

∫ ωb

ωa

S(ω) d(ω) dH (ω) dω (61.9)

with d(ω) as defined for (61.5). Now assume the array data x is due to a source located at direction
θ . In like manner to the time series case we can obtain the covariance matrix of the array data as

Rx = 1

2π

∫ ωb

ωa

S(ω) d(θ, ω) dH (θ, ω) dω (61.10)

A source is said to be narrowband of frequency ωo if Rx can be represented as the rank one outer
product

Rx = σ 2
s d(θ, ωo) dH (θ, ωo) (61.11)

where σ 2
s is the source variance or power.

The conditions under which a source can be considered narrowband depend on both the source
bandwidth and the time over which the source is observed. To illustrate this, consider observing
an amplitude modulated sinusoid or the output of a narrowband filter driven by white noise on an
oscilloscope. If the signal bandwidth is small relative to the center frequency (i.e., if it has small
fractional bandwidth), and the time intervals over which the signal is observed are short relative
to the inverse of the signal bandwidth, then each observed waveform has the shape of a sinusoid.
Note that as the observation time interval is increased, the bandwidth must decrease for the signal to
remain sinusoidal in appearance. It turns out, based on statistical arguments, that the observation
time bandwidth product (TBWP) is the fundamental parameter that determines whether a source
can be viewed as narrowband (see Buckley [2]).

An array provides an effective temporal aperture over which a source is observed. Figure 61.2
illustrates this temporal aperture T (θ) for a source arriving from direction θ . Clearly the TBWP is
dependent on the source DOA. An array is considered narrowband if the observation TBWP is much
less than one for all possible source directions.

Narrowband beamforming is conceptually simpler than broadband since one can ignore the tem-
poral frequency variable. This fact, coupled with interest in temporal frequency analysis for some
applications, has motivated implementation of broadband beamformers with a narrowband decom-
position structure, as illustrated in Fig. 61.4. The narrowband decomposition is often performed by
taking a discrete Fourier transform (DFT) of the data in each sensor channel using an FFT algorithm.
The data across the array at each frequency of interest are processed by their own beamformer. This
is usually termed frequency domain beamforming. The frequency domain beamformer outputs can
be made equivalent to the DFT of the broadband beamformer output depicted in Fig. 61.1(b) with
proper selection of beamformer weights and careful data partitioning.

61.2.3 Beamformer Classification

Beamformers can be classified as either data independent or statistically optimum, depending on how
the weights are chosen. The weights in a data independent beamformer do not depend on the array
data and are chosen to present a specified response for all signal/interference scenarios. The weights in
a statistically optimum beamformer are chosen based on the statistics of the array data to “optimize”
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FIGURE 61.4: Beamforming is sometimes performed in the frequency domain when broadband
signals are of interest. This figure illustrates transformation of the data at each sensor into the
frequency domain. Weighted combinations of data at each frequency (bin) are performed. An
inverse discrete Fourier transform produces the output time series.

the array response. In general, the statistically optimum beamformer places nulls in the directions
of interfering sources in an attempt to maximize the signal-to-noise ratio at the beamformer output.
A comparison between data independent and statistically optimum beamformers is illustrated in
Fig. 61.5.

The next four sections cover data independent, statistically optimum, adaptive, and partially adap-
tive beamforming. Data independent beamformer design techniques are often used in statistically
optimum beamforming (e.g., constraint design in linearly constrained minimum variance beam-
forming). The statistics of the array data are not usually known and may change over time so
adaptive algorithms are typically employed to determine the weights. The adaptive algorithm is de-
signed so the beamformer response converges to a statistically optimum solution. Partially adaptive
beamformers reduce the adaptive algorithm computational load at the expense of a loss (designed to
be small) in statistical optimality.

61.3 Data Independent Beamforming

The weights in a data independent beamformer are designed so the beamformer response approx-
imates a desired response independent of the array data or data statistics. This design objective —
approximating a desired response — is the same as that for classical FIR filter design (see, for example,
Parks and Burrus [8]). We shall exploit the analogies between beamforming and FIR filtering where
possible in developing an understanding of the design problem. We also discuss aspects of the design
problem specific to beamforming.

The first part of this section discusses forming beams in a classical sense, i.e., approximating
a desired response of unity at a point of direction and zero elsewhere. Methods for designing
beamformers having more general forms of desired response are presented in the second part.

61.3.1 Classical Beamforming

Consider the problem of separating a single complex frequency component from other frequency
components using the J tap FIR filter illustrated in Fig. 61.3. If frequency ωo is of interest, then the
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desired frequency response is unity at ωo and zero elsewhere. A common solution to this problem is
to choose w as the vector d(ωo). This choice can be shown to be optimal in terms of minimizing the
squared error between the actual response and desired response. The actual response is characterized
by a main lobe (or beam) and many sidelobes. Since w = d(ωo), each element of w has unit
magnitude. Tapering or windowing the amplitudes of the elements of w permits trading of main
lobe or beam width against sidelobe levels to form the response into a desired shape. Let T be a J

by J diagonal matrix with the real-valued taper weights as diagonal elements. The tapered FIR filter
weight vector is given by T d(ωo). A detailed comparison of a large number of tapering functions is
given in [5].

In spatial filtering one is often interested in receiving a signal arriving from a known location
point θo. Assuming the signal is narrowband (frequency ωo), a common choice for the beamformer
weight vector is the array response vector d(θo, ωo). The resulting array and beamformer is termed
a phased array because the output of each sensor is phase shifted prior to summation. Figure 61.5(b)
depicts the magnitude of the actual response when w = Td(θo, ωo), where T implements a common
Dolph-Chebyshev tapering function. As in the FIR filter discussed above, beam width and sidelobe
levels are the important characteristics of the response. Amplitude tapering can be used to control the
shape of the response, i.e., to form the beam. The equivalence of the narrowband linear equi-spaced
array and FIR filter (see Fig. 61.3) implies that the same techniques for choosing taper functions are
applicable to either problem. Methods for choosing tapering weights also exist for more general array
configurations.

61.3.2 General Data Independent Response Design

The methods discussed in this section apply to design of beamformers that approximate an arbitrary
desired response. This is of interest in several different applications. For example, we may wish to
receive any signal arriving from a range of directions, in which case the desired response is unity
over the entire range. As another example, we may know that there is a strong source of interference
arriving from a certain range of directions, in which case the desired response is zero in this range.
These two examples are analogous to bandpass and bandstop FIR filtering. Although we are no
longer “forming beams”, it is conventional to refer to this type of spatial filter as a beamformer.

Consider choosing w so the actual response r(θ, ω) = wH d(θ, ω) approximates desired response
rd(θ, ω). Ad hoc techniques similar to those employed in FIR filter design can be used for selecting
w. Alternatively, formal optimization design methods can be employed (see, for example, Parks and
Burrus [8]). Here, to illustrate the general optimization design approach, we only consider choosing
w to minimize the weighted averaged square of the difference between desired and actual response.

Consider minimizing the squared error between the actual and desired response at P points
(θi, ωi), 1 < i < P . If P > N , then we obtain the overdetermined least squares problem

min
w

|AH w − rd |2 (61.12)

where
A = [d(θ1, ω1), d(θ2, ω2)...d(θP , ωP )] ; (61.13)

rd = [rd(θ1, ω1), rd(θ2, ω2)...rd(θP , ωP )]H . (61.14)

Provided AAH is invertible (i.e., A is full rank), then the solution to Eq. (61.12) is given as

w = A+rd (61.15)

where A+ = (AAH )−1A is the pseudo-inverse of A.
A note of caution is in order at this point. The white noise gain of a beamformer is defined as the

output power due to unit variance white noise at the sensors. Thus, the norm squared of the weight
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FIGURE 61.5: Beamformers come in both data independent and statistically optimum varieties. In
(a) through (e) of this figure we consider an equi-spaced narrowband array of 16 sensors spaced
at one-half wavelength. In (a), (b), and (c) the magnitude of the weights, the beampattern, and
the beampattern, in polar coordinates are shown, respectively, for a Dolph-Chebyshev beamformer
with -30 dB sidelobes. In (d) and (e) beampatterns are shown of statistically optimum beamformers
which were designed to minimize output power subject to a constraint that the response be unity for
an arrival angle of 18◦. Energy is assumed to arrive at the array from several interference sources.
In (d) several interferers are located between −20◦ and −23◦, each with power of 30 dB relative to the
uncorrelated noise power at a single sensor. Deep nulls are formed in the interferer directions. The
interferers in (e) are located between 20◦ and 23◦, again with relative power of 30 dB. Again deep nulls
are formed at the interferer directions; however, the sidelobe levels are significantly higher at other
directions. (f) depicts the broadband LCMV beamformer magnitude response at eight frequencies on
the normalized frequency interval [2π/5, 4π/5] when two interferers arrive from directions −5.75◦
and −17.5◦ in the presence of white noise.
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FIGURE 61.5: (continued) The interferers have a white spectrum on [2π/5, 4π/5] and have powers
of 40 dB and 30 dB relative to the white noise, respectively. The constraints are designed to present a
unit gain and linear phase over [2π/5, 4π/5] at a DOA of 18◦. The array is linear equi-spaced with
16 sensors spaced at one-half wavelength for frequency 4π/5 and five tap FIR filters are used in each
sensor channel.
c©1999 by CRC Press LLC



TABLE 61.1 Summary of Optimum Beamformers
Type MSC Reference signal Max SNR LCMV

Definitions xa — auxiliary data x — array data x = s + x — array data x — array data
ym — primary data yd — desired signal s — signal component C — constraint matrix

rma = E{xay∗
m} rxd = E{xy∗

d
} n — noise component f — response vector

Ra = E{xaxH
a } Rx = E{xxH } Rs = E{ssH } Rx = E{xxH }

output: y = ym − wH
a xa output: y = wH x Rn = E{nnH } output: y = wH x

output: y = wH x

Criterion min
wa

E{|ym − wH
a xa |2} min

w
E{|y − yd |2} max

w
wH Rsw
wH Rnw

min
w

{wH Rxw}s.t.CH w = f

Optimum
weights

wa = R−1
a rma wa = R−1

x rrd R−1
n Rsw = λmaxw w = R−1

x C[CH R−1
x C]−1f

Advantages Simple Direction of
desired signal can be
unknown

True maximization of SNR Flexible and general constraints

Disadvantages Requires absence of desired
signal from auxiliary chan-
nels for weight determina-
tion

Mustgenerate reference
signal

Must know Rs and Rn

Solve generalized eigenprob-
lem for weights

Computation of
constrained weight vector

References Applebaum [1976] Widrow [1967] Monzingo and Miller [1980] Frost [1972]

vector, wH w, represents the white noise gain. If the white noise gain is large, then the accuracy by
which w approximates the desired response is a moot point because the beamformer output will
have a poor SNR due to white noise contributions. If A is ill-conditioned, then w can have a very
large norm and still approximate the desired response. The matrix A is ill-conditioned when the
effective numerical dimension of the space spanned by the d(θi, ωi), 1 ≤ i ≤ P , is less than N . For
example, if only one source direction is sampled, then the numerical rank of A is approximately given
by the TBWP for that direction. Low rank approximates of A and A+ should be used whenever the
numerical rank is less than N . This ensures that the norm of w will not be unnecessarily large.

Specific directions and frequencies can be emphasized in Eq. (61.12) by selection of the sample
points (θi, ωi) and/or unequally weighting of the error at each (θi, ωi). Parks and Burrus [8] discuss
this in the context of FIR filtering.

61.4 Statistically Optimum Beamforming

In statistically optimum beamforming, the weights are chosen based on the statistics of the data
received at the array. Loosely speaking, the goal is to “optimize” the beamformer response so the
output contains minimal contributions due to noise and interfering signals. We discuss several
different criteria for choosing statistically optimum beamformer weights. Table 61.1 summarizes
these different approaches. Where possible, equations describing the criteria and weights are confined
to Table 61.1. Throughout the section we assume that the data is wide-sense stationary and that its
second order statistics are known. Determination of weights when the data statistics are unknown
or time varying is discussed in the following section on adaptive algorithms.

61.4.1 Multiple Sidelobe Canceller

The multiple sidelobe canceller (MSC) is perhaps the earliest statistically optimum beamformer. An
MSC consists of a “main channel” and one or more “auxiliary channels” as depicted in Fig. 61.6(a).
The main channel can be either a single high gain antenna or a data independent beamformer (see
Section 61.3). It has a highly directional response, which is pointed in the desired signal direction.
Interfering signals are assumed to enter through the main channel sidelobes. The auxiliary channels
also receive the interfering signals. The goal is to choose the auxiliary channel weights to cancel the
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main channel interference component. This implies that the responses to interferers of the main
channel and linear combination of auxiliary channels must be identical. The overall system then has
a response of zero as illustrated in Fig. 61.6(b). In general, requiring zero response to all interfering
signals is either not possible or can result in significant white noise gain. Thus, the weights are usually
chosen to trade off interference suppression for white noise gain by minimizing the expected value
of the total output power as indicated in Table 61.1.

Choosing theweights tominimizeoutputpower cancause cancellationof thedesired signal because
it also contributes to total output power. In fact, as the desired signal gets stronger it contributes to
a larger fraction of the total output power and the percentage cancellation increases. Clearly this is
an undesirable effect. The MSC is very effective in applications where the desired signal is very weak
(relative to the interference), since the optimum weights will not pay any attention to it, or when the
desired signal is known to be absent during certain time periods. The weights can then be adapted
in the absence of the desired signal and frozen when it is present.

FIGURE 61.6: The multiple sidelobe canceller (MSC) consists of a main channel and several auxiliary
channels as illustrated in (a). The auxiliary channel weights are chosen to “cancel” interference
entering through sidelobes of the main channel. (b) Depicts the main channel, auxiliary branch, and
overall system response when an interferer arrives from direction θI .

61.4.2 Use of a Reference Signal

If the desired signal were known, then the weights could be chosen to minimize the error between the
beamformer output and the desired signal. Of course, knowledge of the desired signal eliminates the
need for beamforming. However, for some applications, enough may be known about the desired
signal to generate a signal that closely represents it. This signal is called a reference signal. As indicated
in Table 61.1, the weights are chosen to minimize the mean square error between the beamformer
output and the reference signal.
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The weight vector depends on the cross covariance between the unknown desired signal present
in x and the reference signal. Acceptable performance is obtained provided this approximates the
covariance of the unknown desired signal with itself. For example, if the desired signal is amplitude
modulated, then acceptable performance is often obtained by setting the reference signal equal to the
carrier. It is also assumed that the reference signal is uncorrelated with interfering signals in x. The
fact that the direction of the desired signal does not need to be known is a distinguishing feature of
the reference signal approach. For this reason it is sometimes termed “blind” beamforming. Other
closely related blind beamforming techniques choose weights by exploiting properties of the desired
signal such as constant modulus, cyclostationarity, or third and higher order statistics.

61.4.3 Maximization of Signal-to-Noise Ratio

Here the weights are chosen to directly maximize the signal-to-noise ratio (SNR) as indicated in
Table 61.1. A general solution for the weights requires knowledge of both the desired signal, Rs , and
noise, Rn, covariance matrices. The attainability of this knowledge depends on the application. For
example, in an active radar system Rn can be estimated during the time that no signal is being trans-
mitted and Rs can be obtained from knowledge of the transmitted pulse and direction of interest. If
the signal component is narrowband, of frequency ω, and direction θ , then Rs = σ 2d(θ, ω)dH (θ, ω)

from the results in Section 61.2. In this case, the weights are obtained as

w = αR−1
n d(θ, ω) (61.16)

where the α is some non-zero complex constant. Substitution of Eq. (61.16) into the SNR expression
shows that the SNR is independent of the value chosen for α.

61.4.4 Linearly Constrained Minimum Variance Beamforming

In many applications none of the above approaches is satisfactory. The desired signal may be of
unknown strength and may always be present, resulting in signal cancellation with the MSC and
preventing estimation of signal and noise covariance matrices in the maximum SNR processor. Lack
of knowledge about the desired signal may prevent utilization of the reference signal approach. These
limitations can be overcome through the application of linear constraints to the weight vector. Use of
linear constraints is a very general approach that permits extensive control over the adapted response
of the beamformer. In this section we illustrate how linear constraints can be employed to control
beamformer response, discuss the optimum linearly constrained beamforming problem, and present
the generalized sidelobe canceller structure.

The basic idea behind linearly constrained minimum variance (LCMV) beamforming is to con-
strain the responseof thebeamformer so signals fromthedirectionof interest arepassedwith specified
gain and phase. The weights are chosen to minimize output variance or power subject to the response
constraint. This has the effect of preserving the desired signal while minimizing contributions to
the output due to interfering signals and noise arriving from directions other than the direction of
interest. The analogous FIR filter has the weights chosen to minimize the filter output power subject
to the constraint that the filter response to signals of frequency ωo be unity.

In Section 61.2 we saw that the beamformer response to a source at angle θ and temporal frequency
ω is given by wH d(θ, ω). Thus, by linearly constraining the weights to satisfy wH d(θ, ω) = g where
g is a complex constant, we ensure that any signal from angle θ and frequency ω is passed to the
output with response g. Minimization of contributions to the output from interference (signals not
arriving from θ with frequency ω) is accomplished by choosing the weights to minimize the output
power or variance E{|y|2} = wH Rxw. The LCMV problem for choosing the weights is thus written

min
w

wH Rxw subject to dH (θ, ω)w = g∗ . (61.17)
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The method of Lagrange multipliers can be used to solve Eq. (61.17) resulting in

w = g∗ R−1
x d(θ, ω)

dH (θ, ω)R−1
x d(θ, ω)

. (61.18)

Note that, in practice, the presence of uncorrelated noise will ensure that Rx is invertible. If g = 1,

thenEq. (61.18) is often termed theminimumvariancedistortionless response (MVDR)beamformer.
It can be shown that Eq. (61.18) is equivalent to the maximum SNR solution given in Eq. (61.16)
by substituting σ 2d(θ, ω)dH (θ, ω) + Rn for Rx in Eq. (61.18) and applying the matrix inversion
lemma.

The single linear constraint in Eq. (61.17) is easily generalized to multiple linear constraints for
added control over the beampattern. For example, if there is fixed interference source at a known
direction φ, then it may be desirable to force zero gain in that direction in addition to maintaining
the response g to the desired signal. This is expressed as

[
dH (θ, ω)

dH (φ, ω)

]
w =

[
g∗
0

]
. (61.19)

If there are L < N linear constraints on w, we write them in the form CH w = f where the N

by L matrix C and L dimensional vector f are termed the constraint matrix and response vector.
The constraints are assumed to be linearly independent so C has rank L. The LCMV problem and
solution with this more general constraint equation are given in Table 61.1.

Several different philosophies can be employed for choosing the constraint matrix and response
vector. Specifically point, derivative, and eigenvector constraint approaches are popular. Each linear
constraint uses one degree of freedom in the weight vector so with L constraints there are only
N − L degrees of freedom available for minimizing variance. See Van Veen and Buckley [11] or Van
Veen [12] for a more in-depth discussion on this topic.

Generalized Sidelobe Canceller. The generalized sidelobe canceller (GSC) represents an alternative
formulation of the LCMV problem, which provides insight, is useful for analysis, and can simplify
LCMV beamformer implementation. It also illustrates the relationship between MSC and LCMV
beamforming. Essentially, the GSC is a mechanism for changing a constrained minimization problem
into unconstrained form.

Suppose we decompose the weight vector w into two orthogonal components wo and −v (i.e.,
w = wo − v) that lie in the range and null spaces of C, respectively. The range and null spaces of a
matrix span the entire space so this decomposition can be used to represent any w. Since CH v = 0,
we must have

wo = C(CH C)−1f (61.20)

if w is to satisfy the constraints. Equation (61.20) is the minimum L2 norm solution to the underde-
termined equivalent of Eq. (61.12). The vector v is a linear combination of the columns of an N by M

(M = N −L) matrix Cn (i.e., v = CnwM ) provided the columns of Cn form a basis for the null space
of C. Cn can be obtained from C using any of several orthogonalization procedures such as Gram-
Schmidt, QR decomposition, or singular value decomposition. The weight vector w = wo − CnwM

is depicted in block diagram form in Fig. 61.7. The choice for wo and Cn implies that w satisfies the
constraints independent of wM and reduces the LCMV problem to the unconstrained problem

min
wM

[wo − CnwM ]H Rx[wo − CnwM ] . (61.21)

The solution is
wM = (CH

n RxCn)
−1CH

n Rxwo . (61.22)

c©1999 by CRC Press LLC



The primary implementation advantages of this alternate but equivalent formulation stem from the
facts that the weights wM are unconstrained and a data independent beamformer wo is implemented
as an integral part of the optimum beamformer. The unconstrained nature of the adaptive weights
permits much simpler adaptive algorithms to be employed and the data independent beamformer is
useful in situations where adaptive signal cancellation occurs (see Section 61.4.5).

FIGURE 61.7: The generalized sidelobe canceller (GSC) represents an implementation of the LCMV
beamformer in which the adaptive weights are unconstrained. It consists of a preprocessor composed
of a fixed beamformer wo and a blocking matrix Cn, and a standard adaptive filter with unconstrained
weight vector wM .

As an example, assume the constraints are as given in Eq. (61.17). Equation (61.20) implies
wo = g∗d(θ, ω)/[dH (θ, ω)d(θ, ω)]. Cn satisfies dH (θ, ω)Cn = 0 so each column [Cn]i; 1 < i <

N − L, can be viewed as a data independent beamformer with a null in direction θ at frequency
ω: dH (θ, ω)[Cn]j = 0. Thus, a signal of frequency ω and direction θ arriving at the array will be
blocked or nulled by the matrix Cn. In general, if the constraints are designed to present a specified
response to signals from a set of directions and frequencies, then the columns of Cn will block those
directions and frequencies. This characteristic has led to the term “blocking matrix” for describing
Cn. These signals are only processed by wo and since wo satisfies the constraints, they are presented
with the desired response independent of wM . Signals from directions and frequencies over which
the response is not constrained will pass through the upper branch in Fig. 61.7 with some response
determined by wo. The lower branch chooses wM to estimate the signals at the output of wo as a
linear combination of the data at the output of the blocking matrix. This is similar to the operation
of the MSC, in which weights are applied to the output of auxiliary sensors in order to estimate the
primary channel output (see Fig. 61.6).

61.4.5 Signal Cancellation in Statistically Optimum Beamforming

Optimum beamforming requires some knowledge of the desired signal characteristics, either its
statistics (for maximum SNR or reference signal methods), its direction (for the MSC), or its response
vector d(θ, ω) (for the LCMV beamformer). If the required knowledge is inaccurate, the optimum
beamformer will attenuate the desired signal as if it were interference. Cancellation of the desired
signal is often significant, especially if the SNR of the desired signal is large. Several approaches have
been suggested to reduce this degradation (e.g., Cox et al. [3]).

A second cause of signal cancellation is correlation between the desired signal and one or more
interference signals. This can result either from multipath propagation of a desired signal or from
smart (correlated) jamming. When interference and desired signals are uncorrelated, the beam-
former attenuates interferers to minimize output power. However, with a correlated interferer the
beamformer minimizes output power by processing the interfering signal in such a way as to cancel

c©1999 by CRC Press LLC



the desired signal. If the interferer is partially correlated with the desired signal, then the beamformer
will cancel the portion of the desired signal that is correlated with the interferer. Methods for reducing
signal cancellation due to correlated interference have been suggested (e.g., Widrow et al. [13], Shan
and Kailath [10]).

61.5 Adaptive Algorithms for Beamforming

The optimum beamformer weight vector equations listed in Table 61.1 require knowledge of second
order statistics. These statistics are usually not known, but with the assumption of ergodicity, they
(and therefore the optimum weights) can be estimated from available data. Statistics may also change
over time, e.g., due to moving interferers. To solve these problems, weights are typically determined
by adaptive algorithms.

There are two basic adaptive approaches: (1) block adaptation, where statistics are estimated
from a temporal block of array data and used in an optimum weight equation; and (2) continuous
adaptation, where the weights are adjusted as the data is sampled such that the resulting weight
vector sequence converges to the optimum solution. If a nonstationary environment is anticipated,
block adaptation can be used, provided that the weights are recomputed periodically. Continuous
adaptation is usually preferred when statistics are time-varying or, for computational reasons, when
the number of adaptive weights M is moderate to large; values of M > 50are common.

Among notable adaptive algorithms proposed for beamforming are the Howells-Applebaum adap-
tive loop developed in the late 1950s and reported by Howells [7] and Applebaum [1], and the Frost
LCMV algorithm [4]. Rather than recapitulating adaptive algorithms for each optimum beamformer
listed in Table 61.1, we take a unifying approach using the standard adaptive filter configuration il-
lustrated on the right side of Fig. 61.7.

In Fig. 61.7 the weight vector wM is chosen to estimate the desired signal yd as linear combination
of the elements of the data vector u. We select wM to minimize the MSE

J (wM) = E{|yd − wH
Mu|2} = σ 2

d − wH
Mrud − rH

udwM + wH
MRuwM , (61.23)

where σ 2
d = E{|yd |2}, rud = E{u y∗

d } and Ru = E{u uH }. J (wM) is minimized by

wopt = R−1
u rud . (61.24)

Comparison of (61.23) and the criteria listed in Table 61.1 indicates that this standard adaptive filter
problem is equivalent to both the MSC beamformer problem (with yd = ym and u = xa ) and the
reference signal beamformer problem (with u = x ). The LCMV problem is apparently different.
However closer examination of Fig. 61.7 and Eqs. (61.22), and (61.24) reveals that the standard
adaptive filter problem is equivalent to the LCMV problem implemented with the GSC structure.
Setting u = CH

n x and yd = wH
o x implies Ru = CH

n RxCn and rud = CH
n Rxwo. The maximum

SNR beamformer cannot in general be represented by Fig. 61.7 and Eq. (61.24). However, it was
noted after (61.18) that if the desired signal is narrowband, then the maximum SNR and the LCMV
beamformers are equivalent.

Theblockadaptationapproach solves (61.24)using estimatesofRu and rud formed fromK samples
of u and yd : u(k), yd(k); 0 < k < K − 1. The most common are the sample covariance matrix

R̂u = 1

K

K−1∑
k=0

u(k)uH (k) (61.25)

and sample cross-covariance vector

r̂ud = 1

K

K−1∑
k=0

u(k)y∗
d (k) . (61.26)
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TABLE 61.2 Comparison of the LMS and RLS Weight Adaptation Algorithms
Algorithm LMS RLS

Initialization wM(0) = 0 wM(0) = 0
y(0) = yd (0) P(0) = δ−1I

0 < µ < 1
Trace[Ru] δ small, I identity matrix

Update wM(k) = wM(k − 1) + µu(k − 1)y∗(k − 1) v(k) = P(k − 1)u(k)

Equations y(k) = yd (k) − wH
M

(k)u(k) k(k) = λ−1v(k)

1+λ−1uH (k)v(k)

α(k) = yd (k) − wH
M

(k − 1)u(k)

wM(k) = wM(k − 1) + k(k)α∗(k)

P(k) = λ−1P(k − 1) − λ−1k(k)vH (k)

Multiplies per up-
date

2M 4M2 + 4M + 2

Performance
Characteristics

Under certain conditions, convergence of wM(k) to the
statistically optimum weight vector wopt in the mean-
square sense is guaranteed if µ is chosen as indicated
above. The convergence rate is governed by the eigen-
value spread of Ru. For large eigenvalue spread, con-
vergence can be very slow.

The wM(k) represents the least squares solution at each
instant k and are optimum in a deterministic sense.
Convergence to the statistically optimum weight vector
wopt is often faster than that obtained using the LMS
algorithm because it is independent of the eigenvalue
spread of Ru.

Performance analysis and guidelines for selecting the block size K are provided in Reed et al. [9].

Continuous adaptation algorithms are easily developed in terms of Fig. 61.7 and Eq. (61.23). Note
that J (wM) is a quadratic error surface. Since the quadratic surface’s “Hessian” Ru is the covariance
matrix of noisy data, it is positive definite. This implies that the error surface is a “bowl”. The shape
of the bowl is determined by the eigenstructure of Ru. The optimum weight vector wopt corresponds
to the bottom of the bowl.

One approach to adaptive filtering is to envision a point on the error surface that corresponds to
the present weight vector wM(k). We select a new weight vector wM(k + 1) so as to descend on the
error surface. The gradient vector

∇wM(k) = ∂

∂wM

J(wM)

∣∣∣∣
wM=wm(k)

= −2rud + 2RuwM(k) (61.27)

tells us the direction in which to adjust the weight vector. Steepest descent, i.e., adjustment in the
negative gradient direction, leads to the popular least mean-square (LMS) adaptive algorithm. The
LMS algorithm replaces ∇wM(k) with the instantaneous gradient estimate ∇̂wM(k) = −2[u(k)y∗

d (k)−
u(k)uH (k)wM(k)]. Denoting y(k) = yd(k) − wH

Mu(k), we have

wM(k + 1) = wM(k) + µ u(k) y∗(k) . (61.28)

The gain constant µ controls convergence characteristics of the random vector sequence wM(k).
Table 61.2 provides guidelines for its selection.

The primary virtue of the LMS algorithm is its simplicity. Its performance is acceptable in many
applications; however, its convergence characteristics depend on the shape of the error surface and
therefore the eigenstructure of Ru. When the eigenvalues are widely spread, convergence can be
slow and other adaptive algorithms with better convergence characteristics should be considered.
Alternative procedures for searching the error surface have been proposed in addition to algorithms
based on least squares and Kalman filtering. Roughly speaking, these algorithms trade-off compu-
tational requirements with speed of convergence to wopt . We refer you to texts on adaptive filtering
for detailed descriptions and analysis (Widrow and Stearns [14], Haykin [6], and others).

One alternative to LMS is the exponentially weighted recursive least squares (RLS) algorithm. At
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the Kth time step, wM(K) is chosen to minimize a weighted sum of past squared errors

min
wM(K)

K∑
k=0

λK−k |yd(k) − wH
M(K)u(k)|2 . (61.29)

λ is a positive constant less than one which determines how quickly previous data are deemphasized.
The RLS algorithm is obtained from (61.29) by expanding the magnitude squared and applying the
matrix inversion lemma. Table 61.2 summarizes both the LMS and RLS algorithms.

61.6 Interference Cancellation and Partially Adaptive
Beamforming

The computational requirements of each update in adaptive algorithms are proportional to either
the weight vector dimension M (e.g., LMS) or dimension squared M2 (e.g., RLS). If M is large, this
requirement is quite severe and for practical real time implementation it is often necessary to reduce
M . Furthermore, the rate at which an adaptive algorithm converges to the optimum solution may
be very slow for large M . Adaptive algorithm convergence properties can be improved by reducing
M .

The concept of “degrees of freedom” is much more relevant to this discussion than the number of
weights. The expression degrees of freedom refers to the number of unconstrained or “free” weights
in an implementation. For example, an LCMV beamformer with L constraints on N weights has
N − L degrees of freedom; the GSC implementation separates these as the unconstrained weight
vector wM . There are M degrees of freedom in the structure of Fig. 61.7. A fully adaptive beamformer
uses all available degrees of freedom and a partially adaptive beamformer uses a reduced set of degrees
of freedom. Reducing degrees of freedom lowers computational requirements and often improves
adaptive response time. However, there is a performance penalty associated with reducing degrees of
freedom. A partially adaptive beamformer cannot generally converge to the same optimum solution
as the fully adaptive beamformer. The goal of partially adaptive beamformer design is to reduce
degrees of freedom without significant degradation in performance.

The discussion in this section is general, applying to different types of beamformers although we
borrow much of the notation from the GSC. We assume the beamformer is described by the adaptive
structure of Fig. 61.7 where the desired signal yd is obtained as yd = wH

o x and the data vector u
as u = TH x. Thus, the beamformer output is y = wH x where w = wo − TwM. In order to
distinguish between fully and partially adaptive implementations, we decompose T into a product of
two matrices CnTM . The definition of Cn depends on the particular beamformer and TM represents
the mapping which reduces degrees of freedom. The MSC and GSC are obtained as special cases of
this representation. In the MSC wo is an N vector that selects the primary sensor, Cn is an N by
N − 1 matrix that selects the N − 1 possible auxiliary sensors from the complete set of N sensors,
and TM is an N − 1 by M matrix that selects the M auxiliary sensors actually utilized. In terms of
the GSC, wo and Cn are defined as in Section 61.4.4 and TM is an N − L by M matrix that reduces
degrees of freedom (M < N − L).

The goal of partially adaptive beamformer design is to choose TM (or T) such that good interference
cancellation properties are retained even though M is small. To see that this is possible in principle,
consider theproblemof simultaneouslycancelling twonarrowbandsources fromdirectionθ1 andθ2 at
frequency ωo. Perfect cancellation of these sources requires wH d(θ1, ωo) = 0 and wH d(θ2, ωo) = 0
so we must choose wM to satisfy

wH
M [TH d(θ1, ωo) TH d(θ2, ωo)] = [g1, g2] (61.30)
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wheregi = wH
o d(θi, ωo) is the responseof thewo branch to the ith interferer. Assuming TH d(θ1, ωo)

and TH d(θ2, ωo) are linearly independent and nonzero, and provided M ≥ 2, then at least one wM

exists that satisfies (61.30). Extending this reasoning, we see that wM can be chosen to cancel M nar-
rowband interferers (assuming the TH d(θi, ωo) are linearly independent and nonzero), independent
of T. Total cancellation occurs if wM is chosen so the response of T wM perfectly matches the wo

branch response to the interferers. In general, M narrowband interferers can be cancelled using M

adaptive degrees of freedom with relatively mild restrictions on T.
No such rule exists in the broadband case. Here complete cancellation of a single interferer requires

choosing T wM so that the response of the adaptive branch, wH
MTH d(θ1, ω), matches the response of

the wo branch, wH
o d(θ1, ω), over the entire frequency band of the interferer. In this case, the degree

of cancellation depends on how well these two responses match and is critically dependent on the
interferer direction, frequency content, and T. Good cancellation can be obtained in some situations
when M = 1, while in others even large values of M result in poor cancellation.

A variety of intuitive and optimization-based techniques have been proposed for designing TM

that acheive good interference cancellation with relatively small degrees of freedom. See Van Veen
and Buckley [11] and Van Veen [12] for further review and discussion.

61.7 Summary

A beamformer forms a scalar output signal as a weighted combination of the data received at an
array of sensors. The weights determine the spatial filtering characteristics of the beamformer and
enable separation of signals having overlapping frequency content if they originate from different
locations. The weights in a data independent beamformer are chosen to provide a fixed response
independent to the received data. Statistically optimum beamformers select the weights to optimize
the beamformer response based on the statistics of the data. The data statistics are often unknown
and may change with time so adaptive algorithms are used to obtain weights that converge to the
statistically optimum solution. Computational and response time considerations dictate the use of
partially adaptive beamformers with arrays composed of large numbers of sensors.

61.8 Defining Terms

Beamformer: A device used in conjunction with an array of sensors to separate signals and
interference on the basis of their spatial characteristics. The beamformer output is usually
given by a weighted combination of the sensor outputs.

Array response vector: Vector describing the amplitude and phase relationships between prop-
agating wave components at each sensor as a function of spatial direction and temporal
frequency. Forms the basis for determining the beamformer response.

Beampattern: The magnitude squared of the beamformer’s spatial filtering response as a func-
tion of spatial direction and possibly temporal frequency.

Data independent, statistically optimum, adaptive, and partially adaptive beamformers: The
weights in a data independent beamformer are chosen independent of the statistics of
the data. A statistically optimum beamformer chooses its weights to optimize some sta-
tistical function of the beamformer output, such as signal-to-noise ratio. An adaptive
beamformer adjusts its weights in response to the data to accomodate unknown or time
varying statistics. A partially adaptive beamformer uses only a subset of the available
adaptive degrees of freedom to reduce the computational burden or improve the adaptive
convergence rate.

Multiple sidelobe canceller: Adaptive beamformer structure in which the data received at low
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gain auxiliary sensors is used to adaptively cancel the interference arriving in the mainlobe
or sidelobes of a spatially high gain sensor.

Linearly constrained minimum variance (LCMV) beamformer: Beamformer inwhich theweights
are chosen to minimize the output power subject to a linear response constraint. The
constraint preserves the signal of interest while power minimization optimally attenuates
noise and interference.

Minimum variance distortionless response (MVDR) beamformer: A form of LCMV beam-
former employing a single constraint designed to pass a signal of given direction and
frequency with unit gain.

Generalized sidelobe canceller: Structure for implementing LCMV beamformers that sepa-
rates the constrained and unconstrained components of the adaptive weight vector. The
unconstrained components adaptively cancel interference that leaks through the sidelobes
of a data independent beamformer designed to satisfy the constraints.
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62.1 Introduction

Estimating bearings of multiple narrowband signals from measurements collected by an array of
sensors has been a very active research problem for the last two decades. Typical applications of
this problem are radar, communication, and underwater acoustics. Many algorithms have been
proposed to solve the bearing estimation problem. One of the first techniques that appeared was
beamforming which has a resolution limited by the array structure. Spectral estimation techniques
were also applied to the problem. However, these techniques fail to resolve closely spaced arrival
angles for low signal-to-noise ratios. Another approach is the maximum-likelihood (ML) solution.
This approach has been well documented in the literature. In the stochastic ML method [29], the
signals are assumed to be Gaussian whereas they are regarded as arbitrary and deterministic in the
deterministic ML method [37]. The sensor noise is modeled as Gaussian in both methods, which is a
reasonable assumption due to the central limit theorem. The stochastic ML estimates of the bearings
achieve the Cramer-Rao bound (CRB). On the other hand, this does not hold for deterministic ML
estimates [32]. The common problem with the ML methods in general is the necessity of solving
a nonlinear multidimensional optimization problem which has a high computational cost and for
which there is no guarantee of global convergence. Subspace-based (or, super-resolution) approaches
have attracted much attention, after the work of [29], due to their computational simplicity as
compared to the ML approach, and their possibility of overcoming the Rayleigh bound on the
resolution power of classical direction finding methods. Subspace-based direction finding methods
are summarized in this section.
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62.2 Formulation of the Problem

Consider an array of M antenna elements receiving a set of plane waves emitted by P (P < M)
sources in the far field of the array. We assume a narrow-band propagation model, i.e., the signal
envelopes do not change during the time it takes for the wavefronts to travel from one sensor to
another. Suppose that the signals have a common frequency of f0; then, the wavelength λ = c/f0
where c is the speed of propagation. The received M-vector r(t) at time t is

r(t) = As(t) + n(t) (62.1)

where s(t) = [s1(t), · · · , sP (t)]T is the P -vector of sources; A = [a(θ1), · · · , a(θP )] is the M × P

steering matrix in which a(θi), the ith steering vector, is the response of the array to the ith source
arriving from θi ; and, n(t) = [n1(t), · · · , nM(t)]T is an additive noise process.

We assume: (1) the source signals may be statistically independent, partially correlated, or com-
pletely correlated (i.e., coherent); the distributions are unknown; (2) the array may have an arbitrary
shape and response; and, (3) the noise process is independent of the sources, zero-mean, and it may
be either partially white or colored; its distribution is unknown. These assumptions will be relaxed,
as required by specific methods, as we proceed.

The direction finding problem is to estimate the bearings [i.e., directions of arrival (DOA)] {θi}Pi=1
of the sources from the snapshots r(t), t = 1, · · · , N .

In applications, the Rayleigh criterion sets a bound on the resolution power of classical direction
finding methods. In the next sections we summarize some of the so-called super-resolution direction
finding methods which may overcome the Rayleigh bound. We divide these methods into two classes,
those that use second-order and those that use second- and higher-order statistics.

62.3 Second-Order Statistics-Based Methods

The second-order methods use the sample estimate of the array spatial covariance matrix R =
E{r(t)r(t)H } = ARsAH + Rn, where Rs = E{s(t)s(t)H } is the P × P signal covariance matrix and
Rn = E{n(t)n(t)H } is the M × M noise covariance matrix. For the time being, let us assume that
the noise is spatially white, i.e., Rn = σ 2I. If the noise is colored and its covariance matrix is known
or can be estimated, the measurements can be “whitened” by multiplying the measurements from
the left by the matrix 3−1/2EH

n obtained by the orthogonal eigendecomposition Rn = En3EH
n . The

array spatial covariance matrix is estimated as R̂ = ∑N
t=1 r(t)r(t)H /N .

Some spectral estimation approaches to the direction finding problem are based on optimization.
Consider the minimum variance algorithm, for example. The received signal is processed by a
beamforming vector wo which is designed such that the output power is minimized subject to the
constraint that a signal from a desired direction is passed to the output with unit gain. Solving this
optimization problem, we obtain the array output power as a function of the arrival angle θ as

Pmv(θ) = 1

aH (θ)R−1a(θ)
.

The arrival angles are obtained by scanning the range [−90◦, 90◦] of θ and locating the peaks of
Pmv(θ). At low signal-to-noise ratios the conventional methods, such as minimum variance, fail to
resolve closely spaced arrival angles. The resolution of conventional methods are limited by signal-
to-noise ratio even if exact R is used, whereas in subspace methods, there is no resolution limit; hence,
the latter are also referred to as super-resolution methods. The limit comes from the sample estimate
of R.

The subspace-based methods exploit the eigendecomposition of the estimated array covariance
matrix R̂. To see the implications of the eigendecomposition of R̂, let us first state the properties
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of R: (1) If the source signals are independent or partially correlated, rank(Rs) = P . If there are
coherent sources, rank(Rs) < P . In the methods explained in Sections 62.3.1 and 62.3.2, except
for the WSF method (see Search-Based Methods), it will be assumed that there are no coherent
sources. The coherent signals case is described in Section 62.3.3. (2) If the columns of A are
independent, which is generally true when the source bearings are different, then A is of full-rank P .
(3) Properties 1 and 2 imply rank(ARsAH ) = P ; therefore, ARsAH must haveP nonzero eigenvalues
and M − P zero eigenvalues. Let the eigendecomposition of ARsAH be ARsAH = ∑M

i=1 αieiei
H ;

then α1 ≥ α2 ≥ · · · ≥ αP ≥ αP+1 = · · · = αM = 0 are the rank-ordered eigenvalues, and {ei}Mi=1
are the corresponding eigenvectors. (4) Because Rn = σ 2I, the eigenvectors of R are the same as
those of ARsAH , and its eigenvalues are λi = αi + σ 2, if 1 ≤ i ≤ P , or λi = σ 2, if P + 1 ≤ i ≤ M .

The eigenvectors can be partitioned into two sets: Es
4= [e1, · · · , eP ] forms the signal subspace,

whereas En
4= [eP+1, · · · , eM ] forms the noise subspace. These subspaces are orthogonal. The signal

eigenvalues 3s
4= diag{λ1, · · · , λP }, and the noise eigenvalues 3n

4= diag{λP+1, · · · , λM}. (5) The
eigenvectors corresponding to zero eigenvalues satisfy ARsAH ei = 0, i = P + 1, · · · , M ; hence,
AH ei = 0, i = P + 1, · · · , M , because A and Rs are full rank. This last equation means that
steering vectors are orthogonal to noise subspace eigenvectors. It further implies that because of the
orthogonality of signal and noise subspaces, spans of signal eigenvectors and steering vectors are equal.
Consequently there exists a nonsingular P × P matrix T such that Es = AT.

Alternatively, the signal and noise subspaces can also be obtained by performing a singular value
decomposition directly on the received data without having to calculate the array covariance matrix.
Li and Vaccaro [17] state that the properties of the bearing estimates do not depend on which method
is used; however, singular value decomposition must then deal with a data matrix that increases in
size as the new snapshots are received. In the sequel, we assume that the array covariance matrix
is estimated from the data and an eigendecomposition is performed on the estimated covariance
matrix.

The eigenvalue decomposition of the spatial array covariance matrix, and the eigenvector parti-
tionment into signal and noise subspaces, leads to a number of subspace-based direction finding
methods. The signal subspace contains information about where the signals are whereas the noise
subspace informs us where they are not. Use of either subspace results in better resolution perfor-
mance than conventional methods. In practice, the performance of the subspace-based methods is
limited fundamentally by the accuracy of separating the two subspaces when the measurements are
noisy [18]. These methods can be broadly classified into signal subspace and noise subspace methods.
A summary of direction-finding methods based on both approaches follows next.

62.3.1 Signal Subspace Methods

In these methods, only the signal subspace information is retained. Their rationale is that by discard-
ing the noise subspace we effectively enhance the SNR because the contribution of the noise power
to the covariance matrix is eliminated. Signal subspace methods are divided into search-based and
algebraic methods, which are explained next.

Search-Based Methods

In search-based methods, it is assumed that the response of the array to a single source, the
array manifold a(θ), is either known analytically as a function of arrival angle, or is obtained through
the calibration of the array. For example, for an M-element uniform linear array, the array response
to a signal from angle θ is analytically known and is given by

a(θ) =
[
1, e−j2π d

λ
sin(θ), · · · , e−j2π(M−1) d

λ
sin(θ)

]T
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where d is the separation between the elements, and λ is the wavelength.
In search-based methods to follow (except for the subspace fitting methods), which are spatial

versions of widely known power spectral density estimators, the estimated array covariance matrix is
approximated by its signal subspace eigenvectors, or its principal components, as R̂ ≈ ∑P

i=1 λieiei
H .

Then the arrival angles are estimated by locating the peaks of a function, S(θ) (−90◦ ≤ θ ≤ 90◦),
which depends on the particular method. Some of these methods and the associated function S(θ)

are summarized in the following [13, 18, 20]:
Correlogram method: In this method, S(θ) = a(θ)H R̂a(θ). The resolution obtained from the
Correlogram method is lower than that obtained from the MV and AR methods.
Minimum variance (MV) [1] method: In this method, S(θ) = 1/a(θ)H R̂−1a(θ). The MV method
is known to have a higher resolution than the correlogram method, but lower resolution and variance
than the AR method.
Autoregressive (AR) method: In this method, S(θ) = 1/|uT R̂−1a(θ)|2 where u = [1, 0, · · · , 0]T .
This method is known to have a better resolution than the previous ones.
Subspace fitting (SSF) and weighted subspace fitting (WSF) methods: In Section 62.2 we saw that
the spans of signal eigenvectors and steering vectors are equal; therefore, bearings can be solved from
the best least-squares fit of the two spanning sets when the array is calibrated [35]. In the Subspace
Fitting Method the criterion [θ̂ , T̂] = argmin ||EsW1/2 − A(θ)T||2 is used, where ||.|| denotes
the Frobenius norm, W is a positive definite weighting matrix, Es is the matrix of signal subspace
eigenvectors, and the notation for the steering matrix is changed to show its dependence on the
bearing vector θ . This criterion can be minimized directly with respect to T, and the result for T can
then be substituted back into it, so that

θ̂ = argmin T r{(I − A(θ)A(θ)#)EsWEH
s },

where A# = (AH A)−1AH .
Viberg and Ottersten have shown that a class of direction finding algorithms can be approximated

by this subspace fitting formulation for appropriate choices of the weighting matrix W. For example,
for the deterministic ML method W = 3s −σ 2I, which is implemented using the empirical values of
the signal eigenvalues, 3s , and the noise eigenvalue σ 2. TLS-ESPRIT, which is explained in the next
section, can also be formulated in a similar but more involved way. Viberg and Ottersten have also
derived an optimal Weighted Subspace Fitting (WSF) Method, which yields the smallest estimation
error variance among the class of subspace fitting methods. In WSF, W = (3s − σ 2I)23−1

s . The
WSF method works regardless of the source covariance (including coherence) and has been shown
to have the same asymptotic properties as the stochastic ML method; hence, it is asymptotically
efficient for Gaussian signals (i.e., it achieves the stochastic CRB). Its behavior in the finite sample
case may be different from the asymptotic case [34]. Viberg and Ottersten have also shown that the
asymptotic properties of the WSF estimates are identical for both cases of Gaussian and non-Gaussian
sources. They have also developed a consistent detection method for arbitrary signal correlation, and
an algorithm for minimizing the WSF criterion. They do point out several practical implementation
problems of their method, such as the need for accurate calibrations of the array manifold and
knowledge of the derivative of the steering vectors w.r.t θ . For nonlinear and nonuniform arrays,
multidimensional search methods are required for SSF, hence it is computationally expensive.

Algebraic Methods

Algebraic methods do not require a search procedure and yield DOA estimates directly.
ESPRIT(EstimationofSignalParametersviaRotationalInvarianceTechniques)[23]: The ESPRIT
algorithm requires “translationally invariant”arrays, i.e., an array with its identical copy displaced in
space. The geometry and response of the arrays do not have to be known; only the measurements
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from these arrays and the displacement between the identical arrays are required. The computational
complexity of ESPRIT is less than that of the search-based methods.

Let r1(t) and r2(t) be the measurements from these arrays. Due to the displacement of the arrays
the following holds:

r1(t) = As(t) + n1(t) and r2(t) = A8s(t) + n2(t),

where 8 = diag{e−j2π d
λ

sinθ1, · · · , e−j2π d
λ

sinθP } in which d is the separation between the identical
arrays, and the angles {θi}Pi=1 are measured with respect to the normal to the displacement vector
between the identical arrays. Note that the auto covariance of r1(t), R11, and the cross covariance
between r1(t) and r2(t), R21, are given by

R11 = ADAH + Rn1

and
R21 = A8DAH + Rn2n1,

where D is the covariance matrix of the sources, and Rn1 and Rn2n1 are the noise auto- and cross-
covariance matrices.

The ESPRIT algorithm solves for 8, which then gives the bearing estimates. Although the subspace
separation concept is not used in ESPRIT, its LS and TLS versions are based on a signal subspace
formulation. The LS and TLS versions are more complicated, but are more accurate than the original
ESPRIT, and are summarized in the next subsection. Here we summarize the original ESPRIT:
(1) Estimate the autocovariance of r1(t) and cross covariance between r1(t) and r2(t), as

R11 = 1

N

N∑
t=1

r1(t)r1(t)H

and

R21 = 1

N

N∑
t=1

r2(t)r1(t)H .

(2) Calculate R̂11 = R11 − Rn1 and R̂21 = R21 − Rn2n1 where Rn1 and Rn2n1 are the estimated noise
covariance matrices. (3) Find the singular values λi of the matrix pencil R̂11 − λi R̂21, i = 1, · · · , P .
(4) The bearings, θi (i = 1, · · · , P ), are readily obtained by solving the equation

λi = ej2π d
λ

sinθi

for θi . In the above steps, it is assumed that thenoise is spatially and temporallywhite or the covariance
matrices Rn1 and Rn2n1 are known.
LS and TLS ESPRIT [28]: (1) Follow Steps 1 and 2 of ESPRIT; (2) stack R̂11 and R̂21 into a 2M × M

matrix R, as R
4=

[
R̂11T R̂21T

]T

, and perform an SVD of R, keeping the first 2M × P submatrix of

the left singular vectors of R. Let this submatrix be Es ; (3) partition Es into two M × P matrices Es1
and Es2 such that

Es =
[
Es1

T Es2
T
]T

.

(4) For LS-ESPRIT, calculate the eigendecomposition of (EH
s1Es1)

−1EH
s1Es2. The eigenvalue matrix

gives

8 = diag{e−j2π d
λ

sinθ1, · · · , e−j2π d
λ

sinθP }
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from which the arrival angles are readily obtained. For TLS-ESPRIT, proceed as follows: (5) Perform
an SVD of the M × 2P matrix [Es1, Es2], and stack the last P right singular vectors of [Es1, Es2] into
a 2P × P matrix denoted F; (6) Partition F as

F
4=

[
Fx

T Fy
T
]T

where Fx and Fy are P ×P ; (7) Perform the eigendecomposition of −FxF−1
y . The eigenvalue matrix

gives

8 = diag{e−j2π d
λ

sinθ1, · · · , e−j2π d
λ

sinθP }
from which the arrival angles are readily obtained.

Different versions of ESPRIT have different statistical properties. The Toeplitz Approximation
Method (TAM) [16], in which the array measurement model is represented as a state-variable model,
although different in implementation from LS-ESPRIT, is equivalent to LS-ESPRIT; hence, it has the
same error variance as LS-ESPRIT.
Generalized Eigenvalues Utilizing Signal Subspace Eigenvectors (GEESE) [24]: (1) Follow Steps 1
through 3 of TLS ESPRIT. (2) Find the singular values λi of the pencil

Es1 − λiEs2, i = 1, · · · , P ;
(3) The bearings, θi (i = 1, · · · , P ), are readily obtained from

λi = ej2π d
λ

sinθi .

The GEESE method is claimed to be better than ESPRIT [24].

62.3.2 Noise Subspace Methods

These methods, in which only the noise subspace information is retained, are based on the property
that the steering vectors are orthogonal to any linear combination of the noise subspace eigenvec-
tors. Noise subspace methods are also divided into search-based and algebraic methods, which are
explained next.

Search-Based Methods

In search-based methods, the array manifold is assumed to be known, and the arrival angles are
estimated by locating the peaks of the function S(θ) = 1/a(θ)H Na(θ) where N is a matrix formed
using the noise space eigenvectors.
Pisarenko method: In this method, N = eMeM

H , where eM is the eigenvector corresponding to the
minimum eigenvalue of R. If the minimum eigenvalue is repeated, any unit-norm vector which is
a linear combination of the eigenvectors corresponding to the minimum eigenvalue can be used as
eM . The basis of this method is that when the search angle θ corresponds to an actual arrival angle,
the denominator of S(θ) in the Pisarenko method, |a(θ)H eM |2, becomes small due to orthogonality
of steering vectors and noise subspace eigenvectors; hence, S(θ) will peak at an arrival angle.
MUSIC (Multiple Signal Classification) [29] method: In this method, N = ∑M

i=P+1 eiei
H . The

idea is similar to that of the Pisarenko method; the inner product |a(θ)H
∑M

i=P+1 ei |2 is small when
θ is an actual arrival angle. An obvious signal-subspace formulation of MUSIC is also possible. The
MUSIC spectrum is equivalent to the MV method using the exact covariance matrix when SNR is
infinite, and therefore performs better than the MV method.

Asymptotic properties of MUSIC are well established [32, 33], e.g., MUSIC is known to have the
same asymptotic variance as the deterministic ML method for uncorrelated sources. It is shown by Xu
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and Buckley [38] that although, asymptotically, bias is insignificant compared to standard deviation,
it is an important factor limiting the performance for resolving closely spaced sources when they are
correlated.

In order to overcome the problems due to finite sample effects and source correlation, a multidi-
mensional (MD) version of MUSIC has been proposed [29, 28]; however, this approach involves a
computationally involved search, as in the ML method. MD MUSIC can be interpreted as a norm
minimization problem, as shown in [8]; using this interpretation, strong consistency of MD MU-
SIC has been demonstrated. An optimally weighted version of MD MUSIC, which outperforms the
deterministic ML method, has also been proposed in [35].
Eigenvector (EV) method: In this method,

N =
M∑

i=P+1

1

λi

eiei
H .

The only difference between the EV method and MUSIC is the use of inverse eigenvalue (the λi are
the noise subspace eigenvalues of R) weighting in EV and unity weighting in MUSIC, which causes
EV to yield fewer spurious peaks than MUSIC [13]. The EV Method is also claimed to shape the
noise spectrum better than MUSIC.
Method of direction estimation (MODE): MODE is equivalent to WSF when there are no coherent
sources. Viberg and Ottersten [35] claim that, for coherent sources, only WSF is asymptotically
efficient. A minimum norm interpretation and proof of strong consistency of MODE for ergodic
and stationary signals, has also been reported [8]. The norm measure used in that work involves the
source covariance matrix. By contrasting this norm with the Frobenius norm that is used in MD
MUSIC, Ephraim et al. relate MODE and MD MUSIC.
Minimum-norm [15] method: In this method, the matrix N is obtained as follows [12]:

1. Form En = [eP+1, · · · , eM ];
2. partition En as En = [

c CT
]T

, to establish c and C;

3. compute d = [
1 ((cH c)−1C∗c)T

]T
, and, finally, N = ddH .

For two closely spaced, equal power signals, the Minimum Norm Method has been shown to
have a lower SNR threshold (i.e., the minimum SNR required to separate the two sources) than
MUSIC [14]. [17] derive and compare the mean-squared errors of the DOA estimates from Minimum
Norm and MUSIC algorithms due to finite sample effects, calibration errors, and noise modeling
errors for the case of finite samples and high SNR. They show that mean-squared errors for DOA
estimates produced by the MUSIC algorithm are always lower than the corresponding mean-squared
errors for the Minimum Norm algorithm.

Algebraic Methods

When the array is uniform linear, so that

a(θ) =
[
1, e−j2π d

λ
sin(θ), · · · , e−j2π(M−1) d

λ
sin(θ)

]T

,

the search in S(θ) = 1/a(θ)H Na(θ) for the peaks can be replaced by a root-finding procedure which
yields the arrival angles. So doing results in better resolution than the search-based alternative because
the root-finding procedure can give distinct roots corresponding to each source whereas the search
function may not have distinct maxima for closely spaced sources. In addition, the computational
complexity of algebraic methods is lower than that of the search-based ones. The algebraic version of
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MUSIC (Root-MUSIC) is given next; for algebraic versions of Pisarenko, EV, and Minimum-Norm,
the matrix N in Root-Music is replaced by the corresponding N in each of these methods.

Root-MUSIC Method: In Root-MUSIC, the array is required to be uniform linear, and the search
procedure in MUSIC is converted into the following root-finding approach:

1. Form the M × M matrix N = ∑M
i=P+1 eiei

H .

2. Form a polynomial p(z) of degree 2M − 1 which has for its ith coefficient ci = tri[N],
where tri denotes the traceof the ithdiagonal, and i = −(M−1), · · · , 0, · · · , M−1. Note
that tr0 denotes the main diagonal, tr1 denotes the first super-diagonal, and tr−1denotes
the first sub-diagonal.

3. The roots of p(z) exhibit inverse symmetry with respect to the unit circle in the z-plane.
Express p(z) as the product of two polynomials p(z) = h(z)h∗(z−1).

4. Find the roots zi (i = 1, · · · , M) of h(z). The angles of roots that are very close to (or,
ideally on) the unit circle yield the direction of arrival estimates, as

θi = sin−1(
λ

2πd
6 zi), where i = 1, · · · , P .

The Root-MUSIC algorithm has been shown to have better resolution power than MUSIC [27];
however, as mentioned previously, Root-MUSIC is restricted to uniform linear arrays. Steps (2)
through (4) make use of this knowledge. Li and Vaccaro show that algebraic versions of the MUSIC
and Minimum Norm algorithms have the same mean-squared errors as their search-based versions
for finite samples and high SNR case. The advantages of Root-MUSIC over search-based MUSIC is
increased resolution of closely spaced sources and reduced computations.

62.3.3 Spatial Smoothing [9, 31]

When there are coherent (completely correlated) sources, rank(Rs), and consequently rank(R), is
less than P , and hence the above described subspace methods fail. If the array is uniform linear, then
by applying the spatial smoothing method, described below, a new rank-P matrix is obtained which
can be used in place of R in any of the subspace methods described earlier.

Spatial smoothing starts by dividing the M-vector r(t) of the ULA into K = M−S+1overlapping

subvectors of size S, rf
S,k (k = 1, · · · , K), with elements {rk, · · · , rk+S−1}, and rb

S,k (k = 1, · · · , K),
with elements {r∗

M−k+1, · · · , r∗
M−S−k+2}. Then, a forward and backward spatially smoothed matrix

Rf b is calculated as

Rf b =
N∑

t=1

K∑
k=1

(rf
S,k(t)r

f
S,k

H
(t) + rb

S,k(t)r
b
S,k

H
(t))/KN.

The rank of Rf b is P if there are at most 2M/3 coherent sources. S must be selected such that

Pc + 1 ≤ S ≤ M − Pc/2 + 1

in which Pc is the number of coherent sources. Then, any subspace-based method can be applied to
Rf b to determine the directions of arrival. It is also possible to do spatial smoothing based only on

rf
S,k or rb

S,k , but in this case at most M/2 coherent sources can be handled.

62.3.4 Discussion

The application of all the subspace-based methods requires exact knowledge of the number of signals,
in order to separate the signal and noise subspaces. The number of signals can be estimated from
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the data using either the Akaike Information Criterion (AIC) [36] or Minimum Descriptive Length
(MDL) [37] methods. The effect of underestimating the number of sources is analyzed by [26],
whereas the case of overestimating the number of signals can be treated as a special case of the
analysis in [32].

The second-order methods described above have the following disadvantages:

1. Except for ESPRIT (which requires a special array structure), all of the above methods
require calibration of the array which means that the response of the array for every pos-
sible combination of the source parameters should be measured and stored; or, analytical
knowledge of the array response is required. However, at any time, the antenna response
can be different from when it was last calibrated due to environmental effects such as
weather conditions for radar, or water waves for sonar. Even if the analytical response of
the array elements is known, it may be impossible to know or track the precise locations
of the elements in some applications (e.g., towed array). Consequently, these methods
are sensitive to errors and perturbations in the array response. In addition, physically
identical sensors may not respond identically in practice due to lack of synchronization
or imbalances in the associated electronic circuitry.

2. In deriving the above methods, it was assumed that the noise covariance structure is
known; however, it is often unrealistic to assume that the noise statistics are known due
to several reasons. In practice, the noise is not isolated; it is often observed along with
the signals. Moreover, as [33] state, there are noise phenomena effects that cannot be
modeled accurately, e.g., channel crosstalk, reverberation, near-field, wide-band, and
distributed sources.

3. None of the methods in Sections 62.3.1 and 62.3.2, except for the WSF method and other
multidimensional search-based approaches, which are computationally very expensive,
workwhen there are coherent (completely correlated) sources. Only if the array isuniform
linear, can the spatial smoothing method in Section 62.3.3 be used. On the other hand,
higher-order statistics of the received signals can be exploited to develop direction finding
methods which have less restrictive requirements.

62.4 Higher-Order Statistics-Based Methods

The higher-order statistical direction finding methods use the spatial cumulant matrices of the array.
They require that the source signals be non-Gaussian so that their higher than second order statistics
convey extra information. Most communication signals (e.g., QAM) are complex circular (a signal is
complex circular if its real and imaginary parts are independent and symmetrically distributed with
equal variances) and hence their third-order cumulants vanish; therefore, even-order cumulants are
used, and usually fourth-order cumulants are employed. The fourth-order cumulant of the source
signals must be nonzero in order to use these methods. One important feature of cumulant-based
methods is that they can suppress Gaussian noise regardless of its coloring. Consequently, the require-
ment of having to estimate the noise covariance, as in second-order statistical processing methods,
is avoided in cumulant-based methods. It is also possible to suppress non-Gaussian noise [6], and,
when properly applied, cumulants extend the aperture of an array [5, 30], which means that more
sources than sensors can be detected. As in the second-order statistics-based methods, it is assumed
that the number of sources is known or is estimated from the data.

The fourth-order moments of the signal s(t) are

E{sisj ∗sksl∗} 1 ≤ i, j, k, l ≤ P
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and the fourth-order cumulants are defined as

c4,s(i, j, k, l)
4= cum(si, sj

∗, sk, sl∗)
= E{sisj ∗sksl∗} − E{sisj ∗}E{sksl∗}
− E{sisl∗}E{sksj ∗} − E{sisj }E{sk∗sl∗},

where1 ≤ i, j, k, l ≤ P . Note that twoarguments in theabove fourth-ordermomentsandcumulants
are conjugated and the other two are unconjugated. For circularly symmetric signals, which is often
the case in communication applications, the last term in c4,s(i, j, k, l) is zero.

In practice, sample estimates of the cumulants are used in place of the theoretical cumulants, and
these sample estimates are obtained from the received signal vector r(t) (t = 1, · · · , N), as:

ĉ4,r (i, j, k, l) =
N∑

t=1

ri(t)rj
∗(t)rk(t)rl∗(t)/N

−
N∑

t=1

ri(t)rj
∗(t)

N∑
t=1

rk(t)rl
∗(t)/N2

−
N∑

t=1

ri(t)rl
∗(t)

N∑
t=1

rk(t)rj
∗(t)/N2,

where 1 ≤ i, j, k, l ≤ M . Note that the last term in c4,r (i, j, k, l) is zero and, therefore, it is omitted.
Higher-order statistical subspace methods use fourth-order spatial cumulant matrices of the array

output, which can be obtained in a number of ways by suitably selecting the arguments i, j, k, l

of c4,r (i, j, k, l). Existing methods for the selection of the cumulant matrix, and their associated
processing schemes are summarized next.
Pan-Nikias [22]andCardoso-Moulines [2]method: In this method, the array needs to be calibrated,
or its response must be known in analytical form. The source signals are assumed to be independent
or partially correlated (i.e, there are no coherent signals). The method is as follows:

1. An estimate of an M × M fourth-order cumulant matrix C is obtained from the data.
The following two selections for C are possible [22, 2]:

cij = c4,r (i, j, j, j) 1 ≤ i, j ≤ M,

or

cij =
M∑

m=1

c4,r (i, j, m, m)1 ≤ i, j ≤ M.

Using cumulant properties [19], and (62.1), and aij for the ij th element of A, it is easy
to verify that

c4,r (i, j, j, j) =
P∑

p=1

aip

P∑
q,r,s=1

ajq
∗ajrajs

∗c4,s(p, q, r, s)

which, in matrix format, is C = AB where A is the steering matrix and B is a P × M

matrix with elements

bij =
P∑

q,r,s=1

ajq
∗ajrajs

∗c4,s(i, q, r, s).
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Similarly,

M∑
m=1

c4,r (i, j, m, m) =
P∑

p,q=1

aip




P∑
r,s=1

M∑
m=1

amrams
∗c4,s(p, q, r, s)


 ajq

∗, 1 ≤ i, j ≤ M

which, in matrix form, can be expressed as C = ADAH , where D is a P × P matrix with
elements

dij =
P∑

r,s=1

M∑
m=1

amrams
∗c4,s(i, j, r, s).

Note that additive Gaussian noise is suppressed in both C matrices because higher than
second-order statistics of a Gaussian process are zero.

2. The P left singular vectors of C = AB, corresponding to nonzero singular values or the
P eigenvectors of C = ADAH corresponding to nonzero eigenvalues form the signal
subspace. The orthogonal complement of the signal subspace gives the noise subspace.
Any of the Section 62.3 covariance-based search and algebraic DF methods (except for
the EV method and ESPRIT) can now be applied (in exactly the same way as described
in Section 62.3) either by replacing the signal and noise subspace eigenvectors and eigen-
values of the array covariance matrix by the corresponding subspace eigenvectors and
eigenvalues of ADAH , or by the corresponding subspace singular vectors and singular
values of AB. A cumulant-based analog of the EV method does not exist because the
eigenvalues and singular values of ADAH and AB corresponding to the noise subspace
are theoretically zero. The cumulant-based analog of ESPRIT is explained later.

The same assumptions and restrictions for the covariance-based methods apply to their analogs
in the cumulant domain. The advantage of using the cumulant-based analogs of these methods is
that there is no need to know or estimate the noise-covariance matrix.

The asymptotic covariance of the DOA estimates obtained by MUSIC based on the above fourth-
order cumulant matrices are derived in [2] for the case of Gaussian measurement noise with arbitrary
spatial covariance, and are compared to the asymptotic covariance of the DOA estimates from the
covariance-based MUSIC algorithm. Cardoso and Moulines show that covariance- and fourth-order
cumulant-based MUSIC have similar performance for the high SNR case, and as SNR decreases below
a certain SNR threshold, the variances of the fourth-order cumulant-based MUSIC DOA estimates
increase with the fourth power of the reciprocal of the SNR, whereas the variances of covariance-based
MUSICDOAestimates increasewith the squareof the reciprocal of theSNR.Theyalsoobserve that for
high SNR and uncorrelated sources, the covariance-based MUSIC DOA estimates are uncorrelated,
and the asymptotic variance of any particular source depends only on the power of that source (i.e.,
it is independent of the powers of the other sources). They observe, on the other hand, that DOA
estimates from cumulant-based MUSIC, for the same case, are correlated, and the variance of the
DOA estimate of a weak source increases in the presence of strong sources. This observation limits
the use of cumulant-based MUSIC when the sources have a high dynamic range, even for the case
of high SNR. Cardoso and Moulines state that this problem may be alleviated when the source of
interest has a large fourth-order cumulant.

Porat and Friedlander [25] method: In this method, the array also needs to be calibrated, or its
response is required in analytical form. The model used in this method divides the sources into groups
that are partially correlated (but not coherent) within each group, but are statistically independent
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across the groups, i.e.,

r(t) =
G∑

g=1

Agsg + n(t)

where G is the number of groups each having pg sources (
∑G

g=1 pg = P ). In this model, the pg

sources in the gth group are partially correlated, and they are received from different directions. The
method is as follows:

1. Estimate the fourth-order cumulant matrix, Cr , of r(t) ⊗ r(t)∗ where ⊗ denotes the
Kronecker product. It can be verified that

Cr =
G∑

g=1

(Ag ⊗ A∗
g)Csg (Ag ⊗ A∗

g)
H

where Csg is the fourth-order cumulant matrix of sg . The rank of Cr is
∑G

g=1 pg
2, and

since Cr is M2 × M2, it has M2 − ∑G
g=1 pg

2 zero eigenvalues which correspond to the
noise subspace. The other eigenvalues correspond to the signal subspace.

2. Compute the SVD of Cr and identify the signal and noise subspace singular vectors. Now,
second-order subspace-based search methods can be applied, using the signal or noise
subspaces, by replacing the array response vector a(θ) by a(θ) ⊗ a∗(θ).

The eigendecomposition in this method has computational complexity O(M6) due to the Kro-
necker product, whereas the second-order statistics-based methods (e.g., MUSIC) have complexity
O(M3).
Chiang-Nikias [4] method: This method uses the ESPRIT algorithm and requires an array with its
entire identical copy displaced in space by distance d ; however, no calibration of the array is required.
The signals

r1(t) = As(t) + n1(t)

and
r2(t) = A8s(t) + n2(t).

Two M × M matrices C1 and C2 are generated as follows:

c1
ij = cum(r1

i , r
1
j
∗
, r1

k, r
1
k
∗
), 1 ≤ i, j, k ≤ M

and
c2

ij = cum(r2
i , r

1
j
∗
, r1

k, r
1
k
∗
)1 ≤ i, j, k ≤ M.

It can be shown that C1 = AEAH and C2 = A8EAH , where

8 = diag{e−j2π d
λ

sinθ1, · · · , e−j2π d
λ

sinθP }
in which d is the separation between the identical arrays, and E is a P × P matrix with elements

eij =
P∑

q,r=1

akqakr
∗c4,s(i, q, r, j).

Note that these equations are in the same form as those for covariance-based ESPRIT (the noise
cumulants do not appear in C1 and C2 because the fourth-order cumulants of Gaussian noises are
zero); therefore, any version of ESPRIT or GEESE can be used to solve for 8 by replacing R11 and
R21 by C1 and C2, respectively.
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Virtual cross correlation computer (V C3) [5]: In V C3, the source signals are assumed to be sta-
tistically independent. The idea of V C3 can be demonstrated as follows: Suppose we have three
identical sensors as in Fig. 62.1, where r1(t), r2(t), and r3(t) are measurements, and Ed1, Ed2, and Ed3
( Ed3 = Ed1 + Ed2) are the vectors joining these sensors. Let the response of each sensor to a signal from

FIGURE 62.1: Demonstration of V C3.

θ be a(θ). A virtual sensor is one at which no measurement is actually made. Suppose that we wish
to compute the correlation between the virtual sensor v1(t) and r2(t), which (using the plane wave
assumption) is

E{r∗
2(t)v1(t)} =

P∑
p=1

|a(θp)|2σp
2e−j Ekp. Ed3.

Consider the following cumulant

cum(r∗
2(t), r1(t), r

∗
2(t), r3(t)) =

P∑
p=1

|a(θp)|4γpe−j Ekp. Ed1e−j Ekp. Ed2

=
P∑

p=1

|a(θp)|4γpe−j Ekp. Ed3.

This cumulant carries the same angular information as the cross correlation E{r∗
2(t)v1(t)}, but for

sources having different powers.
The fact that we are interested only in the directional information carried by correlations between

the sensors therefore let us interpret a cross correlation as a vector (e.g., Ed3), and a fourth-order
cumulant as the addition of two vectors (e.g., Ed1 + Ed2). This interpretation leads to the idea of
decomposing the computation of a cross correlation into that of computing a cumulant. Doing this
means that the directional information that would be obtained from the cross correlation between
nonexisting sensors (or between an actual sensor and a nonexisting sensor) at certain virtual locations
in the space can be obtained from a suitably defined cumulant that uses the real sensor measurements.

One advantage of virtual cross correlation computation is that it is possible to obtain a larger
aperture than would be obtained by using only second-order statistics. This means that more sources
than sensors can be detected using cumulants. For example, given an M element uniform linear
array, V C3 lets its aperture be extended from M to 2M − 1 sensors, so that 2M − 2 targets can
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be detected (rather than M − 1) just by using the array covariance matrix obtained by V C3 in any
of the subspace-based search methods explained earlier. This use of V C3 requires the array to be
calibrated. Another advantage of V C3 is a fault tolerance capability. If sensors at certain locations
in a given array fail to operate properly, these sensors can be replaced using V C3.
Virtual ESPRIT (VESPA) [5]: For VESPA, the array only needs two identical sensors; the rest of
the array may have arbitrary and unknown geometry and response. The sources are assumed to
be statistically independent. VESPA uses the ESPRIT solution applied to cumulant matrices. By
choosing a suitable pair of cumulants in VESPA, the need for a copy of the entire array, as required
in ESPRIT, is totally eliminated. VESPA preserves the computational advantage of ESPRIT over
search-based algorithms. An example array configuration is given in Fig. 62.2.

Without loss of generality, let the signals received by the identical sensor pair be r1 and r2. The
sensors r1 and r2 are collectively referred to as the guiding sensor pair. The VESPA algorithm is

1. Two M × M matrices, C1 and C2, are generated as follows:

c1
ij = cum(r1, r1

∗, ri , rj ∗), 1 ≤ i, j ≤ M

c2
ij = cum(r2, r1

∗, ri , rj ∗), 1 ≤ i, j ≤ M.

It can be shown that these relations can be expressed as C1 = AFAH and C2 = A8FAH ,
where the P × P matrix

F
4= diag{γ4,s1|a11|2, · · · , γ4,sP |a1P |2}, {γ4,sP }Pp=1,

and 8 has been defined before.

2. Note that these equations are in the same form as ESPRIT and Chiang and Nikias’s
ESPRIT-like method; however, as opposed to these methods, there is no need for an
identical copy of the array; only an identical response sensor pair is necessary for VESPA.
Consequently, any version of ESPRIT or GEESE can be used to solve for 8 by replacing
R11 and R21 by C1 and C2, respectively.

FIGURE 62.2: The main array and its virtual copy.

Note, also, that there exists a very close link between V C3 and VESPA. Although the way we
chose C1 and C2 above seems to be not very obvious, there is a unique geometric interpretation
to it. According to V C3, as far as the bearing information is concerned, C1 is equivalent to the
autocorrelation matrix of the array, and C2 is equivalent to the cross-correlation matrix between the
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array and its virtual copy (which is created by displacing the array by the vector that connects the
second and the first sensors).

If the noise component of the signal received by one of the guiding sensor pair elements is indepen-
dent of the noises at the other sensors, VESPA suppresses the noise regardless of its distribution [6].
In practice, the noise does affect the standard deviations of results obtained from VESPA.

An iterative version of VESPA has also been developed for cases where the source powers have a
high dynamic range [11]. Iterative VESPA has the same hardware requirements and assumptions as
in VESPA.

Extended VESPA [10]: When there are coherent (or completely correlated) sources, all of the above
second- and higher-order statistics methods, except for the WSF method and other multidimensional
search-based approaches, fail. For the WSF and other multidimensional methods, however, the array
must be calibrated accurately and the computational load is expensive. The coherent signals case
arises in practice when there are multipaths. Porat and Friedlander present a modified version of
their algorithm to handle the case of coherent signals; however, their method is not practical because
it requires selection of a highly redundant subset of fourth-order cumulants that contains O(N4)

elements, and no guidelines exist for its selection and 2nd-, 4th-, 6th-, and 8th-order moments of the
data are required. If the array is uniform linear, coherence can be handled using spatial smoothing as
a preprocessor to the usual second- or higher-order [3, 39] methods; however, the array aperture is
reduced. Extended VESPA can handle coherence and provides increased aperture. Additionally, the
array does not have to be completely uniform linear or calibrated; however, a uniform linear subarray
is still needed. An example array configuration is shown in Figure 62.3.

FIGURE 62.3: An example array configuration. There are M sensors, L of which are uniform linearly
positioned; r1(t) and r2(t) are identical guiding sensors. Linear subarray elements are separated by
1.

Consider a scenario in which there are G statistically independent narrowband sources, {ug(t)}Gi=1.
These source signals undergo multipath propagation, and each produces pi coherent wavefronts

{s1,1, · · · , s1,p1, · · · , sG,1, · · · , sG,pG
} (

G∑
i=1

pi = P)
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that impinge on an M element sensor array from directions

{θ1,1, · · · , θ1,p1, · · · , θG,1, · · · , θG,pG
},

where θm,p represents the angle-of-arrival of the wavefront sg,p that is the pth coherent signal in the
gth group. The collection of pi coherent wavefronts, which are scaled and delayed replicas of the ith
source, are referred to as the ith group. The wavefronts are represented by the P -vector s(t). The
problem is to estimate the DOAs {θ1,1, · · · , θ1,p1, · · · , θG,1, · · · , θG,pG

}.
When the multipath delays are insignificant compared to the bit durations of signals, then the

signals received from different paths differ by only amplitude and phase shifts, thus the coherence
among the received wavefronts can be expressed by the following equation:

s(t) =




s1(t)

s2(t)
...

sG(t)


 =




c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...

0 0 · · · cG







u1(t)

u2(t)
...

uG(t)




4= Qu(t) (62.2)

where si (t) is a pi × 1 signal vector representing the coherent wavefronts from the ith independent
source ui(t), ci is a pi × 1 complex attenuation vector for the ith source (1 ≤ i ≤ G), and Q is
P × G. The elements of ci account for the attenuation and phase differences among the multipaths
due to different arrival times. The received signal can then be written in terms of the independent
sources as follows:

r(t) = As(t) + n(t) = AQu(t) + n(t) = Bu(t) + n(t) (62.3)

where B
4= AQ. The columns of M × G matrix B are known as the generalized steering vectors.

Extended VESPA has three major steps:
Step 1: Use Step (1) of VESPA by choosing r1(t) and r2(t) as any two sensor measurements. In this
case C1 = BGBH and C2 = BCGBH , where

G
4= diag(γ4,u1|b11|2, · · · , γ4,uG

|b1G|2), {γ4,ug }Gg=1

C
4= diag(

b21

b11
, · · · , b2G

b1G

).

Due to the coherence, the DOAs cannot be obtained at this step from just C1 and C2 because the
columns of B depend on a vector of DOAs (all those within a group). In the independent sources
case, the columns of A depend only on a single DOA. Fortunately, the columns of B can be solved for
as follows: (1.1) Follow Steps 2 through 5 of TLS ESPRIT by replacing R11 and R21 by C1 and C2,
respectively, and using appropriate matrix dimensions; (1.2) determine the eigenvectors and eigen-
values of −FxF−1

y ; Let the eigenvector and eigenvalue matrices of −FxF−1
y be E and D, respectively;

and, (1.3) obtain an estimate of B to within a diagonal matrix, as B = (
U11E + U12ED−1

)
/2, for

use in Step 2.
Step 2: Partition the matrices B and A as B = [

b1, · · · , bG

]
and A = [A1, · · · , AG], where the

steering vector for the ith group bi is M × 1, Ai
4= [

a(θi,1), · · · , a(θi,pi
)
]

is M × pi , and θi,m is the
angle-of-arrival of the mth source in the ith coherent group (1 ≤ m ≤ pi). Using the fact that the
ith column of Q has pi nonzero elements, express B as B = AQ = [A1c1, · · · , AGcG]; therefore, the
ith column of B, bi , is bi = Aici where i = 1, · · · , G. Now, the problem of solving for the steering
vectors is transformed into the problem of solving for the steering vectors from each coherent group
separately. To solve this new problem, each generalized steering vector bi can be interpreted as
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a received signal for an array illuminated by pi coherent signals having a steering matrix Ai , and
covariance matrix cicH

i . The DOAs could then be solved for by using a second-order-statistics-based
high-resolution method such as MUSIC, if the array was calibrated, and the rank of cicH

i was pi ;
however, the array is not calibrated and rank(cicH

i ) = 1. The solution is to keep the portion of each
bi that corresponds to the uniform linear part of the array, bL,i , and to then apply the Section 62.3.3
spatial smoothing technique to a pseudocovariance matrix bL,ibL,i

H for i = 1, · · · , G. Doing this
restores the rank of cicH

i to pi . In the Section 62.3.3 spatial smoothing technique, we must replace
r(t) by bL,i and set N = 1.

The conditions on the length of the linear subarray and the parameter S under which the rank of
bS,ibS,i

H is restored to pi are [11]: (a) L ≥ 3pi/2, which means that the linear subarray must have at
least3pmax/2elements, wherepmax is themaximumnumberofmultipaths inanyoneof theGgroups;
and (b) givenL andpmax , theparameterS mustbe selected such thatpmax+1 ≤ S ≤ L−pmax/2+1.

Step 3: Apply any second-order-statistics-based subspace technique (e.g., root-MUSIC, etc.) to Rf b
i

(i = 1, · · · , G) to estimate DOAs of up to 2L/3 coherent signals in each group.
Note that the matrices C and G in C1 and C2 are not used; however, if the received signals are

independent, choosing r1(t) and r2(t) from the linear subarray lets DOA estimates be obtained from
C in Step 1 because, in that case,

C = diag{e−j2π d
λ

sinθ1, · · · , e−j2π d
λ

sinθP };
hence, extended VESPA can also be applied to the case of independent sources.

62.4.1 Discussion

One advantage of using higher-order statistics-based methods over second-order methods is that the
covariance matrix of the noise is not needed when the noise is Gaussian. The fact that higher-order
statistics have more arguments than covariances leads to more practical algorithms that have less
restrictions on the array structure (for instance, the requirement of maintaining identical arrays for
ESPRIT is reduced to only maintaining two identical sensors for VESPA). Another advantage is more
sources than sensors can be detected, i.e., the array aperture is increased when higher-order statistics
are properly applied; or, depending on the array geometry, unreliable sensor measurements can be
replaced by using the V C3 idea. One disadvantage of using higher-order statistics-based methods is
that sample estimates of higher-order statistics require longer data lengths than covariances; hence,
computational complexity is increased. In their recent study, Cardoso and Moulines [2] present
a comparative performance analysis of second- and fourth-order statistics-based MUSIC methods.
Their results indicate that dynamic range of the sources may be a factor limiting the performance
of the fourth-order statistics-based MUSIC. A comprehensive performance analysis of the above
higher-order statistical methods is still lacking; therefore, a detailed comparison of these methods
remains as a very important research topic.

62.5 Flowchart Comparison of Subspace-Based Methods

Clearly, there are many subspace-based direction finding methods. In order to see the forest from
the trees, to know when to use a second-order or a higher-order statistics-based method, we present
Figs. 62.4 through 62.9. These figures provide a comprehensive summary of the existing subspace-
based methods for direction finding and constitute guidelines to selection of a proper direction-
finding method for a given application.

Note that: Fig. 62.4 depicts independent sources and ULA, Fig. 62.5 depicts independent sources
and NL/mixed array, Fig. 62.6 depicts coherent and correlated sources and ULA, and Fig. 62.7 depicts
coherent and correlated sources and NL/mixed array.
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FIGURE 62.4: Second- or higher-order statistics-based subspace DF algorithm. Independent sources
and ULA.

All four figures show two paths: SOS (second-order statistics) and HOS (higher-order statistics).
Each path terminates in one or more method boxes, each of which may contain a multitude of
methods. Figures 62.8 and 62.9 summarize the pros and cons of all the methods we have considered
in this chapter.

Using Fig. 62.4 through 62.9, it is possible for a potential user of a subspace-based direction finding
method to decide which method(s) is (are) most likely to give best results for his/her application.
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FIGURE 62.5: Second- or higher-order statistics-based subspace DF algorithm. Independent sources
and NL/mixed array.

FIGURE 62.6: Second- or higher-order statistics-based subspace DF algorithms. Coherent and
correlated sources and ULA.c©1999 by CRC Press LLC



FIGURE 62.7: Second- or higher-order statistics-based subspace DF algorithms. Coherent and
correlated sources and NL/mixed array.
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FIGURE 62.8: Pros and cons of all the methods considered.
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FIGURE 62.9: Pros and cons of all the methods considered.
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63.1 Introduction

Estimating the directions of arrival (DOAs) of propagating plane waves is a requirement in a variety of
applications including radar, mobile communications, sonar, and seismology. Due to its simplicity
and high-resolution capability, ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques) [18] has become one of the most popular signal subspace-based DOA or spatial frequency
estimation schemes. ESPRIT is explicitly premised on a point source model for the sources and
is restricted to use with array geometries that exhibit so-called invariances [18]. However, this
requirement is not very restrictive as many of the common array geometries used in practice exhibit
these invariances, or their output may be transformed to effect these invariances.

ESPRIT may be viewed as a complement to the MUSIC algorithm, the forerunner of all signal
subspace-based DOA methods, in that it is based on properties of the signal eigenvectors whereas
MUSIC is based on properties of the noise eigenvectors. This chapter concentrates solely on the
use of ESPRIT to estimate the DOAs of plane waves incident upon an antenna array. It should
be noted, though, that ESPRIT may be used in the dual problem of estimating the frequencies of
sinusoids embedded in a time series [18]. In this application, ESPRIT is more generally applicable
than MUSIC as it can handle damped sinusoids and provides estimates of the damping factors as well
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as the constituent frequencies. The standard ESPRIT algorithm for one-dimensional (1-D) arrays is
reviewed in Section 63.2. There are three primary steps in any ESPRIT-type algorithm:

1. Signal Subspace Estimation computation of a basis for the estimated signal subspace,

2. Solution of the Invariance Equation solution of an (in general) overdetermined system of
equations, the so-called invariance equation, derived from the basis matrix estimated in
Step 1, and

3. Spatial Frequency Estimation computation of the eigenvalues of the solution of the invari-
ance equation formed in Step 2.

Many antenna arrays used in practice have geometries that possess some form of symmetry. For
example, a linear array of equi-spaced identical antennas is symmetric about the center of the linear
aperture it occupies. In Section 63.3.1, an efficient implementation of ESPRIT is presented that
exploits the symmetry present in so-called centro-symmetric arrays to formulate the three steps
of ESPRIT in terms of real-valued computations, despite the fact that the input to the algorithm
needs to be the complex analytic signal output from each antenna. This reduces the computational
complexity significantly. A reduced dimension beamspace version of ESPRIT is developed in Sec-
tion 63.3.2. Advantages to working in beamspace include reduced computational complexity [3],
decreased sensitivity to array imperfections [1], and lower SNR resolution thresholds [11].

With a 1-D array, one can only estimate the angle of each incident plane wave relative to the array
axis. For source localization purposes, this only places the source on a cone whose axis of symmetry is
the array axis. The use of a 2-D or planar array enables one to passively estimate the 2-D arrival angles
of each emitting source. The remainder of the chapter presents ESPRIT-based techniques for use in
conjunction with circular and rectangular arrays that provide estimates of the azimuth and elevation
angle of each incident signal. As in the 1-D case, the symmetries present in these array geometries
are exploited to formulate the three primary steps of ESPRIT in terms of real-valued computations.

63.1.1 Notation

Throughout this chapter, column vectors and matrices are denoted by lower case and upper case
boldfaced letters, respectively. For any positive integer p, Ip is the p ×p identity matrix and 5p the
p × p exchange matrix with ones on its antidiagonal and zeros elsewhere,

5p =




1
1

·
1


 ∈ R

p×p. (63.1)

Pre-multiplication of a matrix by 5p will reverse the order of its rows, while post-multiplication of
a matrix by 5p reverses the order of its columns. Furthermore, the superscripts (·)H and (·)T de-
note complex conjugate transposition and transposition without complex conjugation, respectively.

Complex conjugation by itself is denoted by an overbar (·), such that XH = X
T

. A diagonal matrix
8 with the diagonal elements φ1, φ2, . . . , φd may be written as

8 = diag {φi}di=1 =




φ1
φ2

·
φd


 ∈ C

d×d .

Moreover, matrices Q ∈ C
p×q satisfying

5pQ = Q (63.2)

willbecalled left5-real [10]. Often left5-realmatricesarealsocalledconjugatecentro-symmetric [24].
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63.2 The Standard ESPRIT Algorithm

The algorithm ESPRIT [18] must be used in conjunction with an M-element sensor array composed
of m pairs of pairwise identical, but displaced, sensors (doublets) as depicted in Fig. 63.1. If the
subarraysdonotoverlap, i.e., if theydonot share any elements, M = 2m, but ingeneralM ≤ 2m since
overlapping subarrays are allowed, cf. Fig. 63.2. Let 1 denote the distance between the two subarrays.
Incidentonboth subarrays ared narrowbandnoncoherent1 planarwavefrontswithdistinctdirections

FIGURE 63.1: Planar array composed of m = 3pairwise identical, but displaced, sensors (doublets).

of arrival (DOAs) θi, 1 ≤ i ≤ d , relative to the displacement between the two subarrays.2 Their
complex pre-envelope at an arbitrary reference point may be expressed as si(t) = αi(t)e

j(2πfct+βi(t)),
where fc denotes the common carrier frequency of the d wavefronts. Without loss of generality,
we assume that the reference point is the array centroid. The signals are called narrowband if their
amplitudes αi(t) and phases βi(t) vary slowly with respect to the propagation time across the array τ ,
i.e., if

αi(t − τ) ≈ αi(t) and βi(t − τ) ≈ βi(t). (63.3)

In other words, the narrowband assumption allows the time-delay of the signals across the array τ

to be modeled as a simple phase shift of the carrier frequency, such that

si(t − τ) ≈ αi(t)e
j(2πfc(t−τ)+βi(t)) = e−j2πfcτ si(t).

Figure 63.1 shows that the propagation delay of a plane wave signal between the two identical sensors
of a doublet equals τi = 1 sinθi

c
, where c denotes the signal propagation velocity. Due to the

narrowband assumption (63.3), this propagation delay τi corresponds to the multiplication of the
complex envelope signal by the complex exponential ejµi , referred to as the phase factor, such that

si(t − τi) = e−j
2πfc

c
1 sinθi si(t) = ejµi si(t), (63.4)

where the spatial frequencies µi are given by µi = −2π
λ

1 sinθi . Here, λ = c
fc

denotes the common
wavelength of the signals. We also assume that there is a one-to-one correspondence between the

1 This restriction can be modified later as Unitary ESPRIT can estimate the directions of arrival of two coherent wavefronts
due to an inherent forward-backward averaging effect. Two wavefronts are called coherent if their cross-correlation
coefficient has magnitude one. The directions of arrival of more than two coherent wavefronts can be estimated by using
spatial smoothing as a preprocessing step.
2 θk = 0 corresponds to the direction perpendicular to 1.
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spatial frequencies −π < µi < π and the range of possible DOAs. Thus, the maximum range is
achieved for 1 ≤ λ/2. In this case, the DOAs are restricted to the interval −90◦ < θi < 90◦ to avoid
ambiguities.

In the sequel, the d impinging signals si(t), 1 ≤ i ≤ d, are combined to a column vector s(t).
Then the noise-corrupted measurements taken at the M sensors at time t obey the linear model

x(t) = [
a(µ1) a(µ2) · · · a(µd)

]



s1(t)

s2(t)
...

sd(t)


 + n(t) = As(t) + n(t) ∈ C

M, (63.5)

where the columns of the array steering matrix A ∈ C
M×d , the array response or array steering

vectors a(µi), are functions of the unknown spatial frequencies µi, 1 ≤ i ≤ d. For example, for a
uniform linear array (ULA) of M identical omnidirectional antennas,

a(µi) = e
−j

(
M−1

2

)
µi

[
1 ejµi ej2µi · · · ej(M−1)µi

]T
, 1 ≤ i ≤ d.

Moreover, the additive noise vector n(t) is taken from a zero-mean, spatially uncorrelated random
process with variance σ 2

N , which is also uncorrelated with the signals. Since every row of A corre-
sponds to an element of the sensor array, a particular subarray configuration can be described by two
selection matrices, each choosing m elements of x(t) ∈ C

M , where m, d ≤ m < M , is the number
of elements in each subarray. Figure 63.2, for example, displays the appropriate subarray choices for
three centro-symmetric arrays of M = 6 identical sensors.

FIGURE 63.2: Three centro-symmetric line arrays of M = 6 identical sensors and the corresponding
subarrays required for ESPRIT-type algorithms.

In case of a ULA with maximum overlap, cf. Figure 63.2 (a), J 1 picks the first m = M − 1 rows of A,
while J 2 selects the last m = M −1 rows of the array steering matrix. In this case, the corresponding
selection matrices are given by

J 1 =




1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... · ...

...

0 0 0 · · · 1 0


 ∈ R

m×M and J 2 =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · ...

...

0 0 0 · · · 0 1


 ∈ R

m×M.

Notice that J 1 and J 2 are centro-symmetric with respect to one another, i.e., they obey J 2 =
5mJ 15M . This property holds for all centro-symmetric arrays and plays a key role in the derivation
of Unitary ESPRIT [7]. Since we have two identical, but physically displaced subarrays, Eq. (63.4)
indicates that an array steering vector of the second subarray J 2a(µi) is just a scaled version of the
corresponding array steering vector of the first subarray J 1a(µi), namely

J 1a(µi)e
jµi = J 2a(µi), 1 ≤ i ≤ d. (63.6)
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This shift invariance property of all d array steering vectors a(µi) may be expressed in compact form
as

J 1A8 = J 2A, where 8 = diag
{
ejµi

}d

i=1 (63.7)

is the unitary diagonal d × d matrix of the phase factors. All ESPRIT-type algorithms are based on
this invariance property of the array steering matrix A, where A is assumed to have full column rank
d .

Let X denote an M × N complex data matrix composed of N snapshots x(tn), 1 ≤ n ≤ N ,

X = [
x(t1) x(t2) · · · x(tN )

]
(63.8)

= A
[

s(t1) s(t2) · · · s(tN )
] + [

n(t1) n(t2) · · · n(tN )
]

= A · S + N ∈ C
M×N.

The starting point is a singular value decomposition (SVD) of the noise-corrupted data matrix X

(direct data approach). Assume that U s ∈ C
M×d contains the d left singular vectors corresponding

to the d largest singular values of X. Alternatively, U s can be obtained via an eigendecomposition
of the (scaled) sample covariance matrix XXH (covariance approach). Then, U s ∈ C

M×d contains
the d eigenvectors corresponding to the d largest eigenvalues of XXH .

Asymptotically, i.e., as the number of snapshots N becomes infinitely large, the range space of U s

is the d-dimensional range space of the array steering matrix A referred to as the signal subspace.
Therefore, there exists a nonsingular d × d matrix T such that A ≈ U sT . Let us express the
shift-invariance property (63.7) in terms of the matrix U s that spans the estimated signal subspace,

J 1U sT 8 ≈ J 2U sT ⇐⇒ J 1U s9 ≈ J 2U s , where 9 = T 8T −1

is a nonsingulard×d matrix. Since8 in Eq. (63.7) is diagonal, T 8T −1 is in the form of an eigenvalue
decomposition. This implies that ejµi , 1 ≤ i ≤ d , are the eigenvalues of 9. These observations form
the basis for the subsequent steps of the algorithm. By applying the two selection matrices to the
signal subspace matrix, the following (in general) overdetermined set of equations is formed,

J 1U s9 ≈ J 2U s ∈ C
m×d . (63.9)

This set of equations, the so-called invariance equation, is usually solved in the least squares (LS) or
total least squares (TLS) sense. Notice, however, that Eq. (63.9) is highly structured if overlapping
subarray configurations are used. Structured least squares (SLS) is a new algorithm to solve the
invariance equation by preserving its structure [8]. Formally, SLS was derived as a linearized iterative
solution of a nonlinear optimization problem. If SLS is initialized with the LS solution of the
invariance equation, only one “iteration”, i.e., the solution of one linear system of equations, is
required to achieve a significant improvement of the estimation accuracy [8].

Then an eigendecomposition of the resulting solution 9 ∈ C
d×d may be expressed as

9 = T 8T −1 with 8 = diag {φi}di=1 . (63.10)

The eigenvalues φi , i.e., the diagonal elements of 8, represent estimates of the phase factors ejµi .
Notice that the φi are not guaranteed to be on the unit circle. Notwithstanding, estimates of the
spatial frequencies µi and the corresponding DOAs θi are obtained via the relationships,

µi = arg(φi) and θi = − λ

2π1
arcsin(µi) , 1 ≤ i ≤ d. (63.11)

To end this section, a brief summary of the standard ESPRIT algorithm is given in Table 63.1.
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TABLE 63.1 Summary of the Standard ESPRIT Algorithm

1. Signal Subspace Estimation: Compute U s ∈ C
M×d

as the d dominant left singular vectors of X ∈ C
M×N

.

2. Solution of the Invariance Equation: Solve

J1U s︸ ︷︷ ︸
Cm×d

9 ≈ J2U s︸ ︷︷ ︸
Cm×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting complex-valued solution

9 = T 8 T −1 ∈ C
d×d

with 8 = diag
{
φi

}d
i=1

• µi = arg
(
φi

)
, 1 ≤ i ≤ d

63.3 1-D Unitary ESPRIT

In contrast to the standard ESPRIT algorithm, Unitary ESPRIT is efficiently formulated in terms of
real-valued computations throughout [7]. It is applicable to centro-symmetric array configurations
that possess the discussed invariance structure, cf. Figs. 63.1 and 63.2. A sensor array is called centro-
symmetric [23] if its element locations are symmetric with respect to the centroid. If the sensor
elements have identical radiation characteristics, the array steering matrix of a centro-symmetric
array satisfies

5MA = A, (63.12)

since the array centroid is chosen as the phase reference.

63.3.1 1-D Unitary ESPRIT in Element Space

Before presenting an efficient element space implementation of Unitary ESPRIT, let us define the
sparse unitary matrices

Q2n = 1√
2

[
In jIn

5n −j5n

]
and Q2n+1 = 1√

2


 In 0 jIn

0T
√

2 0T

5n 0 −j5n


 . (63.13)

They are left 5-real matrices of even and odd order, respectively.
Since Unitary ESPRIT involves forward-backward averaging, it can efficiently be formulated in

terms of real-valued computations throughout, due to a one-to-one mapping between centro-
Hermitian and real matrices [10]. The forward-backward averaged sample covariance matrix is
centro-Hermitian and can, therefore, be transformed into a real-valued matrix of the same size,
cf. [12], [15], and [7]. A real-valued square-root factor of this transformed sample covariance matrix
is given by

T (X) = QH
M

[
X 5M X 5N

]
Q2N ∈ R

M×2N, (63.14)

whereQM andQ2N weredefined inEq. (63.13).3 IfM is even, anefficient computationofT (X) from
the complex-valued data matrix X only requires M × 2N real additions and no multiplication [7].
Instead of computing a complex-valued SVD as in the standard ESPRIT case, the signal subspace
estimate is obtained via a real-valued SVD of T (X) (direct data approach). Let Es ∈ R

M×d contain
the d left singular vectors corresponding to the d largest singular values of T (X).4 Then the columns

3 The results of this chapter also hold if QM and Q2N denote arbitrary left 5-real matrices that are also unitary.
4 Alternatively, Es can be obtained through a real-valued eigendecomposition of T (X)T (X)H (covariance approach).
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of
U s = QMEs (63.15)

span the estimated signal subspace, and spatial frequency estimates could be obtained from the eigen-
values of the complex-valued matrix 9 that solves Eq. (63.9). These complex-valued computations,
however, are not required because the transformed array steering matrix

D = QH
MA = [

d(µ1) d(µ2) · · · d(µd)
] ∈ R

M×d (63.16)

satisfies the following shift invariance property

K1D � = K2D, where � = diag
{
tan

(µi

2

)}d

i=1
(63.17)

and the transformed selection matrices K1 and K2 are given by

K1 = 2 · Re{QH
mJ 2 QM} and K2 = 2 · Im{QH

mJ 2 QM}. (63.18)

Here, Re {·} and Im {·} denote the real and the imaginary part, respectively. Notice that Eq. (63.17)
is similar to Eq. (63.7) except for the fact that all matrices in Eq. (63.17) are real-valued.

Let us take a closer look at the transformed selection matrices defined in Eq. (63.18). If J 2 is
sparse, K1 and K2 are also sparse. This is illustrated by the following example. For the ULA with
M = 6 sensors and maximum overlap sketched in Fig. 63.2 (a), J 2 is given by

J 2 =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ∈ R

5×6.

According to Eq. (63.18), straightforward calculations yield the transformed selection matrices

K1 =




1 1 0 0 0 0
0 1 1 0 0 0
0 0

√
2 0 0 0

0 0 0 1 1 0
0 0 0 0 1 1


 and K2 =




0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −√

2
1 −1 0 0 0 0
0 1 −1 0 0 0


 .

In this case, applying K1 or K2 to Es only requires (m−1)d real additions and d real multiplications.
Asymptotically, the real-valued matrices Es and D span the same d-dimensional subspace, i.e.,

there is a nonsingular matrix T ∈ R
d×d such that D ≈ EsT . Substituting this into Eq. (63.17)

yields the real-valued invariance equation

K1Es ϒ ≈ K2Es ∈ R
m×d , where ϒ = T � T −1. (63.19)

Thus, the eigenvalues of the solution ϒ ∈ R
d×d to the matrix equation above are

ωi = tan
(µi

2

)
= 1

j

ejµi − 1

ejµi + 1
, 1 ≤ i ≤ d. (63.20)

This reveals a spatial frequency warping identical to the temporal frequency warping incurred in
designing a digital filter from an analog filter via the bilinear transformation. Consider 1 = λ

2
so that µi = −2π

λ
1 sinθi = −π sinθi . In this case, there is a one-to-one mapping between
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−1 < sinθi < 1, corresponding to the range of possible values for the DOAs −90◦ < θi < 90◦, and
−∞ < ωi < ∞.

Note that the fact that the eigenvalues of a real matrix have to either be real-valued or occur in
complex conjugate pairs gives rise to an ad-hoc reliability test. That is, if the final step of the algorithm
yields a complex conjugate pair of eigenvalues, then either the SNR is too low, not enough snapshots
have been averaged, or two corresponding signal arrivals have not been resolved. In the latter case,
taking the tangent inverse of the real part of the eigenvalues can sometimes provide a rough estimate
of the direction of arrival of the two closely spaced signals. In general, though, if the algorithm yields
one or more complex-conjugate pairs of eigenvalues in the final stage, the estimates should be viewed
as unreliable.

The element space implementation of 1-D Unitary ESPRIT is summarized in Table 63.2.

TABLE 63.2 Summary of 1-D Unitary ESPRIT in Element Space

1. Signal Subspace Estimation: Compute Es ∈ R
M×d

as the d dominant left singular vectors of

T (X) ∈ R
M×2N

.

2. Solution of the Invariance Equation: Then solve

K1Es︸ ︷︷ ︸
R

m×d

ϒ ≈ K2Es︸ ︷︷ ︸
R

m×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting real-valued solution

ϒ = T � T −1 ∈ R
d×d

with � = diag
{
ωi

}d
i=1

• µi = 2 arctan
(
ωi

)
, 1 ≤ i ≤ d

63.3.2 1-D Unitary ESPRIT in DFT Beamspace

Reduced dimension processing in beamspace, yielding reduced computational complexity, is an
option when one has a priori information on the general angular locations of the incident signals,
as in a radar application, for example. In the case of a uniform linear array (ULA), transformation
from element space to DFT beamspace may be effected by pre-multiplying the data by those rows of
the DFT matrix that form beams encompassing the sector of interest. (Each row of the DFT matrix
forms a beam pointed to a different angle.) If there is no a priori information, one may examine the
DFT spectrum and apply Unitary ESPRIT in DFT beamspace to a small set of DFT values around
each spectral peak above a particular threshold. In a more general setting, Unitary ESPRIT in DFT
beamspace can simply be applied via parallel processing to each of a number of sets of successive DFT
values corresponding to overlapping sectors.

Note, though, that in the development to follow, we will initially employ all M DFT beams for the
sake of notational simplicity. Without loss of generality, we consider an omnidirectional ULA. Let
WH

M ∈ C
M×M be the scaled M-point DFT matrix with its M rows given by

wH
k = e

j

(
M−1

2

)
k 2π

M

[
1 e−jk 2π

M e−j2k 2π
M · · · e−j(M−1)k 2π

M

]
, 0 ≤ k ≤ (M − 1). (63.21)

Notice that WM is left 5-real or column conjugate symmetric, i.e., 5MWM = WM . Thus, as
pointed out for D in Eq. (63.16), the transformed steering matrix of the ULA

B = WH
MA = [

b(µ1) b(µ2) · · · b(µd)
] ∈ R

M×d (63.22)
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is real-valued. It has been shown in [24] that B satisfies a shift invariance property which is similar
to Eq. (63.17), namely

01B � = 02B, where � = diag
{
tan

(µi

2

)}d

i=1
. (63.23)

Here, the selection matrices 01 and 02 of size M × M are defined as

01 =




1 cos
(

π
M

)
0 0 · · · 0 0

0 cos
(

π
M

)
cos

(
2π
M

)
0 · · · 0 0

0 0 cos
(

2π
M

)
cos

(
3π
M

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. ·
.
.
.

.

.

.

0 0 0 0 · · · cos
(
(M − 2) π

M

)
cos

(
(M − 1) π

M

)
(−1)M 0 0 0 · · · 0 cos

(
(M − 1) π

M

)




(63.24)

02 =




0 sin
(

π
M

)
0 0 · · · 0 0

0 sin
(

π
M

)
sin

(
2π
M

)
0 · · · 0 0

0 0 sin
(

2π
M

)
sin

(
3π
M

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. ·
.
.
.

.

.

.

0 0 0 0 · · · sin
(
(M − 2) π

M

)
sin

(
(M − 1) π

M

)
0 0 0 0 · · · 0 sin

(
(M − 1) π

M

)




. (63.25)

As an alternative to Eq. (63.14), another real-valued square-root factor of the transformed sample
covariance matrix is given by[

Re {Y } Im {Y } ] ∈ R
M×2N, where Y = WH

MX ∈ C
M×N. (63.26)

The matrix Y can efficiently be computed via an FFT, which exploits the Vandermonde form of
the rows of the DFT matrix, followed by an appropriate scaling, cf. Eq. (63.21). Let the columns
of Es ∈ R

M×d contain the d left singular vectors corresponding to the d largest singular values
of Eq. (63.26). Asymptotically, the real-valued matrices Es and B span the same d-dimensional
subspace, i.e., there is a nonsingular matrix T ∈ R

d×d , such that B ≈ EsT . Substituting this into
Eq. (63.23), yields the real-valued invariance equation

01Es ϒ ≈ 02Es ∈ R
M×d , where ϒ = T � T −1. (63.27)

Thus, the eigenvalues of the solution ϒ ∈ R
d×d to the matrix equation above are also given by

Eq. (63.20).
It is a crucial observation that one row of the matrix equation (63.23) relates two successive compo-

nentsof the transformedarray steeringvectorsb(µi), cf. (63.24) and(63.25). This insight enablesus to
apply only B � M successive rows of WH

M (instead of all M rows) to the data matrix X in Eq. (63.26).
To stress the reduced number of rows, we call the resulting beamforming matrix WH

B ∈ C
B×M . The

number of its rows, B, depends on the width of the sector of interest and may be substantially less
than the number of sensors M . Thereby, the SVD of Eq. (63.26) and, therefore, also Es ∈ R

B×d

and the invariance equation (63.27) will have a reduced dimensionality. Employing the appropri-
ate subblocks of 01 and 02 as selection matrices, the algorithm is the same as the one described
previously except for its reduced dimensionality. In the sequel, the resulting selection matrices of

size (B −1)×B will be called 0
(B)
1 and 0

(B)
2 . The whole algorithm that operates in a B-dimensional

DFT beamspace is summarized in Table 63.3.
Consider, for example, a ULA of M = 8 sensors. The structure of the corresponding selection

matrices 01 and 02 is sketched in Fig. 63.3. Here, the symbol × denotes entries of both selection
matrices that might be nonzero, cf. (63.24) and (63.25). If one employed rows 4, 5, and 6 of WH

8 to
form B = 3 beams in estimating the DOAs of two closely spaced signal arrivals, as in the low-angle
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TABLE 63.3 Summary of 1-D Unitary ESPRIT in DFT Beamspace

0. Transformation to Beamspace: Y = WH
B

X ∈ C
B×N

1. Signal Subspace Estimation: Compute Es ∈ R
B×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N
.

2. Solution of the Invariance Equation: Solve

0
(B)
1 Es︸ ︷︷ ︸

R
(B−1)×d

ϒ ≈ 0
(B)
2 Es︸ ︷︷ ︸

R
(B−1)×d

by means of LS, TLS, or SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the resulting real-valued solution

ϒ = T � T −1 ∈ R
d×d

with � = diag
{
ωi

}d
i=1

• µi = 2 arctan
(
ωi

)
, 1 ≤ i ≤ d

FIGURE 63.3: Structure of the selection matrices 01 and 02 for a ULA of M = 8 sensors. The
symbol × denotes entries of both selection matrices that might be nonzero. The shaded areas
illustrate how to choose the appropriate subblocks of the selection matrices for reduced dimension

processing, i.e., how to form 0
(B)
1 and 0

(B)
2 , if only B = 3 successive rows of WH

8 are applied to the
data matrix X. Here, the following two examples are used: (a) rows 4, 5, and 6. (b) rows 8, 1,
and 2.

radar tracking scheme described by Zoltowski and Lee [26], the corresponding 2× 3 subblock of the
selection matrices 01 and 02 is shaded in Fig. 63.3 (a).5 Notice that the first and the last (Mth) row
of WH

M steer beams that are also physically adjacent to one another (the wrap-around property of the
DFT). If, for example, one employed rows 8, 1, and 2 of WH

8 to form B = 3 beams in estimating the
DOAs of two closely spaced signal arrivals, the corresponding subblocks of the selection matrices 01
and 02 are shaded in Fig. 63.3 (b).6

5 Here, the first row of 0
(3)
1 and 0

(3)
2 combines beams 4 and 5, while the second row of 0

(3)
1 and 0

(3)
2 combines beams

5 and 6.
6Here, the first row of 0

(3)
1 and 0

(3)
2 combines beams 1 and 2, while the second row of 0

(3)
1 and 0

(3)
2 combines beams

1 and 8.
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63.4 UCA-ESPRIT for Circular Ring Arrays

FIGURE 63.4: Definitions of azimuth (−180◦ < φi ≤ 180◦) and elevation (0◦ ≤ θi ≤ 90◦). The
direction cosines ui and vi are the rectangular coordinates of the projection of the corresponding
point on the unit ball onto the equatorial plane.

UCA-ESPRIT [15, 16, 17] is a 2-D angle estimation algorithm developed for use with uniform
circular arrays (UCAs). The algorithm provides automatically paired azimuth and elevation angle
estimates of far-field signals incident on the UCA via a closed-form procedure. The rotational
symmetry of the UCA makes it desirable for a variety of applications where one needs to discriminate
in both azimuth and elevation, as opposed to just conical angle of arrival which is all the ULA can
discriminate on. For example, UCAs are commonly employed as part of an anti-jam spatial filter for
GPS receivers. Some experimental UCA based systems are described in [4]. The development of a
closed-form 2-D angle estimation technique for a UCA provides further motivation for the use of a
UCA in a given application.

Consider an M element UCA in which the array elements are uniformly distributed over the
circumference of a circle of radius R. We will assume that the array is located in the x-y plane, with
its center at the origin of the coordinate system. The elevation angles θi and azimuth angles φi of
the d impinging sources are defined in Fig. 63.4, as are the direction cosines ui and vi, 1 ≤ i ≤ d .
UCA-ESPRIT is premised on phase mode excitation-based beamforming. The maximum phase
mode (integer valued) excitable by a given UCA is

K ≈ 2πR

λ
,

where λ is the common (carrier) wavelength of the incident signals. Phase mode excitation-based
beamforming requires M > 2K array elements (M = 2K + 3 is usually adequate). UCA-ESPRIT
can resolve a maximum of dmax = K −1 sources. As an example, if the array radius is r = λ, K = 6
(the largest integer smaller than 2π) and at least M = 15array elements are needed. UCA-ESPRIT
can resolve five sources in conjunction with this UCA.

UCA-ESPRIT operates in aK ′ = 2K+1dimensional beamspace. It employs aK ′×M beamform-
ing matrix to transform from element space to beamspace. After this transformation, the algorithm
has the same three basic steps of any ESPRIT-type algorithm: (1) the computation of a basis for the
signal subspace, (2) the solution to an (in general) overdetermined system of equations derived from
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the matrix of vectors spanning the signal subspace, and (3) the computation of the eigenvalues of the
solution to the system of equations formed in Step (2). As illustrated in Fig. 63.6, the ith eigenvalue
obtained in the final step is ideally of the form ξi = sinθi ejφi , where φi and θi are the azimuth and
elevation angles of the ith source. Note that

ξi = sinθi ejφi = ui + jvi, 1 ≤ i ≤ d,

where ui and vi are the direction cosines of the ith source relative to the x- and y-axis, respectively,
as indicated in Fig. 63.4.

The formulation of UCA-ESPRIT is based on the special structure of the resulting K ′-dimensional
beamspace manifold. The following vector and matrix definitions are needed to summarize the
algorithm in Table 63.4.

vH
k = 1

M

[
1 ejk 2π

M ej2k 2π
M · · · ej(M−1)k 2π

M

]
(63.28)

V = √
M

[
v−K · · · v−1 v0 v1 · · · vK

] ∈ C
M×K ′

Cv = diag
{

jk
}K

k=−K
∈ C

K ′×K ′

FH
r = QT

K ′CvV
H ∈ C

K ′×M (63.29)

Co = diag
{
sign(k)−k

}K

k=−K
∈ R

K ′×K ′

D = diag
{
(−1)|k|}K

k=−(K−2)
∈ R

(K ′−2)×(K ′−2)

0 = λ

πr
· diag {k}(K−1)

k=−(K−1) ∈ R
(K ′−2)×(K ′−2)

Note that the columns of the matrixV consist of the DFT weight vectorsvk defined in Eq. (63.28). The
beamforming matrix FH

r in Eq. (63.29) synthesizes a real-valued beamspace manifold and facilitates
signal subspace estimation via a real-valued SVD or eigendecomposition. Recall that the sparse left

5-real matrixQK ′ ∈ C
K ′×K ′

has been defined in Eq. (63.13). The complete UCA-ESPRIT algorithm
is summarized in Table 63.4.

63.4.1 Results of Computer Simulations

Simulations were conducted with a UCA of radius R = λ, with K = 6 and M = 19 (perfor-
mance close to that reported below can be expected even if M = 15 elements are employed).
The simulation employed two sources with arrival angles given by (θ1, φ1) = (72.73◦, 90◦) and
(θ2, φ2) = (50.44◦, 78◦). The sources were highly correlated, with the correlation coefficient re-
ferred to the center of the array being 0.9ej

π
4 . The signal-to-noise ratio (SNR) was 10 dB (per array

element) for each source. The number of snapshots was N = 64, and arrival angle estimates were
obtained for 200 independent trials. Figure 63.5 depicts the results of the simulation. Here, the
UCA-ESPRIT eigenvalues ξi are denoted by the symbol ×.7 The results from all 200 trials are super-
imposed in the figure. The eigenvalues are seen to be clustered around the expected locations (the
dashed circles indicate the true elevation angles).

7 The horizontal axis represents Re{ξi }, and the vertical axis represents Im{ξi }.
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TABLE 63.4 Summary of UCA-ESPRIT

0. Transformation to Beamspace: Y = FH
r X ∈ C

K′×N

1. Signal Subspace Estimation: Compute Es ∈ R
K′×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

K′×2N
.

2. Solution of the Invariance Equation:

• Compute Eu = CoQK′Es . Form the matrix E−1 that consists of all but the last two rows of Eu. Similarly
form the matrix E0 that consists of all but the first and last rows of Eu.

• Compute 9 ∈ C
2d×d

, the least squares solution to the system

[
E−1 D5(K′−2)E−1

]
9 = 0E0 ∈ C

(K′−2)×d
.

Recall that the overbar denotes complex conjugation. Form 9 by extracting the upper d × d block from 9.
Note that 9 can be computed efficiently by solving a real-valued system of 2d equations (see [17]).

3. Spatial Frequency Estimation: Compute the eigenvalues ξi , 1 ≤ i ≤ d, of 9 ∈ C
d×d

. The estimates of the elevation
and azimuth angles of the ith source are

θi = arcsin(|ξi |) and φi = arg(ξi ),

respectively. If direction cosine estimates are desired, we have

ui = Re{ξi } and vi = Im{ξi }.
Again, ξi can be efficiently computed via a real-valued EVD (see [17]).

63.5 FCA-ESPRIT for Filled Circular Arrays

The use of a circular ring array and the attendant use of UCA-ESPRIT is ideal for applications where
the array aperture is not very large as on the top of a mobile communications unit. For much larger
array apertures as in phased array surveillance radars, too much of the aperture is devoid of elements
so that a lot of the signal energy impinging on the aperture is not intercepted. As an example, each of
the four panels comprising either the SPY-1A or SPY-1B radars of the AEGIS series is composed of
4400 identical elements regularly spaced on a flat panel over a circular aperture [19]. The sampling
lattice is hexagonal. Recent prototype arrays for satellite-based communications have also employed
the filled circular array geometry [2].

This section presents an algorithm similar to UCA-ESPRIT that provides the same closed-form
2-D angle estimation capability for a Filled Circular Array (FCA). Similar to UCA-ESPRIT, the far
field pattern arising from the sampled excitation is approximated by the far field pattern arising from
the continuous excitation from which the sampled excitation is derived through sampling. (Note,
Steinberg [20] shows that the array pattern for a ULA of N elements with interelement spacing d is
nearly identical to the far field pattern for a continuous linear aperture of length (N + 1)d , except
near the fringes of the visible region.) That is, it is assumed that the interelement spacings have
been chosen so that aliasing effects are negligible as in the generation of phase modes with a single
ring array. It can be shown that this is the case for any sampling lattice as long as the inter-sensor
spacings is roughly half a wavelength or less on the average and that the sources of interest are at
least 20◦ in elevation above the plane of the array, i.e., we require that the elevation angle of the ith
source satisfies 0 ≤ θi ≤ 70◦. In practice, many phased arrays only provide reliable coverage for
0 ≤ θi ≤ 60o (plus or minus 60◦ away from boresite) due to a reduced aperture effect and the fact
that the gain of each individual antenna has a significant roll-off at elevation angles near the horizon,
i.e., the plane of the array. FCA-ESPRIT has been successfully applied to rectangular, hexagonal,
polar raster, and random sampling lattices.

The key to the development of UCA-ESPRIT was phase-mode (DFT) excitation and exploitation
of a recurrence relationship that Bessel functions satisfy. In the case of a filled circular array, the same
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FIGURE 63.5: Plot of the UCA-ESPRIT eigenvalues ξ1 = sinθ1e
jφ1 and ξ2 = sinθ2e

jφ2 for 200 trials.

type of processing is facilitated by the use of a phase-mode dependent aperture taper derived from
an integral relationship that Bessel functions satisfy.

Consider an M element FCA where the array elements are distributed over a circular aperture of
radius R. We assume that the array is centered at the origin of the coordinate system and contained
in the x-y plane. The ith element is located at a radial distance ri from the origin and at an angle γi

relative to the x-axis measured counter-clockwise in the x-y plane. In contrast to a UCA, 0 ≤ ri ≤ R,
i.e., the elements lie within, rather than on, a circle of radius R. The beamforming weight vectors
employed in FCA-ESPRIT are

wm = 1

M




A1
(

r1
R

)|m|
e−jmγ1

...

Ai

(
ri
R

)|m|
e−jmγi

...

AM

(
rM
R

)|m|
e−jmγM




, (63.30)

where m ranges from −K to K with K ≈ 2πR
λ

. Here Ai is proportional to the area surrounding the
ith array element. Ai is a constant (and can be omitted) for hexagonal and rectangular lattices and
proportional to the radius (Ai = ri) for a polar raster. The transformation from element space to
beamspace is effected through pre-multiplication by the beamforming matrix

W = √
M

[
w−K · · · w−1 w0 w1 · · · wK

] ∈ C
M×K ′

(K ′ = 2K + 1). (63.31)

The following matrix definitions are needed to summarize FCA-ESPRIT.

B = WC ∈ C
M×K ′

(63.32)

C = diag
{
sign(k) · jk

}K

k=−K
∈ C

K ′×K ′
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FIGURE 63.6: Illustrating the form of signal roots (eigenvalues) obtained with UCA-ESPRIT or
FCA-ESPRIT.

Br = BFQ̄K ′ ∈ C
M×K ′

F = diag
(
[(−1)−M−1, · · · , (−1)−2, 1, 1, · · · , 1]

)
∈ R

K ′×K ′

0 = λ

πR
diag([

M−1︷ ︸︸ ︷
−M, · · · , −3, −2, 0,

M−1︷ ︸︸ ︷
2, · · · , M]) ∈ R

(K ′−2)×(K ′−2)

C1 = diag([
M−2︷ ︸︸ ︷

1, · · · , 1, −1, −1,

M−1︷ ︸︸ ︷
1, · · · , 1]) ∈ R

(K ′−2)×(K ′−2)

The whole algorithm is summarized in Table 63.5. The beamforming matrix BH
r synthesizes a

real-valued manifold that facilitates signal subspace estimation via a real-valued SVD or eigenvalue
decomposition in the first step. As in UCA-ESPRIT, the eigenvalues of 9 computed in the final step
are asymptotically of the form sin(θi)e

jφi , where θi and φi are the elevation and azimuth angles of
the ith source, respectively.

63.5.1 Computer Simulation

As an example, a simulation involving a random filled array is presented. The element locations
are depicted in Fig. 63.7. The outer radius is R = 5λ and the average distance between elements
is λ/4. Two plane waves of equal power were incident upon the array. The Signal to Noise Ratio
(SNR) per antenna per signal was 0 dB. One signal arrived at 10◦ elevation and 40◦ azimuth, while
the other arrived at 30◦ elevation and 60◦ azimuth. Figure 63.8 shows the results of 32 independent
trials of FCA-ESPRIT overlaid; each execution of the algorithm (with a different realization of the
noise) produced two eigenvalues. The eigenvalues are observed to be clustered around the expected
locations (the dashed circles indicate the true elevation angles).

63.6 2-D Unitary ESPRIT

For uniform circular arrays and filled circular arrays, UCA-ESPRIT and FCA-ESPRIT provide closed-
form, automaticallypaired2-Dangle estimates as longas thedirectioncosinepairof each signal arrival
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TABLE 63.5 Summary of FCA-ESPRIT

0. Transformation to Beamspace: Y = BH
r X

1. Signal Subspace Estimation: Compute Es ∈ R
K′×d

as the d dominant left singular vector of[
Re {Y } Im {Y } ] ∈ R

K′×2N
.

2. Solution of the Invariance Equation:

• Compute Eu = FQK′Es . Form the matrices E−1, E0, and E1 that consist of all but the last two, first and
last, and first two rows, respectively.

• Compute 9 ∈ C
2d×d

, the least squares solution to the system

[
E−1 C1E1

]
9 = 0E0 ∈ C

(K′−2)×d
.

Form 9 by extracting the upper d × d block from 9.

3. Spatial Frequency Estimation: Compute the eigenvalues ξi , 1 ≤ i ≤ d , of 9 ∈ C
d×d

. The estimates of the
elevation and azimuth angles of the ith source are

θi = arcsin(|ξi |) and φi = arg(ξi ),

respectively.

FIGURE 63.7: Random filled array.

is unique. In this section, we develop 2-D Unitary ESPRIT, a closed-form 2-D angle estimation algo-
rithm that achieves automatic pairing in a similar fashion. It is applicable to 2-D centro-symmetric
array configurations with a dual invariance structure such as uniform rectangular arrays (URAs).
In the derivations of UCA-ESPRIT and FCA-ESPRIT it was necessary to approximate the sampled
aperture pattern by the continuous aperture pattern. Such an approximation is not required in the
development of 2-D Unitary ESPRIT.

Apart from the 2-D extension presented here, Unitary ESPRIT has also been extended to the
R-dimensional case to solve the R-dimensional harmonic retrieval problem, where R ≥ 3. R-D
Unitary ESPRIT is a closed-form algorithm to estimate several undamped R-dimensional modes
(or frequencies) along with their correct pairing. In [6], automatic pairing of the R-dimensional
frequency estimates is achieved through a new simultaneous Schur decomposition of R real-valued,
non-symmetric matrices that reveals their “average eigenstructure”. Like its 1-D and 2-D coun-
terparts, R-D Unitary ESPRIT inherently includes forward-backward averaging and is efficiently
formulated in terms of real-valued computations throughout. In the array processing context, a
three-dimensional extension of Unitary ESPRIT can be used to estimate the 2-D arrival angles and
carrier frequencies of several impinging wavefronts simultaneously.
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FIGURE 63.8: Plot of the FCA-ESPRIT eigenvalues from 32 independent trials.

63.6.1 2-D Array Geometry

Consider a 2-D centro-symmetric sensor array of M elements lying in the x-y plane (Fig. 63.4).
Assume that the array also exhibits a dual invariance, i.e., two identical subarrays of mx elements are
displaced by 1x along the x-axis, and another pair of identical subarrays, consisting of my elements
each, is displaced by 1y along the y-axis. Notice that the four subarrays can overlap and mx is not
required to equalmy . Such array configurations include uniform rectangular arrays (URAs), uniform
rectangular frame arrays (URFAs), i.e., URAs without some of their center elements, and cross arrays
consisting of two orthogonal linear arrays with a common phase center as shown in Fig. 63.9.8

FIGURE 63.9: Centro-symmetric array configurations with a dual invariance structure: (a) URA
with M = 12, mx = 9, my = 8. (b) URFA with M = 12, mx = my = 6. (c) Cross array with
M = 10, mx = 3, my = 5. (d) M = 12, mx = my = 7.

Incident on the array are d narrowband planar wavefronts with wavelength λ, azimuth φi , and
elevation θi , 1 ≤ i ≤ d . Let

ui = cosφi sinθi and vi = sinφi sinθi, 1 ≤ i ≤ d,

denote the direction cosines of the ith source relative to the x- and y-axes, respectively. These
definitions are illustrated in Fig. 63.4. The fact that ξi = ui + jvi = sinθi ejφi yields a simple formula

8 In the examples of Fig. 63.9, all values of mx and my correspond to selection matrices with maximum overlap in both
directions. For a URA of M = Mx · My elements, cf. Fig. 63.9 (a), this assumption implies mx = (Mx − 1)My and
my = Mx

(
My − 1

)
.
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FIGURE 63.10: Subarray selection for a URA of M = 4 ·4 = 16sensor elements (maximum overlap
in both directions: mx = my = 12).

to determine azimuth φi and elevation θi from the corresponding direction cosines ui and vi , namely

φi = arg(ξi) and θi = arcsin(|ξi |) , with ξi = ui + jvi, 1 ≤ i ≤ d. (63.33)

Similar to the 1-D case, the data matrix X is an M ×N matrix composed of N snapshots x(tn), 1 ≤
n ≤ N, of data as columns. Referring to Fig. 63.10 for a URA of M = 4 × 4 = 16 sensors as an
illustrative example, the antenna element outputs are stacked columnwise. Specifically, the first
element of x(tn) is the output of the antenna in the upper left corner. Then sequentially progress
downwards along the positive x-axis such that the fourth element ofx(tn) is the output of the antenna
in the bottom left corner. The fifth element of x(tn) is the output of the antenna at the top of the
second column; the eighth element of x(tn) is the output of the antenna at the bottom of the second
column, etc. This forms a 16× 1 vector at each sampling instant tn.

Similar to the 1-D case, the array measurements may be expressed as x(t) = As(t) + n(t) ∈ C
M .

Due to the centro-symmetry of the array, the steering matrix A ∈ C
M×d satisfies Eq. (63.12). The

goal is to construct two pairs of selection matrices that are centro-symmetric with respect to each
other, i.e.,

Jµ2 = 5mx Jµ15M and J ν2 = 5my J ν15M, (63.34)

and cause the array steering matrix A to satisfy the following two invariance properties,

Jµ1A8µ = Jµ2A and J ν1A8ν = J ν2A, (63.35)

where the diagonal matrices

8µ = diag
{
ejµi

}d

i=1 and 8ν = diag
{
ejνi

}d

i=1 (63.36)

are unitary and contain the desired 2-D angle information. Here µi = 2π
λ

1xui and νi = 2π
λ

1yvi

are the spatial frequencies in x- and y-direction, respectively.
Figure 63.10 visualizes a possible choice of the selection matrices for a URA of M = 4 × 4 = 16

sensor elements. Given the stacking procedure described above and the 1-D selection matrices for a
ULA of 4 elements

J
(4)
1 =


 1 0 0 0

0 1 0 0
0 0 1 0


 and J

(4)
2 =


 0 1 0 0

0 0 1 0
0 0 0 1


 ,
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the appropriate selection matrices corresponding to maximum overlap are

Jµ1 = IMy ⊗ J
(Mx)
1 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0




∈ R
12×16

Jµ2 = IMy ⊗ J
(Mx)
2 =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




∈ R
12×16

J ν1 = J
(My)

1 ⊗ IMx =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




∈ R
12×16
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J ν2 = J
(My)

2 ⊗ IMx =




0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




∈ R
12×16,

where Mx = My = 4. Notice, however, that it is not required to compute all four selection
matrices explicitly, since they are related via Eq. (63.34). In fact, to be able to compute the four
transformed selection matrices for 2-D Unitary ESPRIT, it is sufficient to specify Jµ2 and J ν2,
cf. (63.38) and (63.39).

63.6.2 2-D Unitary ESPRIT in Element Space

Similar to Eq. (63.16) in the 1-D case, let us define the transformed 2-D array steering matrix
as D = QH

MA. Based on the two invariance properties of the 2-D array steering matrix A in
Eq. (63.35), it is a straightforward 2-D extension of the derivation of 1-D Unitary ESPRIT to show
that the transformed array steering matrix D satisfies

Kµ1D · �µ = Kµ2D and Kν1D · �ν = Kν2D, (63.37)

where the two pairs of transformed selection matrices are defined as

Kµ1 = 2 · Re{QH
mx

Jµ2 QM} Kµ2 = 2 · Im{QH
mx

Jµ2 QM} (63.38)

Kν1 = 2 · Re{QH
my

J ν2 QM} Kν2 = 2 · Im{QH
my

J ν2 QM} (63.39)

and the real-valued diagonal matrices

�µ = diag
{
tan

(µi

2

)}d

i=1
and �ν = diag

{
tan

(νi

2

)}d

i=1
(63.40)

contain the desired (spatial) frequency information.
Given the noise-corrupted data matrix X, a real-valued matrix Es , spanning the dominant sub-

space of T (X), is obtained as described in Section 63.3.1 for the 1-D case. Asymptotically or without
additive noise, Es and D span the same d-dimensional subspace, i.e., there is a nonsingular matrix T

of size d×d such that D ≈ EsT . Substituting this relationship into Eq. (63.37) yields two real-valued
invariance equations

Kµ1Esϒµ ≈ Kµ2Es ∈ R
mx×d and Kν1Esϒν ≈ Kν2Es ∈ R

my×d , (63.41)

where ϒµ = T �µ T −1 ∈ R
d×d and ϒν = T �ν T −1 ∈ R

d×d . Thus, ϒµ and ϒν are related with
the diagonal matrices �µ and �ν via eigenvalue preserving similarity transformations. Moreover,
the real-valued matrices ϒµ and ϒν share the same set of eigenvectors. As in the 1-D case, the two
real-valued invariance equations (63.41) can be solved independently via LS, TLS, or SLS [9]. As
an alternative, they may be solved jointly via 2-D SLS, which is a 2-D extension of structured least
squares (SLS) [8].

c©1999 by CRC Press LLC



63.6.3 Automatic Pairing of the 2-D Frequency Estimates

Asymptotically or without additive noise, the real-valued eigenvalues of the solutions ϒµ ∈ R
d×d

and ϒν ∈ R
d×d to the invariance equations above are given by tan(µi/2) and tan(νi/2), respectively.

If theses eigenvalues were calculated independently, it would be quite difficult to pair the resulting two
distinct sets of frequency estimates. Notice that one can choose a real-valued eigenvector matrix T

such that all matrices that appear in the spectral decompositions of ϒµ = T �µ T −1 and ϒν =
T �ν T −1 are real-valued. Moreover, the subspace spanned by the columns of T ∈ R

d×d is unique.
These observations are critical to achieve automatic pairing of the spatial frequencies µi and νi ,
1 ≤ i ≤ d .

With additive noise and a finite number of snapshots N , however, the real-valued matrices ϒµ

and ϒν do not exactly share the same set of eigenvectors. To determine an approximation of the set
of common eigenvectors from one of these matrices is, obviously, not the best solution, since this
strategy would rely on an arbitrary choice and would also discard information contained in the other
matrix. Moreover, ϒµ and ϒν might have some degenerate (multiple) eigenvalues, while both of
them have well determined common eigenvectors T (for N → ∞ or σ 2

N → 0). 2-D Unitary ESPRIT
circumvents these difficulties and achieves automatic pairing of the spatial frequency estimates µi and
νi by computing the eigenvalues of the “complexified” matrix ϒµ + jϒν since this complex-valued
matrix may be spectrally decomposed as

ϒµ + jϒν = T
(
�µ + j�ν

)
T −1. (63.42)

Here, automatically paired estimates of �µ and �ν in Eq. (63.40) are given by the real and imaginary
parts of the complex eigenvalues of ϒµ + jϒν . The maximum number of sources 2-D Unitary
ESPRIT can handle is the minimum of mx and my , assuming that at least d/2 snapshots are available.
If only a single snapshot is available (or more than two sources are highly correlated), one can
extract d/2 or more identical subarrays out of the overall array to get the effect of multiple snapshots
(spatial smoothing), thereby decreasing the maximum number of sources that can be handled. A
brief summary of the described element space implementation of 2-D Unitary ESPRIT is given in
Table 63.6.

TABLE 63.6 Summary of 2-D Unitary ESPRIT in Element Space

1. Signal Subspace Estimation: Compute Es ∈ R
M×d

as the d dominant left singular vectors of T (X) ∈ R
M×2N

.

2. Solution of the Invariance Equations: Solve

Kµ1Es︸ ︷︷ ︸
Rmx×d

ϒµ ≈ Kµ2Es︸ ︷︷ ︸
Rmx×d

and Kν1Es︸ ︷︷ ︸
R

my×d

ϒν ≈ Kν2Es︸ ︷︷ ︸
R

my×d

by means of LS, TLS, SLS, or 2-D SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the complex-valued d × d matrix

ϒµ + jϒν = T 3 T −1 with 3 = diag
{
λi

}d
i=1

• µi = 2 arctan
(
Re

{
λi

})
, 1 ≤ i ≤ d

• νi = 2 arctan
(
Im

{
λi

})
, 1 ≤ i ≤ d

It is instructive to examine a very simple numerical example. Consider a uniform rectangular
array (URA) of M = 2 × 2 = 4 sensor elements, i.e., Mx = My = 2. Effecting maximum overlap,
we have mx = my = 2. For the sake of simplicity, assume that the true covariance matrix of the
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noise-corrupted measurements

Rxx = E{x(t)xH (t)} = ARssA
H + σ 2

NI4 =




3 0 1− j −1 + j

0 3 1− j 1 − j

1 + j 1 + j 3 0
−1 − j 1 + j 0 3




is known. Here, Rss = E{s(t)sH (t)} ∈ C
d×d denotes the unknown signal covariance matrix.

Furthermore, the measurement vector x(t) is defined as

x(t) = [
x11(t) x12(t) x21(t) x22(t)

]T
. (63.43)

In this example, we have to use a covariance approach instead of the direct data approach summarized
in Table 63.6, since the array measurements x(t) themselves are not known. To this end, we will
compute theeigendecompositionof the realpartof the transformedcovariancematrix as, for instance,
discussed in [25]. According to Eq. (63.13), the left 5-real transformation matrices QM and Qmx

=
Qmy

take the form

Q4 = 1√
2




1 0 j 0
0 1 0 j

0 1 0 −j

1 0 −j 0


 and Q2 = 1√

2

[
1 j

1 −j

]
,

respectively. Therefore, we have

RQ = Re
{
QH

4 RxxQ4

}
= QH

4 RxxQ4 =




2 1 1 −1
1 4 −1 −1
1 −1 4 −1

−1 −1 −1 2


 . (63.44)

The eigenvalues of RQ are given by %1 = 5, %2 = 5, %3 = 1, and %4 = 1. Clearly, %1 and %2 are
the dominant eigenvalues, and the variance of the additive noise is identified as σ 2

N = %3 = %4 = 1.
Therefore, there are d = 2 impinging wavefronts. The columns of

Es =




1 0
1 1
1 −1

−1 0




contain eigenvectors of RQ corresponding to the d = 2 largest eigenvalues %1 and %2. The four
selection matrices

Jµ1 =
[

1 0 0 0
0 0 1 0

]
, Jµ2 =

[
0 1 0 0
0 0 0 1

]
,

J ν1 =
[

1 0 0 0
0 1 0 0

]
, J ν2 =

[
0 0 1 0
0 0 0 1

]
,

are constructed in accordance with Eq. (63.43), cf. Fig. 63.10, yielding

Kµ1 =
[

1 1 0 0
0 0 1 1

]
, Kµ2 =

[
0 0 −1 1
1 −1 0 0

]
,

Kν1 =
[

1 1 0 0
0 0 1 −1

]
, Kν2 =

[
0 0 −1 −1
1 −1 0 0

]
,

c©1999 by CRC Press LLC



according to Eq. (63.38) and Eq. (63.39). With these definitions, the invariance equations (63.41)
turn out to be[

2 1
0 −1

]
ϒµ ≈

[ −2 1
0 −1

]
and

[
2 1
2 −1

]
ϒν ≈

[
0 1
0 −1

]
.

Solving these matrix equations, we get

ϒµ =
[ −1 0

0 1

]
and ϒν =

[
0 0
0 1

]
.

Finally, the eigenvalues of the “complexified” 2 × 2 matrix ϒµ + jϒν are observed to be λ1 = −1
and λ2 = 1 + j, corresponding to the spatial frequencies

µ1 = −π

2
, ν1 = 0 and µ2 = π

2
, ν2 = π

2
.

If we assume that 1x = 1y = λ/2, the direction cosines are given by ui = µi/π and vi = νi/π, i =
1, 2. According to Eq. (63.33), the corresponding azimuth and elevation angles can be calculated as

φ1 = 180◦, θ1 = 30◦, and φ2 = 45◦, θ2 = 45◦.

63.6.4 2-D Unitary ESPRIT in DFT Beamspace

Here, we will restrict the presentation of 2-D Unitary ESPRIT in DFT beamspace to uniform rectan-
gular arrays (URAs) of M = Mx · My identical sensors, cf. Fig. 63.10.9 Without loss of generality,
assume that the M sensors are omnidirectional and that the centroid of the URA is chosen as the
phase reference.

Let us form Bx out of Mx beams in x-direction and By out of My beams in y-direction, yielding
a total of B = Bx · By beams. Then the corresponding scaled DFT-matrices WH

Bx
∈ C

Bx×Mx and

WH
By

∈ C
By×My are formed as discussed in Section 63.3.2. Now, viewing the array output at a given

snapshot as an Mx ×My matrix, premultiply this matrix by WH
Bx

and postmultiply it by WBy .10 Then
apply the vec{·}-operator, and place the resulting B ×1vector (B = Bx ·By) as a column of a matrix
Y ∈ C

B×N . The vec{·}-operator maps a Bx × By matrix to a B × 1 vector by stacking the columns
of the matrix. Note that if X denotes the M × N complex-valued element space data matrix, it is
easy to show that the relationship between Y and X may be expressed as Y = (WH

By
⊗ WH

Bx
)X [24].

Here, the symbol ⊗ denotes the Kronecker matrix product [5].
Let the columns of Es ∈ R

B×d contain the d left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N (63.45)

corresponding to itsd largest singular values. To setup two invariance equations similar toEq. (63.41),
but with a reduced dimensionality, let us define the selection matrices

0µ1 = IBy ⊗ 0
(Bx)
1 and 0µ2 = IBy ⊗ 0

(Bx)
2 (63.46)

9 In [24], we have also described how to use 2-D Unitary ESPRIT in DFT beamspace for cross arrays as depicted in
Fig. 63.9 (c).
10 This can be achieved via a 2-D FFT with appropriate scaling.
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of size bx × B for the x-direction (bx = (Bx − 1) · By) and

0ν1 = 0
(By)

1 ⊗ IBx and 0ν2 = 0
(By)

2 ⊗ IBx (63.47)

of size by × B for the y-direction (by = Bx · (By − 1)). Then ϒµ ∈ R
d×d and ϒν ∈ R

d×d can be
calculated as the LS, TLS, SLS, or 2-D SLS solution of

0µ1Esϒµ ≈ 0µ2Es ∈ R
bx×d and 0ν1Esϒν ≈ 0ν2Es ∈ R

by×d , (63.48)

respectively. Finally, the desired automatically paired spatial frequency estimates µi and νi , 1 ≤ i ≤
d , are obtained from the real and imaginary part of the eigenvalues of the “complexified” matrix
ϒµ + jϒν as discussed in Section 63.6.2. Here, the maximum number of sources we can handle is
given by the minimum of bx and by , assuming that at least d/2 snapshots are available. A summary
of 2-D Unitary ESPRIT in DFT beamspace is presented in Table 63.7.

TABLE 63.7 Summary of 2-D Unitary ESPRIT in DFT Beamspace

0. Transformation toBeamspace: Computea2-DDFT(withappropriate scaling)of theMx×My matrixof arrayoutputs

at each snapshot, apply the vec{·}-operator, and place the result as a column of Y H⇒ Y =
(
WH

By
⊗ WH

Bx

)
X ∈

C
B×N

(B = Bx · By).

1. Signal Subspace Estimation: Compute Es ∈ R
B×d

as the d dominant left singular vectors of[
Re {Y } Im {Y } ] ∈ R

B×2N
.

2. Solution of the Invariance Equations: Solve

0µ1Es︸ ︷︷ ︸
Rbx×d

ϒµ ≈ 0µ2Es︸ ︷︷ ︸
Rbx×d

and 0ν1Es︸ ︷︷ ︸
R

by×d

ϒν ≈ 0ν2Es︸ ︷︷ ︸
R

by×d

bx = (Bx − 1) · By by = Bx · (By − 1)

by means of LS, TLS, SLS, or 2-D SLS.

3. Spatial Frequency Estimation: Calculate the eigenvalues of the complex-valued d × d matrix

ϒµ + jϒν = T 3 T −1 with 3 = diag
{
λi

}d
i=1

• µi = 2 arctan
(
Re

{
λi

})
, 1 ≤ i ≤ d

• νi = 2 arctan
(
Im

{
λi

})
, 1 ≤ i ≤ d

63.6.5 Simulation Results

Simulations were conducted employing a URA of 8 × 8 elements, i.e., Mx = My = 8, with 1x =
1y = λ/2. The source scenario consisted of d = 3 equi-powered, uncorrelated sources located at
(u1, v1) = (0, 0), (u2, v2) = (1/8, 0), and (u3, v3) = (0, 1/8), where ui and vi are the direction
cosines of the ith source relative to the x- and y-axes, respectively. Notice that sources 1 and 2 have
the same v-coordinates, while sources 2 and 3 have the same u-coordinates. A given trial run at
a given SNR level (per source per element) involved N = 64 snapshots. The noise was i.i.d. from
element to element and from snapshot to snapshot. The RMS error defined as

RMSEi =
√

E{(ûi − ui)2} + E{(v̂i − vi)2}, i = 1, 2, 3, (63.49)

was employed as the performance metric. Let (ûik , v̂ik ) denote the coordinate estimates of the ith
source obtained at the kth run. Sample performance statistics were computed from K = 1000
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FIGURE 63.11: RMS error of source 1 at (u1, v1) = (0, 0) in the u-v plane as a function of the SNR
(8 × 8 sensors, N = 64, 1000trial runs).

FIGURE 63.12: RMS error of source 2 at (u2, v2) = (1/8, 0) in the u-v plane as a function of the
SNR (8 × 8 sensors, N = 64, 1000trial runs).
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FIGURE 63.13: RMS error of source 3 at (u3, v3) = (0, 1/8) in the u-v plane as a function of the
SNR (8 × 8 sensors, N = 64, 1000trial runs).

independent trials as

̂RMSEi =
√√√√ 1

K

T∑
k=1

{
(ûik − ui)2 + (v̂ik − vi)2

}
, i = 1, 2, 3. (63.50)

2-D Unitary ESPRIT in DFT beamspace was implemented with a set of B = 9 beams centered at
(u, v) = (0, 0), using Bx = 3 out of Mx = 8 in x-direction (rows 8, 1, and 2 of WH

8 ) and also
By = 3 out of My = 8 in y-direction (again, rows 8, 1, and 2 of WH

8 ). Thus, the corresponding

subblocks of the selection matrices 01 ∈ R
8×8 and 02 ∈ R

8×8, used to form 0
(Bx)
1 and 0

(Bx)
2 in

Eq. (63.46) and also used to form 0
(By)

1 and 0
(By)

2 in Eq. (63.47), are shaded in Fig. 63.3 (b). The bias
of 2-D Unitary ESPRIT in element space and DFT beamspace was found to be negligible, facilitating
comparison with the Cramér-Rao (CR) lower bound [15]. The resulting performance curves are
plotted in Figs. 63.11, 63.12, and 63.13. We have also included theoretical performance predictions
of both implementations based on an asymptotic performance analysis [13, 14]. Observe that the
empirical RMSEs closely follow the theoretical predictions, except for deviations at low SNRs. The
performance of the DFT beamspace implementation is comparable to that of the element space
implementation. However, the former requires significantly less computations than the latter, since
it operates in a B = Bx · By = 9 dimensional beamspace as opposed to an M = Mx · My = 64
dimensional element space.

For SNRs lower than−9dB, theDFTbeamspace versionoutperformed the element space versionof
2-D Unitary ESPRIT. This is due to fact that the DFT beamspace version exploits a priori information
on the source locations by forming beams pointed in the general directions of the sources.
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Appendix A: Introduction to IV Methods

The main goal herein is to describe and analyze, in a unifying manner, the spatial and
temporal IV-SSF approaches recently proposed for array signal processing in colored
noise fields. (The acronym IV-SSF stands for “Instrumental Variable - Signal Subspace
Fitting”). Despite the generality of the approach taken herein, our analysis technique is
simpler than those used in previous more specialized publications. We derive a general,
optimally-weighted (optimal, for short), IV-SSF direction estimator and show that this
estimator encompasses the UNCLE estimator of Wong and Wu, which is a spatial IV-SSF
method, and the temporal IV-SSF estimator of Viberg, Stoica and Ottersten. The latter
two estimators have seemingly different forms (among others, the first of them makes
use of four weights, whereas the second one uses three weights “only”), and hence their
asymptotic equivalence shown in this paper comes as a surprising unifying result. We
hope that the present paper, along with the original works aforementioned, will stimulate
the interest in the IV-SSF approach to array signal processing, which is sufficiently flexible
to handle colored noise fields, coherent signals and indeed also situations were only some
of the sensors in the array are calibrated.

1This work was supported in part by the Swedish Research Council for Engineering Sciences (TFR).

c©1999 by CRC Press LLC



64.1 Introduction

Most parametric methods for Direction-Of-Arrival (DOA) estimation require knowledge of the
spatial (sensor-to-sensor) color of the background noise. If this information is unavailable, a serious
degradation of the quality of the estimates can result, particularly at low Signal-to-Noise Ratio
(SNR) [1, 2, 3]. A number of methods have been proposed over the recent years to alleviate the
sensitivity to thenoise color. If aparametricmodelof thecovariancematrixof thenoise is available, the
parameters of the noise model can be estimated along with those of the interesting signals [4, 5, 6, 7].
Such an approach is expected to perform well in situations where the noise can be accurately modeled
with relatively few parameters. An alternative approach, which does not require a precise model of
the noise, is based on the principle of Instrumental Variables (IV). See [8, 9] for thorough treatments
of IV methods (IVM) in the context of identification of linear time-invariant dynamical systems. A
brief introduction is given in the appendix of this chapter. Computationally simple IVMs for array
signal processing appeared in [10, 11]. These methods perform poorly in difficult scenarios involving
closely spaced DOAs and correlated signals.

More recently, the combined Instrumental Variable Signal Subspace Fitting (IV-SSF) technique
has been proposed as a promising alternative to array signal processing in spatially colored noise
fields [12, 13, 14, 15]. The IV-SSF approach has a number of appealing advantages over other DOA
estimation methods. These advantages include:

• IV-SSF can handle noises with arbitrary spatial correlation, under minor restrictions on
the signals or the array. In addition, estimation of a noise model is avoided, which leads
to statistical robustness and computational simplicity.

• The IV-SSF approach is applicable to both non-coherent and coherent signal scenarios.

• The spatial IV-SSF technique can make use of the information contained in the output of
a completely uncalibrated subarray under certain weak conditions, which other methods
cannot.

Depending on the type of “instrumental variables” used, two classes of IV methods have appeared
in the literature:

1. Spatial IVM, for which the instrumental variables are derived from the output of a (pos-
sibly uncalibrated) subarray the noise of which is uncorrelated with the noise in the main
calibrated subarray under consideration (see [12, 13]).

2. Temporal IVM, which obtains instrumental variables from the delayed versions of the
array output, under the assumption that the temporal-correlation length of the noise
field is shorter than that of the signals (see [11, 14]).

The previous literature on IV-SSF has treated and analyzed the above two classes of spatial and
temporal methods separately, ignoring their common basis. In this contribution, we reveal the
common roots of these two classes of DOA estimation methods and study them under the same
umbrella. Additionally, we establish the statistical properties of a general (either spatial or temporal)
weighted IV-SSF method and present the optimal weights that minimize the variance of the DOA
estimation errors. In particular, we point out that the optimal four-weight spatial IV-SSF of [12, 13]
(called UNCLE there, and arrived at by using canonical correlation decomposition ideas) and the
optimal three-weight temporal IV-SSF of [14] are asymptotically equivalent when used under the
same conditions. This asymptotic equivalence property, which is a main result of the present section,
is believed to be important as it shows the close ties that exist between two seemingly different DOA
estimators.

This section is organized as follows. In Section 64.2 the data model and technical assumptions
are introduced. Next, in Section 64.3 the IV-SSF method is presented in a fairly general setting. In
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Section 64.4, the statistical performance of the method is presented along with the optimal choices of
certain user-specified quantities. The data requirements and the optimal IV-SSF (UNCLE) algorithm
are summarized in Section 64.5. The anxious reader may wish to jump directly to this point to
investigate the usefulness of the algorithm in a specific application. In Section 64.6, some numerical
examples and computer simulations are presented to illustrate the performance. The conclusions
are given in Section 64.7. In the appendix we give a brief introduction to IV methods. The reader
who is not familiar with IV might be helped by reading the appendix before the rest of the paper.
Background material on the subspace-based approach to DOA estimation can be found in Chapter 62
of this Handbook.

64.2 Problem Formulation

Consider a scenario in which n narrowband plane waves, generated by point sources, impinge on an
array comprising m calibrated sensors. Assume, for simplicity, that the n sources and the array are
situated in the same plane. Let a(θ) denote the complex array response to a unit-amplitude signal
with DOA parameter equal to θ . Under these assumptions, the output of the array, y(t) ∈ Cm×1,
can be described by the following well-known equation [16, 17]:

y(t) = Ax(t) + e(t) (64.1)

where x(t) ∈ Cn×1 denotes the signal vector, e(t) ∈ Cm×1 is a noise term, and

A = [a(θ1) · · · a(θn)] (64.2)

Hereafter, θk denotes the kth DOA parameter.
The following assumptions on the quantities in the array equation, (64.1), are considered to hold

throughout this section:
A1. The signal vector x(t) is a normally distributed random variable with zero mean and a possibly
singular covariance. The signals may be temporally correlated; in fact the temporal IV-SSF approach
relies on the assumption that the signals exhibit some form of temporal correlation (see below for
details).
A2. The noise e(t) is a random vector that is temporally white, uncorrelated with the signals and
circularly symmetric normally distributed with zero mean and unknown covariance matrix2 Q > O,

E [e(t)e∗(s)] = Q δt,s ; E [e(t)eT (s)] = O (64.3)

A3. The manifold vectors {a(θ)}, corresponding to any set of m different values of θ , are linearly
independent.

Note that assumption A1 above allows for coherent signals, and that in A2 the noise field is allowed
to be arbitrarily spatially correlated with an unknown covariance matrix. Assumption A3 is a well-
known condition that, under a weak restriction on m, guarantees DOA parameter identifiability in
the case Q is known (to within a multiplicative constant) [18]. When Q is completely unknown,
DOA identifiability can only be achieved if further assumptions are made on the scenario under
consideration. The following assumption is typical of the IV-SSF approach:

2Henceforth, the superscript “∗” denotes the conjugate transpose; whereas the transpose is designated by a superscript
“T ”. The notation A ≥ B, for two Hermitian matrices A and B, is used to mean that (A − B) is a nonnegative definite
matrix. Also, O denotes a zero matrix of suitable dimension.
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A4. There exists a vector z(t) ∈ Cm̄×1, which is normally distributed and satisfies

E [z(t)e∗(s)] = O for t ≤ s (64.4)

E [z(t)eT (s)] = O for all t, s (64.5)

Furthermore, denote

0 = E [z(t)x∗(t)] (m̄ × n) (64.6)

n̄ = rank (0) ≤ m̄ . (64.7)

It is assumed that no row of 0 is identically zero and that the inequality

n̄ > 2n − m (64.8)

holds (note that a rank-one 0 matrix can satisfy the condition (64.8) if m is large enough, and hence
the condition in question is rather weak). Owing to its (partial) uncorrelatedness with {e(t)}, the
vector {z(t)} can be used to eliminate the noise from the array output equation (64.1), and for this
reason {z(t)} is called an IV vector. Below, we briefly describe three possible ways to derive an IV
vector from the available data measured with an array of sensors (for more details on this aspect, the
reader should consult [12, 13, 14]).

EXAMPLE 64.1: Spatial IV

Assume that the n signals, which impinge on the main (sub)array under consideration, are also
received by another (sub)array that is sufficiently distanced from the main one so that the noise vectors
in the two subarrays are uncorrelated with one another. Then z(t) can be made from the outputs of
the sensors in the second subarray (note that those sensors need not be calibrated) [12, 13, 15].

EXAMPLE 64.2: Temporal IV

When a second subarray, as described above, is not available but the signals are temporally corre-
lated, one can obtain an IV vector by delaying the output vector: z(t) = [yT (t −1) yT (t −2) · · · ]T .
Clearly, such a vector z(t) satisfies (64.4) and (64.5), and it also satisfies (64.8) under weak conditions
on the signal temporal correlation. This construction of an IV vector can be readily extended to cases
where e(t) is temporally correlated, provided that the signal temporal correlation length is longer
than that corresponding to the noise [11, 14].

In a sense, the above examples are both special cases of the following more general situation:

EXAMPLE 64.3: Reference Signal

In many systems a reference or pilot signal [19, 20] z(t) (scalar or vector) is available. If the
reference signal is sufficiently correlated with all signals of interest (in the sense of (64.8)) and
uncorrelated with the noise, it can be used as an IV. Note that all signals that are not correlated with
the reference will be treated as noise. Reference signals are commonly available in communication
applications, for example a PN-code in spread spectrum communication [20] or a training signal
used for synchronization and/or equalizer training [21]. A closely related possibility is utilization of
cyclo-stationarity (or self-coherence), a property that is exhibited by many man-made signals. The
reference signal(s) can then consist, for example, of sinusoids of different frequencies [22, 23]. In
these techniques, the data is usually pre-processed by computing the auto-covariance function (or a
higher-order statistic) before correlating with the reference signal.
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The problem considered in this section concerns the estimation of the DOA vector

θ = [θ1, · · · , θn]T (64.9)

given N snapshots of the array output and of the IV vector, {y(t), z(t)}Nt=1. The number of signals,
n, and the rank of the covariance matrix 0, n̄, are assumed to be given (for the estimation of these
integer-valued parameters by means of IV/SSF-based methods, we refer to [24, 25]).

64.3 The IV-SSF Approach

Let

R̂ = ŴL

[
1

N

N∑
t=1

z(t)y∗(t)
]

ŴR (m̄ × m) (64.10)

where ŴL and ŴR are two nonsingular Hermitian weighting matrices which are possibly data-
dependent (as indicated by the fact that they are roofed). Under the assumptions made, as N → ∞,

R̂ converges to the matrix:

R = WLE[z(t)y∗(t)]WR = WL0A∗WR (64.11)

where WL and WR are the limiting weighting matrices (assumed to be bounded and nonsingular).
Owing to assumptions A2 and A3,

rank (R) = n̄ (64.12)

Hence, the Singular Value Decomposition (SVD) [26] of R can be written as

R = [U ?]
[

3 O

O O

] [
S∗
?

]
= U3S∗ (64.13)

where U∗U = S∗S = I , 3 ∈ Rn̄×n̄ is diagonal and nonsingular, and where the question marks
stand for blocks that are of no importance for the present discussion.

The following key equality is obtained by comparing the two expressions for R in Eqs. (64.11)
and (64.13) above:

S = WRAC (64.14)

where C
4= 0∗WLU3−1 ∈ Cn×n̄ has full column rank. For a given S, the true DOA vector can be

obtained as the unique solution to Eq. (64.14) under the parameter identifiability condition (64.8)
(see, e.g., [18]). In the more realistic case when S is unknown, one can make use of Eq. (64.14) to
estimate the DOA vector in the following steps.

The IV step — Compute the pre- and post-weighted sample covariance matrix R̂ in
Eq. (64.10), along with its SVD:

R̂ = [
Û ?

] [
3̂ O

O ?

] [
Ŝ

∗

?

]
(64.15)

where 3̂ contains the n̄ largest singular values. Note that Û , 3̂, and Ŝ are consistent estimates of
U , 3, and S in the SVD of R.
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The SSF step — Compute the DOA estimate as the minimizing argument of the following
signal subspace fitting criterion:

min
θ

{min
C

[vec (Ŝ − ŴRAC)]∗V̂ [vec (Ŝ − ŴRAC)]} (64.16)

where V̂ is a positive definite weighting matrix, and “vec” is the vectorization operator3. Alternatively,
one can estimate the DOA instead by minimizing the following criterion:

min
θ

{[vec (B∗Ŵ−1
R Ŝ)]∗Ŵ [vec (B∗Ŵ−1

R Ŝ)]} (64.17)

where Ŵ is a positive definite weight, and B ∈ Cm×(m−n) is a matrix whose columns form a basis
of the null-space of A∗ (hence, B∗A = 0 and rank (B) = m − n). The alternative fitting criterion
above is obtained from the simple observation that Eq. (64.14) along with the definition of B imply
that

B∗W−1
R S = 0 (64.18)

It can be shown [27] that the classes of DOA estimates derived from Eqs. (64.16) and (64.17),
respectively, are asymptotically equivalent. More exactly, for any V̂ in Eq. (64.16) one can choose
Ŵ in Eq. (64.17) so that the DOA estimates obtained by minimizing Eq. (64.16) and, respectively,
Eq. (64.17) have the same asymptotic distribution and vice-versa.

In view of the previous result, in an asymptotical analysis it suffices to consider only one of the
two criteria above. In the following, we focus on Eq. (64.17). Compared with Eq. (64.16), the
criterion (64.17) has the advantage that it depends on the DOA only. On the other hand, for a
general array there is no known closed-form parameterization of B in terms of θ . However, as shown
in the following, this is no drawback because the optimally weighted criterion (which is the one to
be used in applications) is an explicit function of θ .

64.4 The Optimal IV-SSF Method

In what follows, we deal with the essential problem of choosing the weights Ŵ , ŴR , and ŴL in
the IV-SSF criterion (64.17) so as to maximize the DOA estimation accuracy. First, we optimize the
accuracy with respect to Ŵ , and then with respect to ŴR and ŴL.

Optimal Selection of Ŵ

Define
g(θ) = vec (B∗Ŵ−1

R Ŝ) (64.19)

and observe that the criterion function in Eq. (64.17) can be written as,

g∗(θ)Ŵg(θ) (64.20)

In [27] it is shown that g(θ) (evaluated at the true DOA vector) has, asymptotically in N , a circularly
symmetric normal distribution with zero mean and the following covariance:

G(θ) = 1

N
[(WLU3−1)∗Rz(WLU3−1)]T ⊗ [B∗RyB] (64.21)

3If xk is the kth column of a matrix X, then vec (X) = [xT
1 xT

2 · · · ]T .
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where ⊗ denotes the Kronecker matrix product [28]; and where, for a stationary signal s(t), we use
the notation

Rs = E [s(t)s∗(t)] . (64.22)

Then, it follows from the ABC (Asymptotically Best Consistent) theory of parameter estimation4 that
the minimum variance estimate, in the class of estimates under discussion, is given by the minimizing

argument of the criterion in Eq. (64.20) with Ŵ = Ĝ
−1

(θ), that is

f (θ) = g∗(θ)Ĝ
−1

(θ)g(θ) (64.23)

where

Ĝ(θ) = 1

N
[(ŴLÛ3̂

−1
)∗R̂z(ŴLÛ3̂

−1
)]T ⊗ [B∗R̂yB] (64.24)

and where R̂z and R̂y are the usual sample estimates of Rz and Ry . Furthermore, it is easily shown
that the minimum variance estimate, obtained by minimizing Eq. (64.23), is asymptotically normally
distributed with mean equal to the true parameter vector and the following covariance matrix:

H = 1

2
{Re [J ∗G−1(θ)J ]}−1 (64.25)

where

J = lim
N→∞

∂g(θ)

∂θ
. (64.26)

The following more explicit formula for H is derived in [27]:

H = 1

2N

(
Re

{[
D∗R−1/2

y 5⊥
R

−1/2
y A

R
−1/2
y D

]
� �T

})−1

(64.27)

where � denotes the Hadamard-Schur matrix product (elementwise multiplication) and

� = 0∗WLU(U∗WLRzWLU)−1U∗WL0 . (64.28)

Furthermore, the notation Y−1/2 is used for a Hermitian (for notational convenience) square root of
the inverse of a positive definite matrix Y , the matrix D is made from the direction vector derivatives,

D = [d1 · · · dn]; dk = ∂a(θk)

∂θk

and, for a full column-rank matrix X, 5⊥
X defines the orthogonal projection onto the nullspace of

X∗ as
5⊥

X = I − 5X; 5X = X(X∗X)−1X∗. (64.29)

To summarize, for fixed ŴR and ŴL, the statistically optimal selection of Ŵ leads to DOA
estimates with an asymptotic normal distribution with mean equal to the true DOA vector and
covariance matrix given by Eq. (64.27).

4For details on the ABC theory, which is an extension of the classical BLUE (Best Linear Unbiased Estimation) / Markov
theory of linear regression to a class of nonlinear regressions with asymptotically vanishing residuals, the reader is referred
to [9, 29].
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Optimal Selection of ŴR and ŴL

The optimal weights ŴR and ŴL are, by definition, those that minimize the limiting covariance
matrix H of the DOA estimation errors. In the expression (64.27) of H , only � depends on WR and
WL (the dependence on WR is implicit, via U). Since the matrix 0 has rank n̄, it can be factorized
as follows:

0 = 010
∗
2 (64.30)

where both 01 ∈ Cm̄×n̄ and 02 ∈ Cn×n̄ have full column rank. Insertion of Eq. (64.30) into the
equality WL0A∗WR = U3S∗ yields the following equation, after a simple manipulation,

WL01T = U (64.31)

where T = 0∗
2A

∗WRS3−1 ∈ Cn̄×n̄ is a nonsingular transformation matrix. By using Eq. (64.31)
in Eq. (64.28), we obtain:

� = 02(0
∗
1W

2
L01)(0

∗
1W

2
LRzW

2
L01)

−1(0∗
1W

2
L01)0

∗
2 (64.32)

Observe that � does not actually depend on WR . Hence, ŴR can be arbitrarily selected, as any
nonsingular Hermitian matrix, without affecting the asymptotics of the DOA parameter estimates!
Concerning the choice of ŴL, it is easily verified that

� ≤ � |
W L=R−1/2

z

= 02(0
∗
1R

−1
z 01)0

∗
2 = 0∗R−1

z 0 (64.33)

Indeed,

0∗R−1
z 0 − � = 02[0∗

1R
−1
z 01 − (0∗

1W
2
L01)(0

∗
1W

2
LRzW

2
L01)

−1 ×
×(0∗

1W
2
L01)]0∗

2 = 0∗R−1/2
z 5⊥

R
1/2
z W2

L01
R

−1/2
z 0 (64.34)

which is obviously a nonnegative definite matrix. Hence, WL = R
−1/2
z maximizes �. Then, it

follows from the expression of the matrix H and the properties of the Hadamard-Schur product that
this same choice of WL minimizes H . The conclusion is that the optimal weight ŴL, which yields
the best limiting accuracy, is

ŴL = R̂
−1/2
z (64.35)

The (minimum) covariance matrix H , corresponding to the above choice, is given by

H o = 1

2N
{Re [(D∗R−1/2

y 5⊥
R

−1/2
y A

R
−1/2
y D) � (0∗R−1

z 0)T ]}−1 (64.36)

Remark It is worth noting that H o monotonically decreases as m̄ (the dimension of z(t)) increases. The
proof of this claim is similar to the proof of the corresponding result in [9], Complement C8.5. Hence,
as could be intuitively expected, one should use all available instruments (spatial and/or temporal)
to obtain maximal theoretical accuracy. However, practice has shown that too large a dimension
of the IV vector may in fact decrease the empirically observed accuracy. This phenomenon can be
explained by the fact that increasing m̄ means that a longer data set is necessary for the asymptotic
results to be valid.

Optimal IV-SSF Criteria
Fortunately, the criterion, (64.23) and(64.24) canbeexpressed ina functional formthatdependson

the indeterminate θ in an explicit way (recall that, for most cases, the dependence of B in Eq. (64.23)
on θ is not available in explicit form). By using the following readily verified equality [28],

tr (AX∗BY ) = [vec (X)]∗[AT ⊗ B][vec (Y )] (64.37)
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which holds for any conformable matrices A, X, B, and Y , one can write Eq. (64.23) as:5

f (θ) = tr {[(ŴLÛ3̂
−1

)∗R̂z(ŴLÛ3̂
−1

)]−1Ŝ
∗
Ŵ

−1
R B(B∗R̂yB)−1B∗Ŵ−1

R Ŝ} (64.38)

However, observe that

B(B∗R̂yB)−1B∗ = R̂
−1/2
y 5

R̂
1/2
y B

R̂
−1/2
y = R̂

−1/2
y 5⊥

R̂
−1/2
y A

R̂
−1/2
y (64.39)

Inserting Eq. (64.39) into Eq. (64.38) yields:

f (θ) = tr [3̂(Û
∗
ŴLR̂zŴLÛ)−13̂Ŝ

∗
Ŵ

−1
R R̂

−1/2
y 5⊥

R̂
−1/2
y A

R̂
−1/2
y Ŵ

−1
R Ŝ] (64.40)

which is an explicit function of θ . Insertion of the optimal choice of WL into Eq. (64.40) leads to a
further simplification of the criterion as seen below.

Owing to the arbitrariness in the choice of ŴR , there exists an infinite class of optimal IV-SSF
criteria. In what follows, we consider two members of this class.
Let

ŴR = R̂
−1/2
y (64.41)

InsertionofEq. (64.41), alongwithEq. (64.35), intoEq. (64.40)yields the followingcriterion function:

fWW(θ) = tr

(
5⊥

R̂
−1/2
y A

S̃3̃
2
S̃

∗
)

(64.42)

where S̃ and 3̃ are made from the principal singular right vectors and singular values of the matrix

R̃ = R̂
−1/2
z R̂zyR̂

−1/2
y (64.43)

(with R̂zy defined in an obvious way). The function (64.42) is the UNCLE (spatial IV-SSF) criterion
of Wong and Wu [12, 13].
Next, choose ŴR as

ŴR = I (64.44)

The corresponding criterion function is

fV SO(θ) = tr

(
5⊥

R̂
−1/2
y A

R̂
−1/2
y S̄3̄

2
S̄

∗
R̂

−1/2
y

)
(64.45)

where S̄ and 3̄ are made from the principal singular pairs of

R̄ = R̂
−1/2
z R̂zy (64.46)

The function (64.45) above is recognized as the optimal (temporal) IV-SSF criterion of Viberg et
al. [14].

An important consequence of the previous discussion is that the DOA estimation methods of [12,
13] and [14], respectively, which were derived in seemingly unrelated contexts and by means of
somewhat different approaches, are in fact asymptotically equivalent when used under the same
conditions. These two methods have very similar computational burdens, which can be seen by
comparing Eqs. (64.42) and (64.43) with Eqs. (64.45) and (64.46). Also, their finite-sample properties
appear to be rather similar, as demonstrated in the simulation examples. Numerical algorithms for
the minimization of the type of criterion function associated with the optimal IV-SSF methods are
discussed in [17]. Some suggestions are also given in the summary below.

5To within a multiplicative constant.
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64.5 Algorithm Summary

The estimation method presented in this section is useful for direction finding in the presence of
noise of unknown spatial color. The underlying assumptions and the algorithm can be summarized
as follows:

Assumptions — A batch of N samples of the array output y(t), that can accurately be
described by the model (64.1) and (64.2) is available. The array is calibrated in the sense that a(θ) is a
known function of its argument θ . In addition, N samples of the IV-vector z(t), fulfilling Eqs. (64.4)
through (64.8), are given. In words, the IV vector is uncorrelated with the noise but well correlated
with the signal. In practice, z(t) may be taken from a second subarray, a delayed version of y(t), or
a reference (pilot) signal. In the former case, the second subarray need not be calibrated.

Algorithm — In the following we summarize the UNCLE version (64.42) of the algorithm.
First, compute R̃ from the sample statistics of y(t) and z(t), according to

R̃ = R̂
−1/2
z R̂zyR̂

−1/2
y .

From a numerical point of view, this is best done using QR factorization. Next, partition the singular
value decomposition of R̃ according to

R̃ = [
Ũ ?

] [
3̃ O

O ?

] [
S̃

∗

?

]
,

where S̃ contains the n̄ principal right singular vectors and the diagonal matrix 3̃ the corresponding
singular values. If n̄ is unknown, it can be estimated as the number of significant singular values.
Finally, compute the DOA estimates as the minimizing arguments of the criterion function

fWW(θ) = tr

(
5⊥

R̂
−1/2
y A

S̃3̃
2
S̃

∗
)

using n = n̄. If the minimum value of the criterion is “large”, it is an indication that more than n̄

sources are present. In the general case, a numerical search must be performed to find the minimum.
The leastsq implementation in MatlabTM, which uses the Levenberg-Marquardt or Gauss-Newton
techniques [30], is a possible choice. To initialize the search, one can use the alternating projection
procedure [31]. In short, a grid search over fWW(θ) is first performed assuming n = 1, i.e., using
fWW(θ1). The resulting DOA estimate θ̂1 is then “projected out” from the data, and a grid search for
the second DOA is performed using the modified criterion f2(θ2). The procedure is repeated until
initial estimates are available for all DOAs. The kth modified criterion can be expressed as

fk(θk) = −
a∗(θk)5

⊥
R̂

−1/2
y Âk−1

S̃3̃
2
S̃

∗
5⊥

R̂
−1/2
y Âk−1

a(θk)

a∗(θk)5
⊥
R̂

−1/2
y Âk−1

a(θk)

where

Âk = A(θ̂k)

θ̂k = [θ̂1, . . . , θ̂k]T .

The initial estimate of θk is taken as the minimizing argument of fk(θk). Once all DOAs have been
initialized one can, in principle, continue the alternating projection minimization in the same way.
However, the procedure usually converges rather slowly and therefore it is recommended instead
to switch to a Newton-type search as indicated above. Empirical investigations in [17, 32] using
similar subspace fitting criteria, have indicated that this indeed leads to the global minimum with
high probability.

c©1999 by CRC Press LLC



64.6 Numerical Examples

This section reports the results of a comparative performance study based on Monte-Carlo simu-
lations. The scenarios are identical to those presented in [33] (spatial IV-SSF) and [14] (temporal
IV-SSF). The plots presented below contain theoretical standard deviations of the DOA estimates
along with empirically observed RMS (root mean square) errors. The former are obtained from
Eq. (64.36), whereas the latter are based on 512 independent noise and signal realizations. The
minimizers of Eq. (64.42) (UNCLE) and Eq. (64.45) (IV-SSF) are computed using a modified Gauss-
Newton search initialized at the true DOAs (since here we are interested only in the quality of the
global optimum). DOA estimates that are more than 5◦ off the true value are declared failures, and
not included in the empirical RMS calculation. If the number of failures exceeds 30%, no RMS value
is calculated.

In all scenarios, two planar wavefronts arrive from DOAs 0◦ and 5◦ relative to the array broadside.
Unless otherwise stated, the emitter signals are zero-mean Gaussian with signal covariance matrix P

= I . Only the estimation statistics for θ1 = 0◦ are shown in the plots below, the ones for θ2 being
similar.

The array output (both subarrays in the spatial IV scenario) is corrupted by additive zero-mean
temporally white Gaussian noise. The noise covariance matrix has klth element

Qkl = σ 2 0.9|k−l|ej π
2 (k−l) . (64.47)

The noise level σ 2 is adjusted to give a desired SNR, defined as P 11/σ
2 = P 22/σ

2. This noise is
reminiscent of a strong signal cluster at the location θ = 30◦.

EXAMPLE 64.4: Spatial IVM

In the first example, a ULA of 16 elements and half-wavelength separation is employed. The first
m = 8 contiguous sensors form a calibrated subarray, whereas the outputs of the last m̄ = 8 sensors
are used as instrumental variables, and these sensors could therefore be uncalibrated. Letting ỹ(t)

denote the 16-element array output, we thus take

y(t) = ỹ1:8(t) z(t) = ỹ9:16(t) .

Both subarray outputs are perturbed by independent additive noise vectors, both having 8 × 8
covariance matrices given by Eq. (64.47). In this example, the emitter signals are assumed to be
temporally white.

In Fig. 64.1, the theoretical and empirical RMS errors are displayed vs. the number of samples.
The SNR is fixed at 6 dB.

Figure 64.2 shows the theoretical and empirical RMS errors vs. the SNR. The number of snapshots
is here fixed to N = 100.

To demonstrate the applicability to situations involving highly correlated signals, Fig. 64.2 is re-
peated but using the signal covariance

P =
[

1 1
1 1

]

The resulting RMS errors are plotted with their theoretical values in Fig. 64.3. By comparing Figs. 64.2
and 64.3, we see that the methods are not insensitive to the signal correlation. However, the observed
RMS errors agree well with the theoretically predicted values, and in spatial scenarios this is the best
possible RMS performance (the empirical RMS error appears to be lower than the CRB for low SNR;
however this is at the price of a notable bias).
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FIGURE 64.1: RMS error of DOA estimate vs. number of snapshots. Spatial IVM. The solid line is
the theoretical standard deviation.

FIGURE 64.2: RMS error of DOA estimate vs SNR. Spatial IVM. The solid line is the theoretical
standard deviation.
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FIGURE 64.3: RMS error of DOA estimate vs. SNR. Spatial IVM. Coherent signals. The solid line is
the theoretical standard deviation.

FIGURE 64.4: RMS error of DOA estimate vs. number of snapshots. Temporal IVM. The solid line
is the theoretical standard deviation.
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In conclusion, no significant performance difference is observed between the two IV-SSF versions.
The observed RMS errors of both methods follow the theoretical curves quite closely, even in fairly
difficult scenarios involving closely spaced DOAs and highly correlated signals.

EXAMPLE 64.5: Temporal IVM

In this example, the temporal IV approach is investigated. The array is a 6-element ULA of half
wavelength interelement spacing. The real and imaginary parts of both signals are generated as
uncorrelated first-order complex AR processes with identical spectra. The poles of the driving AR-
processes are 0.6. In this case, y(t) is the array output, whereas the instrumental variable vector is
chosen as z(t) = y(t − 1).

In Fig. 64.4, we show the theoretical and empirical RMS errors vs. the number of snapshots. The
SNR is fixed at 10 dB. Figure 64.5 displays the theoretical and empirical RMS errors vs. the SNR. The
number of snapshots is here fixed at N = 100.

FIGURE 64.5: RMS error of DOA estimate vs. SNR. Temporal IVM. The solid line is the theoretical
standard deviation.

The figures indicate a slight performance difference among the methods in temporal scenarios,
namely when the number of samples is small but the SNR is relatively high. However, no defi-
nite conclusions can be drawn regarding this somewhat unexpected phenomenon from our limited
simulation study.

64.7 Concluding Remarks

The main points made by the present contribution can be summarized as follows:
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1. The spatial and temporal IV-SSF approaches can be treated in a unified manner under
general conditions. In fact, a general IV-SSF approach using both spatial and temporal
instruments is also possible.

2. The optimization of the DOA parameter estimation accuracy, for fixed weights ŴL and
ŴR , canbemost conveniently carriedoutusing theABCtheory. The resultingderivations
are more concise than those based on other analysis techniques.

3. The column (or post-)weight ŴR has no effect on the asymptotics.

4. An important corollary of the above-mentioned result is that the optimal IV-SSF methods
of [12, 13] and, respectively, [14] are asymptotically equivalent when used on the same
data.

In closing this section, we reiterate the fact that the IV-SSF approaches can deal with coherent
signals, handle noise fields with general (unknown) spatial correlations, and, in their spatial versions,
can make use of outputs from completely uncalibrated sensors. They are also comparatively simple
from a computational standpoint, since no noise modelling is required. Additionally, the optimal
IV-SSF methods provide highly accurate DOA estimates. More exactly, in spatial IV scenarios these
DOA estimation methods can be shown to be asymptotically statistically efficient under weak condi-
tions [33]. In temporal scenarios, they are no longer exactly statistically efficient, yet their accuracy
is quite close to the best possible one [14]. All these features and properties should make the optimal
IV-SSF approach appealing for practical array signal processing applications. The IV-SSF approach
can also be applied, with some modifications, to system identification problems [34] and is hence
expected to play a role in that type of application as well.
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Appendix A: Introduction to IV Methods

In this appendix we give a brief introduction to instrumental variable methods in their original
context, which is time series analysis. Let y(t) be a real-valued scalar time series, modeled by the
auto-regressive moving average (ARMA) equation

y(t) + a1y(t − 1) + · · · + apy(t − p) = e(t) + b1e(t − 1) + · · · + bqe(t − q) . (64.48)

Here, e(t) is assumed to be a stationary white noise. Suppose we are given measurements of y(t) for
t = 1, . . . , N and wish to estimate the AR parameters a1, . . . , ap . The roots of the AR polynomial
zp + a1z

p−1 + · · · + ap are the system poles, and their estimation is of importance, for instance,
for stability monitoring. Also, the first step of any “linear” method for ARMA modeling involves
finding the AR parameters as the first step. The optimal way to approach the problem requires a
non-linear search over the entire parameter set {ak}pk=1, {bk}qk=1; using a maximum likelihood or a
prediction error criterion [9, 35]. However, in many cases this is computationally prohibitive, and
in addition the “noise model” (the MA parameters) is sometimes of less interest per se. In contrast,
the IV approach produces estimates of the AR part from a solution of a (possibly overdetermined)
linear system of equations as follows: Rewrite Eq. (64.48) as

y(t) = ϕT (t)θ + v(t) , (64.49)

where

ϕ(t) = [−y(t − 1), . . . ,−y(t − p)]T (64.50)

θ = [a1, . . . , ap]T (64.51)

v(t) = e(t) + b1e(t − 1) + · · · + bqe(t − q) . (64.52)

Note that Eq. (64.49) is a linear regression in the unknown parameter θ . A standard least-squares
(LS) estimate is obtained by minimizing the LS criterion

VLS(θ) = E
[
(y(t) − ϕT (t)θ)2

]
. (64.53)

Equating the derivative of Eq. (64.53) (w.r.t. θ) to zero gives the so-called normal equations

E
[
ϕ(t)ϕT (t)

]
θ̂ = E

[
ϕ(t)y(t)

]
. (64.54)

resulting in

θ̂ = R−1
ϕϕRϕy =

(
E

[
ϕ(t)ϕT (t)

])−1
E

[
ϕ(t)y(t)

]
. (64.55)

Inserting Eq. (64.49) into Eq. (64.55) shows that

θ̂ = θ + R−1
ϕϕRϕv . (64.56)

In caseq = 0(i.e., y(t) is anARprocess), wehavev(t) = e(t). Becauseϕ(t) and e(t) areuncorrelated,
Eq. (64.56) shows that the LS method produces a consistent estimate of θ . However, when q > 0,
ϕ(t) and v(t) are in general correlated, implying that the LS method gives biased estimates.

From the above we conclude that the problem with the LS estimate in the ARMA case is that the
regression vector ϕ(t) is correlated with the “equation error noise” v(t). An instrumental variable
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vector ζ (t) is one that is uncorrelated with v(t), while still “sufficiently correlated” with ϕ(t). The
most natural choice in the ARMA case (provided the model orders are known) is

ζ (t) = ϕ(t − q) (64.57)

whichclearly fulfillsbothrequirements. Now, multiplybothsidesof the linear regressionmodel (64.49)
by ζ (t) and take expectation, resulting in the “IV normal equations”

E
[
ζ (t)y(t)

] = E
[
ζ (t)ϕT (t)

]
θ . (64.58)

The IV estimate is obtained simply by solving the linear system of equations (64.58), but with the
unknown cross-covariance matrices Rζϕ and Rζy replaced by their corresponding estimates using
time averaging. Since the latter are consistent, so are the IV estimates of θ . The method is also
referred to as the extended Yule-Walker approach in the literature. Its finite sample properties may
often be improved upon by increasing the dimension of the IV vector, which means that Eq. (64.58)
must be solved in an LS sense, and also by appropriately pre-filtering the IV-vector. This is quite
similar to the optimal weighting proposed herein.

In order to make the connection to the IV-SSF method more clear, a slightly modified version of
Eq. (64.58) is presented. Let us rewrite Eq. (64.58) as follows

Rζφ

[
1
θ

]
= 0 , (64.59)

where
Rζφ = E

{
ζ (t) [y(t), −ϕT (t)]

}
. (64.60)

Therelation(64.59) shows thatRζφ is singular, and thatθ canbecomputed fromasuitablynormalized
vector in its one-dimensional nullspace. However, when Rζφ is estimated using a finite number
of data, it will with probability one have full rank. The best (in a least squares sense) low-rank
approximation of Rζφ is obtained by truncating its singular value decomposition. A natural estimate

of θ can therefore be obtained from the right singular vector of R̂ζφ that corresponds to the minimum
singular value. The proposed modification is essentially an IV-SSF version of the extended Yule-
Walker method, although the SSF step is trivial because the parameter vector of interest can be
computed directly from the estimated subspace.

Turning to the array processing problem, the counterpart of Eq. (64.49) is the (Hermitian trans-
posed) data model (64.1)

y∗(t) = x∗(t)A∗ + e∗(t) .

Note that this is a non-linear regression model, owing to the non-linear dependence of A on θ . Also
observe that y(t) is a complex vector as opposed to the real scalar y(t) in Eq. (64.49). Similar to
Eq. (64.58), the IV normal equations are given by

E
[
z(t)y∗(t)

] = E
[
z(t)x∗(t)

]
A∗ (64.61)

under the assumption that the IV-vector z(t) is uncorrelated with the noise e(t). Unlike the standard
IV problem, the “regressor” x(t) [corresponding to ϕ(t) in Eq. (64.49)] cannot be measured. Thus,
it is not possible to get a direct estimate of the “regression variable” A. However, its range space,
or at least a subset thereof, can be computed from the principal right singular vectors. In the finite
sample case, the performance can be improved by using row and column weighting, which leads to
the weighted IV normal equations (64.11). The exact relation involving the principal right singular
vectors is Eq. (64.14), and two SSF formulations for revealing θ from the computed signal subspace
are given in Eqs. (64.16) and (64.17).

c©1999 by CRC Press LLC



65
Electromagnetic Vector-Sensor

Array Processing1

Arye Nehorai
The University of Illinois at Chicago

Eytan Paldi
Haifa, Israel

65.1 Introduction
65.2 The Measurement Model

Single-Source Single-Vector Sensor Model • Multi-Source
Multi-Vector Sensor Model

65.3 Cramer-Rao Bound for a Vector Sensor Array
Statistical Model • The Cramer-Rao Bound

65.4 MSAE, CVAE, and Single-Source Single-Vector Sensor
Analysis
The MSAE • DST Source Analysis • SST Source (DST Model)
Analysis • SST Source (SST Model) Analysis • CVAE and SST
Source Analysis in the Wave Frame • A Cross-Product-Based
DOA Estimator

65.5 Multi-Source Multi-Vector Sensor Analysis
Results for Multiple Sources, Single-Vector Sensor

65.6 Concluding Remarks
Acknowledgment
References
Appendix A: Definitions of Some Block Matrix Operators

Dedicated to the memory of our physics teacher, Isaac Paldi

65.1 Introduction

This article (see also [1, 2]) considers new methods for multiple electromagnetic source localization
using sensorswhoseoutput is a vector corresponding to the complete electric andmagneticfields at the
sensor. These sensors, which will be called vector sensors, can consist for example of two orthogonal
triads of scalar sensors that measure the electric and magnetic field components. Our approach is in
contrast to other articles in this chapter that employ sensor arrays in which the output of each sensor
is a scalar corresponding, for example, to a scalar function of the electric field. The main advantage
of the vector sensors is that they make use of all available electromagnetic information and hence
should outperform the scalar sensor arrays in accuracy of direction of arrival (DOA) estimation.
Vector sensors should also allow the use of smaller array apertures while improving performance.

1This work was supported by the U.S. Air Force Office of Scientific Research under Grant no. F49620-97-1-0481, the Office
of Naval Research under Grant no. N00014-96-1-1078, the National Science Foundation under Grant no. MIP-9615590,
and the HTI Fellowship.
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(Note that we use the term “vector sensor” for a device that measures a complete physical vector
quantity.)

Section 65.2 derives the measurement model. The electromagnetic sources considered can origi-
nate from two types of transmissions: (1) Single signal transmission (SST), in which a single signal
message is transmitted, and (2) dual signal transmission (DST), in which two separate signal messages
are transmitted simultaneously (from the same source), see for example [3, 4]. The interest in DST
is due to the fact that it makes full use of the two spatial degrees of freedom present in a transverse
electromagnetic plane wave. This is particularly important in the wake of increasing demand for
economical spectrum usage by existing and emerging modern communication technologies.

Section 65.3 analyzes the minimum attainable variance of unbiased DOA estimators for a general
vector sensor array model and multi-electromagnetic sources that are assumed to be stochastic and
stationary. A compact expression for the corresponding Cramér-Rao bound (CRB) on the DOA
estimation error that extends previous results for the scalar sensor array case in [5] (see also [6]) is
presented.

A significant property of the vector sensors is that they enable DOA (azimuth and elevation)
estimation of an electromagnetic source with a single vector sensor and a single snapshot. This result
is explicitly shown by using the CRB expression for this problem in Section 65.4. A bound on the
associated normalized mean-square angular error (MSAE, to be defined later) which is invariant to
the reference coordinate system is used for an in-depth performance study. Compact expressions for
this MSAE bound provide physical insight into the SST and DST source localization problems with
a single vector sensor.

The CRB matrix for an SST source in the sensor coordinate frame exhibits some nonintrinsic
singularities (i.e., singularities that are not inherent in the physical model while being dependent on
the choice of the reference coordinate system) and has complicated entry expressions. Therefore, we
introduce a new vector angular error defined in terms of the incoming wave frame. A bound on the
normalized asymptotic covariance of the vector angular error (CVAE) is derived. The relationship
between the CVAE and MSAE and their bounds is presented. The CVAE matrix bound for the SST
source case is shown to be diagonal, easy to interpret, and to have only intrinsic singularities.

Wepropose a simple algorithmfor estimating the sourceDOAwitha single vector sensor, motivated
by the Poynting vector. The algorithm is applicable to various types of sources (e.g., wide-band and
non-Gaussian); it does not require a minimization of a cost function and can be applied in real time.
Statistical performance analysis evaluates the variance of the estimator under mild assumptions and
compares it with the MSAE lower bound.

Section 65.5 extends these results to the multi-source multi-vector sensor case, with special atten-
tion to the two-source single-vector sensor case. Section 65.6 summarizes the main results and gives
some ideas of possible extensions.

The main difference between the topics of this article and other articles on source direction estima-
tion is in our use of vector sensors with complete electric and magnetic data. Most papers have dealt
with scalar sensors. Other papers that considered estimation of the polarization state and source
direction are [7]–[12]. Reference [7] discussed the use of subspace methods to solve this problem
using diversely polarized electric sensors. References [8]–[10] devised algorithms for arrays with two
dimensional electric measurements. Reference [11] provided performance analysis for arrays with
two types of electric sensor polarizations (diversely polarized). An earlier reference, [12], proposed
an estimation method using a three-dimensional vector sensor and implemented it with magnetic
sensors. All these references used only part of the electromagnetic information at the sensors, thereby
reducing the observability of DOAs. In most of them, time delays between distributed sensors played
an essential role in the estimation process.

For a plane wave (typically associated with a single source in the far-field) the magnitude of the
electric and magnetic fields can be found from each other. Hence, it may be felt that one (complete)
field is deducible from the other. However, this is not true when the source direction is unknown.
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Additionally, the electric and magnetic fields are orthogonal to each other and to the source DOA
vector, hence measuring both fields increases significantly the accuracy of the source DOA estimation.
This is true in particular for an incoming wave which is nearly linearly polarized, as will be explicitly
shown by the CRB (see Table 65.1).

The use of the complete electromagnetic vector data enables source parameter estimation with a
single sensor (even with a single snapshot) where time delays are not used at all. In fact, this is shown
to be possible for at least two sources. As a result, the derived CRB expressions for this problem
are applicable to wide-band sources. The source DOA parameters considered include azimuth and
elevation. This section also considers direction estimation to DST sources, as well as the CRB on wave
ellipticity and orientation angles (to be defined later) for SST sources using vector sensors, which
were first presented in [1, 2]. This is true also for the MSAE and CVAE quality measures and the
associated bounds. Their application is not limited to electromagnetic vector sensor processing.

We comment that electromagnetic vector sensors as measuring devices are commercially available
and actively researched. EMC Baden Ltd. in Baden, Switzerland, is a company that manufactures
them for signals in the 75 Hz to 30 MHz frequency range, and Flam and Russell, Inc. in Horsham,
Pennsylvania, makes them for the 2 to 30 MHz frequency band. Lincoln Labs at MIT has performed
some preliminary localization tests with vector sensors [13]. Some examples of recent research on
sensor development are [14] and [15].

Following the recent impressive progress in the performance of DSP processors, there is a trend
to fuse as much data as possible using smart sensors. Vector sensors, which belong to this category
of sensors, are expected to find larger use and provide important contribution in improving the
performance of DSP in the near future.

65.2 The Measurement Model

This section presents the measurement model for the estimation problems that are considered in the
latter parts of the article.

65.2.1 Single-Source Single-Vector Sensor Model

Basic Assumptions

Throughout the article it will be assumed that the wave is traveling in a nonconductive, homo-
geneous, and isotropic medium. Additionally, the following will be assumed:

A1: Plane wave at the sensor: This is equivalent to a far-field assumption (or maximum wave-
length much smaller than the source to sensor distance), a point source assumption (i.e.,
the source size is much smaller than the source to sensor distance) and a point-like sensor
(i.e., the sensor’s dimensions are small compared to the minimum wave-length).

A2: Band-limited spectrum: The signal has a spectrum including only frequenciesω satisfying
ωmin ≤ |ω| ≤ ωmax where 0 < ωmin < ωmax < ∞. This assumption is satisfied in
practice. The lower and upper limits on ω are also needed, respectively, for the far-field
and point-like sensor assumptions.

Let E(t) and H(t) be the vector phasor representations (or complex envelopes, see e.g., [16, 17]
and [1, Appendix A]) of the electric and magnetic fields at the sensor. Also, let u be the unit vector
at the sensor pointing towards the source, i.e.,

u =

 cosθ1 cosθ2

sinθ1 cosθ2
sinθ2


 (65.1)
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where θ1 and θ2 denote, respectively, the azimuth and elevation angles of u, see Fig. 65.1. Thus,
θ1 ∈ [0, 2π) and |θ2| ≤ π/2.

FIGURE 65.1: The orthonormal vector triad (u, v1, v2).

In [1, Appendix A] it is shown that for plane waves Maxwell’s equations can be reduced to an
equivalent set of two equations without any loss of information. Under the additional assumption
of a band-limited signal, these two equations can be written in terms of phasors. The results are
summarized in the following theorem.

THEOREM 65.1 Under assumption A1, Maxwell’s equations can be reduced to an equivalent set of
two equations. With the additional band-limited spectrum assumption A2, they can be written as:

u × E(t) = −ηH(t) (65.2a)

u · E(t) = 0 (65.2b)

where η is the intrinsic impedance of the medium and “×” and “·” are the cross and inner products of
R

3 applied to vectors in C
3. (That is, if v, w ∈ C

3 then v · w = ∑
i viwi . This is different than the

usual inner product of C
3).

PROOF 65.1 See [1, Appendix A]. (Note that u = −κ where κ is the unit vector in the direction
of the wave propagation).

Thus, under the plane and band-limited wave assumptions, the vector phasor equations (65.2)
provide all the information contained in the original Maxwell equations. This result will be used in
the following to construct measurement models in which the Maxwell equations are incorporated
entirely.
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The Measurement Model

Suppose that a vector sensor measures all six components of the electric and magnetic fields.
(It is assumed that the sensor does not influence the electric and magnetic fields). The measurement
model is based on the phasor representation of the measured electromagnetic data (with respect to
a reference frame) at the sensor. Let yE(t) be the measured electric field phasor vector at the sensor
at time t and eE(t) its noise component. Then the electric part of the measurement will be

yE(t) = E(t) + eE(t) (65.3)

Similarly, from Eq. (65.2a), after appropriate scaling, the magnetic part of the measurement will be
taken as

yH (t) = u × E(t) + eH (t) (65.4)

In addition to Eq. (65.3) and (65.4), we have the constraint (65.2b).
Define the matrix cross product operator that maps a vector v ∈ R

3×1 to (u × v) ∈ R
3×1 by

(u×)
1=


 0 −uz uy

uz 0 −ux

−uy ux 0


 (65.5)

whereux, uy, uz are thex, y, z componentsof thevectoru. With thisdefinition, Eqs. (65.3)and(65.4)
can be combined to [

yE(t)

yH (t)

]
=

[
I3

(u×)

]
E(t) +

[
eE(t)

eH (t)

]
(65.6)

where I3 denotes the 3 × 3 identity matrix. For notational convenience the dimension subscript of
the identity matrix will be omitted whenever its value is clear from the context.

The constraint (65.2b) implies that the electric phasor E(t) can be written

E(t) = V ξ(t) (65.7)

where V is a 3 × 2 matrix whose columns span the orthogonal complement of u and ξ(t) ∈ C
2×1.

It is easy to check that the matrix

V =

 − sinθ1 − cosθ1 sinθ2

cosθ1 − sinθ1 sinθ2
0 cosθ2


 (65.8)

whose columns are orthonormal, satisfies this requirement. We note that since‖u‖2 = 1 the columns
of V , denoted by v1 and v2, can be constructed, for example, from the partial derivatives of u with
respect to θ1 and θ2 and post-normalization when needed. Thus,

v1 = 1

cosθ2

∂u

∂θ1
(65.9a)

v2 = u × v1 = ∂u

∂θ2
(65.9b)

and (u, v1, v2) is a right orthonormal triad, see Fig. 65.1. (Observe that the two coordinate systems
shown in the figure actually have the same origin). The signal ξ(t) fully determines the components
of E(t) in the plane where it lies, namely the plane orthogonal to u spanned by v1, v2. This implies
that there are two degrees of freedom present in the spatial domain (or the wave’s plane), or two
independent signals can be transmitted simultaneously.
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Combining Eq. (65.6) and Eq. (65.7) we now have[
yE(t)

yH (t)

]
=

[
I

(u×)

]
V ξ(t) +

[
eE(t)

eH (t)

]
(65.10)

This system is equivalent to Eq. (65.6) with Eq. (65.2b).
The measured signals in the sensor reference frame can be further related to the original source

signal at the transmitter using the following lemma.

LEMMA 65.1 Every vector ξ = [ξ1, ξ2]T ∈ C
2×1 has the representation

ξ = ‖ξ‖eiϕQw (65.11)

where

Q =
[

cosθ3 sinθ3
− sinθ3 cosθ3

]
(65.12a)

w =
[

cosθ4
i sinθ4

]
(65.12b)

and where ϕ ∈ (−π, π], θ3 ∈ (−π/2, π/2], θ4 ∈ [−π/4, π/4]. Moreover, ‖ξ‖, ϕ, θ3, θ4 in
Eq. (65.11) are uniquely determined if and only if ξ2

1 + ξ2
2 6= 0.

PROOF 65.2 See [1, Appendix B].

The equality ξ2
1 + ξ2

2 = 0 holds if and only if |θ4| = π/4, corresponding to circular polarization
(defined below). Hence, from Lemma 65.1 the representation (65.11), (65.12) is not unique in this
case as should be expected, since the orientation angle θ3 is ambiguous. It should be noted that the
representation (65.11), (65.12) is known and was used (see, e.g., [18]) without a proof. However,
Lemma 65.1 of existence and uniqueness appears to be new. The existence and uniqueness properties
are important to guarantee identifiability of parameters.

The physical interpretations of the quantities in the representation (65.11), (65.12) are as follows.
‖ξ‖eiϕ : Complex envelope of the source signal (including amplitude and phase).

w: Normalized overall transfer vector of the source’s antenna and medium, i.e., from the
source complex envelope signal to the principal axes of the received electric wave.

Q: A rotation matrix that performs the rotation from the principal axes of the incoming
electric wave to the (v1, v2) coordinates.

Let ωc be the reference frequency of the signal phasor representation, see [1, Appendix A]. In the
narrow-band SST case, the incoming electric wave signal Re

{
eiωct‖ξ(t)‖eiϕ(t)Qw

}
moves on a qua-

sistationary ellipse whose semi-major and semi-minor axes’ lengths are proportional, respectively, to
cosθ4 and sinθ4, see Fig. 65.2 and [19]. The ellipse’s eccentricity is thus determined by the magnitude
of θ4. The sign of θ4 determines the spin sign or direction. More precisely, a positive (negative) θ4
corresponds to a positive (negative) spin with right-(left) handed rotation with respect to the wave
propagation vector κ = −u. As shown in Fig. 65.2, θ3 is the rotation angle between the (v1, v2)
coordinates and the electric ellipse axes (̃v1, ṽ2). The angles θ3 and θ4 will be referred to, respectively,
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FIGURE 65.2: The electric polarization ellipse.

as the orientation and ellipticity angles of the received electric wave ellipse. In addition to the electric
ellipse, there is also a similar but perpendicular magnetic ellipse.

It should be noted that if the transfer matrix from the source to the sensor is time invariant, then
so are θ3 and θ4.

The signal ξ(t) can carry information coded in various forms. In the following we discuss briefly
both existing forms and some motivated by the above representation.

Single Signal Transmission (SST) Model

Suppose that a single modulated signal is transmitted. Then, using Eq. (65.11), this is a special
case of Eq. (65.10) with

ξ(t) = Qws(t) (65.13)

where s(t) denotes the complex envelope of the (scalar) transmitted signal. Thus, the measurement
model is [

yE(t)

yH (t)

]
=

[
I

(u×)

]
V Qws(t) +

[
eE(t)

eH (t)

]
(65.14)

Special cases of this transmission are linear polarization with θ4 = 0 and circular polarization with
|θ4| = π/4.

Recall that since there are two spatial degrees of freedom in a transverse electromagnetic plane
wave, one could, in principle, transmit two separate signals simultaneously. Thus, the SST method
does not make full use of the two spatial degrees of freedom present in a transverse electromagnetic
plane wave.

Dual Signal Transmission (DST) Models

Methods of transmission in which two separate signals are transmitted simultaneously from
the same source will be called dual signal transmissions. Various DST forms exist, and all of them can
be modeled by Eq. (65.10) with ξ(t) being a linear transformation of the two-dimensional source
signal vector.

One DST form uses two linearly polarized signals that are spatially and temporally orthogonal
with an amplitude or phase modulation (see e.g., [3, 4]). This is a special case of Eq. (65.10), where
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the signal ξ(t) is written in the form

ξ(t) = Q

[
s1(t)

is2(t)

]
(65.15)

where s1(t) and s2(t) represent the complex envelopes of the transmitted signals. To guarantee
unique decoding of the two signals (when θ3 is unknown) using Lemma 65.1, they have to satisfy
s1(t) 6= 0, s2(t)/s1(t) ∈ (−1, 1). (Practically this can be achieved by using a proper electronic
antenna adapter that yields a desirable overall transfer matrix.)

Another DST form uses two circularly polarized signals with opposite spins. In this case

ξ(t) = Q[ws̃1(t) + ws̃2(t)] (65.16a)

w = (1/
√

2)[1, i]T (65.16b)

wherew denotes the complex conjugate ofw. The signals s̃1(t), s̃2(t) represent the complex envelopes
of the transmitted signals. The first term on the r.h.s. of Eqs. (65.16) corresponds to a signal with
positive spin and circular polarization (θ4 = π/4), while the second term corresponds to a signal with
negative spin and circular polarization (θ4 = −π/4). The uniqueness of Eqs. (65.16) is guaranteed
without the conditions needed for the uniqueness of Eq. (65.15).

The above-mentioned DST models can be applied to communication problems. Assuming that
u is given, it is possible to measure the signal ξ(t) and recover the original messages as follows.
For Eq. (65.15), an existing method resolves the two messages using mechanical orientation of the
receiver’s antenna (see, e.g., [4]). Alternatively, this canbedoneelectronicallyusing the representation
of Lemma 65.1, without the need to know the orientation angle. For Eqs. (65.16), note that
ξ(t) = weiθ3̃s1(t) + we−iθ3̃s2(t), which implies the uniqueness of Eqs. (65.16) and indicates that
the orientation angle has been converted into a phase angle whose sign depends on the spin sign.
The original signals can be directly recovered from ξ(t) up to an additive constant phase without
knowledge of the orientation angle. In some cases, it is of interest to estimate the orientation
angle. Let W be a matrix whose columns are w,w. For Eqs. (65.16) this can be done using equal
calibrating signals and then premultiplying the measurement by W−1 and measuring the phase
difference between the two components of the result. This can also be used for real time estimation
of the angular velocity dθ3/dt .

In general it can be stated that the advantage of the DST method is that it makes full use of the
spatial degrees of freedom of transmission. However, the above DST methods need the knowledge
of u and, in addition, may suffer from possible cross polarizations (see, e.g., [3]), multipath effects,
and other unknown distortions from the source to the sensor.

Theuseof theproposedvector sensor canmotivate thedesignofnew improved transmission forms.
Here we suggest a new dual signal transmission method that uses on line electronic calibration in
order to resolve the above problems. Similar to the previous methods it also makes full use of the
spatial degrees of freedom in the system. However, it overcomes the need to know u and the overall
transfer matrix from source to sensor.

Suppose the transmitted signal is z(t) ∈ C
2×1 (this signal is as it appears before reaching the

source’s antenna). The measured signal is[
yE(t)

yH (t)

]
= C(t)z(t) +

[
eE(t)

eH (t)

]
(65.17)

where C(t) ∈ C
6×2 is the unknown source to sensor transfer matrix that may be slowly varying due

to, for example, the source dynamics. To facilitate the identification of z(t), the transmitter can send
calibrating signals, for instance, transmit z1(t) = [1, 0]T and z2(t) = [0, 1]T separately. Since these
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inputs are in phasor form, this means that actually constant carrier waves are transmitted. Obviously,
one can then estimate the columns of C(t) by averaging the received signals, which can be used later
for finding the original signal z(t) by using, for example, least-squares estimation. Better estimation
performance can be achieved by taking into account a priori information about the model.

The use of vector sensors is attractive in communication systems as it doubles the channel capacity
(compared with scalar sensors) by making full use of the electromagnetic wave properties. This
spatial multiplexing has vast potential for performance improvement in cellular communications.

In future research itwouldbeof interest todevelopoptimal codingmethods (modulation forms) for
maximum channel capacity while maintaining acceptable distortions of the decoded signals despite
unknown varying channel characteristics. It would also be of interest to design communication
systems that utilize entire arrays of vector sensors.

Observe that actually any combination of the variables ‖ξ‖, ϕ, θ3 and θ4 can be modulated to carry
information. A binary signal can be transmitted using the spin sign of the polarization ellipse (sign
of θ4). Lemma 65.1 guarantees the identifiability of these signals from ξ(t).

65.2.2 Multi-Source Multi-Vector Sensor Model

Suppose that waves from n distant electromagnetic sources are impinging on an array of m vector
sensors and that assumptions A1 and A2 hold for each source. To extend the model (65.10) to this
scenario we need the following additional assumptions, which imply that A1, A2 hold uniformly on
the array:

A3: Plane wave across the array: In addition to A1, for each source the array size dA has to
be much smaller than the source to array distance, so that the vector u is approximately
independent of the individual sensor positions.

A4: Narrow-band signal assumption: The maximum frequency of E(t), denoted by ωm,
satisfies ωmdA/c � 1, where c is the velocity of wave propagation (i.e., the minimum
modulating wave-length is much larger than the array size). This implies that E(t − τ) '
E(t) for all differential delays τ of the source signals between the sensors.

Note that (under the assumption ωm < ωc) sinceωm = max{|ωmin−ωc|, |ωmax−ωc|}, it follows that
A4 is satisfied if (ωmax− ωmin)dA/2c � 1 and ωc is chosen to be close enough to (ωmax+ ωmin)/2.

Let yEH (t) and eEH (t) be the 6m × 1 dimensional electromagnetic sensor phasor measurement
and noise vectors,

yEH (t)
1=

[
(y

(1)
E (t))T , (y

(1)
H (t))T , · · · , (y

(m)
E (t))T , (y

(m)
H (t))T

]T

(65.18a)

eEH (t)
1=

[
(e

(1)
E (t))T , (e

(1)
H (t))T , · · · , (e

(m)
E (t))T , (e

(m)
H (t))T

]T

(65.18b)

where y
(j)
E (t) and y

(j)
H (t) are, respectively, the measured phasor electric and magnetic vector fields at

the j th sensor and similarly for the noise components e
(j)
E (t) and e

(j)
H (t). Then, under assumptions

A3 and A4 and from Eq. (65.10), we find that the array measured phasor signal can be written as

yEH (t) =
n∑

k=1

ek ⊗
[

I3
(uk×)

]
Vkξ k(t) + eEH (t) (65.19)

where ⊗ is the Kronecker product, ek denotes the kth column of the matrix E ∈ C
m×n whose (j, k)

entry is
Ejk = e−iωcτjk (65.20)
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where τjk is the differential delay of the kth source signal between the j th sensor and the origin of
some fixed reference coordinate system (e.g., at one of the sensors). Thus, τjk = −(uk · rj )/c, where
uk is the unit vector in the direction from the array to the kth source and rj is the position vector of
the j th sensor in the reference frame. The rest of the notation in Eq. (65.19) is similar to the single
source case, cf. Eqs. (65.1), (65.8), and (65.10). The vector ξ k(t) can have either the SST or the DST
form described above.

Observe that the signal manifold matrix in Eq. (65.19) can be written as the Khatri-Rao product
(see, e.g., [20, 21]) of E and a second matrix whose form depends on the source transmission type
(i.e., SST or DST), see also later.

65.3 Cramér-Rao Bound for a Vector Sensor Array

65.3.1 Statistical Model

Consider the problem of finding the parameter vector θ in the following discrete-time vector sensor
array model associated with n vector sources and m vector sensors:

y(t) = A(θ)x(t) + e(t) t = 1, 2, . . . (65.21)

where y(t) ∈ C
µ×1 are the vectors of observed sensor outputs (or snapshots), x(t) ∈ C

ν×1 are the
unknown source signals, and e(t) ∈ C

µ×1 are the additive noise vectors. The transfer matrix A(θ)

∈ C
µ×ν and the parameter vector θ ∈ R

q×1 are given by

A(θ) =
[
A1(θ

(1)) · · · An(θ
(n))

]
(65.22a)

θ =
[
(θ (1))T , · · · , (θ (n))T

]T

(65.22b)

where Ak(θ
(k)) ∈ C

µ×νk and the parameter vector of the kth source θ (k) ∈ R
qk×1, thus ν = ∑n

k=1 νk

and q = ∑n
k=1 qk . The following notation will also be used:

y(t) =
[
(y(1)(t))T , · · · , (y(m)(t))T

]T

(65.23a)

x(t) =
[
(x(1)(t))T , · · · , (x(n)(t))T

]T

(65.23b)

where y(j)(t) ∈ C
µj ×1 is the vector measurement of the j th sensor, implying µ = ∑m

j=1 µj , and

x(k)(t) ∈ C
νk×1 is the vector signal of the kth source. Clearly µ and ν correspond, respectively, to

the total number of sensor components and source signal components.
The model (65.21) generalizes the commonly used multi-scalar source multi-scalar sensor one

(see, e.g., [7, 22]). It will be shown later that the electromagnetic multi-vector source multi-vector
sensor data models are special cases of Eq. (65.21) with appropriate choices of matrices.

For notational simplicity, the explicit dependence on θ and t will be occasionally omitted.
We make the following commonly used assumptions on the model (65.21):

A5: The source signal sequence {x(1), x(2), . . .} is a sample from a temporally uncorrelated
stationary (complex) Gaussian process with zero mean and

E x(t)x∗(s) = Pδt,s

E x(t)xT (s) = 0 (for all t and s).
where E is the expectation operator, the superscript “∗” denotes the conjugate transpose,
and δt,s is the Kronecker delta.
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A6: The noise e(t) is (complex) Gaussian distributed with zero mean and
E e(t)e∗(s) = σ 2Iδt,s

E e(t)eT (s) = 0 (for all t and s).
It is also assumed that the signals x(t) and the noise e(s) are independent for all t and s.

A7: The matrix A has full rank ν < µ (thus A∗A is p.d.) and a continuous Jacobian ∂A/∂θ

in some neighborhood of the true θ . The matrix APA∗ + σ 2I is assumed to be positive
definite, which implies that the probability density functions of the model are well de-
fined in some neighborhood of the true θ , P , σ 2. Additionally, the matrix in braces in
Eq. (65.24) below is assumed to be nonsingular.

The unknown parameters in the model (65.21) include the vector θ , the signal covariance matrixP ,
and the noise variance σ 2. The problem of estimating θ in (65.21) from N snapshots y(1), . . . , y(N)

and the statistical performance of estimation methods are the main concerns of this article.

65.3.2 The Cramér-Rao Bound

Consider the estimation of θ in the model (65.21) under the above assumptions and with θ , P , σ 2

unknown. We have the following theorem.

THEOREM 65.2 The Cramér-Rao lower bound on the covariance matrix of any (locally) unbiased
estimator of the vector θ in the model (65.21), under assumptions A5 through A7 with θ , P , σ 2 unknown
and νk = ν for all k, is a positive definite matrix given by

CRB(θ) = σ 2

2N

{
Re

[
btr

((
1×2U

) ·2 (
D∗5cD

)bT
)]}−1

(65.24)

where

U = P
(
A∗AP + σ 2I

)−1
A∗AP (65.25a)

5c = I − 5 (65.25b)

5 = A(A∗A)−1A∗ (65.25c)

D =
[
D

(1)
1 · · ·D(1)

q1
· · · D

(n)
1 · · ·D(n)

qn

]
(65.25d)

D
(k)
` = ∂Ak

∂θ
(k)
`

(65.25e)

and where 1 denotes a q ×q matrix with all entries equal to one, and the block trace operator btr (·), the
block Kronecker product ×2, the block Schur-Hadamard product ·2, and the block transpose operator bT

are as defined in the Appendix with blocks of dimensions ν × ν, except for the matrix 1 that has blocks
of dimensions qi × qj .

Furthermore, the CRB in Eq. (65.24) remains the same independently of whether σ 2 is known or
unknown.

PROOF 65.3 See [1, Appendix C].

Theorem65.2 canbe extended to includea larger class ofunknownsensornoise covariancematrices
(see [1, Appendix D]).
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65.4 MSAE, CVAE, and Single-Source Single-Vector Sensor
Analysis

This section introduces the MSAE and CVAE quality measures and their bounds for source direction
and orientation estimation in three-dimensional space. The bounds are applied to analyze the
statistical performance of parameter estimation of an electromagnetic source whose covariance is
unknown using a single vector sensor. Note that single vector sensor analysis is valid for wide-band
sources, as assumptions A3 and A4 are not needed.

65.4.1 The MSAE

We define the mean-square angular error which is a quality measure that is useful for gaining physical
insight into DOA (azimuth and elevation) estimation and for performance comparisons. The analysis
of this subsection is not limited to electromagnetic measurements or to Gaussian data.

The angular error, say δ, corresponding to a direction error 1u in u, can be shown to be δ =
2 arcsin(‖1u‖/2). Hence, δ2 = ‖1u‖2 + O(‖1u‖4). Since 1u =

(
∂u
∂θ1

)
1θ1 +

(
∂u
∂θ2

)
1θ2 +

O((1θ1)
2 + (1θ2)

2) where 1θ1, 1θ2 are the errors in θ1 and θ2, we have

δ2 = (cosθ2 · 1θ1)
2 + (1θ2)

2 + O(|1θ1|3 + |1θ2|3) (65.26)

We introduce the following definitions.

DEFINITION 65.1 A model will be called regular if it satisfies any set of sufficient conditions for
the CRB to hold (see, e.g., [23, 24]).

DEFINITION 65.2 The normalized asymptotic mean-square angular error of a direction estimator
will be defined as

MSAE
1= lim

N→∞

{
NE (δ2)

}
(65.27)

whenever this limit exists.

DEFINITION65.3 Adirectionestimatorwillbecalled regular if its errors satisfyE
[|1θ1|3 + |1θ2|3

] =
o(1/N), the gradient of its biaswith respect to θ1, θ2 exists and iso(1) asN → ∞, and itsMSAEexists.
(If |θ2| = π/2 then θ1 is undefined and we can use the equivalent condition E

[‖1u‖3
] = o(1/N)).

Equation (65.26) shows that under the assumptions that the model and estimator are regular we
have

E (δ)2 ≥ [cos2 θ2 · CRB(θ1) + CRB(θ2)] + o(1/N) as N → ∞ (65.28)

where CRB(θ1) and CRB(θ2) are, respectively, the Cramér-Rao bounds for the azimuth and elevation.
Using Eq. (65.28) we have the following theorem.

THEOREM 65.3 For a regular model MSAE of any regular direction estimator is bounded from below
by

MSAECR

1= N [cos2 θ2 · CRB(θ1) + CRB(θ2)] (65.29)
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Observe that MSAECR is not a function of N . Additionally, MSAECR is a tight bound if it is
attained by some second order efficient regular estimator (usually the maximum likelihood (ML)
estimator, see e.g., [25]). For vector sensor measurements this bound has the desirable property of
being invariant to the choice of reference coordinate frame, since the information content in the data
is invariant under rotational transformations. This invariance property also holds for the MSAE of
an estimator if the estimate is independent of known rotational transformations of the data.

For a regularmodel, thebound(65.29) canbeused forperformanceanalysis of any regulardirection
(azimuth and elevation) finding algorithm.

It is of interest to note that the bound (65.29) actually holds for finite data, when the estimators of
u are unbiased and constrained to be of unit norm, see [26].

65.4.2 DST Source Analysis

Assume that it is desired to estimate the direction to a DST source whose covariance is unknown
using a vector sensor. We will first present a statistical model for this problem as a special case of
Eq. (65.21) and then investigate in detail the resulting CRB and MSAE.

The measurement model for the DST case is given in Eq. (65.10). Suppose the noise vector of
Eq. (65.10) is (complex) Gaussian with zero mean and the following covariances:

E

[
eE(t)

eH (t)

] [
e∗

E
(s) , e∗

H
(s)

] =
[

σ 2
E
I3 0

0 σ 2
H
I3

]
δt,s

E

[
eE(t)

eH (t)

] [
eT

E
(s) , eT

H
(s)

] = 0 (for all t and s).

Our assumption that the noise components are statistically independent stems from the fact that
they are created separately at different sensor components (even if the sensor components belong to
a vector sensor). Note that under assumption A1 the measurement includes a source plane wave
component and sensor self noise.

To relate the model (65.10) to (65.21), define a scaled measurement y(t)
1= [

ryT
E
(t), yT

H
(t)

]T
where r

1= σH/σE is assumed to be known. (The results of this section actually hold also when r

is unknown as is explained in [1]). The resulting scaled noise vector e(t)
1= [

reT
E
(t), eT

H
(t)

]T
then

satisfies assumption A6 with σ = σH . Assume further that the signal ξ(t) satisfies assumption A5
with x(t) = ξ(t). Then, under these assumptions, the scaled version of the DST source (65.10) can
be viewed as a special case of Eq. (65.21) with m = n = 1 and

A =
[

rV

(u×)V

]
x(t) = ξ(t) σ 2 = σ 2

H

θ = [
θ1 , θ2

]T
(65.30)

where the unknown parameters are θ , P , σ 2. The parameter vector of interest is θ while P and σ 2

are the so-called nuisance parameters.
The above discussion shows that the CRB expression (65.24) is applicable to the present problem

with the special choice of variables in Eq. (65.30), thus n = 1 and q = 2. The computation of the
CRB is given in [1]. The result is independent of whether r is known or unknown.

Using the CRB results of [1] we find that MSAECR for the present DST problem is

MSAED

CR
=

(
σ 2

E
+ σ 2

H

)
σ 2

E
σ 2

H
tr U

2
[
σ 2

Eσ 2
H (tr U)2 + (

σ 2
E − σ 2

H

)2
det(Re U)

] (65.31)

Observe that MSAED
CR

is symmetric with respect to σE, σH , as should be expected from the Maxwell
equations. MSAED

CR
is not a function of θ1, θ2, θ3, as should be expected since for vector sensor
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measurements the MSAE bound is by definition invariant to the choice of coordinate system. Note
that MSAED

CR
is independent of whether σE and σH are known or unknown.

65.4.3 SST Source (DST Model) Analysis

Consider the MSAE for a single signal transmission source when the estimation is done under the
assumption that the source is of a dual signal transmission type. In this case, the model (65.10) has
to be used but with a signal in the form of (65.13). The signal covariance is then

P = σ 2
s Qw(Qw)∗ (65.32)

where σ 2
s = E s2(t) and Q and w are defined in Eq. (65.12). Thus, rank P = 1 and P has a unit

norm eigenvector Qw with an eigenvalue σ 2
s .

Let

σ 2
‖

1= σ 2
E

· σ 2
H

σ 2
E + σ 2

H

(65.33)

The varianceσ 2
‖ can be viewed as an equivalent noise variance of two measurements with independent

noise variances σ 2
E

and σ 2
H

. Define % , σ 2
s /σ 2

‖ , which is an effective SNR.
Using the analysis of U in [1] and expression (65.31) we find that

MSAES

CR
= (1 + %)(σ 2

E
+ σ 2

H
)2

2%2
[
σ 2

Eσ 2
H + (σ 2

E − σ 2
H )2 sin2 θ4 cos2 θ4

]
= (1 + %)(1 + r2)2

2%2
[
r2 + (1 − r2)2 sin2 θ4 cos2 θ4

] (65.34)

where MSAES
CR

denotes the MSAECR bound for the SST problem under the DST model. (It will be
shown later that the same result also holds under the SST model.) Observe that MSAES

CR
is symmetric

with respect to σE, σH . It is also independent of whether σH and σE are known or unknown, as can be
shown from Theorem 65.2 and [1, Appendix D]. Also, MSAES

CR
is not a function of θ1, θ2, θ3, since

for vector sensor measurements the MSAE bound is invariant under rotational transformations of
the reference coordinate system. On the other hand, MSAES

CR
is influenced by the ellipticity angle θ4

through the difference in the electric and magnetic noise variances.
Table 65.1 summarizes several special cases of the expression (65.34) for MSAES

CR
. The elliptical

polarization column corresponds to an arbitrary polarization angle θ4 ∈ [−π/4, π/4]. The circu-
lar and linear polarization columns are obtained, respectively, as special cases of Eq. (65.34) with
|θ4| = π/4 and θ4 = 0. The row of precise (noise-free) electric measurement (with noisy magnetic
measurements) is obtained by substituting σ 2

E
= 0 in (65.34). The row of electric measurement only

is obtained by deriving the corresponding CRB and MSAES
CR

. Alternatively, MSAES
CR

can be found
for this case by taking the limit of Eq. (65.34) as σ 2

H
→ ∞.

Observe from Eq. (65.34) that when σ 2
H

6= σ 2
E

, MSAES
CR

is minimized for circular polarization
and maximized for linear polarization. This result is illustrated in Fig. 65.3, which shows the square
root of MSAES

CR
as a function of r = σH/σE for three types of polarizations (θ4 = 0, π/12, π/4).

The equivalent signal-to-noise ratio SNR = σ 2
s /σ 2

‖ is kept at one, while the individual electric and
magnetic noise variances are varied to give the desired value of r . As r becomes larger or smaller
than one, MSAES

CR
increases more significantly for sources with polarization closer to linear.

When the electric (or magnetic) field is measured precisely and the source polarization is circular or
elliptical, the MSAES

CR
is zero (i.e., no angular error), while for linearly polarized sources it remains

positive. In the latter case, the contribution to MSAES
CR

stems from the magnetic (or electric)
noisy measurement. When only the electric (or magnetic) field is measured, MSAES

CR
increases as
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TABLE 65.1 MSAE Bounds for a Single Signal Transmission Source
Elliptical Circular Linear

General MSAES
CR

(65.34)
2(1 + %)

%2

(1 + %)(σ2
E

+ σ2
H

)

2%σ2
s

Precise electric measurement 0 0
σ2
H

2σ2
s

Electric measurement only
σ2
E

(σ2
E

+ σ2
s )

2σ4
s sin2 θ4 cos2 θ4

2σ2
E

(σ2
E

+ σ2
s )

σ4
s

∞

FIGURE 65.3: Effect of change in r = σH/σE on MSAES
CR

for three types of polarizations (θ4 =
0, π/12, π/4). A single SST source, SNR = σ 2

s /σ 2
‖ = 1.

the polarization changes from circular to linear. In the linear polarization case, MSAES
CR

tends to
infinity. In this case, it is impossible to uniquely identify the source direction u from the electric field
only, since u can then be anywhere in the plane orthogonal to the electric field vector.

The immediate conclusion is that as the sourcebecomes closer tobeing linearlypolarized it becomes
more important to measure both the electric and magnetic fields to get good direction estimates using
a single vector sensor.

These results are illustrated in Fig. 65.4, which shows the square root of MSAES
CR

as a function
of σ 2

H
and three polarization types (θ4 = 0, π/12, π/4). The standard deviations of the signal and

electric noise are σs = σE = 1. The left side of the figure corresponds to (nearly) precise magnetic
measurement, while the right side to (nearly) electric measurement only.

65.4.4 SST Source (SST Model) Analysis

Suppose that it is desired to estimate the direction to an SST source whose variance is unknown using
a single vector sensor, and the estimation is done under the correct model of an SST source. In the
following, the CRB for this problem will be derived and it will be shown that the resulting MSAE
bound remains the same as when the estimation was done under the assumption of a DST source.
That is, knowledge of the source type does not improve the accuracy of its direction estimate.
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FIGURE 65.4: Effect of change in magnitude of σ 2
H

on MSAES
CR

for three types of polarizations
(θ4 = 0, π/12, π/4). A single SST source, σs = σE = 1.

To get a statistical model for the SST measurement model (65.14) as a special case of Eq. (65.21),
we will make the same assumptions on the noise and use a similar data scaling as in the above DST
source case. That will give again equal noise variances in all the sensor coordinates. Assume also that
the signal envelope s(t) satisfies assumption A5 with x(t) = s(t) in Eq. (65.14). Then the resulting
statistical model becomes a special case of Eq. (65.21) with

A =
[

rV

(u×)V

]
Qw x(t) = s(t) σ 2 = σ 2

H

θ = [
θ1 , θ2 , θ3 , θ4

]T
(65.35)

The unknown parameters are θ , P , σ 2.

The matrix expression of CRB(θ) was calculated and its entries are presented in [1, Appendix F].
The results show that the ellipticity angle θ4 is decoupled from the rest of the parameters and that
its variance is not a function of these parameters. Additionally, the parameter vector θ is decoupled
from σE and σH .

The MSAE bound for an SST source under the SST model was calculated using the analysis of [1].
The result coincides with Eq. (65.34). That is, the MSAE bound for an SST source is the same under
both the SST and the DST models.

The CRB expression in [1, Appendix F] implies that the CRB variance of the orientation angle θ3
tends to infinity as the elevation angle θ2 approaches π/2 or −π/2. This singularity is explained
by the fact that the orientation angle is a function of the azimuth (through v1, v2), and the latter
becomes increasingly sensitive to measurement errors as the elevation angle approaches the zenith
or nadir. (Note that the azimuth is undefined in the zenith and nadir elevations). However, this
singularity is not an intrinsic one, as it depends on the chosen reference system, while the information
in the vector measurement does not.
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65.4.5 CVAE and SST Source Analysis in the Wave Frame

In order to get performance results intrinsic to the SST estimation problem and thereby solve the
singularity problems associated with the above model, we choose an alternative error vector that
is invariant under known rotational transformations of the coordinate system. The details of the
following analysis appear in [1, Appendix G].

Denote by W the wave frame whose coordinate axes are (u, ṽ1, ṽ2) where ṽ1 and ṽ2 correspond,
respectively, to the major and minor axes of the source’s electric wave ellipse (see Fig. 65.2). For any
estimator θ̂i , i = 1, 2, 3 there is an associated estimated wave frame Ŵ . Define the vector angular
error φWŴ which is the vector angle by which Ŵ is (right-handed) rotated about W , and by

[
φWŴ

]
W

the representation of φWŴ in the coordinate system W (see [1, Appendix G]). The proposed vector
angular error will be

[
φWŴ

]
W

.

Observe that
[
φWŴ

]
W

depends, by definition, only on the frames W, Ŵ . Thus, for an estimator

that is independent of known rotations of the data, the estimated wave frame Ŵ , the vector angular
error and its covariance are independent of the sensor frame. We introduce the following definitions.

DEFINITION 65.4 The normalized asymptotic covariance of the vector angular error in the wave
frame is defined as

CVAE
1= lim

N→∞

{
NE

([
φWŴ

]
W

[
φWŴ

]T
W

)}
(65.36)

whenever this limit exists.

DEFINITION 65.5 A direction and orientation estimator will be called regular if its errors satisfy
E

∑3
i=1 |1θi |3 = o(1/N) and the gradient of its bias with respect to θ1, θ2, θ3 is o(1) as N → ∞.

Then we have the following theorems.

THEOREM 65.4 For a regular model the CVAE of any regular direction and orientation estimator,
whenever it exists, is bounded from below by

CVAECR

1= N · K CRB(θ1, θ2, θ3)K
T (65.37)

where

K =

 sinθ2 0 −1

− cosθ2 sinθ3 − cosθ3 0
cosθ2 cosθ3 − sinθ3 0


 (65.38)

and CRB(θ1, θ2, θ3) is the Cramér-Rao submatrix bound for the azimuth, elevation, and orientation
angles for the particular model used.

PROOF 65.4 See [1, Appendix G].

Observe that the result of Theorem 65.4 is obtained using geometrical considerations only. Hence,
it is applicable to general direction and orientation estimation problems and is not limited to the SST
problem only. It is dependent only on the ability to define a wave frame. For example, one can apply
this theorem to a DST source with a wave frame defined by the orientation angle that diagonalizes
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the source signal covariance matrix. A generalization of this theorem to estimating non-unit vector
systems is given in [26].

For vector sensormeasurements, CVAECR has thedesirablepropertyof being invariant to the choice
of reference coordinate frame. This invariance property also holds for the CVAE of an estimator if the
estimate is independent of deterministic rotational transformations of the data. Note that CVAECR

is not a function of N .

THEOREM 65.5 The MSAE and CVAE of any regular estimator are related through

MSAE = [CVAE]2,2 + [CVAE]3,3 (65.39)

Furthermore, a similar equality holds for a regular model where the MSAE and CVAE in Eq. (65.39) are
replaced by their lower bounds MSAECR and CVAECR .

PROOF 65.5 See [1, Appendix G].

In our case, CRB(θ1, θ2, θ3) is the 3 × 3 upper left block entry of the CRB matrix in the sensor
frame given in [1, Appendix F]. Substituting this block entry into Eq. (65.37) and denoting the CVAE
matrix bound for the SST problem by CVAES

CR
, we have that this matrix is diagonal with nonzero

entries given by

[
CVAES

CR

]
1,1 = (1 + %)

2%2 cos2 2θ4
(65.40a)

[
CVAES

CR

]
2,2 = (1 + %)(σ 2

E
+ σ 2

H
)

2%2[σ 2
H sin2 θ4 + σ 2

E cos2 θ4]
(65.40b)

[
CVAES

CR

]
3,3 = (1 + %)(σ 2

E
+ σ 2

H
)

2%2[σ 2
E sin2 θ4 + σ 2

H cos2 θ4]
(65.40c)

Some observations on Eqs. (65.40) are summarized in the following:

• Rotation around u: Singular only for a circularly polarized signal.

• Rotation around ṽ1 (electric ellipse’s major axis): Singular only for a linearly polarized
signal and no magnetic measurement.

• Rotation around ṽ2 (electric ellipse’s minor axis): Singular only for a linearly polarized
signal and no electric measurement.

• The rotation variances around ṽ1 and ṽ2 are symmetric with respect to the electric and
magnetic measurements.

• All the three variances in Eq. (65.40) are bounded from below by (1 + %)/2% 2 (inde-
pendent of the wave parameters).

The singular cases above are found by checking when their variances in CVAES
CR

tend to infinity (see,
e.g., [25, Theorem 6.3]). The three singular cases above should be expected as the corresponding
rotations are unobservable. These singularities are intrinsic to the SST estimation problem and
are independent of the reference coordinate system. The symmetry of the variances of the rotations
around themajor andminor axes of the ellipsewith respect to themagnetic andelectricmeasurements
should be expected as their axes have a spatial angle difference of π/2.
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The fact that the resulting singularities in the rotational errors are intrinsic (independent of the
reference coordinate system) as well as the diagonality of the CVAES

CR
bound matrix with its simple

entry expressions indicate that the wave frame is a natural system in which to do the analysis.

65.4.6 A Cross-Product-Based DOA Estimator

We propose a simple algorithm for estimating the DOA of a single electromagnetic source using the
measurements of a single vector sensor. The motivation for this algorithm stems from the average
cross-product Poynting vector. Observe that −u is the unit vector in the direction of the Poynting
vector given by [27],

S(t) = E(t) × H(t) = Re
{
eiωctE(t)

}
× Re

{
eiωctH(t)

}
= 1

2Re
{E(t) × H(t)

} + 1
2Re

{
ei2ωctE(t) × H(t)

}
where H denotes the complex conjugate of H. The carrier time average of the Poynting vector is

defined as 〈S〉t 1= 1
2Re

{E(t) × H(t)
}
. Note that unlike E(t) and H(t) this average is not a function

of ωc. Thus, it has an intrinsic physical meaning.
At this point we can see two possible ways for estimating u:

1. Phasor time averaging of 〈S〉t yielding a vector denoted by 〈S〉 with the estimated u taken
as the unit vector in the direction of −〈S〉.

2. Estimationofubyphasor timeaveragingof theunitvectors in thedirectionofRe
{E(t) × H(t)

}
.

Clearly, the first way is preferable, since then u is estimated after the measurement noise is reduced by
the averaging process, while the estimated u in the second way is more sensitive to the measurement
noises which may be magnified considerably.

Thus, the proposed algorithm computes

ŝ = 1

N

N∑
t=1

Re
{
yE(t) × yH (t)

}
(65.41a)

û = ŝ/‖̂s‖ (65.41b)

This algorithm and some of its variants have been patented [28].
The statistical performance of this estimator û is analyzed in [1, Appendix H] under the previous

assumptions on ξ(t), eE(t), eH (t), except that the Gaussian assumption is omitted. The results are
summarized by the following theorem.

THEOREM 65.6 The estimator û has the following properties (for both DST and SST sources):

a) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite first order moments, then û → u almost surely.

b) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite second order moments, then
√

N(̂u−u) is asymp-
totically normal.

c) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite fourth order moments, then the MSAE is

MSAE = 1
2%−1

(
1 + 4%−1

) (
r + r−1

)2
(65.42)

where % = tr (P )/σ 2
‖ = SNR.
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d) Under the conditions of (c), Nδ2 is asymptotically χ2 distributed with two degrees of freedom.

PROOF 65.6 See [1, Appendix H].

For the Gaussian SST case, the ratio between the MSAE of this estimator to MSAES
CR

in Eq. (65.34)
is

eff
1= MSAE

MSAES
CR

= % + 4

% + 1

[
1 + (r − r−1)2 sin2 θ4 cos2 θ4

]
(65.43)

Hence, this estimator is nearly efficient if the following two conditions are met:

% � 1 (65.44a)

r ' 1 or θ4 ' 0 (65.44b)

Figure 65.5 illustrates these results using plots of the efficiency factor (65.43) as a function of the
ellipticity angle θ4 for SNR = % = 10 and three different values of r .

FIGURE 65.5: The efficiency factor (65.43) of the cross-product-based direction estimator as a
function of the normalized ellipticity angle for three values of r = σH/σE . A single source, SNR = 10.

The estimator (65.41) can be improved using a weighted average of cross products between all
possible pairs of real and imaginary parts of yE(t) and yH (s) taken at arbitrary times t and s. (Note
that these cross products have directions nearly parallel to the basic estimator û in Eq. (65.41);
however, before averaging, these cross products should be premultiplied by +1 or −1 in accordance
with the direction of the basic estimator û). A similar algorithm suitable for real time applications
can also be developed in the time domain without preprocessing needed for phasor representation.
It can be extended to nonstationary inputs by using a moving average window on the data. It is of
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interest to find the optimal weights and the performances of these estimators.
The main advantages of the proposed cross-product-based algorithm (65.41) or one of its variants

above are

• It can give a direction estimate instantly, i.e., with one time sample.

• It is simple to implement (does not require minimization of a cost function) and can be
applied in real time.

• It is equally applicable to sources of various types, including SST, DST, wide-band, and
non-Gaussian.

• Its MSAE is nearly optimal in the Gaussian SST case under Eq. (65.44).

• It does not depend on time delays and therefore does not require data synchronization
among different sensor components.

65.5 Multi-Source Multi-Vector Sensor Analysis

Consider the case in which it is desired to estimate the directions to multiple electromagnetic sources
whose covariance is unknown using an array of vector sensors. The MSAECR and CVAECR bound
expressions in Eqs. (65.29) and (65.37) are applicable to each of the sources in the multi-source multi-
vector sensor scenario. Suppose that the noise vector eEH (t) in Eq. (65.19) is complex white Gaussian
with zero mean and diagonal covariance matrix (i.e., noises from different sensors are uncorrelated)
and with electric and magnetic variances σ 2

E
and σ 2

H
, respectively. Suppose also that r = σH/σE is

known. Similarly to the single sensor case, multiply the electric measurements in Eq. (65.19) by r to
obtain equal noise variances in all the sensor coordintates. The resulting models then become special
cases of Eq. (65.21) as follows.

For DST signals, the block columns Ak ∈ C
6m×2 and the signals x(t) ∈ C

2n×1 are

Ak = ek ⊗
[

rI3
(uk×)

]
Vk (65.45a)

x(t) =
[
ξT

1 (t), · · · , ξT
n (t)

]T

(65.45b)

The parameter vector of the kth source includes here its azimuth and elevation.
For the SST case, the columns Ak ∈ C

6m×1 and the signals x(t) ∈ C
n×1 are

Ak = ek ⊗
[

rI3
(uk×)

]
VkQkwk (65.46a)

x(t) = [s1(t), · · · , sn(t)]
T (65.46b)

The parameter vector of the kth source includes here its azimuth, elevation, orientation, and ellipticity
angles.

The matrices A whose (block) columns are given in Eqs. (65.45a) and (65.46a) are the Khatri-
Rao products (see, e.g., [20, 21]) of the two matrices whose (block) columns are the arguments of
the Kronecker products in these equations.

Mixed single and dual signal transmissions are also special cases of Eq. (65.21) with appropriate
combinations of the above expressions.
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65.5.1 Results for Multiple Sources, Single-Vector Sensor

We present several results for the multiple-source model and a single-vector sensor. It is assumed that
the signal and noise vectors satisfy, respectively, assumptions A5 and A6. The results are applicable
to wide-band sources since a single vector sensor is used and thus A3 and A4 are not needed.

We first present results obtained by numerical evaluation concerning the localization of two un-
correlated sources, assuming r is known:

1. When only the electric field is measured, the information matrix is singular.

2. When the electric measurement is precise, the CRB variances are generally nonzero.

3. The MSAES
CR

can increase without bound with decreasing source angular separation for
sources with the same ellipticity and spin direction, but remarkably it remains bounded
for sources with different ellipticities or opposite spin directions.

Properties 1 and 2 are, in general, different from the single source case. Property 1 shows that it is
necessary to include both the electric and magnetic measurements to estimate the direction to more
than one source. Property 3 demonstrates the great advantage of using the electromagnetic vector
sensor, in that it allows high resolution of sources with different ellipticities or opposite spins. Note
that this generally requires a very large aperture using a scalar sensor array.

The above result on the ability to resolve two sources that are different only in their ellipticity or
spin direction appears to be new. Note also the analogy to Pauli’s “exclusion principle”, as in our case
two narrow-band SST sources are distinguishable if and only if they have different sets of parameters.
The set in our case includes wave-length, direction, ellipticity, and spin sign.

Now we present conditions for identifiability of multiple SST (or polarized) sources and a single
vector sensor, which are analytically proven in [29] and [30], assuming the noise variances are
known:

1. A single source is always identifiable.

2. Two sources that are not fully correlated are identifiable if they have different DOAs.

3. Two fully correlated sources are identifiable if they have different DOAs and ellipticities.

4. Three sources that are not fully correlated are identifiable if they have different DOAs and
ellipticities.

Note that by identifiability we refer to both the DOA and polarization parameters.
Figures 65.6 and 65.7 illustrate the resolution of two uncorrelated equal power SST sources with

a single electromagnetic vector sensor. The figures show the square root of the MSAES
CR

of one
of the sources for a variety of spin directions, ellipticities, and orientation angles, as a function of
the separation angle between the sources. (The MSAES

CR
values of the two sources are found to be

equal in all the following cases.) The covariances of the signals and noise are normalized such that
P = I2, σE = σH = 1. The azimuth angle of the first source and the elevation angles of the two

sources are kept constant (θ(1)
1 = θ

(1)
2 = θ

(2)
2 = 0). The second source’s azimuth is varied to give

the desired separation angle 1θ1 , θ
(2)
1 . In Fig. 65.6, the cases shown are of same spin directions

(θ(1)
4 = θ

(2)
4 = π/12) and opposite spin directions (θ(1)

4 = −θ
(2)
4 = π/12), same orientation angles

(θ(1)
3 = θ

(2)
3 = π/4) and different orientation angles (θ(1)

3 = −θ
(2)
3 = π/4). The figure shows that

the resolution of the two sources with a single vector sensor is remarkably good when the sources have
opposite spin directions. In particular, the MSAES

CR
remains bounded even for zero separation angle

and equal orientation angles! On the other hand, the resolution is not so significant when the two
sources have different orientation angles but equal ellipticity angles (then, for example, the MSAES

CR

tends to infinity for zero separation angle). In Fig. 65.7, the orientation angles of the sources is the

same (θ(1)
3 = θ

(2)
3 = π/4), the polarization of the first source is kept linear (θ(1)

4 = 0) while the
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FIGURE 65.6: MSAES
CR

for two uncorrelated equal power SST sources and a single vector sensor

as a function of the source angular separation. Upper two curves: Same spin directions (θ(1)
4 =

θ
(2)
4 = π/12). Lower two curves: Opposite spin directions (θ(1)

4 = −θ
(2)
4 = π/12). Solid curves:

Same orientation angles (θ(1)
3 = θ

(2)
3 = π/4). Dashed curves: Different orientation angles (θ(1)

3 =
−θ

(2)
3 = π/4). Remaining parameters are θ

(1)
1 = θ

(1)
2 = θ

(2)
2 = 0, 1θ1

1= θ
(2)
1 , P = I2, σE = σH =

1.

ellipticity angle of the second source is varied (|θ(2)
4 | = π/12, π/6, π/4) to illustrate the remarkable

resolvability due to different ellipticities. It can be seen that the MSAES
CR

remains bounded here even
for zero separation angle.

Thus, Figs. 65.6 and 65.7 show that with one vector sensor it is possible to resolve extremely well
two uncorrelated SST sources that have only different spin directions or different ellipticities (these
sources can have the same direction of arrival and the same orientation angle). This demonstrates
a great advantage of the vector sensor over scalar sensor arrays, in that the latter require large array
apertures to resolve sources with small separation angle.

65.6 Concluding Remarks

An approach has been presented for the localization of electromagnetic sources using vector sensors.
We summarize some of the main results of this article and give an outlook to their possible extensions.

Models: New models that include the complete electromagnetic data at each sensor have been
introduced. Furthermore, new signal models and vector angular error models in the wave frame
have been proposed. The wave frame model provides simple performance expressions that are easy
to interpret and have only intrinsic singularities. Extensions of the proposed models may include
additional structures for specific applications.

Cramér-Rao bounds and quality measures: A compact expression for the CRB for multi-vector
source multi-vector sensor processing has been derived. The derivation gave rise to new block
matrix operators. New quality measures in three-dimensional space, such as the MSAE for direction
estimation and CVAE for direction and orientation estimation, have been defined. Explicit bounds
on the MSAE and CVAE, having the desirable property of being invariant to the choice of the
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FIGURE 65.7: MSAES
CR

for two uncorrelated equal power SST sources and a single vector sensor as

a function of the source angular separation. Sources are with the same orientation angles (θ(1)
3 =

θ
(2)
3 = π/4) and different ellipticity angles (θ(1)

4 = 0 and θ
(2)
4 as shown in the figure). Remaining

parameters are as in Fig. 65.6.

reference coordinate frame, have been derived and can be used for performance analysis. Some
generalizations of the bounds appear in [26]. These bounds are not limited to electromagnetic
vector sensor processing. Performance comparisons of vector sensor processing with scalar sensor
counterparts are of interest.

Identifiablity: The derived bounds and the identifiability analysis of [29] and [30] were used to
show that the fusion of magnetic and electric data at a single vector sensor increases the number of
identifiable sources (or resolution capacity) in three-dimensional space from one source in the electric
data case to up to three sources in the electromagnetic case. For a single signal transmission source,
in order to get good direction estimates, the fusion of the complete data becomes more important
as the polarization gets closer to linear. Finding the number of identifiable sources per sensor in a
general vector sensor array is of interest. Preliminary results on this issue can be found in [29, 31].

Resolution: Source resolution using vector sensors is inherently different from scalar sensors, where
the latter case is characterized by the classical Rayleigh principle. For example, it was shown that
a single vector sensor can be used to resolve two sources in three-dimensional space. In particular,
a vector sensor exhibits remarkable resolvability when the sources have opposite spin directions or
different ellipticity angles. This is very different from the scalar sensor array case in which a plane
array with large aperture is required to achieve the same goal. Analytical results on source resolution
using vector sensor arrays and comparisons with their scalar counterparts are of interest.

Algorithms: A simple algorithm has been proposed and analyzed for finding the direction to a
single source using a single vector sensor based on the cross-product operation. It is of interest
to analyze the performance of the aformentioned variants of this algorithm and to extend them to
more general source scenarios (e.g., larger number of sources). It is also of interest to develop new
algorithms for the vector sensor array case.

Communication: The main considerations in communication are transmission of signals over
channels with limited bandwidth and their recovery at the sensor. Vector sensors naturally fit these
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considerations as they have maximum observability to incoming signals and they double the channel
capacity (compared with scalar sensors) with DST signals. This has vast potential for performance
improvement in cellular communications. Future goals will include development of optimum signal
estimation algorithms, communication forms, and coding design with vector-sensor arrays.

Implementations: The proposed methods should be implemented and tested with real data.
Sensor development: The use of complete electromagnetic data seemes to be virtually nonexistant

in the literature on source localization. It is hoped that the results of this research will motivate the
systematic development of high quality electromagnetic sensors that can operate over a broad range
of frequencies. Recent references on this topic can be found in [14] and [15].

Extensions: The vector sensor concept can be extended to other areas and open new possibilities.
An example of this can be found in [32] and [33] for the acoustic case.
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Appendix A: Definitions of Some Block Matrix Operators

This appendix defines several block matrix operators that are found to be useful in this article. The
following notation will be used for a blockwise partitioned matrix A:

A =



A<11> · · · A<1n>

...
...

A<m1> · · · A<mn>


 1= [

A<ij>

]
(A.1)
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with the block entries A<ij> of dimensions µi × νj . Define µ
1= ∑m

i=1 µi, ν
1= ∑n

j=1 νj , so A

is a µ × ν matrix. Since the block entries may not be of the same size, this is sometimes called an
unbalanced partitioning. The following definitions will be considered.

DEFINITION 65.6 Block transpose. Let A be an mµ×nν blockwise partitioned matrix, with blocks
A<ij> of equal dimensions µ × ν. Then the block transpose AbT is an nµ × mν matrix defined
through (

AbT
)

<ij>
= A<ji> (A.2)

DEFINITION 65.7 Block Kronecker product. Let A be a blockwise partitioned matrix of dimen-
sion µ × ν, with block entries A<ij> of dimensions µi × νj , and let B be a blockwise par-
titioned matrix of dimensions η × ρ, with block entries B<ij> of dimensions ηi × ρj . Also
µ = ∑m

i=1 µi, ν = ∑n
j=1 νj , η = ∑m

i=1 ηi, ρ = ∑n
j=1 ρj . Then the block Kronecker product

A×2B is an (
∑m

i=1 µiηi × ∑n
j=1 νjρj ) matrix defined through

(A×2B)<ij> = A<ij> ⊗ B<ij> (A.3)

i.e., the (i, j) block entry of A×2B is A<ij> ⊗ B<ij> of dimension µiηi × νjρj .

DEFINITION 65.8 Block Schur-Hadamard product. Let A be an mµ × nν matrix consisting of
blocks A<ij> of dimensions µ × ν, and let B be an mν × nη matrix consisting of blocks B<ij> of
dimensions ν × η. Then the block Schur-Hadamard product A ·2B is an mµ × nη matrix defined
through

(A ·2B)<ij> = A<ij>B<ij> (A.4)

Thus, each block of the product is a usual product of a pair of blocks and is of dimension µ × η.

DEFINITION 65.9 Block trace operator. Let A be an mµ × nµ matrix consisting of blocks A<ij> of
dimensions µ × µ. Then the block trace matrix operator btr[A] is an m × n matrix defined by

(btr [A])ij = tr A<ij> (A.5)
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66.1 Introduction

Most high resolution direction-of-arrival (DOA) estimation methods rely on subspace or eigen-
based information which can be obtained from the eigenvalue decomposition (EVD) of an estimated
correlation matrix, or from the singular value decomposition (SVD) of the corresponding data
matrix. However, the expense of directly computing these decompositions is usually prohibitive for
real-time processing. Also, because the DOA angles are typically time-varying, repeated computation
isnecessary to track the angles. This hasmotivated researchers in recent years todevelop lowcost eigen
and subspace tracking methods. Four basic strategies have been pursued to reduce computation:
(1) computing only a few eigencomponents, (2) computing a subspace basis instead of individual
eigencomponents, (3) approximating the eigencomponents or basis, and (4) recursively updating the
eigencomponents or basis. The most efficient methods usually employ several of these strategies.

In 1990, an extensive survey of SVD tracking methods was published by Comon and Golub [7].
They classified the various algorithms according to complexity and basically two categories emerge:
O(n2r) and O(nr2) methods, where n is the snapshot vector size and r is the number of extreme
eigenpairs to be tracked. Typically, r < nor r � n, so theO(nr2)methods involve significantly fewer
computations than the O(n2r) algorithms. However, since 1990, a number of O(nr) algorithms have
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been developed. This article will primarily focus on recursive subspace and eigen updating methods
developed since 1990, especially, the O(nr2) and O(nr) algorithms.

66.2 Background

66.2.1 EVD vs. SVD

Let X = [x1|x2|...|xN ] be an n × N data matrix where the kth column corresponds to the kth
snapshot vector, xk ∈ Cn. With block processing, the correlation matrix for a zero mean, stationary,
ergodic vector process is typically estimated as R = 1

N
XXH where the true correlation matrix,

8 = E[xkx
H
k ] = E[R].

The EVD of the estimated correlation matrix is closely related to the SVD of the corresponding data
matrix. The SVD of X is given by X = USV H where U ∈ Cn×n and V ∈ CN×N are unitary matrices
and S ∈ Cn×N is a diagonal matrix whose nonzero entries are positive. It is easy to see that the left
singular vectors of X are the eigenvectors of XXH = USST UH , and the right singular vectors of X

are the eigenvectors of XH X = V ST SV H . This is so because XXH and XH X are positive definite
Hermitian matrices (which have orthogonal eigenvectors and real, positive eigenvalues). Also note
that the nonzero singular values of X are the positive square roots of the nonzero eigenvalues of XXH

and XH X. Mathematically, the eigen information contained in the SVD of X or the EVD of XXH

(or XH X) is equivalent, but the dynamic range of the eigenvalues is twice that of the corresponding
singular values. With finite precision arithmetic, the greater dynamic range can result in a loss of
information. For example, in rank determination, suppose the smallest singular value is ε where ε

is machine precision. The corresponding eigenvalue, ε2, would be considered a machine precision
zero and the EVD of XXH (or XH X ) would incorrectly indicate a rank deficiency. Because of the
dynamic range issue, it is generally recommended to use the SVD of X (or a square root factor of R).
However, because additive sensor noise usually dominates numerical errors, this choice may not be
critical in most signal processing applications.

66.2.2 Short Memory Windows for Time Varying Estimation

Ultimately, weare interested in tracking someaspectof the eigenstructureof a timevarying correlation
(or data) matrix. For simplicity we will focus on time varying estimation of the correlation matrix,
realizing that the EVD of R is trivially related to the SVD of X. A time varying estimator must
have a short term memory in order to track changes. An example of long memory estimation is an
estimator that involves a growing rectangular data window. As time goes on, the estimated quantities
depend more and more on the old data, and less and less on the new data. The two most popular short
memory approaches to estimating a time varying correlation matrix involve (1) a moving rectangular
window and (2) an exponentially faded window. Unfortunately, an unbiased, causal estimate of the
true instantaneous correlation matrix at time k, 8k = E[xkx

H
k ], is not possible if averaging is used

and the vector process is truly time varying. However, it is usually assumed that the process is varying
slowly enough within the effective observation window that the process is approximately stationary
and some averaging is desirable. In any event, at time k, a length N moving rectangular data window
results in a rank two modification of the correlation matrix estimate, i.e.,

R
(rect)
k = R

(rect)
k−1 + 1

N
(xkx

H
k − xk−NxH

k−N) (66.1)

where xk is the new snapshot vector and xk−N is the oldest vector which is being removed from the

estimate. The corresponding data matrix is given by X
(rect)
k = [xk|xk−1|...|xk−N+1] and R

(rect)
k =

1
N

X
(rect)
k

(
X

(rect)
k

)H

. Subtracting the rank one matrix from the correlation estimate is referred to as

c©1999 by CRC Press LLC



a rank one downdate. Downdating moves all the eigenvalues down (or unchanged). Updating, on
the other hand, moves all eigenvalues up (or unchanged). Downdating is potentially ill-conditioned
because the smallest eigenvalue can move towards zero.

An exponentially faded data window produces a rank one modification in

R
(f ade)
k = αR

(f ade)

k−1 + (1 − α)xkx
H
k (66.2)

where α is the fading factor with 0 ≤ α ≤ 1. In this case, the data matrix is growing in size, but the
older data is de-emphasized with a diagonal weighting matrix,

X
(f ade)
k = [xk|xk−1|...|x1] sqrt(diag(1, α, α2, ..., αk−1))andR

(f ade)
k = (1−α)X

(f ade)
k

(
X

(f ade)
k

)H

.

Of course, the two windows could be combined to produce an exponentially faded moving rect-
angular window, but this kind of hybrid short memory window has not been the subject of much
study in the signal processing literature. Similarly, not much attention has been paid to which short
memory windowing scheme is most appropriate for a given data model. Since downdating is poten-
tially ill-conditioned, and since two rank one modifications usually involve more computation than
one, the exponentially faded window has some advantages over the moving rectangular window. The
main advantage of a (short) rectangular window is in tracking sudden changes. Assuming stationar-
ity within the effective observation window, the power in a rectangular window will be equal to the
power in an exponentially faded window when

N ≈ 1

(1 − α)
or equivalently α ≈ 1 − 1

N
= N − 1

N
. (66.3)

Based on a Fourier analysis of linearly varying frequencies, equal frequency lags occur when [14]

N ≈ (1 + α)

(1 − α)
or equivalently α ≈ N − 1

N + 1
. (66.4)

Either one of these relationships could be used as a rule of thumb for relating the effective observation
window of the two most popular short memory windowing schemes.

66.2.3 Classification of Subspace Methods

Eigenstructure estimation can be classified as (1) block or (2) recursive. Block methods simply
compute an EVD, SVD, or related decomposition based on a block of data. Recursive methods
update the previously computed eigen information using new data as it arrives. We focus on recursive
subspace updating methods in this article.

Most subspace tracking algorithms can also be broadly categorized as (1) modified eigen problem
(MEP) methods or (2) adaptive (or non-MEP) methods. With short memory windowing, MEP
methods are adaptive in the sense that they can track time varying eigen information. However,
when we use the word adaptive, we mean that exact eigen information is not computed at each
update, but rather, an adaptive method tends to move towards an EVD (or some aspect of an EVD) at
each update. For example, gradient-based, perturbation-based, and neural network-based methods
are classified as adaptive because on average they move towards an EVD at each update. On the other
hand, rank one, rank k, and sphericalized EVD and SVD updates are, by definition, MEP methods
because exact eigen information associated with an explicit matrix is computed at each update. Both
MEP and adaptive methods are supposed to track the eigen information of the instantaneous, time
varying correlation matrix.
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66.2.4 Historical Overview of MEP Methods

Many researchers have studied SVD and EVD tracking problems. Golub [19] introduced one of the
first eigen-updating schemes, and his ideas were developed and expanded by Bunch and co-workers
in [3, 4]. The basic idea is to update the EVD of a symmetric (or Hermitian) matrix when modified
by a rank one matrix. The rank-one eigen update was simplified in [37], when Schreiber introduced
a transformation that makes the core eigenproblem real. Based on an additive white noise model,
Karasalo [21] and Schreiber [37] suggested that the noise subspace be “sphericalized”, i.e., replace
the noise eigenvalues by their average value so that deflation [4] could be used to significantly reduce
computation. By deflating the noise subspace and only tracking the r dominant eigenvectors, the
computation is reduced from O(n3) to O(nr2) per update. DeGroat reduced computation further
by extending this concept to the signal subspace [8]. By sphericalizing and deflating both the signal
and the noise subspaces, the cost of tracking the r dimensional signal (or noise) subspace is O(nr)

and no iteration is involved. To make eigen updating more practical, DeGroat and Roberts developed
stabilization schemes to control the loss of orthogonality due to the buildup of roundoff error [10].
Further work related to eigenvector stabilization is reported in [15, 28, 29, 30]. Recently, a more
stable version of Bunch’s algorithm was developed by Gu and Eisenstat [20]. In [46], Yu extended
rank one eigen updating to rank k updating.

DeGroat showed in [8] that forcing certain subspaces of the correlation matrix to be spherical, i.e.,
replacing the associated eigenvalues with a fixed or average value, is an easy way to deflate the size
of the updating problem and reduce computation. Basically, a spherical subspace (SS) update is a
rank one EVD update of a sphericalized correlation matrix. Asymptotic convergence analysis of SS
updating is found in [11, 13]. A four level SS update capable of automatic signal subspace rank and
size adjustment is described in [9, 11]. The four level and the two level SS updates are the only MEP
updates to date that are O(nr) and noniterative. For more details on SS updating, see Section 66.3.6,
Spherical Subspace (SS) Updating: A General Framework for Simplified Updating.

In [42], Xu and Kailath present a Lanczos based subspace tracking method with an associated
detection scheme to track the number of sources. A reference list for systolic implementations of
SVD based subspace trackers is contained in [12].

66.2.5 Historical Overview of Adaptive, Non-MEP Methods

Owsley pioneered orthogonal iteration and stochastic-based subspace trackers in [32]. Yang and
Kaveh extended Owsley’s work in [44] by devising a family of constrained gradient-based algorithms.
A highly parallel algorithm, denoted the inflation method, is introduced for the estimation of the
noise subspace. The computational complexity of this family of gradient-based methods varies from
(approximately) n2r to 7

2nr for the adaptation equation. However, since the eigenvectors are only ap-

proximately orthogonal, an additionalnr2 flops may be needed if Gram Schmidt orthogonalization is
used. It may be that a partial orthogonalization scheme (see Section 66.3.2 Controlling Roundoff Error
Accumulation and Orthogonality Errors) can be combined with Yang and Kaveh’s methods to improve
orthogonality enough to eliminate the O(nr2) Gram Schmidt computation. Karhunen [22] also ex-
tended Owsley’s work by developing a stochastic approximation method for subspace computation.
Bin Yang [43] used recursive least squares (RLS) methods with a projection approximation approach
to develop the projection approximation subspace tracker (PAST) which tracks an arbitrary basis for
the signal subspace, and PASTd which uses deflation to track the individual eigencomponents. A
multi-vector eigen tracker based on the conjugate gradient method is developed in [18]. Previous
conjugate gradient-based methods tracked a single eigenvector only. Orthogonal iteration, lossless
adaptive filter, and perturbation-based subspace trackers appear in [40] [36], and [5] respectively.
A family of non-EVD subspace trackers is given in [16]. An adaptive subspace method that uses a
linear operator, referred to as the Propagator, is given in [26]. Approximate SVD methods that are
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based on a QR update step followed by a single (or partial) Jacobi sweep to move the triangular factor
towards a diagonal form appear in [12, 17, 30]. These methods can be described as approximate SVD
methods because they will converge to an SVD if the Jacobi sweeps are repeated.

Subspace estimation methods based on URV or rank revealing QR (RRQR) decompositions are
referenced in [6]. These rank revealing decompositions can divide a set of orthonormal vectors into
sets that span the signal and noise subspaces. However, a threshold (noise power) level that lies
between the largest noise eigenvalue and the smallest signal eigenvalue must be known in advance.
In some ways, the URV decomposition can be viewed as an approximate SVD. For example, the
transposed QR (TQR) iteration [12] can be used to compute the SVD of a matrix, but if the iteration
is stopped before convergence, the resulting decomposition is URV-like.

Artificial neural networks (ANN) have also been used to estimate eigen information [35]. In 1982,
Oja [31] was one of the first to develop an eigenvector estimating ANN. Using a Hebbian type learning
rule, this ANN adaptively extracts the first principal eigenvector. Much research has been done in
this area since 1982. For an overview and a list of references, see [35].

66.3 Issues Relevant to Subspace and Eigen Tracking
Methods

66.3.1 Bias Due to Time Varying Nature of Data Model

Because direction-of-arrival (DOA) angles are typically time varying, a range of spatial frequencies
is usually included in the effective observation window. Most spatial frequency estimation methods
yield frequency estimates that are approximately equal to the effective frequency average in the
window. Consequently, the estimates lag the true instantaneous frequency. If the frequency variation
is assumed to be linear within the effective observation window, this lag (or bias) can be easily
estimated and compensated [14].

66.3.2 Controlling Roundoff Error Accumulation and Orthogonality
Errors

Numerical algorithms are generally defined as stable if the roundoff error accumulates in a linear
fashion. However, recursive updating algorithms cannot tolerate even a linear buildup of error if large
(possibly unbounded) numbers of updates are to be performed. For real time processing, periodic
reinitialization is undesirable. Most of the subspace tracking algorithms involve the product of at
least k orthogonal matrices by the time the kth update is computed. According to Parlett [33], the
error propagated by a product of orthogonal matrices is bounded as

|UkU
H
k − I |E ≤ (k + 1)n1.5ε (66.5)

where the n × n matrix Uk = Uk−1Qk = QkQk−1...Q1 is a product of k matrices that are each
orthogonal to working accuracy, ε is machine precision, and |.|E denotes the Euclidean matrix norm.
Clearly, if k is large enough, the roundoff error accumulation can be significant.

There are really only two sources of error in updating a symmetric or Hermitian EVD: (1) the
eigenvalues and (2) the eigenvectors. Of course, the eigenvectors and eigenvalues are interrelated.
Errors in one tend to produce errors in the other. At each update, small errors may occur in the
EVD update so that the eigenvalues become slowly perturbed and the eigenvectors become slowly
nonorthonormal. The solution is to prevent significant errors from ever accumulating in either.

We do not expect the main source of error to be from the eigenvalues. According to Stewart [38],
the eigenvalues of a Hermitian matrix are perfectly conditioned, having condition numbers of one.
Moreover, it is easy to show that when exponential weighting is used, the accumulated roundoff error
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is bounded by a constant, assuming no significant errors are introduced by the eigenvectors. By
contrast, if exponential windowing is not used, the bound for the accumulated error builds up in a
linear fashion. Thus, the fading factor not only fades out old data, but also old roundoff errors that
accumulate in the eigenvalues.

Unfortunately, the eigenvectors of a Hermitian matrix are not guaranteed to be well conditioned.
An eigenvector will be ill-conditioned if its eigenvalue is closely spaced with other eigenvalues. In
this case, small roundoff perturbations to the matrix may cause relatively large errors in the eigenvec-
tors. The greatest potential for nonorthogonality then is between eigenvectors with adjacent (closely
spaced) eigenvalues. This observation led to the development of a partial orthogonalization scheme
known as pairwise Gram Schmidt (PGS) [10] which attacks the roundoff error buildup problem
at the point of greatest numerical instability — nonorthogonality of adjacent eigenvectors. If the
intervening rotations (orthogonal matrix products) inherent in the eigen update are random enough,
the adjacent vector PGS can be viewed as a full orthogonalization spread out over time. When PGS
is combined with exponential fading, the roundoff accumulation in both the eigenvectors and the
eigenvalues is controlled. Although PGS was originally designed to stabilize Bunch’s EVD update, it
is generally applicable to any EVD, SVD, URV, QR, or orthogonal vector update. Moonen et al. [29]
suggested that the bulk of the eigenvector stabilization in the PGS scheme is due to the normalization
of the eigenvectors. Simulations seem to indicate that normalization alone stabilizes the eigenvectors
almost as well as the PGS scheme, but not to working precision orthogonality. Edelman and Stewart
provide some insight into the normalization only approach to maintaining orthogonality [15]. For
additional analysis and variations on the basic idea of spreading orthogonalization out over time,
see [30] and especially [28].

Many of the O(nr) adaptive subspace methods produce eigenvector estimates that are only approx-
imately orthogonal and normalization alone does not always provide enough stabilization to keep
the orthogonality and other error measures small enough. We have found that PGS stabilization
can noticeably improve both the subspace estimation performance as well as the DOA (or spatial
frequency) estimation performance. For example, without PGS (but with normalization only), we
found that Champagne’s O(nr) perturbation-based eigen tracker (method PC) [5] sometimes gives
spurious MUSIC-based frequency estimates. On the other hand, with PGS, Champagne’s PC method
produced improved subspace and frequency estimates. The orthogonality error was also significantly
reduced. Similar performance boosts could be expected for any subspace or eigen tracking method
(especially those that produce eigenvector estimates that are only approximately orthogonal, e.g.,
PAST and PASTd [43] or Yang and Kaveh’s family of gradient based methods [44, 45]). Unfortu-
nately, normalization only and PGS areO(nr). Adding this kind of stabilization to anO(nr) subspace
tracking method could double its overall computation.

Other variations on the original PGS idea involve symmetrizing the 2 × 2 transformation and
making the pairwise orthogonalization cyclic [28]. The symmetric transformation assumes that the
vector pairs are almost orthgonal so that higher order error terms can be ignored. If this is the case,
the symmetric version can provide slightly better results at a somewhat higher computational cost.
For methods that involve working precision orthogonal vectors, the original PGS scheme is overkill.
Instead of doing PGS orthogonalization on each adjacent vector pair, cyclic PGS orthogonalizes only
one pair of vectors per update, but cycles through all possible combinations over time. Thus, cyclic
PGS covers all vector pairs without relying on the randomness of intervening rotations. Cyclic PGS
spreads the orthogonalization process out in time even more than the adjacent vector PGS method.
Moreover, cyclic PGS (or cyclic normalization) involves O(n) flops per update, but there is a small
overhead associated with keeping track of the vector pair cycle.

In summary, we can say that stabilization may not be needed for a small number of updates. On
the other hand, if an unbounded number of updates is to be performed, some kind of stabilization is
recommended. For methods that yield nearly orthogonal vectors at each update, only a small amount
of orthogonalization is needed to control the error buildup. In these cases, cyclic PGS may be best.
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However, for methods that produce vectors that are only approximately orthogonal, a more complete
orthogonalization scheme may be appropriate, e.g., a cyclic scheme with two or three vector pairs
orthogonalized per update will produce better results than a single pair scheme.

66.3.3 Forward-Backward Averaging

In many subspace tracking problems, forward-backward (FB) averaging can improve subspace as well
as DOA (or frequency) estimation performance. Although FB averaging is generally not appropriate
for nonstationary processes, it does appear to improve spatial frequency estimation performance if
the frequencies vary linearly within the effective observation window. Based on Fourier analysis of
linearly varying frequencies, we infer that this is probably due to the fact that the average frequency in
thewindowis identical forboth the forwardand thebackwardcases [14]. Consequently, the frequency
estimates are reinforced by FB averaging. Besides improved estimation performance, FB averaging
can be exploited to reduce computation by as much as 75% [24]. FB averaging can also reduce
computer memory requirements because (conjugate symmetric or anti-symmetric ) symmetries in
the complex eigenvectors of an FB averaged correlation matrix (or the singular vectors of an FB data
matrix) can be exposed through appropriate normalization.

66.3.4 Frequency vs. Subspace Estimation Performance

It has recentlybeen shownwithasymptotic analysis that abetter subspace estimatedoesnotnecessarily
result in a better MUSIC-based frequency estimate [23]. In subspace tracking simulations, we have
also observed that some methods produce better subspace estimates, but the associated MUSIC-
based frequency estimates are not always better. Consequently, if DOA estimation is the ultimate
goal, subspace estimation performance may not be the best criterion for evaluating subspace tracking
methods.

66.3.5 The Difficulty of Testing and Comparing Subspace Tracking
Methods

A significant amount of research has been done on subspace and eigen tracking algorithms in the
past few years, and much progress has been made in making subspace tracking more efficient.
Not surprisingly, all of the methods developed to date have different strengths and weaknesses.
Unfortunately, there has not been enough time to thoroughly analyze, study, and evaluate all of the
new methods. Over the years, several tests have been devised to “experimentally” compare various
methods, e.g., convergence tests [44], response to sudden changes [7], and crossing frequency tracks
(where the signal subspace temporarily collapses) [8]. Some methods do well on one test, but not so
well on another. It is difficult to objectively compare different subspace tracking methods because
optimal operating parameters are usually unknown and therefore unused, and the performance
criteria may be ill-defined or contradictory.

66.3.6 Spherical Subspace (SS) Updating — A General Framework for
Simplified Updating

Most eigen and subspace tracking algorithms are based directly or indirectly on tracking some aspect
of the EVD of a time varying correlation matrix estimate that is recursively updated according to
Eq. (66.1) or (66.2). Since Eqs. (66.1) and (66.2) involve rank one and rank two modifications to the
correlation matrix, most subspace tracking algorithms explicitly or implicitly involve rank one (or
two) modification of the correlation matrix. Since rank two modifications can be computed as two
rank one modifications, we will focus on rank one updating.
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Basically, spherical subspace (SS) updates are simplified rank one EVD updates. The simplification
involves sphericalizing subsets of eigenvalues (i.e., forcing each subset to have the same eigenlevel)
so that the sphericalized subspaces can be deflated.

Based on an additive white noise signal model, Karasalo [21] and Schreiber [37] first suggested that
the “noise” eigenvalues be replaced by their average value in order to reduce computation by deflation.
Using Ljung’s ODE-based method for analyzing stochastic recursive algorithms [25], it has recently
been shown that, if the noise subspace is sphericalized, the dominant eigenstructure of a correlation
matrix asymptotically converges to the true eigenstructure with probability one (under any noise
assumption) [11]. It is important to realize that averaging the noise eigenvalues yields a spherical
subspace in which the eigenvectors can be arbitrarily oriented as long as they form an orthonormal
basis for the subspace. A rank-one modification affects only one component of the sphericalized
subspace. Thus, only one of the multiple noise eigenvalues is changed by a rank-one modification.
Consequently, making the noise subspace spherical (by averaging the noise eigenvalues, or replacing
them with a constant eigenlevel) deflates the eigenproblem to an (r + 1) × (r + 1) problem, which
corresponds to a signal subspace of dimension r , and the single noise component whose power is
changed. For details on deflation, see [4].

The analysis in [11] shows that any number of sphericalized eigenlevels can be used to track
various subspace spans associated with the correlation matrix. For example, if both the noise and the
signal subspaces are sphericalized (i.e., the dominant and subdominant set of eigenvalues is replaced
by their respective averages), the problem deflates to a 2 × 2 eigenproblem that can be solved in
closed form, noniteratively. We will call this doubly deflated SS update, SA2 (Signal Averaged, Two
Eigenlevels) [8]. In [13] we derived the SA2 algorithm ODE and used a Lyapunov function to show
asymptotic convergence to the true subspaces w.p. 1 under a diminishing gain assumption. In fact,
the SA2 subspace trajectories can be described with Lie bracket notation and follow an isospectral
flow as described by Brockett’s ODE [2]. A four level SS update (called SA4) was introduced in [9]
to allow for information theoretic source detection (based on the eigenvalues at the boundary of the
signal and noise subspaces) and automatic subspace size adjustment. A detailed analysis of SA4 and
an SA4 minimum description length (SA4-MDL) detection scheme can be found in [11, 41]. SA4
sphericalizes all the signal eigenvalues except the smallest one, and all the noise eigenvalues except
the largest one, resulting in a 4×4deflated eigenproblem. By tracking the eigenvalues that are on the
boundary of the signal and noise subspaces, information theoretic detection schemes can be used to
decide if the signal subspace dimension should be increased, decreased, or remain unchanged. Both
SA2 and SA4 are O(nr) and noniterative.

The deflated core problem in SS updating can involve any EVD or SVD method that is desired.
It can also involve other decompositions, e.g., the URVD [34]. To illustrate the basic idea of SS
updating, we will explicitly show how an update is accomplished when only the smallest (n − r)

“noise” eigenvalues are sphericalized. This particular SS update is called a Signal Eigenstructure (SE)
update because only the dominant r “signal” eigencomponents are tracked. This case is equivalent
to that described by Schreiber [37] and an SVD version is given by Karasalo [21].

To simplify and more clearly illustrate the idea SS updating, we drop the normalization factor,
(1 − α), and the k subscripts from Eq. (66.2) and use the eigendecomposition of R = UDUH to
expose a simpler underlying structure for a single rank-one update

R̃ = αR + xxH (66.6)

= αUDUH + xxH (66.7)

= U(αD + ββH )UH , β = UH x (66.8)

= UG(αD + γ γ T )GH UH , γ = GH β (66.9)

= UGH(αD + ζ ζ T )HT GH UH , ζ = HT γ (66.10)

= UGH(QD̃QT )HT GH UH (66.11)
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= ŨD̃ŨH , Ũ = UGHQ (66.12)

where G = diag (β1/|β1|, ..., βn/|βn| is a diagonal unitary transformation that has the effect of
making the matrix inside the parenthesis real [37], H is an embedded Householder transformation
that deflates the core problem by zeroing out certain elements of ζ (see the SE case below), and
QD̃QT is the EVD of the simplified, deflated core matrix, (αD + ζ ζ T ). In general, H and Q will
involve smaller matrices embedded in an n × n identity matrix. In order to more clearly see the
details of deflation, we must concentrate on finding the eigendecomposition of the completely real
matrix, S = (αD + γ γ T ) for a specific case. Let us consider the SE update and assume that the
noise eigenvalues contained in the diagonal matrix have been replaced by their average values, d(n),
to produce a sphericalized noise subspace. We must then apply block Householder transformations
to concentrate all of the power in the new data vector into a single component of the noise subspace.
The update is thus deflated to an (r + 1) × (r + 1) embedded eigenproblem as shown below,

S = (αD + γ γ T ) (66.13)

= H(αD + ζ ζ T )HT , ζ = HT γ (66.14)
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(66.16)

= H(QD̃QT )HT (66.17)

where

ζ T = (HT γ )T = [γ (s), |γ (n)|, 0(n−r−1)×1]T , (66.18)

H
(n)
n−r = In−r − 2

v(n)(v(n))T

(v(n))T v(n)
, (66.19)

H =

 Ir 0

0 H
(n)
n−r


 , (66.20)

γ =

 γ (s)

γ (n)


 }r

}n − r

(66.21)

v(n) = γ (n) + |γ (n)|

 1

0(n−r−1)×1


 (66.22)

The superscripts (s) and (n) denote signal and noise subspace, respectively, and the subscripts de-
note the size of the various block matrices. In the actual implementation of the SE algorithm, the
Householder transformations are not explicitly computed, as we will see below. Moreover, it should
be stressed that the Householder transformation does not change the span of the noise subspace, but
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merely “aligns” the subspace so that all of the new data vector, x, that projects into the noise subspace
lies in a single component of the noise subspace.

The embedded (deflated) (r + 1) × (r + 1) eigenproblem,

E =




 D(s) 0

0 d(n)


 +


 γ (s)

|γ (n)|





 γ (s)

|γ (n)|




T



(r+1)×(r+1)

= Qr+1D̃r+1Q
T
r+1 (66.23)

can be solved using any EVD algorithm. Or, an SVD (square root) version can be computed by
finding the SVD of

F =

 6(s) 0 γ (s)

0 σ (n) |γ (n)|




(r+1)×(r+2)

= Qr+16̃r+1P
T
r+1 (66.24)

where E = FFT , 6(s) = sqrt(D(s)), σ (n) = √
d(n) and 6̃r+1 = sqrt(D̃r+1). The right singular

vectors, Pr+1, are generally not needed or explicitly computed in most subspace tracking problems.
The new signal and noise subspaces are thus given by

Ũ = [Ũ (s), Ũ (n)] (66.25)

= UGHQ (66.26)

=

U(s)G(s)︸ ︷︷ ︸

n×r

, U(n)G(n)H (n)︸ ︷︷ ︸
n×(n−r)





 Qr+1 0

0 In−r−1


 (66.27)

where U(s) and U(n) are the old signal and noise subspaces, G represents the diagonal unitary
transformation that makes the rest of the problem real, H is the block Householder transformation
that rotates (or more precisely, reflects) the spherical subspaces so that all of the noise power contained
in thenewdatavectorcanbeconcentrated intoa singlecomponentofnoise subspace, andQ represents
the evolution and interaction of the two subspaces induced by the new data vector. Basically, this
update partitions the data space into two subspaces: the signal subspace is not sphericalized and
all of its eigencomponents are explicitly tracked whereas the noise subspace is sphericalized and not
explicitly tracked (to save computation). Using the properties of the Householder transformation,
it can be shown that the single component of the noise subspace that mixes with the signal subspace
via Qr+1 is given by

u(n) = the first column of U(n)G(n)H (n) (66.28)

= U(n)(U(n))H x

|U(n)(U(n))H x| (66.29)

= 1

|γ (n)| (I − U(s)(U(s))H )x (66.30)

= 1

|γ (n)| (x − U(s)γ (s)) (66.31)

where u(n) is the projection of x into the noise subspace and |γ (n)| = |x − U(s)γ (s)| is the power of
x projected into the noise subspace. Once the eigenvectors of the core (r + 1) × (r + 1) problem are
found, the signal subspace eigenvectors can be updated as

Ũ =
[
Ũ (s), ũ(n)

]
(66.32)

=

U(s)G(s)︸ ︷︷ ︸

n×r

, u(n)︸︷︷︸
n×1


 Qr+1 (66.33)
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where updating the new noise eigenvector is not necessary (if the noise subspace is resphericalized).
The complexity of the core eigenproblem is O(r3) and updating the signal eigenvectors is O(nr2).
Thus, the SE update is O(nr2).

After an update is accomplished, one of the noise eigencomponents is altered by the embedded
eigenproblem. To maintain noise subspace sphericity, the noise eigenvalues must be re-averaged
before the next SE update can be accomplished. On the other hand, if the noise eigenvalues are not
re-averaged, the SE update eventually reverts to a full eigen update.

A whole family of related SS updates is possible by simple modification of the above described
process. For example, to obtain SA2, the H transformation in Eq. (66.20) would be modified by
replacing the Ir with an r × r Householder matrix that deflates the signal subspace. This would
make the core eigenproblem 2× 2 and the Q matrix an identity with an embedded 2× 2 orthogonal
matrix.

66.3.7 Initialization of Subspace and Eigen Tracking Algorithms

It is impossible to give generic initialization requirements that would apply to all subspace tracking
algorithms, but one feature that is common to many updating methods is a fading factor. For cold
start initialization (e.g., starting from nothing) at k = 0, initial convergence can often be sped up by
ramping up the fading factor, e.g.,

αk = (1 − 1

k + 1
)α, k = 0, 1, 2, ... (66.34)

where α is the final steady state value for the fading factor.

66.3.8 Detection Schemes for Subspace Tracking

Several subspace tracking methods have detection schemes that were specifically designed for them.
XuandKailathdevelopeda strongly consistentdetection scheme for theirLanczos-basedmethod[42].
DeGroat and Dowling adapted information theoretic criteria for use with SA4 [9] and an asymp-
totic proof of consistency is given in [11]. Stewart proposed the URV update as a rank revealing
method [39]. Bin Yang proposed that the eigenvalue estimates from PASTd be used for information
theoretic-based rank estimation [43].

66.4 Summary of Subspace Tracking Methods Developed
Since 1990

66.4.1 Modified Eigen Problems

AnO(n2r) fast subspacedecomposition (FSD)methodbasedon theLanczos algorithmanda strongly
consistent source detection scheme was introduced by Xu and Kailath [42].

A transposed QR (TQR) iteration-based SVD update was introduced in [12]. To reduce computa-
tion to O(nr2), the noise subspace is sphericalized and deflated. Based on various performance tests,
one or two TQR iterations per update yield results that are comparable to the fully converged SVD.
Moreover, because the diagonalization process is taking place on a triangular factor, the partially
converged, deflated TQR-SVD update is very similar to a deflated URV update [34].

DeGroat and Roberts [10] simplified Bunch’s rank one eigen update [4] and proposed a partial
orthogonalization scheme, called pair-wise Gram Schmidt (PGS), to stabilize the eigenvectors. To-
gether with exponential fading to stabilize the eigenvalues, the buildup of roundoff error is essentially
controlled and machine precision orthogonality is maintained. For a more complete discussion,
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see Section 66.3.2 Controlling Roundoff and Orthogonality Error. Recently, Gu and Eisenstat [20]
presented an improved version of Bunch’s rank one EVD update. The new algorithm contains a
more stable way to compute the eigenvectors. DeGroat and Dowling have also developed a family of
sphericalized EVD and SVD updates (see Section 66.3.6 Spherical Subspace Updating).

66.4.2 Gradient-Based Eigen Tracking

Jar-Ferr Yang and Hui-Ju Lin [45] proposed a generalized inflation method which extends the
gradient-based work of Yang and Kaveh [44]. An O(nr2) noise sphericalized and deflated con-
jugate gradient-based eigen tracking method is presented by Fu and Dowling in [18]. This method
can be described as an SS update with a conjugate gradient-based eigen tracker at the core.

Bin Yang [43] introduced a projection approximation approach that uses RLS techniques to update
the signal subspace. The projection approximation subspace tracker (PAST) algorithm computes an
arbitrary basis for the signal subspace in 3nr + O(r2) flops per update. The PASTd algorithm
(which uses deflation to track the individual eigenvalues and vectors of the signal subspace) requires
4nr+O(n)flopsperupdate. Bothmethodsproduceeigenvectorestimates thatareonlyapproximately
orthogonal.

Regalia and Loubaton [36] use an adaptive lossless transfer matrix (multivariable lattice filter)
excited by sensor output to achieve a condition of maximum “power splitting” between two groups
of output bins. The update equations resemble standard gradient descent algorithms, but they do
not properly follow the gradient of the error surface. Nonetheless, the convergence speed may be a
strong function of the source spectral and spatial characteristics.

Recently, Marcos and Benidir [26] introduced an adaptive subspace-based method that relies on
a linear operator, referred to as the Propagator, which exploits the linear independency of the source
steering vectors, and which allows the determination of the signal and noise subspaces without
any eigendecomposition of the correlation matrix. Two gradient-based adaptive algorithms are
proposed for the estimation of the Propagator, and then the basis of the signal subspace. The overall
computational complexity of the adaptive Propagator subspace update is O(nr2).

A family of three perturbation-based EVD tracking methods (denoted PA, PB, and PC) are pre-
sented by Champagne [5]. Each method uses perturbation-based approximations to track the eigen-
components. Progressively more simplifications are used to reduce the complexity from 1

2n3+O(n2)

for PA to 1
2nr2 + O(nr) for PB to 5nr + O(n) for PC. Both the PB and PC methods use a spheri-

calized noise subspace to reduce computation. Thus, PB and PC can be viewed as SS updates that
use perturbation-based approximations to track the deflated core eigenproblem. The PC method
achieves greater computational simplifications by assuming well-separated eigenvalues. Some spe-
cial decompositions are also used to reduce the computation of the PC algorithm. Surprisingly,
simulations seem to indicate that the PC method achieves good overall performance even when the
eigenvalues are not well separated. Convergence rates are also very good for the PC method. How-
ever, we have noticed that occasionally spurious frequency estimates may be obtained with PC-based
MUSIC. Ironically, the PC estimated subspaces tend to be closer to the true subspaces than other
subspace tracking methods that do not exhibit occasionally spurious frequency estimates. Because
PC only tracks approximations of the eigencomponents, the orthogonality error is typically much
greater than machine precision orthogonality. Nevertheless, partial orthogonality schemes can be
used to improve orthogonality and other measures of performance (see Section 66.3.2 Controlling
Roundoff Error Accumulation and Orthogonality Errors).

Artificial neural networks (ANN) have been developed to find eigen information, e.g., see [27]
and [35] as well as the references contained therein. An ANN consists of many richly interconnected
simple and similar processing elements (called artificial neurons) operating in parallel. High com-
putational rates (due to massive parallelism) and robustness (due to local neural connectivity) are
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two important features of ANNs. Most of the eigenvector estimating ANNs appear under the topic
of principal component analysis (PCA). The principal eigenvectors are defined as the eigenvectors
associated with the larger eigenvalues.

66.4.3 The URV and Rank Revealing QR (RRQR) Updates

The URV update [39] is based on the URV decomposition (URVD) developed by G.W. Stewart as a
two sided generalization of the RRQR methods. The URVD can also be viewed as a generalization
of the SVD because U and V are orthogonal matrices and R is an upper triangular matrix. Clearly,
the SVD is a special case of the URVD. If X = URV H is the URVD of X, then the R factor can
be rank revealing in the sense that the Euclidean norm of the n − r rightmost columns of R is
approximately equal to the Euclidean norm of the n − r smallest singular values of X. Also, the
smallest singular value of the first r columns of R is approximately equal to the rth singular value
of X. These two conditions effectively partition the corresponding columns of U and V into an
r-dimensional dominant subspace and an (n − r)-dimensional subdominant subspace that can be
used as estimates for the signal and noise subspace spans. The URV update is O(n2) per update. An
RRQR update [that is usually O(n2) per update] is developed by Bischof and Schroff in [1]. RRQR
methods that use the traditional pivoting strategy to maintain a rank revealing structure involve
O(n3) flops per update. An analysis of problems associated with RRQR methods along with a fairly
extensive reference list on RRQR methods can be found in [6]. An O(nr) deflated URV update is
presented by Rabideau and Steinhardt in [34] (and the references contained therein).

66.4.4 Miscellaneous Methods

Strobach [40] recently introduced a family of low rank or eigensubspace adaptive filters based on
orthogonal iteration. The computational complexity ranges from O(nr2) to O(nr).

A family of Subspace methods Without EigenDEcomposition (SWEDE) has been proposed by
Eriksson et al. [16]. With SWEDE, portions of the correlation matrix must be updated for each
new snapshot vector at a cost of approximately 12nr flops. However, the subspace basis (which is
computed from the correlation matrix partitions) need only be computed every time a DOA estimate
is needed. Computing the subspace estimate is O(nr2), so if the subspace is computed every kth
update, the overall complexity is O(nr2/k) + 12nr per update. At high SNR, SWEDE performs
almost as well as eigen-based MUSIC.

Key References:
Aspreviouslymentioned, ComonandGolubdidanice surveyof SVDtrackingmethods in1990 [7].

In 1995, Reddy et al. published a selected overview of eigensubspace estimation methods, including
ANN approaches [35]. For a study of URV and RRQR methods, see [6]. Partial orthogonalization
schemes are studied in [28]. Finally, a special issue of Signal Processing [41] is planned for April 1996
featuring Subspace Methods for Detection and Estimation.
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TABLE 66.1 Efficient Subspace Tracking Methods Developed Since 1990
Orthog.

Complexity Subspace or eigen tracking method span

O(n2r) Fast subspace decomposition (FSD) [42] Yesa

URV update [39] Yes
O(n2) Rank revealing QR [possibly O(n3)] [1] Yes

Approximate SVD updates [17, 30] Yesa

Neural Network Based Updates [35] Noa

Stabilized signal eigenstructure (SE) updateb [8, 10] Yesa

Sphericalized transposed QR SVD updateb [12] Yesa

O(nr2) Sphericalized conjugate gradient SVD updateb [18] Yesa

SWEDE [16] No
Gradient-based EVD updates with gram schmidt orthog. [44, 45] Yesa

Signal averaged 2-level (SA2 ) updateb [8] Yes
Signal averaged 4-level (SA4) updateb [9, 11] Yesa

O(nr) Projection approximation subspace tracking (PAST) [43] No
PAST with deflation (PASTd) [43] Noa

Sphericalized perturbation based eigen update (PC method)b [5] Yesa

Sphericalized URV updateb [34] Yes

Key: n = no. of sensors, r = rank of subspace.
a Tracks individual eigencomponents.
b Uses sphericalized subspaces.
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The processing of signals received by sensor arrays generally can be separated into two problems:
(1) detecting the number of sources and (2) isolating and analyzing the signal produced by each
source. We make this distinction because many of the algorithms for separating and processing array
signals make the assumption that the number of sources is known a priori and may give misleading
results if the wrong number of sources is used [3]. A good example are the errors produced by many
high resolution bearing estimation algorithms (e.g., MUSIC) when the wrong number of sources
is assumed. Because, in general, it is easier to determine how many signals are present than to
estimate the bearings of those signals, signal detection algorithms typically can correctly determine
the number of signals present even when bearing estimation algorithms cannot resolve them. In fact,
the capability of an array to resolve two closely spaced sources could be said to be limited by its ability
to detect that there are actually two sources present. If we have a reliable method of determining
the number of sources, not only can we correctly use high resolution bearing estimation algorithms,
but we can also use this knowledge to utilize more effectively the information obtained from the
bearing estimation algorithms. If the bearing estimation algorithm gives fewer source directions
than we know there are sources, then we know that there is more than one source in at least one of
those directions and have thus essentially increased the resolution of the algorithm. If analysis of the
information provided by the bearing estimation algorithm indicates more source directions than we
know there are sources, then we can safely assume that some of the directions are the results of false
alarms and may be ignored, thus decreasing the probability of false alarm for the bearing estimation
algorithms. In this section we will present and discuss the more common approaches to determining
the number of sources.

67.1 Formulation of the Problem

The basic problem is that of determining how many signal producing sources are being observed by
an array of sensors. Although this problem addresses issues in several areas including sonar, radar,
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communications, and geophysics, one basic formulation can be applied to all these applications.
We will give only a basic, brief description of the assumed signal structure, but more detail can be
found in references such as the book by Johnson and Dudgeon [3]. We will assume that an array
of M sensors observes signals produced by Ns sources. The array is allowed to have an arbitrary
geometry. For our discussion here, we will assume that the sensors are omnidirectional. However,
this assumption is only for notational convenience as the algorithms to be discussed will work for
more general sensor responses.

The output of the mth sensor can be expressed as a linear combination of signals and noise

ym(t) =
Ns∑
i=1

si (t − 1i(m)) + nm(t) .

The noise observed at the mth sensor is denoted by nm(t). The propagation delays, 1i(m), are
measured with respect to an origin chosen to be at the geometric center of the array. Thus, si(t)

indicates the ith propagating signal observed at the origin, and si(t − 1i(m)) is the same signal
measured by the mth sensor. For a plane wave in a homogeneous medium, these delays can be found
from the dot product between a unit vector in the signal’s direction of propagation, Eζ o

i , and the
sensor’s location, Exm,

1i(m) =
Eζ o
i · Exm

c
,

where c is the plane wave’s speed of propagation.
Most algorithms used to detect the number of sources incident on the array are frequency domain

techniques that assume the propagating signals are narrowband about a common center frequency,
ωo. Consequently, after Fourier transforming the measured signals, only one frequency is of interest
and the propagation delays become phase shifts

Ym

(
ωo
) =

Ns∑
i=1

Si

(
ωo
)
e−jωo1i(m) + Nm

(
ωo
)

.

The detection algorithms then exploit the form of the spatial correlation matrix, R, for the array.
The spatial correlation matrix is the M × M matrix formed by correlating the vector of the Fourier
transforms of the sensor outputs at the particular frequency of interest

Y = [
Y0
(
ωo
)

Y1
(
ωo
) · · · YM−1

(
ωo
)]T

.

If the sources are assumed to be uncorrelated with the noise, then the form of R is

R = E
{
YY′} = Kn + SCS′,

where Kn is the correlation matrix of the noise, S is the matrix whose columns correspond to the
vector representations of the signals, S′ is the conjugate transpose of S, and C is the matrix of the
correlations between the signals. Thus, the matrix S has the form

S =
 e−jωo11(0) · · · e−jωo1Ns (0)

...
...

e−jωo11(M−1) · · · e−jωo1Ns (M−1)

 .

If we assume that the noise is additive, white Gaussian noise with power σ 2
n and that none of the

signals are perfectly coherent with any of the other signals, then Kn = σ 2
n Im, C has full rank, and the

form of R is
R = σ 2

n IM + SCS′ . (67.1)
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We will assume that the columns of S are linearly independent when there are fewer sources than
sensors, which is the case for most common array geometries and expected source locations. As C
is of full rank, if there are fewer sources than sensors, then the rank of SCS′ is equal to the number
of signals incident on the array or, equivalently, the number of sources. If there are Ns sources, then
SCS′ is of rank Ns and its Ns eigenvalues in descending order are δ1, δ2, · · ·, δNs . The M eigenvalues
of σ 2

n IM are all equal to σ 2
n , and the eigenvectors are any orthonormal set of length M vectors. So the

eigenvectors of R are the Ns eigenvectors of SCS′ plus any M − Ns eigenvectors which complete the
orthonormal set, and the eigenvalues in descending order are σ 2

n + δ1, · · ·, σ 2
n + δNs , σ

2
n , · · ·, σ 2

n . The
correlation matrix is generally divided into two parts: the signal-plus-noise subspace formed by the
largest eigenvalues (σ 2

n + δ1, · · · , σ 2
n + δNs ) and their eigenvectors, and the noise subspace formed

by the smallest, equal eigenvalues and their eigenvectors. The reason for these labels is obvious as
the space spanned by the signal-plus-noise subspace eigenvectors contains the signals and a portion
of the noise while the noise subspace contains only that part of the noise that is orthogonal to the
signals [3]. If there are fewer sources than sensors, the smallest M −Ns eigenvalues of R are all equal
and to determine exactly how many sources there are, we must simply determine how many of the
smallest eigenvalues are equal. If there are not fewer sources than sensors (Ns ≥ M), then none
of the smallest eigenvalues are equal. The detection algorithms then assume that only the smallest
eigenvalue is in the noise subspace as it is not equal to any of the other eigenvalues. Thus, these
algorithms can detect up to M − 1 sources and for Ns ≥ M will say that there are M − 1 sources
as this is the greatest detectable number. Unfortunately, all that is usually known is R̂, the sample
correlation matrix, which is formed by averaging N samples of the correlation matrix taken from
the outputs of the array sensors. As R̂ is formed from only a finite number of samples of R, the
smallest M −Ns eigenvalues of R̂ are subject to statistical variations and are unequal with probability
one [4]. Thus, solutions to the detection problem have concentrated on statistical tests to determine
how many of the eigenvalues of R are equal when only the sample eigenvalues of R̂ are available.

When performing statistical tests on the eigenvalues of the sample correlation matrix to determine
the number of sources, certain assumptions must be made about the nature of the signals. In array
processing, both deterministic and stochastic signal models are used depending on the application.
However, for the purpose of testing the sample eigenvalues, the Fourier transforms of the signals at
frequency ωo; Si(ω

o), i = 1, . . . , Ns ; are assumed to be zero mean Gaussian random processes
that are statistically independent of the noise and have a positive definite correlation matrix C. We
also assume that the N samples taken when forming R̂ are statistically independent of each other.
With these assumptions, the spatial correlation matrix is still of the same form as in (67.1), except
that now we can more easily derive statistical tests on the eigenvalues of R̂.

67.2 Information Theoretic Approaches

We will see that the source detection methods to be described all share common characteristics.
However, we will classify them into two groups—information theoretic and decision theoretic
approaches—determined by the statistical theories used to derive them. Although the decision
theoretic techniques are quite a bit older, we will first present the information theoretic algorithms
as they are currently much more commonly used.

67.2.1 AIC and MDL

AIC and MDL are both information theoretic model order determination techniques that can be
used to test the eigenvalues of a sample correlation matrix to determine how many of the smallest
eigenvalues of the correlation matrix are equal. The AIC and MDL algorithms both consist of
minimizing a criterion over the number of signals that are detectable, i.e., Ns = 0, . . . , M − 1.
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To construct these criteria, a family of probability densities, f (Y|θ(Ns)), Ns = 0, . . . , M − 1,
is needed, where θ , which is a function of the number of sources, Ns , is the vector of parameters
needed for the model that generated the data Y. The criteria are composed of the negative of the
log-likelihood function of the density f (Yθ̂ (Ns)), where θ̂ (Ns) is the maximum likelihood estimate
of θ for Ns signals, plus an adjusting term for the model dimension. The adjusting term is needed
because the negative log-likelihood function always achieves a minimum for the highest dimension
model possible, which in this case is the largest possible number of sources. Therefore, the adjusting
term will be a monotonically increasing function of Ns and should be chosen so that the algorithm
is able to determine the correct model order.

AIC was introduced by Akaike [1]. Originally, the “IC” stood for information criterion and the
“A” designated it as the first such test, but it is now more commonly considered an acronym for the
“Akaike Information Criterion.” If we have N independent observations of a random variable with
probability density g(Y) and a family of models in the form of probability densities f (Y|θ) where θ

is the vector of parameters for the models, then Akaike chose his criterion to minimize

I (g; f (·|θ)) =
∫

g(Y) ln g(Y)dY −
∫

g(Y) ln f (Y|θ)dY (67.2)

which is known as the Kullback-Leibler mean information distance. 1
N

AIC(θ) is an estimate of
−E{∫ g(Y) ln f (Y|θ)dY} and minimizing AIC(θ) over the allowable values of θ should minimize
(67.2). The expression for AIC(θ) is

AIC(θ) = −2 ln
[
f
(
Y|θ̂ (Ns)

)]
+ 2η ,

where η is the number of independent parameters in θ .
Following AIC, MDL was developed by Schwarz [6] using Bayesian techniques. He assumed that

the a priori density of the observations comes from a suitable family of densities that possess efficient
estimates [7]; they are of the form

f (Y|θ) = exp(θ · p(Y) − b(θ)) .

The MDL criterion was then found by choosing the model that is most probable a posteriori. This
choice is equivalent to selecting the model for which

MDL(θ) = − ln
[
f
(
Y|θ̂ (Ns)

)]
+ 1

2
η ln N

is minimized. This criterion was independently derived by Rissanen [5] using information theoretic
techniques. Rissanen noted that each model can be perceived as encoding the observed data and that
the optimum model is the one that yields the minimum code length. Hence, the name MDL comes
from “Minimum Description Length”.

For the purpose of using AIC and MDL to determine the number of sources, the forms of the log-
likelihood function and the adjusting terms have been given by Wax [8]. ForNs signals the parameters
that completely parameterize the correlation matrix R are {σ 2

n , λ1, · · · , λNs , v1, · · · , vNs } where
λi and vi , i = 1, ..., Ns , are the eigenvalues and their respective eigenvectors of the signal-plus-noise
subspace of the correlation matrix. As the vector of sensor outputs is a Gaussian random vector with
correlation matrix R and all the samples of the sensor outputs are independent, the log-likelihood
function of f (Y|θ) is

ln f
(
Y|σ 2

n , λ1, · · · , λNs , v1, · · · , vNs

)
= π−pN (detR)−N exp

(
−N tr

(
R−1R̂

))
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where tr(·) denotes the trace of the matrix, R̂ is the sample correlation matrix, and R is the unique
correlation matrix formed from the given parameters. The maximum likelihood estimate of the
parameters are [2, 4]

v̂i = ui; i = 1, · · · , Ns

λ̂i = li; i = 1, · · · , Ns (67.3)

σ̂ 2
n = 1

M − Ns

M∑
i=Ns+1

li = l̄ ,

where l1, · · · , lM are the eigenvalues in descending order of R̂ and ui are the corresponding eigen-
vectors. Therefore, the log-likelihood function of f (Y|θ̂ (Ns)) is

ln f (Y|l̄, l1, · · · , lNs , u1, · · · , uNs ) = ln


M∏

i=Ns+1

l
1/(M−Ns)
i

1

M − Ns

M∑
i=Ns+1

li



(M−Ns)N

.

Remembering that the eigenvalues of a complex correlation matrix are real and that the eigenvectors
are complex and orthonormal, the number of degrees of freedom in the parameters of the model is
classically chosen to be η = Ns(2M −Ns)+1. Noting that any constant term in the criteria which is
common to the entire family of models for either AIC or MDL may be ignored, we have the criterion
for AIC as

AIC(N̂s) = −2N ln



M∏
i=N̂s+1

li

 1

M − N̂s

M∑
i=N̂s+1

li

M−N̂s


+ 2N̂s(2M − N̂s); N̂s = 0, . . . , M − 1

and the criterion for MDL as

MDL(N̂s) = −N ln



M∏
i=N̂s+1

li

 1

M − N̂s

M∑
i=N̂s+1

li

M−N̂s


+ 1

2
N̂s(2M−N̂s) ln N; N̂s = 0, . . . , M−1 .

For both of these methods, the estimate of the number of sources is that value of N̂s which minimizes
the criterion. In [9] there is a more thorough discussion concerning determining the number of
degrees of freedom and the advantages of choosing instead η = Ns(2M − Ns − 1).

In general, MDL is considered to perform better than AIC. Schwarz [6], through his derivation of
the MDL criterion, showed that if his assumptions are accepted, then AIC cannot be asymptotically
optimal. He also mentioned that MDL tends toward lower-dimensional models than AIC as the
model dimension term is multiplied by 1

2 ln N in the MDL criterion. Zhao et al. [14] showed that
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MDL is consistent (the probability of detecting the correct number of sources, i.e., Pr(N̂s = Ns),
goes to 1 as N goes to infinity), but AIC is not consistent and will tend to overestimate the number
of sources as N goes to infinity. Thus, most people in array processing prefer to use MDL over AIC.
Interestingly, many statisticians prefer AIC because many of their modeling problems have a very
large penalty for underestimating the model order but a relatively mild penalty for overestimating
it. Xu and Kaveh [12] have provided a thorough discussion of the asymptotic properties of AIC
and MDL, including an examination of their sensitivities to modelling errors and bounds on the
probability that AIC will overestimate the number of sources.

67.2.2 EDC

Clearly, the only difference between the implementations of AIC and MDL is the choice of the
adjusting term that penalizes for choosing larger model orders. Several people have examined using
other adjusting terms to arrive at other criteria. In particular, statisticians at the University of
Pittsburgh [13, 14] have developed the Efficient Detection Criterion (EDC) procedure which is
actually a family of criteria chosen such that they are all consistent. The general form of these criteria
is

EDC(θ) = − ln
[
f
(
Y|θ̂ (Ns)

)]
+ ηCN ,

where CN can be any function of N such that

(1) lim
N→∞ CN/N = 0

(2) lim
N→∞ CN/ ln(ln(N)) = ∞ .

Thus, for the array processing source detection problem the EDC procedure chooses the value of N̂s

that minimizes

EDC(N̂s) = −N ln



M∏
i=N̂s+1

li

 1

M − N̂s

M∑
i=N̂s+1

li

M−N̂s


+ N̂s(2M − N̂s)CN ; N̂s = 0, . . . , M − 1 .

In their analysis of the EDC procedure, Zhao et al. [14] showed that not only are all the EDC
criteria consistent for the data assumptions we have made, but under certain conditions they remain
consistent even when the data sample vectors used to form the estimate R̂ are not independent or
Gaussian.

The choice of CN = 1
2 ln(N) satisfies the restrictions on CN and, thus, produces one of the EDC

procedures. This particular criterion is identical toMDLand shows that theMDLcriterion is included
as one of the EDC procedures. Another relatively common choice for CN is CN = √

N ln(N).

67.3 Decision Theoretic Approaches

The methods that we term decision theoretic approaches all rely on the statistical theory of hypothesis
testing to determine the number of sources. The first of these that we will discuss, the sphericity test,
is by far the oldest algorithm for source detection.
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67.3.1 The Sphericity Test

Originally, the sphericity test was a hypothesis testing method designed to determine if the correlation
(or covariance) matrix, R, of a length M Gaussian random vector is proportional to the identity
matrix, IM , when only R̂, the sample correlation matrix, is known. If R ∝ IM , then the contours of
equal density for the Gaussian distribution form concentric spheres in M-dimensional space. The
sphericity test derives its name from being a test of the sphericity of these contours.

The original sphericity test had two possible hypotheses

H0 : R = σ 2
n IM

H1 : R 6= σ 2
n IM

for some unknown σ 2
n . If we denote the eigenvalues of R in descending order by λ1, λ2, · · ·, λM , then

equivalent hypotheses are

H0 : λ1 = λ2 = · · · = λM

H1 : λ1 > λM .

For the appropriate statistic, T (R̂), the test is of the form

T (R̂)

H1
>
<

H0

γ

where the threshold, γ , can be set according to the Neyman-Pearson criterion [7]. That is, if the
distribution of T (R̂) is known under the null hypothesis, H0, then for a given probability of false
alarm, PF , we can choose γ such that

Pr(T (R̂) > γ |H0) = PF .

Using the alternate form of the hypotheses, T (R̂) is actually T (l1, l2, · · · , lM), and the eigenvalues
of the sample correlation matrix are a sufficient statistic for the hypothesis test. The correct form of
the sphericity test statistic is the generalized likelihood ratio [4]

T (l1, l2, · · · , lM) = ln



(
1

M

M∑
i=1

li

)M

M∏
i=1

li


which was also a major component of the information theoretic tests.

For the source detection problem we are interested in testing a subset of the smaller eigenvalues
for equality. In order to use the sphericity test, the hypotheses are generally broken down into pairs
of hypotheses that can be tested in a series of hypothesis tests. For testing M − N̂s eigenvalues for
equality, the hypotheses are

H0 : λ1 ≥ · · · ≥ λN̂s
≥ λN̂s+1 = · · · = λM

H1 : λ1 ≥ · · · ≥ λN̂s
≥ λN̂s+1 > λM .

We are interested in finding the smallest value of N̂s for which H0 is true, which is done by testing
N̂s = 0, N̂s = 1, · · · until N̂s = M − 2 or the test does not fail. If the test fails for N̂s = M − 2,
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then we consider none of the smallest eigenvalues to be equal and say that there are M − 1 sources.
If N̂s is the smallest value for which H0 is true, then we say that there are N̂s sources. There is also a
problem involved in setting the desired PF . The Neyman-Pearson criterion is not able to determine
a threshold for given PF for the overall detection problem. The best that can be done is to set a
PF for each individual test in the nested series of hypothesis tests using Neyman-Pearson methods.
Unfortunately, as the hypothesis tests are obviously not statistically independent and their statistical
relationship is not very clear, how this PF for each test relates to the PF for the entire series of tests
is not known.

To use the sphericity test to detect sources, we need to be able to set accurately the threshold
γ according to the desired PF , which requires knowledge of the distribution of the sphericity test
statistic T (lN̂s+1, · · · , lM) under the null hypothesis. The exact form of this distribution is not
available in a form that is very useful as it is generally written as an infinite series of Gaussian, chi-
squared, or beta distributions [2, 4]. However, if the test statistic is multiplied by a suitable function of
the eigenvalues of R̂, then its distribution can be accurately approximated as being chi-squared [10].
Thus, the statistic

2

(N − 1) − N̂s − 2
(
M − N̂s

)2 + 1

6
(
M − N̂s

) +
N̂s∑
i=1

(
li

l̄
− 1

)−2
 ln



 1

M − N̂s

M∑
i=N̂s+1

li

M−N̂s

M∏
i=N̂s+1

li


is approximately chi-squared distributed with degrees of freedom given by

d = (
M − N̂s

)2 − 1,

where l̄ = 1
M−N̂s

∑M
i=N̂s+1 li .

Although the performance of the sphericity test is comparable to that of the information theoretic
tests, it is not as popular because it requires selection of the PF and calculation of the test thresholds
for each value of N̂s . However, if the received data does not match the assumed model, the ability to
change the test thresholds gives the sphericity test a robustness lacking in the information theoretic
methods.

67.3.2 Multiple Hypothesis Testing

The sphericity test relies on a sequence of binary hypothesis tests to determine the number of sources.
However, the optimum test for this situation would be to test all hypotheses simultaneously:

H0 : λ1 = λ2 = · · · = λM

H1 : λ1 > λ2 = · · · = λM

H2 : λ1 ≥ λ2 > λ3 = · · · = λM

...

HM−1 : λ1 ≥ λ2 ≥ · · · ≥ λM−1 > λM

to determine how many of the smaller eigenvalues are equal. While it is not possible to generalize
the sphericity test directly, it is possible to use an approximation to the probability density function
(pdf ) of the eigenvalues to arrive at a suitable test. Using the theory of multiple hypothesis tests, we
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can derive a test that is similar to AIC and MDL and is implemented in exactly the same manner, but
is designed to minimize the probability of choosing the wrong number of sources.

To arrive at our statistic, we start with the joint probability density function (pdf ) of the eigenvalues
of the M × M sample covariance when the M − N̂s smallest eigenvalues are known to be equal. We
will denote this pdf by fN̂s

(l1, . . . , lM |λ1 ≥ · · · ≥ λN̂s+1 = · · · = λM) where the li denote the
eigenvalues of the sample matrix and the λi are the eigenvalues of the true covariance matrix. The
asymptotic expression for fN̂s

(·) is given by Wong et al. [11] for the complex-valued data case as

fN̂s
(l1, . . . , lM |λ1 ≥ · · · ≥ λN̂s+1 = · · · = λM) ≈ nmn− N̂s

2 (2M−N̂s−1)πM(M−1)− N̂s
2 (2M−N̂s−1)

0̃M(n)0̃M−N̂s
(M − N̂s)∏M

i=1 λ−n
i

∏M
i=1 ln−M

i exp
{
−n

∑M
i=1

li
λi

}∏M
i=N̂s+1

∏M
i<j

(
li − lj

)2
∏N̂s

i=1

∏N̂s

i<j

(
(li−lj )λiλj

λi−λj

)∏N̂s

i=1

∏M
j=N̂s+1

(
(li−lj )λiλj

λi−λj

)
where n = N − 1 is one less than the number of samples and 0̃N (·) is the multivariate gamma
function for complex-valued data [11]. We then form M likelihood ratios by dividing each joint pdf
by fM−1(·) to form

3(N̂s) = fN̂s

(
l1, . . . , lM |λ1 ≥ · · · ≥ λN̂s+1 = · · · = λM

)
fM−1 (l1, . . . , lM |λ1 ≥ · · · ≥ λM)

, N̂s = 0, . . . , M − 1 .

Assuming that each value of N̂s is equally likely, then multiple hypothesis testing theory tells us that
the value of N̂s that maximizes 3(N̂s) is the optimum choice in that it minimizes the probability
of choosing the incorrect N̂s [7]. Because 3(N̂s) in this form requires knowledge of the unknown
parameters λi , we must use a generalized likelihood ratio test and independently substitute the
maximum likelihood estimates of the λi [see Eq.(67.3) for these expressions] into both fN̂s

(·), for

which we assume M − N̂s equal λis, and fM−1(·), for which we assume no equal λis, to get our new
statistics 3(N̂s). After much simplification including dropping terms that are common to 3(N̂s) for
every allowable value of N̂s and then taking the natural logarithm of each 3(N̂s), we get the statistic

3
(
N̂s

) = (
n − N̂s

)
ln



M∏
i=N̂s+1

li

 1

M − N̂s

M∑
i=N̂s+1

li

M−N̂s


− 1

2
N̂s

(
2M − N̂s − 1

)
ln[n] +

ln

[
π−N̂s(2M−N̂s−1)/2

0̃M−N̂s

(
M − N̂s

)]+
N̂s∑
i=1

M∑
j=N̂s+1

ln

[
li − lj

li − l̄

]
−

M∑
i=N̂s+1

M∑
j=i+1

2 ln

[
(li lj )

1/2

li − lj

]

where l̄ = 1
M−N̂s

∑M
i=N̂s+1 li .

The terms in the first line of this equation are almost identical to the negative of the MDL criterion,
especially when the degrees of freedom recommended in [9] are used. Note that the change in sign is
necessary because we are finding the maximum of this criterion, not the minimum. The extra terms
on the following line include both the eigenvalues being tested for equality and those not being tested.
These extra terms allow this test to outperform the information theoretic techniques, since the use
of all the eigenvalues for each value of N̂s being tested allows this criterion to be more adaptive.
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67.4 For More Information

Most of the original papers on model order determination appeared in the statistical literature in
journals such as The Annals of Statistics and the Journal of Multivariate Analysis. However, almost
all of the more recent developments that apply these techniques to the source detection problem
have appeared in signal processing journals such as the IEEE Transactions on Signal Processing. More
advanced topics that have been addressed in the signal processing literature but not discussed here in-
clude: detecting coherent (i.e., completely correlated) signals, detecting sources in unknown colored
noise, and developing more robust source detection methods.
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68.1 Introduction and Motivation

This chapter reviews the applications of antenna array signal processing to mobile networks. Cellular
networks are rapidly growing around the world and a number of emerging technologies are seen to be
critical to their improved economics and performance. Among these is the use of multiple antennas
and spatial signal processing at the base station. This technology is referred to as Smart Antennas or,
more accurately, as Space-Time Processing (STP). STP refers to processing the antenna outputs in
both space and time to maximize signal quality.

A cellular architecture is used in a number of mobile/portable communications applications. Cell
sizes may range from large macrocells, which serve high speed mobiles, to smaller microcells or very
small picocells, which are designed for outdoor and indoor applications. Each of these offers different
channel characteristics and, therefore, poses different challenges for STP. Likewise, different service
delivery goals such as grade of service and type of service: voice, data, or video, also need specific
STP solutions. STP provides three processing leverages. The first is array gain. Multiple antennas
capture more signal energy, which can be combined to improve the signal-to-noise ratio (SNR). Next
is spatial diversity to combat space-selective fading. Finally, STP can reduce co-channel, adjacent
channel, and inter-symbol interference.

The organization of this chapter is as follows. In Section 68.2, we describe the vector channel model
for abase stationantennaarray. InSection68.3wediscuss thealgorithms forSTP.Section68.4outlines
the applications of STP in cellular networks. Finally, we conclude with a summary in Section 68.5.
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68.2 Vector Channel Model

Channel effects in a cellular radio link arise from multipath propagation and user motion. These
create special challenges for STP. A thorough understanding of channel characteristics is the key to
developing successful STP algorithms. The main features of a mobile wireless channel are described
below.

68.2.1 Propagation Loss and Fading

The signal radiated by the mobile loses strength as it travels to the base station. These losses arise
from the mean propagation loss and from slow and fast fading. The mean propagation loss comes
from square law spreading, absorption by foliage, and the effect of vertical multipath. A number of
models exist for characterizing the mean propagation loss [22, 30], which is usually around 40 dB
per decade. Slow fading results from shadowing by buildings and natural features and is usually
characterized by a log-normal distribution with standard deviation agreed to 8 dB. Fast fading results
from multipath scattering in the vicinity of the moving mobile. It is usually Rayleigh distributed.
However, if there is a direct path component present, the fading will be Rician distributed.

68.2.2 Multipath Effects

Multipath propagation plays a central role in determining the nature of the channel. By channel we
mean the impulse, or frequency response, of the radio channel from the mobile to the output of the
antenna array. We refer to it as a vector channel, because we have multiple antennas and, therefore,
we have a collection of channels. The mobile radiates omnidirectionally in azimuth using a vertical
E-field antenna. The transmitted signal then undergoes scattering, reflection, or diffraction before
reaching the base station, where it arrives from different paths, each with its own fading, propagation
delay, andangle-of-arrival. Thismultipathpropagation, inconjunctionwithusermotion, determines
the behavior of the wireless channel. Multipath scattering arises from three sources (see Fig. 68.1).
There are scatterers local to the mobile, remote dominant scatterers, and scatterers local to the base.
We will now describe these three scattering mechanisms and their effect on the channel.

FIGURE 68.1: Multipath propagation has three distinct classes, each of which gives rise to different
channel effects.
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Scatterers Local to Mobile

Scattering local to the mobile is caused by buildings in the vicinity of the mobile (a few tens of
meters). Mobile motion and local scattering give rise to Doppler spread, which causes time-selective
fading. For a vertical, polarized E-field antenna, it has been shown [22] that the fading signal has
a characteristic classical spectrum. For a mobile traveling at 55 MPH, the Doppler spread is about
+/- 200 Hz in the 1900 MHz band. This effect results in rapid signal fluctuations also called time-
selective fading. While local scattering contributes to Doppler spread, the delay spread will usually
be insignificant because of the small scattering radius. Likewise, the angle spread will also be small.

Remote Scatterers

The emerging wavefront from the local scatterers may then travel directly to the base and
also be scattered toward the base by remote dominant scatterers, giving rise to specular multipath.
These remote scatterers can be terrain features or high rise buildings. Remote scattering can cause
significant delay and angle spreads. Delay spread causes frequency-selective fading, and the angle
spread results in space-selective fading.

Scatterers Local to Base

Once these multiple wavefronts reach the base station, they may be scattered further by local
structures such as buildings or other structures that are in the vicinity of the base. Such scattering
will be more pronounced for low elevation below-roof-top antennas. The scattering local to the base
can cause severe angle spread.

FIGURE 68.2: Multipath model.

68.2.3 Typical Channels

Measurements in macrocells indicate that up to 6 to 12 paths may be present. Typical channel delay,
angle, and one-sided Doppler (1800 MHz) spreads are given in Table 68.1.
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FIGURE 68.3: Channel frequency response at four different antennas for GSM in a typical hilly terrain
channel at 1800 MHz. Mobile speed is 100 KPH. The response is plotted at four time instances spaced
66 µsecs apart.

TABLE 68.1 Typical Delay, Angle and Doppler Spreads in Cellular

Applications

Environment Delay spread (µsec) Angle spread (deg) Doppler spread (Hz)

Flat rural (Macro) 0.5 1 190
Urban (Macro) 5 20 120
Hilly (Macro) 20 30 190
Microcell (Mall) 0.3 120 10
Picocell (Indoors) 0.1 360 5

A multipath channel structure is illustrated in Fig. 68.2. Typical path power and delay statistics
can be obtained from the GSM1 standard. Angle-of-arrival statistics have been less well studied but
several results have been reported (see [1, 2, 3]). The resulting channel is shown in Fig. 68.3. We
show a frequency response at each antenna for a GSM system. Since the channel bandwidth is 200
KHz, it is highly frequency-selective in a hilly terrain environment. Also, the large angle spread causes
variations of the channel from antenna to antenna. The channel variation in time depends on the
Doppler spread. Notice that since GSM uses a short time slot, the channel variation during the time
slot is negligible.

68.2.4 Signal Model

We study the case when a single user transmits and is received at a base station with multiple antennas.
The noiseless baseband signal xi(t) received by the base station at the ith element of an m element
antenna array is given by

1Global System for Mobile communications.

c©1999 by CRC Press LLC



xi(t) =
L∑

l=1

ai(θl)α
R
l (t)u(t − τl) (68.1)

where L is the number of multipaths, ai(θl) is the response of the ith element for an lth path
from direction θl , αR

l (t) is the complex path fading, τl is the path delay, and u(·) is the transmitted
signal that depends on the modulation waveform and the information data stream. In the IS-54
TDMA standard, u(·) is a π /4 shifted DQPSK, gray-coded signal that is modulated using a pulse with
square-root raised cosine spectrum with excess bandwidth of 0.35. In GSM, a Gaussian Minimum
Shift Keying (GMSK) modulation is used. See [12, 30, 55] for more details. For a linear modulation
(e.g., BPSK), we can write

u(t) =
∑

k

g(t − kT )s(k) (68.2)

where g(·) is the pulse shaping waveform and s(k) represents the information bits.
In the above model, we have assumed that the inverse signal bandwidth is large compared to the

travel time across the array. For example, in GSM the inverse signal bandwidth is 5 µs, whereas
the travel time across the array is, at most, a few ns. This is the narrowband assumption in array
processing. The signal bandwidth is a sum of the modulation bandwidth and the Doppler spread,
with the latter being comparatively negligible. Therefore, the complex envelope of the signal received
by different antennas from a given path are identical except for phase and amplitude differences that
depend on the path angle-of-arrival, array geometry, and the element pattern. This angle-of-arrival
dependent phase and amplitude response at the ith element is ai(θl) [37].

We collect all the element responses to a path arriving from angle θl into an m-dimensional vector,
called the array response vector defined as

a(θl) = [a1(θl) a2(θl) . . . am(θl)]T

where (·)T denotes matrix transpose.
In array processing literature the array vector a(θ) is also known as the steering vector. We can

rewrite the array output at the base station as

x(t) =
L∑

l=1

a(θl)α
R
l (t)u(t − τl) (68.3)

where
x(t) = [x1(t) x2(t) . . . xm(t)]T

and x(t) and a(θl) are m-dimensional complex vectors. The fade amplitude |αR(t)| is Rayleigh or
Rician distributed depending on the propagation model.

The channel model described above uses physical path parameters such as path gain, delay, and
angle of arrival. When the received signal is sampled at the receiver at symbol (or higher) rate, such
a model may be inconvenient to use. For linear modulation schemes, it is more convenient to use a
“symbol response” channel model.

Such a discrete-time signal model can be obtained easily as follows. Let the continuous-time
output from the receive antenna array x(t) be sampled at the symbol rate at instants t = to + kT .
The output may be written as

x(k) = Hs(k) + n(k) (68.4)

where H is the symbol response channel (a m × N matrix) that captures the effects of the array
response, symbol waveform, and path fading. m is the number of antennas, N is the channel length

c©1999 by CRC Press LLC



in symbol periods, and n(k) is the sampled vector of additive noise. Note that n(k) may be colored
in space and time, as will be shown later. H is assumed to be time invariant, i.e., αR is constant. s(k)

is a vector of N consecutive elements of the data sequence and is defined as

s(k) =



s(k)
...

s(k − N + 1)


 (68.5)

It can be shown [49] that the ij th element of the H is given by

[H]ij =
L∑

l=1

ai(θl)α
R
l g((Md + 1 − j)T − τl), i = 1 . . . , m ; j = 1, . . . , N (68.6)

where Md is the maximum path delay and 21T is the duration of the pulse shaping waveform g(t).

68.2.5 Co-Channel Interference

In wireless networks a cellular layout with frequency reuse is exploited to support a large number of
geographicallydispersedusers. InTDMAandFDMAnetworks, whenaco-channelmobileoperates in
a neighboring cell, co-channel interference (CCI) will be present. The average signal-to-interference
power ratio (SIR), also called the protection ratio [24], depends on the reuse factor (K). It is 18.7dB
for reuse K = 7 (IS-54), and 13.8 dB for reuse K = 4 (GSM). In sectored cells, CCI is significant
mainly from cells that lie within the sector beam. The received signal at a base station will therefore
be a sum of the desired signal and co-channel interference.

68.2.6 Signal-Plus-Interference Model

The overall signal-plus-interference-and-noise model at the base station antenna array can now be
rewritten as

x(k) = Hsss(k) +
Q−1∑
q=1

Hqsq(k) + n(k) (68.7)

where Hs and Hq are channels for signal and CCI, respectively, while ss and sq are the corresponding
data sequences. Note that Eq. (68.7) appears to suggest that the signal and interference are band
synchronous. However, this can be relaxed and the time offsets can be absorbed into the channel Hq .
In multi-user cases, all the signals are desired and Eq. (68.7) can be rewritten to reflect this situation.

68.2.7 Block Signal Model

It is often convenient to handle signals in blocks. Therefore, we may collect M consecutive snapshots
of x(·) corresponding to time instants k, . . . , k + M − 1, (and dropping subscripts for a moment),
we get

X(k) = HS(k) + N(k) (68.8)

where X(k), S(k), and N(k) are defined as

X(k) = [x(k) · · · x(k + M − 1)] (m × M)

S(k) = [s(k) · · · s(k + M − 1)] (N × M)

N(k) = [n(k) · · · n(k + M − 1)] (m × M)
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Note that S(k) by definition is constant along the diagonals and is therefore Toeplitz.

68.2.8 Spatial and Temporal Structure

Given the signal model at Eq. (68.8), an important question is whether the unknown channel, H,
and data, s, can be determined from the observations X. This leads us to examine the underlying
constraints on H and S(·) which we call structure.

Spatial Structure

From Eq. (68.6), the j th column of H is given by

H1:m,j =
L∑

l=1

a(θl)α
R
l g((Md + 1 − j)T − τl) (68.9)

Spatial structure can help determine a(θl) if the angles of arrival θl are known or can be estimated.
a(θl) lies on a array manifold A, which is the set of all possible array response vectors indexed by θ .

A = {a(θ)|θ ∈ 2} (68.10)

where 2 is the set of all possible values of θ . A includes the effect of array geometry, element patterns,
inter-element coupling, scattering from support structures, and objects near the base station.

Temporal Structure

The temporal structure relates to the properties of the signal u(t) and includes modulation
format, pulse-shaping function, and symbol constellation. Some typical temporal structures are

• Constant modulus (CM)

In many wireless applications, the transmitted waveform has a constant envelope (e.g., in FM mod-
ulation). A typical example of a constant envelope waveform is the GMSK modulation used in the
GSM cellular system which has the following general form

u(t) = ej (ωt+φ(t))

where φ(t) is a Gaussian-filtered phase output of a minimum shift keyed (MSK) signal [40].

• Finite alphabet (FA)

Another important temporal structure in mobile communication signals is the finite alphabet. This
structure underlies all digitally modulated schemes. The modulated signal is a linear or nonlinear
map of an underlying finite alphabet. For example, the IS-54 signal is a π/4 shifted DQPSK signal
given by

u(t) =
∑
p

Apg(t − pT ) + j
∑
p

Bpg(t − pT )

Ap = cos(φp), Bp = sin(φp), φp = φp−1 + 1φp (68.11)

where g(·) is the pulse shaping function (which is a square root raised cosine function in the case of
IS-54), and 1φp is chosen from a set of finite phase shifts {5π

4 , 3π
4 , π

4 , 7π
4 } depending on the data

s(·). These finite set of phase shifts represent the FA structure.

• Distance from Gaussianity
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The distribution of digitally modulated signals is not Gaussian,2 and this property can be exploited
to estimate the channel from the higher-order moments such as cumulants, see e.g., [15, 33]. Clearly
CM signals are non-Gaussian. These higher order statistics (HOS) based methods are usually slower
converging than those based on second order statistics.

• Cyclostationarity

Recent theoretical results [14, 28, 39, 44] suggest that exploiting the cyclostationary characteristic
of the communication signal can lead to second-order statistics based algorithms to identify the
channel, H, and therefore a more attractive approach than HOS techniques.

It can be shown [10] that the continuous-time stochastic process x(t) defined in Eq. (68.1) (as-
suming the fade amplitude αR is constant) is cyclostationary. Moreover, the discrete sequence {xi}
obtained by sampling x(t) at the symbol rate 1

T
is wide-sense stationary, whereas the sequence ob-

tained by temporal oversampling (i.e., at a rate higher than 1/T ) or spatial oversampling (multiple
antenna elements) is cyclostationary. The cyclostationary signal consists of a number of sampling
phases each of which is stationary. A phase corresponds to a shift in the sampling point in temporal
oversampling and different antenna element in spatial oversampling.

The cyclostationary property of sampled communication signals carries important information
about the channel phase, which can be exploited in several ways to identify the channel. The cyclo-
stationarity property can also be interpreted as a finite duration property. Put simply, this says that
the oversampling increases the number of samples in the signal x(t) and phases in the channel, H,
but does not change the value of the data for the duration of the symbol period. This allows H to
become tall (more rows than columns) and full column rank. Also, the stationarity of the channel
makes H Toeplitz (or rather block Toeplitz). Tallness and Toeplitz properties are key to the blind
estimation of H.

• The temporal manifold

Just as the array manifold captures spatial wavefront information, the temporal manifold captures
the temporal pulse-shaping function information [48, 49]. We define the temporal manifold k(τ ) as
the sampled response of a receiver to an incoming pulse with delay τ . Unlike the array manifold, the
temporal manifold can be estimated with good accuracy because it depends only on our knowledge
of the pulse-shaping function. Table 68.2 summarizes the duality between the array and the temporal
manifold.

TABLE 68.2 The Duality Between the Array

and the Time Manifold
Manifold Indexed by: Characterizes:

Array Angle θ Antenna array response
Time Delay τ Transmitted pulse shape

The different structures and properties inherent in the signal model are depicted in Fig. 68.4

2The distribution may, however, approach Gaussian when constellation shaping is used for spectral efficiency [56].
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FIGURE 68.4: Space-time structures.

68.3 Algorithms for STP

The history of array signal processing goes back nearly four decades to adaptive antenna combining
techniques using phase-lock loops for antenna tracking. An important beginning was made by
Howells [21], when he proposed the sidelobe canceller for adaptive nulling, and later Applebaum
developed a feedback control algorithm for maximizing SINR. Another significant advance was the
LMS algorithm proposed by Widrow [54]. Yet another important milestone was the work of Capon
who proposed an adaptive antenna system [8] using a look direction constraint that resulted in
the minimum variance distortionless beamformer. Further advances were made by Frost [13] and
Griffiths and Jim [17] among several others. See [50] for a review on spatial filtering.

Because of significant delay spread in the channel, array processing in mobile communications can
be greatly leveraged by processing the signals in space and in time (STP) to minimize both co-channel
interference and inter symbol interference while maximizing SNR. See [35] for a review of channel
equalization.

We begin with the single-user case where we are only interested in demodulating the signal of
interest. We therefore treat interference from other users as unknown additive noise. This is an
interference-suppression approach [53]. Later in the section, we will discuss multi-user detection
which jointly detects all impinging signals.

68.3.1 Single-User ST-ML and ST-MMSE

The first criterion for optimality in space-time processing is Maximum Likelihood (ML) or is usually
referred to as Maximum Likelihood Sequence Estimation (MLSE). ST-MLSE seeks to estimate the data
sequence that is most likely to have been sent given the received vector signal. Another frequently
used criterion is Minimum Mean Square Error (MMSE). In ST-MMSE we obtain an estimate of the
transmitted signal as a space-time weighted sum of the received signal and seek to minimize the mean
square error between the estimate and the true signal at every time instant.

We present ST-MLSE and ST-MMSE in a form that is a space-time extension of the well-known
ML and MMSE algorithms.
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ST-MLSE

With the channel model described by Eq. (68.8), we assume that the noise N is spatially and
temporally white and Gaussian, and that there is no interference. The MLSE problem can be shown
to reduce to finding S so as to satisfy the following criterion:

min
S

‖X − HS‖2
F (68.12)

where the channel H is assumed to be known and ‖.‖F denotes Frobenius norm. This is a general-
ization of the standard MLSE problem where the channel is now defined in space and time. We can,
therefore, use a space-time generalization of the well-known Viterbi algorithm (VA) to carry out the
search in Eq. (68.12) efficiently as is shown in Fig. 68.5. See [34] for a discussion on the VA methods.

FIGURE 68.5: Different structures for space-time processing.

In the presence of co-channel interference, which is likely to be both spatially and temporally
correlated (due to delay spread), the MLSE criterion can be reformulated with a new metric to
address the problem. However, the temporal correlation due to delay spread in CCI complicates the
implementation of the Viterbi equalizer.

ST-MMSE

In the presence of CCI with delay spread, a ST-MMSE receiver is more attractive. This receiver
combines the input in space and time to generate anoutput thatminimizes the errorbetween itself and
the desired signal (see Fig. 68.5). Before proceeding further, we need to introduce some preliminaries.

In a space-time filter (equalizer cum beamformer), W has the following form:
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W(k) =



w11(k) · · · w1M(k)
... · · · ...

wm1(k) · · · wmM(k)


 (68.13)

In order to obtain a convenient formulation for the space-time filter output, we introduce the quan-
tities W(k) and X(k) as follows:

X(k) = vec (X(k)) (mM × 1)

W(k) = vec (W(k)) (mM × 1) (68.14)

where the operator vec(·) is defined as:

vec ([v1 · · · vM ]) =



v1
...

vM




The scalar equalizer output y(k) can then be written as

y(k) = WH (k)X(k) = T r(WH (k)X(k)) (68.15)

where (·)H denotes complex conjugate transpose.
The ST-MMSE filter chooses the space-time filter weights to approach the minimum mean square

error, i.e.,

min
W

E

∥∥∥WH X(k) − s(k − ζ )

∥∥∥2

2
(68.16)

where ζ is a delay chosen to center the space-time filter (the choice of this parameter strongly
affects performance). The solution to this least-squares (LS) problem follows from the well-known
projection theorem

E
(
X(k)(XH (k)W − s∗(k − ζ ))

)
= 0 (68.17)

This leads to

W =
{
E

(
X(k)XH (k)

)}−1
E

(
X(k)s∗(k − ζ )

)
(68.18)

where superscript ∗ denotes complex conjugate. If the interference and noise are independent of the
signal, the transmitted bit sequence is white, and M > N

E
(
X(k)s∗(k − ζ )

) =
[
0 · · · 0 vecT (H) 0 · · · 0

]T = H (68.19)

where the number of zeros preceding and succeeding vecT (H) depends on the choice of ζ . Defining
the space-time mN × mN covariance matrix RXX = E

(
XXH

)
, Eq. (68.18) takes the familiar form

W = R−1
XXH (68.20)

Note that when M = N , H = vec (H). A number of techniques are available in order to
solve Eq. (68.20), such as the least mean square (LMS) [54] or the recursive least square (RLS) [29].
These have different tradeoffs of computational complexity, tracking capability and steady-state error.
See [29] for a discussion. Alternatively, if a block method is used, we can explicitly calculate R−1

XX

and then use H to find W . This is known as Sample Matrix Inversion (SMI).
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The relative performance of ST-MLSE and ST-MMSE schemes is influenced by the dominance
of CCI and ISI, and the nature of the channel. When the channel is CCI dominated and contains
multipath, a Viterbi equalizer is complicated to implement. In this case, the MMSE approach appears
desirable. On the other hand, in an ISI-dominated large delay spread scenario, an MLSE has natural
advantages.

Having reviewed the basic approaches to space-time processing, we will now study two important
issues: blind vs. non-blind and single vs. multi-user approaches.

Training Signal Methods

In many mobile communications standards such as GSM and IS-54, explicit training signals
are inserted inside the TDMA data bursts. These training signals can be used to estimate the channel
needed for the MLSE or MMSE receivers.

Let T be the training sequence arranged in a matrix form (again T is Toeplitz). Then, during the
training burst, the received data is given by

X = HT + N (68.21)

Clearly H can be estimated using LS

H = XT† (68.22)

where T† = TH
(
TTH

)−1
.

In a ST-MMSE receiver, we need W and this can be computed readily from H using Eq. (68.20).

Blind Methods

The term “blind” methods (other names are “self-recovering” or “unsupervised”), do not need
training signals and rather exploit the temporal structure such as non-Gaussianity; constant modulus
(CM); finite alphabet (FA); cyclostationarity, or the spatial structure, such as the array manifold. The
performance of blind methods will, of course, be sensitive to the validity of structural properties
assumed.

Spatial Structure or DOA-Based Methods These techniques use DOA estimates as a basis
for determining the optimum beamformer. These methods were developed vigorously in the 1980s
in military applications for reception of unknown or noise-like signals. The modern era in DOA
estimation began with the MUSIC algorithm first proposed in 1979 by Schmidt and independently
by Bienvenu and Kopp [6, 36], thus launching the “subspace era” in signal processing. See [52] for
a survey. Another class of DOA estimation techniques was launched when Paulraj et al. proposed
the ESPRIT algorithm which has striking advantages when compared to MUSIC but needs a special
array geometry. See [23] for a survey.

DOA-based methods suffer from serious drawbacks in cellular applications. First, DOA estimation
requires anaccurateknowledgeof thearraymanifold. Thisneedsexpensive calibrationsupport. Next,
the number of antennas at cellular base stations vary from four to eight per sector, an insufficient
number for the multipath and interference rich cellular environments. Finally, these methods do
not exploit the knowledge of the modulation format of the communication signal and the time delay
relationship between multipath signals.

A subspace approach can be used to estimate the directions-of-arrival of the impinging wavefronts.
The signal model is given by

x(t) = Au(t) + n(t) (68.23)

where A is an m × Q matrix whose columns are the array response vectors for each wavefront
(assuming no multipath)
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A = [
a(θ1) · · · a(θQ)

]
,

u(t) contains the fading signals from the Q users

u(t) = [α1(t)u1(t − τ1) · · · αQ(t)uQ(t − τQ)]T

and
uq(t) =

∑
k

sq(k)g(t − kT )

The sampled block signal model then takes the following form

X = A S + N (68.24)

In the subspace approach, we seek to estimate A from the array data by exploiting the underlying
array manifold structure. When the number of antennas, m, is greater than the number of signals,
Q, the signal x(t) in the absence of noise is confined to a subspace, referred to as the signal subspace.

We first estimate this signal subspace from the received data X. We then search for an m×Q matrix
A whose columns lie on the array manifold and whose (column) subspace matches the estimated signal
subspace. A good estimate of the signal subspace is given by the first Q dominant eigenvectors of the
space-only m×m covariance matrix Rxx = E(xxH ). If Es is a matrix of these eigenvectors, then the
subspace fitting approach estimates A to minimize the following criterion

min
A

‖Es − AZ‖2
F

where Z is an arbitrary Q × Q square matrix.
Once A is estimated, we have the array vector for the desired signal. The MMSE and ML estimators

(assuming no multipath) of uq(t) are identical [7] and are given by

wq = R−1
xx a(θq) (68.25)

wq is a (space-only) beamformer that has been studied extensively.
When multipath and delay spread is present, the solution in Eq. (68.25) will have a poor perfor-

mance and improved techniques are needed. If we use a ST-MMSE structure, we can extend the
above subspace methods to compute the optimum beamformer given in Eq. (68.20).

Temporal Structure Methods These techniques include a vast range that spans from the
well-studied CM and HOS methods to the more recent second order methods that exploit the
cyclostationarity of the received signal.

The fading and dynamics of the mobile propagation channel create special problems for blind
techniques, and their performance in mobile channels is only recently gaining attention. A widely
known class of simple blind algorithms is the so-called Bussgang class that contains, among others,
the CM 1-2, CM 2-2, Sato, and Decision-Directed (DD) algorithms. See [11, 19, 20] for a survey of
blind algorithms.

Contrary to non-blind techniques, where a training signal drives the recursive algorithms, in the
CM approach, we replace the training signals by a modulus corrected version of the output signal.
The CM 2-2 minimizes the following cost function

min
W

J(W) = E||y(k)|2 − 1|2 (68.26)

where y(k) is the output of the ST filter [see Eq. (68.15)].
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The resulting LMS-type algorithm is given by

W(k + 1) = W(k) − µ X∗(k) y(k)
(
|y(k)|2 − 1

)
(68.27)

W(k+1), under the right conditions, approaches the optimum ST-MMSE solution in Eq. (68.20).
Important performance issues for blind algorithms are speed of convergence, ability to reach the

global optimum solution, and capacity to track time varying mobile channels.
Polyphase Methods Following the path-breaking paper by Tong, et al. [44] that presented a

blind channel identification method using oversampling and relying only on second order statistics,
a number of techniques that exploit cyclostationarity have since dominated the blind-deconvolution
literature.

Polyphase methods provide a blind solution by starting with the data

X(k) = HS(k) + N(k) (68.28)

or its second order statistics. They then extract H and S by exploiting the tallness structure (obtained
via oversampling) of H [28, 29]. See [25] for a tutorial presentation of polyphase techniques.

68.3.2 Multi-User Algorithms

In multi-user (MU) algorithms, we address the problem of extracting multiple co-channel user signals
arriving at an antenna array. Such problems occur in channel reuse within cell (RWC) applications or
in situations where we attempt to demodulate the interference signal in order to improve interference
suppression. The data model is once again

X = HS + N (68.29)

where H and S are suitably defined to include multiple users and are of dimensions m × NQ and
NQ × M , respectively.

We have several approaches that parallel the single-user case. We begin with the ML and MMSE
prototypes and then explain in more detail some recently developed blind techniques.

Multi-User MLSE and MMSE

If the channels for all arriving signals are known, then we can extend the earlier MLSE to jointly
demodulate all the user data sequences. Starting with the data model in Eq. (68.29), we can then
search for multiple user data sequences that minimize the ML cost function in Eq. (68.12). The multi-
user MLSE will have a large number of states in the trellis. Efficient techniques for implementing a
Viterbi equalizer need to be developed.

In multi-user MMSE, we usually estimate each user signal separately using the single-user MMSE
processor given in Eq. (68.20). In this case, the MMSE treats other user signals as interference with
unknown structure. Multi-user techniques either need training signals for all the users or adopt blind
methods. The multiple training signals should be designed to have low cross correlation properties
so as to minimize cross coupling in the channel estimates.

Multi-User Blind Methods

Once again, the techniques are parallel to the single-user spatial and temporal blind methods.
The spatial structure multi-user algorithms are again applicable under the conditions discussed in
Section 68.3.1. The approach is identical; we first estimate A using subspace methods, and the
beamformer wq for each user follows from Eq. (68.25).

We briefly describe some illustrative algorithms.
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Finite Alphabet (FA) Method

This approach exploits the FA property of the digitally modulated signals. Assuming no delay
spread and perfect multi-user symbol synchronization, the channel model is given by Eq. (68.24),
which we repeat here for convenience:

X = AS + N (68.30)

where both A and S are unknown and the additive noise is assumed to be white and Gaussian. The
joint ML criterion for this reduces to the familiar minimization problem

min
A,S

‖X − AS‖2
F (68.31)

This is a joint ML problem where both the channel and data are unknown. The FA property
allows us to solve Eq. (68.31) and estimate both A and S. Since the ML criterion is separable with
respect to the unknowns, one approach to minimize the cost function in Eq. (68.31) is alternating
projections. Starting with an initial estimate of A, we minimize Eq. (68.31) with respect to S, keeping
A fixed. This is a data detection problem. With an estimate of S, an improved estimate of A can be
obtained by minimizing Eq. (68.31) with respect to A, keeping S fixed. This is a standard least-squares
problem. We continue this iterative process until a fixed point is reached. The global solution is a
fixed point of the iteration. In order to avoid a computationally expensive search, two suboptimal
iterative techniques, ILSP and ILSE [42, 43], can be used to make this minimization tractable.

Note that the joint ML problem can also be formulated for the single user case where we estimate
the channel and the data jointly using the FA or other signal properties. Joint ML methods are also
known as adaptive ML.

Finite Alphabet – Oversampling (FA-OS) Method

In the presence of delay spread (and unsynchronized symbols), the FA algorithm has to be
modified to estimate the space-time channel H as against the spatial channel A described earlier. An
attractive technique to estimate the temporal channel using polyphase or oversampling method was
proposed recently in [47].

We therefore first need to extend the multi-user data model in Eq. (68.30) to incorporate over-
sampling. Assuming oversampling at P samples per symbol, we define a new mP × M data matrix
X where each entry is a vector of P data samples per symbol period.

This results once again in the familiar model

X = HS + N (68.32)

Note that now the dimensions of X, H, and S are mP × M , mP × NQ, and NQ × M , respectively.
As noted earlier, H is tall, full column rank and has a block Toeplitz structure.

Once again we can estimate H and S using a Joint-ML approach. This reduces to minimizing

min
H,S

‖X − HS‖2
F (68.33)

A direct approach to Eq. (68.33) is computationally prohibitive. The approach in [47] breaks up
the joint problem into two smaller subproblems. First, the channels are equalized by enforcing the
low rank and block-Toeplitz structure of H. This yields the row subspace of S. The FA property can
now be enforced to determine the symbols in S.
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Multi-User CM

While the FA approach exploits the FA property, CM is another structure for multi-user signal
separation. When the channel has no delay spread, we have a standard source separation problem,
which can be dealt with the so-called constant modulus array [4, 16, 26]. The resulting algorithms
are space-only multi-user counterparts of the temporal CM algorithms: instead of combatting the
channel ISI in order to retrieve the single-user signal, they try to combat the channel CCI and
demodulate the different user signals.

Recent advances in multi-user CM include an analytical CM (ACM) [32, 45], a multi-stage CM
algorithm [38], and related approaches [5] and [9]. The extension to a delay spread environment
was proposed in [31].

68.3.3 Simulation Example

Figure 68.6 illustrates the effect of STP in a mobile environment. The channel model chosen was
a typical urban channel. A four element linear array with λ

2 spacing was employed. The desired
and interference signals arrived from mean directions of 0o and 45o, respectively. An IS-54 channel
interface was used. Section (a) shows the received signal constellation for a simple antenna. Note
that this implies that the eye is completely closed. Section (b) shows the constellation after STP, using
a ST-MMSE equalizer employing training signals. Note the dramatic improvement in the received
constellation.

FIGURE 68.6: Interference cancellation using STP.

68.4 Applications of Spatial Processing

In this section, we briefly describe three applications of antennas and STP in cellular base stations.

68.4.1 Switched Beam Systems

Switched Beam Systems (SBS) consist of a beamformer in the RF stage that forms multiple (non-
adaptive) beams, a “sniffer” that determines the beam that has the best SINR and a switch that is
used to select the best or best two beams for the receiver. These systems are used as an appliqué
unit, where the existing diversity antennas are replaced by a switch-beam antenna system. The SBS
operates by sniffer scanning the beamformer outputs to detect the best two beams which are then
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switched through to the receiver. In order to reduce the probability of incorrect beam selection, the
beam outputs are validated by checking the color code (for example CDVCC in IS-54 or SAT tone in
AMPS) prior to determining the best beam.

The main advantage of using SBS is the improvement in cell coverage on the reverse link due
to the array gain and improved voice quality due to reduced interference. Since the pre-formed
beams are narrower than the sector beamwidth, reduction in interference power is obtained when
the desired signal and the interference are separated in angle and fall into different beams. This SINR
improvement offers better voice quality and may also allow use of a smaller reuse factor and therefore
improve capacity.

The performance of SBS depends on a number of factors, including angle spread of multipath,
relative angles-of-arrival of the signals and interference, and the array topology. Performance gains
in SBS come from array gain, diversity gain, reduced interference, and trunking efficiency.

68.4.2 Space-Time Filtering

Space-time filtering (STF) applies space-time processing to maximize signal power and minimize
intersymbol and co-channel interference. As is evident from earlier sections, space-time processing
will be very different for each air interface standard. In GSM, the slot duration is 0.577 ms with 26
training bits and the symbol period is 3.7 µsecs. Channel equalization is, of course, necessary. The
presence of controlled ISI further complicates the equalization problem. It is reasonable to assume
that the signal and interference channels are invariant across a slot. In IS-54, the slot duration is
6.66 ms, resulting in substantial variation of the channel over the slot. However, the symbol period
is 41.6 µsecs, and therefore channel equalization is usually not needed. Thus, the STF architectures
must find some means to track the signal and interference channels across the burst, using blind
techniques, as those described earlier in this chapter.

68.4.3 Channel Reuse Within Cell

Reuse within cell (RWC) refers to the reuse of a channel or radio resource within a cell by exploiting
differences in the channels. This is akin to spectrum reuse in cellular systems, where a channel or a
spectrum resource used in one cell is reused in another cell separated by sufficient distance such that
the co-channel interference is sufficiently small.

When RWC is used in TDMA or FDMA, a cell supports two or more users in a given channel,
as against a single user in conventional cells. Antenna arrays and space-time processing is used for
joint demodulation of multiple users, assuming such users are sufficiently separated in channels
(directions). When two or more users become closely aligned in their channels, they will no longer
be separable, and one of the users should be handed off to another frequency or time slot. RWC
needs to work on both forward and reverse links, therefore, signal separability must be achieved on
both links.

The principal challenge in RWC when used with TDMA or FDMA is to estimate and track the
reverse and forward channels to a high degree of accuracy. The problem is further complicated by
the near-far problem resulting in power imbalance between users. The ability to estimate and track
the reverse link channel depends on angle, delay, and Doppler spreads. The higher these spreads,
the higher the sources of channel estimation errors. Therefore, flat rural environments with low
angle and delay spreads score over urban and microcells which use antennas below roof top. Also,
fixed wireless applications score over mobile applications. In the forward link, we need to once again
predict the channel accurately. We can do this by an open loop method, i.e., use the reverse link
channel to predict forward channel. Alternatively, we can use feedback from the mobile to estimate
the forward channel. For the open loop method, in FDD, angle spread is a source of error and in
TDD the Doppler spread is a source of error. Due to these complications, RWC is not a promising
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technology in most TDMA and FDMA applications.

68.5 Summary

Use of array signal processing or STP is emerging as a powerful tool for improving cellular wireless
networks. STP can improve cell coverage, enhance link quality, and increase system capacity. The
rapidly varying mobile channel with large multipath delay and angle spreads offer a significant
challenge to STP. Effective solutions have to be specific to each air interface and the propagation
environment. More work is needed to develop robust STP techniques and to characterize their
performance. See [1, 2, 3] for a review of the current state of the art in smart antennas technology.
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69.1 Introduction

The classical definition of a beamformer basically specifies its goal: to estimate the signal waveform
arriving at the array from a given direction. Beamformers are spatial processors that combine the
signals impinging on an array of captors. Combining the outputs of the captors forms a narrow beam
pointing towards the direction of the source (look direction). This narrow beam can discriminate
between sources spatially located at distinct sites. This important property of beamformers is used
to design techniques that localize active or passive sources particularly in RADAR/ SONAR systems.

In the last two decades, beamforming methods have had significant theoretical and practical
advances. This, together with other technological advances, has broadened the application of so-
phisticated beamforming techniques to a diversity of areas, including imaging, geophysical and
oceanographic exploration, astrophysical exploration, and biomedical. See [19, 20] for an excellent
overview of modern beamforming techniques and applications.

Communications is another attractive application area for beamforming. In fact, beamforming
has been widely used for directional transmission and reception as well as for sector broadcasting
in satellite communications systems. More recently, due to the drastic increase of users in cellular

1Initial date of submission of this article September 28, 1995.
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radio systems [10, 15, 18], including indoors and outdoors mobile systems, it is increasingly being
recognized that the design of base station and mobile antennas based on beamforming methods
improves significantly the system’s spectrum efficiency [1, 11]. In turn, this enables accommodating
larger numbers of users [3, 16]. The most striking argument in favor of using advanced beamforming
techniques such as adaptive or blind beamforming for mobile communications is based on the idea of
Space Division Multiple Access (SDMA) schemes. With SDMA, several mobiles share simultaneously
the same frequency channel by creating virtual channels in the spatial domain. Another important
argument in favor of using beamforming in cellular radio is that beamforming yields flexible signal
processing schemes thatproperlyhandlemultipath effectswhichare typical in radio communications.
Multipath is the term given when the same signal arrives at the destination through different paths.
This may arise when signals bounce off obstacles in their path of propagation. At the receiver,
these arrivals are correlated. Their recombination causes severe signal distortions and fading. In
limiting cases, the power of the received signal can become so small that the reliability of the data
communications link is completely lost.

In this section we design a multichannel beamformer to combat multipath effects. The receiver
uses a base station antenna array which handles several radio links operating simultaneously at the
same carrier frequency, while preserving the reliability of the communications. The approach relies
on statistical signal processing methods, yielding a solution that operates in a blind mode with respect
to the parameters that specify the propagation channel. This means that, except for a few quantities
related to system specifications, e.g., link budget and array geometry, the receiver that we describe
here does not assume any prior knowledge about the locations of the sources and of the structures
of the ray arrivals, including directions of arrival and correlations. The simulation results show the
excellent performance of this multichannel beamformer in SDMA schemes.

The chapter is organized as follows. In Section 69.2 we introduce the beamforming problem (see
also [20]), and classical beamformers such as the delay-and-sum beamformer, the minimum output
noise power beamformer, and the minimum variance beamformer. We show that these beamformers
present severedrawbackswhenoperating inmultipath environments. Section69.3presents a solution
to the beamforming problem for the case of correlated arrivals. This solution is based on a minimum
mean square error (MMSE) approach. We compare the performance of this beamformer with the
performance of the beamformers introduced in Section 69.2. We emphasize, in particular, the case
of multipath propagation. In this section, we also discuss issues regarding the implementation of the
minimum mean square error beamformer. In Section 69.4, we describe a method to implement the
minimum mean square error beamformer in the context of a digital mobile communications system.
The method operates in a blind mode and strongly exploits the structure of the received multipath
data. Since the propagation channel parameters, e.g., angles of arrivals of the multiple paths, are
not known, we estimate them with a maximum likelihood approach supported on a finite mixture
distribution model of the array data. We maximize the likelihood function with an iterative scheme.
We describe an efficient procedure to initialize the iterative algorithm. In general, this procedure
converges rapidly to the global maximum of the likelihood function. Section 69.5 presents simulation
results obtained with data synthesized by a simple mobile communications simulator. These results
confirm the excellent performance of the MMSE beamformer described in the paper.

69.2 Beamforming

Beamforming is an array processing technique for estimating a desired signal waveform impinging on
an array of sensors from a given direction. This technique applies to both narrowband and wideband
signals. Here, we will consider only the narrowband case.

Let s(t) be the complex envelope of the source radiated signature. Under the farfield assumption
the signal at the receiving array is a planar wavefront, see Fig. 69.1. In this case, and according to the
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FIGURE 69.1: Source/receiver geometry.

model derived in [20], the complex envelope of the signal received at each sensor of a uniform and
linear array of N omnidirectional sensors is

sn(t) = s(t − τn)e
−jω0τn , (69.1)

where ω0 is the carrier frequency and τn is the intersensor propagation delay. Let d , c, and θ0
be, respectively, the distance between sensors, the propagation velocity, and the direction of arrival
(DOA). The intersensor delays are then

τn = (n − 1)d

c
sinθ0, n = 1, 2, . . . , N . (69.2)

Because of the narrowband assumption, we can make the simplification

s(t − τn) ' s(t)

in Eq. (69.1). This means that, for the values of τn of interest, the source complex envelope s(t) is
slowly varying when compared with the carrier ejω0t .

We model each array sensor by a quadrature receiver, its output being given by

zn(t) = sn(t) + nn(t), (69.3)

where sn(t) is the complex envelope of the signal component and nn(t) is a complex additive dis-
turbance, such as sensor noise, ambient noise, or another signal interfering with the desired one.
Collecting in a vector z(t) all the responses of the N sensors of the array to a narrowband source
coming at the array from the DOA= θ0, we get the N-dimensional complex vector

z(t) = a(θ0)s(t) + n(t) . (69.4)

The vector a(θ0) is referred to as the steering vector for the DOA θ0.
The elements of the steering vector a(θ0) are given by an(θ0) = e−jω0τn , n = 1, 2, . . . , N . The

noise vector n(t) is anN-dimensional complex vector collecting theN sensor noisesnn(t). In general,
it includes components correlated with the desired signal as in multipath propagation environments.
With multipath, several replicas of the same signal, each one propagating along a different path, arrive
at the array with distinct DOAs.

In beamforming, the goal is to estimate the source signal s(t) given a(θ0). The narrowband
beamformer is illustrated in Fig. 69.2. The output of the beamformer is

y(t) = wH z(t) , (69.5)

where w = [w1, w2, w3, . . . , wN ]T is a vector of complex weights. We use the notation {·}T to
denote vector and matrix transposition, and {·}H for transposition followed by complex conjugation.
The beamformer is completely specified by the vector of weights w.
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FIGURE 69.2: Narrowband beamformer.

In the absence of the noise term n(t) in (69.4), it is readily seen that choosing

w = (1/N)a(θ0) ,

the beamformer output is y(t) = s(t). This corresponds to the simplest implementation of the
narrowband beamformer, known as the delay–and–sum (DS) beamformer: it combines coherently
the signal replicas received at each sensor after compensating for their corresponding relative delays.

The interpretation of the DS beamformer operation is rather intuitive. However, we may ask
ourselves the following question: is DS the best we can do to estimate the desired signal when the
disturbance n(t) is present? To answer the question satisfactorily, we begin by noting that, in the
presence of noise, the output of the DS beamformer is

y(t) = s(t) + (1/N)aH (θ0)n(t) .

The influence of the error term on the estimate y(t) of s(t) depends basically on the structure of
n(t). The optimal design of beamformers depends now on the choice of an adequate optimization
criterion that takes into account the disturbance vector, with the goal of improving in some sense the
quality of the desired estimate. In the sequel, we will consider several cases of practical interest.

69.2.1 Minimum Output Noise Power Beamforming (MNP)

To reduce the effect of the error term at the beamformer output, we formulate the beamforming
problem as follows:

find the weight vector w such that the noise output power

E
{∣∣wH n(t))

∣∣2} is minimized subject to the constraint wH a(θ0) = 1 ,

where E{·} denotes the statistical average. The cost function is

E

{∣∣∣wH n(t))

∣∣∣2} = wH Rnw (69.6)

with Rn the covariance matrix of the disturbance vector n(t), i.e., Rn = E{n(t)nH (t)}. The constraint
guarantees that the signal along the look direction θ0 is not distorted.

The solution to this constrained optimization problem is obtained by Lagrange multipliers tech-
niques. It is given by

w = (aH (θ0)R
−1
n a(θ0))

−1R−1
n a(θ0) . (69.7)

The vector w in Eq. (69.7) is the gain of the MNP beamformer [20].
When the source signal is uncorrelated with the disturbance,

E{s(t)nH (t)} = 0 ,
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it can be shown that the weight vector (69.7) of the MNP beamformer takes the form

w = (aH (θ0)R
−1a(θ0))

−1R−1a(θ0) , (69.8)

where
R = E

{
z(t)zH (t)

}
(69.9)

is the covariance matrix of the array data vector z. The vector w in Eq. (69.8) is the gain of the
minimum variance (MV) beamformer [20]. The MV beamformer minimizes the total output power

E

{∣∣∣wH z(t))
∣∣∣2} = wH Rw

subject to wH aH (θ0) = 1. The MV beamformer presents an important advantage over the MNP
beamformer. While to implement the MNP beamformer we need to know the covariance matrix Rn

of the disturbance vector n, in general, to implement the MV beamformer it is sufficient to estimate
the array covariance matrix R using the available data z.

We discuss how to estimate R. Let T time samples (snapshots) of the array response vector z(t)
be available. An estimate of R is the data sample covariance matrix Rs :

Rs = 1

T

T∑
t=1

z(t)zH (t) . (69.10)

Under technical conditions that we will not discuss here, the sample covariance matrix, Rs , converges
(in the appropriate sense) to the array covariance matrix R when T approaches infinity. This means
that, for a large enough number T of snapshots, we can replace R in Eq. (69.8) by Rs , without a
significant performance degradation.

We provide an alternative interpretation to the MNP beamformer. Using Eq. (69.7) in Eq. (69.5),
and taking into account Eq. (69.4), we see that the output of the MNP beamformer has a signal
component s(t) and an error term wH n(t) with average power

Po = wH E
{
n(t)nH (t)

}
w =

(
aH (θ0)R

−1
n a(θ0)

)−1
. (69.11)

Since the power of the signal is preserved and the MNP beamformer minimizes the power of the
noise at its output, the MNP beamformer maximizes the output signal-to-noise ratio (SNR).

FIGURE 69.3: (a) Single source in white noise; (b) uncorrelated interference; (c) correlated interfer-
ence.

We will not discuss in detail the behavior of the MNP and MV beamformers. The reader is referred
to the work in [2]. We list some of the properties of the MNP and MV beamformers in two scenarios
of practical interest.
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Case 1: Single Source in White Noise
Here (see Fig. 69.3(a)), we assume that the noise n(t) is sensor noise. We model it as n(t) = u(t)

where the components of u(t) are jointly independent and identically distributed samples of zero
mean white noise sequences with variance σ 2, i.e.,

Rn = Ru = σ 2I ,

where I is the identity matrix. The sensor noise models the thermal noise generated at each receiver
and is assumed independent of (thus, uncorrelated with) the source signal. If S is the power of the
desired signal, the SNR at each sensor is SNRi = S/σ 2. Also, from Eq. (69.7), we conclude that when
the additive noise is white, as in this case, the MNP beamformer reduces to the DS beamformer.

Moreover, computing thepower at theoutputof thebeamformerwithEq. (69.11) for thisparticular
situation yields Po = σ 2/N . This means that, at the output of the beamformer, the signal-to-noise
ratio is SNRo = N SNRi .

We conclude, for the case of a single source in white noise, that the DS beamformer is optimum
in the sense of maximizing the output signal-to-noise ratio SNRo. Further, SNRo increases linearly
with the number N of array sensors.

Case 2: Directional Interferences and White Noise
Now, we assume that the disturbance n(t) is the superposition of possibly several directional

interferences and white noise. Without loss of generality, we consider the case of a single interferer:

n(t) = a(θi)i(t) + u(t) , (69.12)

where i(t) is the signal radiated by the interferer, θi is the DOA of the interference signal, and u(t) is
the white noise vector. In general, we assume that u(t) is uncorrelated with i(t).

Case 2.1: Uncorrelated Arrivals
This is the case where the desired signal and the interference are generated by distinct sources,

see Fig. 69.3(b). It is clear that under this assumption, s(t) and n(t) are uncorrelated. As we
emphasized before, this is the situation where the MNP beamformer (69.7) is equivalent to the MV
beamformer (69.8).

The covariance of the noise n(t) is now

Rn = a(θi)Sia
H (θi) + σ 2I ,

where Si is the average power of the interference i(t). At the DOA=θi , the beamformer has an
amplitude response

|wH a(θi)| = |β|
1 + (1 − |β|2)INR

, (69.13)

where
INR = Si/(σ

2/N)

is the interference-to-noise ratio (INR), and β = (1/N)aH (θi)a(θ0) measures the spatial coherence
between the desired source and the interference.

Well Separated Arrivals
When the signal and interference are well separated, their spatial coherence is small, i.e., |β| � 1.

In Eq. (69.13), the denominator is approximately given by 1 + INR. The net effect is that the
beamformer output along the interference direction decreases when INR increases. In other words,
the MNP and the MV beamformers direct a beam with gain 1 towards the DOA of the desired signal
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and null the interference. The interference canceling property is reflected on the average power of
the beamformer output error which is evaluated to

Po = σ 2

N

1

1 − |β2| INR
1+INR

. (69.14)

For large INR and well-separated DOAs, Po ' (σ 2/N). This means that the interference contributes
little to the estimation error at the output of the beamformer.

Close Arrivals
When the source and the interferer are spatially close, their spatial coherence is large, |β| ' 1,

and the output at the interference DOA is ' 1. This means that the MNP and MV beamformers no
longer have the ability to discriminate the two sources.

We conclude from the simple analysis of these two cases that the DOA discrimination capability is
strongly related to the spatial resolution of the array geometry through the parameter β. In practice,
to improve upon the resolution of a linear and uniform array, we increase, when feasible, the number
N of sensors. This results in narrower beamwidths which can resolve closer arrivals.

Case 2.2: Correlated Arrivals
This is the case where the interference i(t) is correlated with the desired signal s(t), i.e.,

E{s(t)i∗(t)} = ρ = |ρ|ejφρ 6= 0 .

We denote complex conjugate by (·)∗.
With reference to Fig. 69.3(c), we discuss a simple example where the interference results from a

secondary path generated by a reflector (multipath propagation)

i(t) = γ s(t) . (69.15)

The complex parameter, γ , accounts for the relative attenuation and delay of the reflected path. The
correlation factor, ρ, between i(t) and s(t) is, in this case, given by

ρ = γ /|γ | .

The desired signal and the disturbance vector n(t) are now correlated and the MV beamformer is no
longer equivalent to the MNP beamformer. Recall that the MV beamformer attempts to minimize
the total output power under the constraint of a unitary gain at the DOA of the desired source. As the
array output vector has a correlated signal component at a different DOA, to minimize the output
power may cause the desired signal itself to be strongly attenuated. This is the signal cancellation effect,
typical of MV beamforming when operating in multipath environments like the one just considered.
On the contrary, the behavior of the MNP beamformer is independent of the correlation degree
between the desired signal and the disturbance: the MNP beamformer filters out correlated arrivals
just as if they were uncorrelated interferences.

To implement the MNP beamformer, besides the DOA of the desired signal, we also need to know
the covariance matrix Rn of the disturbance vector. In general, this covariance is not known a priori.
It has to be estimated using the available data, and this can be a rather complicated task, not discussed
here.

In this section, we discussed the MNP solution to the beamforming problem. The MNP beam-
former is optimum in the sense of maximizing the output SNR. When the noise is white, the DS
beamformer is recovered as the optimum solution for the single source case. It points a beam towards
the source DOA and reduces the sensor noise power by a factor of N , see Fig. 69.4(a). We also saw
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that, in the more general situation where the disturbance vector includes directional interferences, the
MNP beamformer acts like an interference canceler: it points a beam towards the DOA of the desired
signal, while nulling the remaining arrivals regardless of their correlation degrees, see Figs. 69.4(b)
and (c).

FIGURE 69.4: Artistic representation of alternative solutions to the beamforming problem.

We comment on the adequacy of the MNP solution to the correlated arrivals scenario. By treating
the correlated arrivals as an interference, the MNP beamformer neglects the information about the
desired signal that may be provided by the reflected path. It is clear that any solution that can combine
coherently the information contents of all the correlated arrivals will be more effective in recovering
the desired signal from the background noise. This type of solution should behave as a combiner
of the outputs of different beams steered towards the DOAs of the correlated replicas of the desired
signal, see Fig. 69.4(d). In the following section, we will see how this solution can be designed using
a different optimization criterion when solving the beamforming problem.

69.3 MMSE Beamformer: Correlated Arrivals

In this section, we study a different beamforming technique that, as we will see, is specially suited to
multipath propagation environments. The approach is similar to that used in the previous section.
The beamformer is still given by Eq. (69.5), but we choose a different optimization criterion to solve
the beamforming problem. We formulate the problem in the following way:

find the weight vector w such that the output error power

E
{∣∣wH z(t) − s(t)

∣∣2} is minimized ,

i.e., wewant tofindtheweightvectorw thatminimizes themeansquareerrorbetween thebeamformer
output y(t) = wH z(t) and the desired signal s(t). The general solution, which we call the Wiener
solution, is [2]

w = R−1rzs , (69.16)

where rzs = E{z(t)s∗(t)} is the correlation between the array vector response z(t) and the desired
signal s(t). To understand the behavior of the MMSE beamformer (69.16), we address the same
alternative configurations considered in Case 2 of the previous section.

Directional Interference and White Noise
In this scenario, the disturbance n(t) is like in Eq. (69.12), so the received array signal is

z(t) = a(θ0)s(t) + a(θi)i(t) + u(t) ,
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where, as before, i(t) and u(t) are the interference and the array sensor noise vector, respectively.

Uncorrelated Arrivals
The signal s(t) and the interference i(t) are uncorrelated. The correlation between the array vector

and the desired signal is
rzs = a(θ0)S ,

where S is the average power of s(t). The MMSE beamformer weight vector in Eq. (69.16) takes the
particular form

w = SR−1a(θ0) . (69.17)

Comparing (69.17) with (69.8), we conclude that in the present situation, except for a scale factor, the
MMSE and the MNP (or MV) beamformers are equivalent. Thus, the MMSE beamformer cancels
uncorrelated interferences and directs a beam towards the DOA of the desired signal. However,
contrary to what happens with the MNP (or MV) beamformer, the gain of the MMSE beamformer at
the look direction is not unity. On the other hand, the MMSE beamformer provides a stronger noise
rejection and a smaller output error power than the MNP beamformer. In fact, it can be shown [2]
that

Po(MMSE) ≤ SNRo

1 + SNRo

Po(MNP) , (69.18)

where SNRo = S/(σ 2/N), and Po(MNP) is the average power of the MNP beamformer output error
given by (69.14). Equation (69.18) is particularly significant in low SNR environments.

Correlated Arrivals
We take again the interference to be like in Eq. (69.15), i.e., i(t) = γ s(t). It leads to the correlation

rzs = (a(θ0) + γ a(θi))S

and to the weight vector
w = SR−1a(θ0) + Sγ R−1a(θi) . (69.19)

It is clear from Eq. (69.19) that the MMSE beamformer directs distinct beams towards the DOAs θ0
and θi of the correlated arrivals in order to combine coherently their respective outputs. If R has
contributions of other sources uncorrelated with s(t), then these will be filtered out by both beams.
This simple example shows how the MMSE beamformer uses the correlated arrivals to improve the
output error power.

To have an idea of how the behavior of the MMSE beamformer compares with that of the MNP
beamformer, we represent in Fig. 69.5 the output error power as a function of the INR and the SNR,
for the case of spatially close arrivals. We see from Fig. 69.5 that the MMSE beamformer outperforms
the MNP beamformer in all scenarios considered. This is particularly apparent in the limiting case of
coherent arrivals, when the correlation between the signal and the interference is such that |ρ| = 1.
The upper and lower bounds of the output error power shown in the figure are determined by
−1 ≤ cos(φρ) ≤ 1.

To implement the MMSE beamformer in a multipath propagation environment, we need to know
the correlation vector rzs or, alternatively, the DOAs of all correlated replicas of the desired signal as
well as their relative attenuations and propagation delays. In practice, rzs can only be estimated from
the data if we have available a reference signal whose correlation with the array vector is similar to that
of the desired signal. This is the basic idea underlying adaptive implementations (least mean squares
approach); see, e.g., [8, 9]. In these implementations, a time sequence, which is known by the receiver,
is transmitted by the source and used to adapt the beamforming weights until some error threshold
is achieved. In many applications, a reference signal is not available or, as in communications, the
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FIGURE 69.5: Output error power. (a) As a function of INR; (b) as a function of SNR. (Source: Bar-
roso, V.A.N. and Moura, J.M.F., l2 and l1 Beamformers: recursive implementation and performance
analysis, IEEE Trans. on Signal Processing, SP-42(6), 1323–1334, June 1994. c© 1994 IEEE. Used with
permission).

transmission of a reference signal may represent a significant waste of the channel capacity. In the
next section, we explain how to implement the MMSE beamformer without the need of a reference
signal. We do this in the context of a wireless digital communication system.

69.4 MMSE Beamformer for Mobile Communications

In this section, we discuss the implementation of the MMSE beamformer in the context of a digital
wireless communication system. The users are mobiles transmitting simultaneously in the same
frequency channel. This precludes the use of time/frequency methods to discriminate between the
source signals. Here, we assume that the multipath propagation delays are smaller than the baud
period (symbol time interval). We develop a multiple output or multichannel MMSE beamformer
for this application.

Each mobile is assigned to a specific beamforming processing channel that has the following
capabilities:

• Combine the multipath arrivals generated by its assigned mobile.

• Cancel all the arrivals generated by other mobiles.
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We illustrate the development of the array receiver in the simple context of Fig. 69.6. We consider
two mobiles, M1 and M2, each one generating a direct path (dm, m = 1, 2) and a reflected path
(rm, m = 1, 2). The propagation channel used by each mobile is characterized by four parameters:

FIGURE 69.6: Example of a mobile communications scenario.

two complex numbers, γdm and γrm, accounting for the attenuation and the propagation delay in
each path, and two DOAs θdm and θrm. We model all the parameters that characterize the propagation
channels as deterministic unknown parameters. Furthermore, and in contrast with what we assumed
in the previous sections, the DOAs of the desired signals are not known a priori. The receiver itself has
to track the sources while they are moving. In a mobile communications system, we can safely assume
that we know the number of mobiles, their transmitted power, and the sensor noise variance. The
number of mobiles is determined by some higher layer of the receiver architecture (e.g., handover
procedures to establish the connection between the receiver and each mobile), while the power and
the noise variance are system parameters specified by the link budget.

69.4.1 Model of the Array Output

Let hm, m = 1, 2, be the single input/multiple output complex transfer function describing, for each
source, the channel/receiving array system. Each hm is N ×1, where N is the number of array sensors.
We write

h1 = γd1a(θd1) + γr1a(θr1)

h2 = γd2a(θd2) + γr2a(θr2) ,

where a(·) represents the array steering vector. Let s1(t) and s2(t) be the baseband signals transmitted
by the mobiles. They are assumed to be independent binary sequences taking the values +1 and −1
with equal probability. Thus, the signal vector s(t) = [s1(t), s2(t)]T has zero mean and covariance
matrix S = I. Defining the (N × 2) matrix H = [h1, h2], the array output vector is

z(t) = Hs(t) + u(t) , (69.20)

where u(t) represents the complex sensor noise vector. The noise u(t) will be assumed to be zero
mean Gaussian with known covariance matrix σ 2I. The goal is to estimate the signal vector s(t) using
a MMSE beamformer which, as we saw in Section 69.3, is the appropriate approach for multipath
propagation environments. However, to implement the MMSE beamformer (69.16), we need to
know the correlation between the array output z(t) and the signal vector s(t) which in this case is

rzs = E{z(t)sH (t)} = H .

The matrix H is parameterized by all the unknown θ and γ parameters of our model. Thus, it has
to be estimated from the available data. Once we have the estimate of H, we can use it to compute a
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structured estimate of the array covariance matrix. In this case, where S = I, this estimate is

R = HHH + σ 2I . (69.21)

This estimate is better than the sample covariance matrix computed by Eq. (69.10) because it avoids
eventual mismatches between the estimate of H and its actual value embedded in Rs . In the following
section, we will describe a method that provides accurate estimates of H.

69.4.2 Maximum Likelihood Estimation of H

Suppose that T is the number of snapshots, i.e., samples, of the array output that are available for
estimating the matrix H, while tracking the mobiles. The choice of T should strike a balance between
the two following conflicting requirements:

• T should be large enough to guarantee in the appropriate sense a good estimate of H.

• T should be small enough so that we can safely model H as time invariant.

Fortunately, these two conditions are easily met in the application under study. High data rates
usually will be involved in mobile communications. For example, data rates of 2 Mbps or higher
are envisaged for the UMTS (Universal Mobile Telecommunications System) and the MBS (Mobile
Broadband System), systems presently under development in Europe. These high data rates, the
typical velocities of the mobiles (less than 100 Km/h), and the typical mobile/receiver distances
ensure that a large amount of data can be collected over a time period during which H can be
considered to be approximately constant. In other words, the geometry is very slowly varying when
compared to the transmission data rates.

Under the assumptionsused to establish themodel of the arrayoutput vector, the likelihood function
is

L(H) =
T∏

t=1

4∑
i=1

Gaussi (H, z(t)) , (69.22)

where the unnormalized Gauss function is

Gaussi (H, z(t)) = exp

(
−|z(t) − Hsi |2

σ 2

)
,

and {si}4
i=1 spans the finite alphabet of the sources, i.e., the four possible realizations of s(t). In

Eq. (69.22), we assume that the sampling of the received signals is synchronized with the symbol
clock. This is a very strong requirement as time synchronization may be a very difficult problem,
specially when the sampling rate equals the data rate. However, the sensitivity of the receiver with
respect to timing errors is, in general, efficiently reduced when the sampling rate is made larger
than the symbol rate. Although we do not discuss this issue here, the algorithm that we present is
easily extended to this case. The value of H that maximizes the likelihood function L(H) makes the
collected data more likely from a probabilistic point of view. The maximization of Eq. (69.22) with
respect to H is not an easy task. Equation (69.22) is strongly non-linear in H which precludes the
analytical solution of the optimization problem. On the other hand, the parameterization of H in
terms of the channel parameters does not help much because optimization over these parameters
requires a multidimensional search approach, which may be excessively time consuming.

The EM Algorithm
To maximize Eq. (69.22) with respect to H, we use an algorithm based on the EM (Expectation-

Maximization) approach [17]. This approach yields an iterative algorithm that, under some technical
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conditions that are beyond the scope of this paper, is known to converge to the true maximum
likelihood estimate. The EM iteration is

Hl+1 =
(

T∑
t=1

z(t)

∑4
i=1 Gaussi (Hl , z(t))sH

i∑4
i=1 Gaussi (Hl , z(t))

)
(

T∑
t=1

∑4
i=1 Gaussi (Hl , z(t))sisH

i∑4
i=1 Gaussi (Hl , z(t))

)−1

. (69.23)

To run this iterative algorithm, we must be aware of two important aspects:

• In general, this algorithm has a very slow convergence rate.

• Due to strong non-linearities, it can easily get trapped in a local maximum.

These two aspects reflect a high sensitivity of the EM algorithm with respect to the initial estimate.
Special care has to be taken to specify the initial estimate H0. Next, we describe how to obtain this
initial condition, such that the EM iteration converges in just a few iterations to the global maximum
of the likelihood function.

Initialization of the EM Algorithm
In this paragraph, we do not go into the detailed derivation of the initialization procedure. The

interested reader is referred to [4]. Here, we describe the basic idea underlying the initialization
procedure and present the steps necessary to implement it.

Recall the structure of H defined in Section 69.4.1. For the simple example that we have been
considering, we write

H = A(θ)0 , (69.24)

where
A(θ) = [a(θd1), a(θr1), a(θd2), a(θr2)] (69.25)

is the (N × 4) matrix of the steering vectors associated with each incoming path, θ being the vector
of the unknown DOAs. The remaining unknown parameters of our model are collected in

0 =


γd1 0
γr1 0
0 γd2
0 γr2

 . (69.26)

The problem of estimating the initial condition H0 is decomposed in two steps: (1) estimation of θ ,
and (2) estimation of 0.

Step (1): Estimation of θ

DOA estimation is a well-studied problem in array processing. The classical approach is based on
the MV beamformer [6, 12]. The main idea consists in detecting the maxima of the output power,
when a set of quantized values of the possible angles of arrival (in the range [−π/2, π/2] in the
case of a linear array) is scanned by varying the look direction specified by the complex weights of
the MV beamformer. One of the problems with this approach is that angular resolution is mainly
determined by the beamwidth. A narrow beam requires a large number of array sensors. To overcome
this limitation, wemightuse theMUSICalgorithm, awell-knownhighresolution technique [5, 12, 13]
based on the eigenvalue decomposition of the sample covariance matrix. The angular resolution of
the MUSIC algorithm improves as the sample covariance matrix approaches the array covariance
matrix. However, these two techniques (MV beamformer and MUSIC) fail when the arrivals are
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correlated as is the case in mobile communications. The spatial smoothing method [12, 14] extends
MUSIC to correlated arrivals. The goal of spatial smoothing is to decorrelate the arrivals. It breaks
the original array into subarrays. The problem is that the performance of spatial smoothing depends
strongly on the correlation degree of the arrivals. To improve the efficiency of spatial smoothing, we
have to use a large number of spatial samples, i.e., a larger array.

To circumvent all these difficulties, keeping the array size manageable, and achieving acceptable
performance, we use a different approach which is insensitive to the correlation degree of the arrivals.
This technique is similar to MUSIC but, rather than relying on the sample covariance matrix (second
order statistics), it is based on first order statistics (statistical average) of the array data, see [12] for a
detailed derivation of the algorithm. We show how the method is used in the mobile communications
problem.

Looking at Eq. (69.20), and recalling the assumptions on s(t) and u(t), we conclude that E{z(t)} =
0. This seems to contradict our goal of using first order statistics of the array data to estimate the
DOAs. However, a more careful analysis of the structure of our model shows that the array samples
can be partitioned into a number of sets equal to the cardinality of the source’s alphabet (4, in the
example that is being used). Each of the sets, Zi , in the partition has samples of the form

zi (t) = Hsi + u(t), i = 1, . . . , 4 . (69.27)

The statistical average of these samples is

xi = Hsi , i = 1, . . . , 4 . (69.28)

This means that the array data is organized in clusters, Zi , of points centered about each xi .
To estimate the DOAs, we need to use only one of the xi ’s. Therefore, we are left with finding

a scheme to determine one of the sets in the partition of the array data. In a statistical sense, the
distance between any two samples of the array data is minimum if the two samples belong to the
same partition. In other words, for any pair of time instants, tl and tk , z(tl) and z(tk) belong to the
same partition Zi if the source signal vectors s(tl) and s(tk) have the same realization si . In this case,

1 = E
{
|z(tl) − z(tk)|2

}
= 2Nσ 2 . (69.29)

To find one set Zi of the partition, after choosing randomly one array sample z(tl), we look for all
other samples whose distance to z(tl) is below some threshold appropriately related with 1. Once
we obtain the set Zi in the partition, we estimate the statistical average xi of the points in the set by
its sample mean.

At the end of this step, we have calculated the first order statistics and are ready to apply the first
order statistics algorithm to estimate the DOAs θ [4]. Having the estimate θ̂ of the DOAs, we estimate
the matrix of the steering vectors A in Eq. (69.25) by Â = A(θ̂).

Step (2): Estimation of 0

Recall from Eq. (69.24) that H = A(θ)0. Step (1) estimated A as Â = A(θ̂). We now proceed
with the estimation of 0. To estimate 0, we use the estimate Â = A(θ̂) just obtained, as well as the
cluster center xi on which that estimate was based.

Denote the left pseudoinverse of a matrix A by A†. It is defined by

A† = (AH A)−1AH .

Recall that the matrix of steering vectors A defined in Eq. (69.25) is a rank 4 (N × 4) matrix.
We now motivate how to estimate 0. Define the matrix

Q = Â†(R − σ 2I)ÂH†
. (69.30)
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From Eq. (69.21), we get
R − σ 2I = HHH .

Substituting this equation in (69.30), we get

Q = Â†HHH ÂH†
.

But by (69.24)

Q = Â†A00H AH ÂH†
. (69.31)

Clearly, if Â = A, then
Q = 00H . (69.32)

Apparently, to estimate 0, we should compute Q and then find a factorization of the form (69.32).
This is not so easy because, in general, a unique factorization of a Hermitian matrix like Q does not
exist. Nevertheless, Q plays a key role in the procedure for estimating 0. This is essentially based on
the singular value decomposition of Q, as we see now. Notice that Q can be computed from the data
using the data sample covariance matrix Rs given by Eq. (69.10) instead of the array data covariance
matrix R.

Recalling from Eq. (69.26) the structure of 0, we conclude that Q should be a (4 × 4) Hermitian
matrix of rank 2. This means that Q should only have two nonzero eigenvalues (in fact, because Q
is Hermitian, these eigenvalues of Q are real and positive). The singular value factorization of Q is

Q = V3VH , (69.33)

where 3 is a diagonal matrix whose elements are the nonzero singular values, in this case the eigen-
values of Q, and V is a matrix whose columns are the orthonormal eigenvectors associated to these
eigenvalues.

From Eq. (69.26) defining 0, we see that 0 has itself orthogonal columns. In general, the columns
of 0 have different norms. Using the eigenvalue decomposition in Eq. (69.33), we conclude that,
except for a phase difference, the columns of V31/2 equal the columns of 0. Thus, we can conclude
that

Q1/2 = V31/2 (69.34)

= 0Diag(ejφm) (69.35)

where Diag(·) is a diagonal matrix and the φm, m = 1, 2, measure the phase uncertainty of the
columns of Q1/2 with respect to the columns of 0. The last equality in Eq. (69.35) is true only when
Â = A.

We now consider how to resolve this phase uncertainty. We show that this uncertainty can be
resolved up to a sign difference. This means that, at least theoretically, we can achieve an estimate 0̂

whose columns are colinear with those of 0. Using Eq. (69.34) and Eq. (69.28), it can be shown after
some algebra that

f = Q1/2†
Â†xi

(
= Diag(e−jφm)si

)
. (69.36)

The elements of the vector f have the form e−jφmsim, m = 1, 2. Defining F as the diagonal matrix
formed with the elements of f , we define the estimate 0̂ of 0 as

0̂ = Q1/2F
(= 0Diag(si )

)
. (69.37)

Recalling that the elements of si are +1or −1, we see that, ideally, the columns of 0 are estimated just
with a sign uncertainty. In our application, this sign uncertainty is not relevant. To see this, suppose
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that one of the columns of 0̂ has its sign changed. This sign change is equivalent to an inversion
of the data stream generated by one of the mobiles. This inversion of the data stream can be solved
using a differential encoding scheme of the transmitted data.

In summary, the algorithm to estimate 0 is as follows:

• use Rs to compute Q as defined by Eq. (69.30);

• compute the singular value decomposition of Q and then form the matrix Q1/2 as given
by Eq. (69.34);

• compute f as given by Eq. (69.36) and use its elements to form the diagonal matrix F;

• compute 0̂ defined in Eq. (69.37).

Using the results of Steps (1) and (2), we compute the estimate used to initialize the EM iteration
as:

H0 = A(θ̂)0̂ .

Inpractice, itwill be shown in the following sectionby computer simulations that this initial condition
enables the EM algorithm to converge to the global maximum of the likelihood function with a small
number of iterations. This behavior is maintained even with critical scenarios arising under very
specific geometries, see Section 69.5.

The apparent drawback of the proposed initialization procedure is its computational complexity.
However, this is not really a problem because we are processing blocks of data with time length T

during which the geometry remains, for all practical purposes, unchanged. Also, the changes in
geometry between adjacent blocks are small. This means that, except in specific situations, the EM
iteration can be initialized using the estimate of H obtained with the previous block of data. Hence,
the algorithm is seldom reinitialized, e.g., when the number of sources present in the cell is changed.

69.5 Experiments

In this section, we present the results obtained with the array receiver designed in the previous section.
The context is a cell in a cellular radio mobile communications system. The system is operating at
a carrier frequency f0 = 1 GHz and accommodates transmission rates of 1 Mbps with differential
encoding binary phase shift keying modulation [7]. All the mobiles present in the cell generate signals
that are transmitted simultaneously in the same frequency band. The power emitted by each mobile
is assumed to be unity.

The receiving array is a horizontal linear, uniform array, with N = 19 identical omnidirectional
captors. These captors are separated by half wavelength, i.e., d = λ0/2, where λ0 = c/f0 = 30 cm
is the center frequency wavelength, yielding an array length of 2.7 m. The geometry of the scenario
is similar to that depicted in Fig. 69.6, where the reflector is parallel to the array. The reflector is
located at a distance of 50 m from the array. The reflector absorbs half of the impinging power.
The two mobiles M1 and M2 describe circular trajectories around the receiver, from right to left
(counterclockwise). Their velocities are 18 Km/h for M1 and 19 Km/h for M2. These are typical
speeds for city traffic with slow automobiles circling a rotary. The radii of these trajectories are 30
m and 45m, respectively. Comparing these distances with the array length, we conclude that we can
safely make the planar wavefront assumption; in other words, the received signals across the array
are planar wavefronts. Finally, the receiver SNR equals 10dB for the case of the direct path generated
by M1. This means that all the remaining paths have smaller SNRs.

In Fig. 69.7, we illustrate examples of the geometries for which we ran the multichannel MMSE
beamformer. The data synthesized by the simulator was collected during each second. The data
blocks have length 1 Mbit per mobile. The matrix H is estimated using 3 Kbit (per mobile). In
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FIGURE 69.7: Simulation scenarios.

practically all scenarios that we tested, we observed that the EM algorithm converges in just two
iterations. The multichannel MMSE beamforming achieved 100% of correct symbol detections for
the outputs of both channels. The initialization procedure described in Section 69.4 was necessary
only for the first data block (beginning at time t = 0). Except for the first data block, the EM
algorithm was initialized with the estimate of H obtained with the last adjacent data block. Notice
that even for scenarios t = 11 and t = 13, where the DOAs of the direct paths are very close to
each other, the EM algorithm was able to keep tracking of the columns of H. In fact, each column
of H, representing the channel/receiving array transfer function, captures the global structure of the
multipath propagation channel used by each mobile, which does not depend explicitly on the DOAs.
For illustrative purposes, we show in Fig. 69.8 the amplitude response of the MMSE and the MNP
beamformers as a function of the angle of arrival (beampatterns). The MMSE beampatterns were
computed using the weights obtained from the synthesized data, while in the case of the MNP we used
the ideal weights. We see that the behavior of both beamformers confirm what was predicted by the
simple analysis carried out in Sections 69.2 and 69.3. The MMSE beamformer directs distinct beams
towards the arrivals generated by the mobile being tracked and nulls all the remaining arrivals. On the
contrary, the MNP beamformer cancels all the incoming wavefronts except the one corresponding to
the direct path. The simulations also confirmed the improvement in the output SNR achieved by the
MMSE beamformer when compared with the MNP beamformer. In our experiments, a gain close
to 3 dB was obtained in almost all scenarios considered.
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FIGURE 69.8: MMSE and MNP beampatterns: (a), (c)-channel M1; (b), (d)-channel M2.

In this section, we showed the adequacy of the multichannel MMSE beamformer for combating
multipath propagation effects as occurring in mobile communications systems. The simulations
illustrated the efficiency of the implementation proposed in Section 69.4.

69.6 Conclusions

In this article, weaddressed theproblemofdesigningbeamformingarrays specially suited tooperate in
multipath environments. The problem is motivated in the context of cellular mobile communication
systems. This is a field where array processing is being recognized as a powerful technology that has
the potential to improve significantly the traffic capacity of such systems. As we saw, beamforming is
an efficient technique for handling several mobiles in the same cell transmitting simultaneously in the
same frequency channel. Moreover, specific beamformers can be designed to optimize the receiver
with respect to distortions introduced by channels, such as multipath propagation and interferences.

We proposed a solution based on the MMSE beamformer. The study presented in Section 69.3
emphasized the relevant properties of this method. In particular, it was shown that the minimum
mean square error (MMSE) beamformer has an important advantage over the minimum output
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noise power beamformer (MNP) introduced in Section 69.2: it combines coherently the correlated
signal replicas generated by one source, while canceling the remaining interferences. Recall that the
MNP beamformer nulls the secondary multipath arrivals as if they were uncorrelated interferences.
Thus, the output SNR of the MMSE beamformer is always better than that of the MNP beamformer,
particularly in multipath environments.

We identified the difficulties of implementing the MMSE beamformer. In particular, we pointed
out that, except for the case of uncorrelated arrivals, knowledge of the direction of arrival (DOA)
of the desired signal is not sufficient to implement the MMSE beamformer. We showed that, in
most cases of interest, we need to know the cross-correlation between the desired signal and the
array observations. In general, this cross-correlation is not previously known. It is necessary to
estimate it from the available data. In other words, it is necessary to perform a blind estimation of
the propagation channel. In Section 69.4 we presented a new method for estimating that correlation.
It can be applied in situations where the array data have non-zero first order statistics. The method
is insensitive to the correlation degree of the incoming wavefronts. This is the case that is relevant
in mobile communications. Basically, the method that we described exploits the finite mixture
distribution of the array data, which is organized in clusters with non-zero averages. We used
a maximum likelihood approach based on the finite mixture model, the global maximum of the
likelihood function being obtained by an EM iterative algorithm. As discussed, initialization of the
EMalgorithm is a critical issue. For apoor initial guess, the algorithmcandivergeor, atmost, converge
to a local maximum. We provided a technique to initialize the EM algorithm. This initialization
method enables the EM algorithm to converge fast to the global maximum of the likelihood function.

We tested the multichannel MMSE beamforming receiver using a simulator for a mobile com-
munications system. We generated a simple scenario with moving sources and multiple replicas.
Our results illustrated the efficiency of the receiver. In particular, the results confirm that, under
the conditions studied which are typical in cellular communications, the reliability of the system is
high. This is a consequence of the way we designed the MMSE beamformer which minimizes the
power of the error at the output of the receiver. The MMSE beamformer relies on the accuracy of
the blind estimation of the radio propagation channel. The algorithm we described can do a good
job of estimating the propagating channel as long as the receiver has the ability to properly track the
mobiles. In normal operation, the EM algorithm is initialized using the channel estimates obtained
with the previous data block. The receiver is globally reinitialized only in very specific situations,
for instance when the number of mobiles is changed. This fact simplifies the computational effort
associated with the receiver. Our studies showed that the receiver converges so fast that it operates
practically in real time.
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Space-Time Adaptive Processing (STAP) is a multi-dimensional filtering technique developed for
minimizing the effects of various kinds of interference on target detection with a pulsed airborne
surveillance radar. The most common dimensions, or filtering domains, generally include the az-
imuth angle, elevation angle, polarization angle, doppler frequency, etc. in which the relatively weak
target signal to be detected and the interference have certain differences. In the following, the STAP
principle will be illustrated for filtering in the joint azimuth angle (space) and doppler frequency
(time) domain only.

STAP has been a very active research and development area since the publication of Reed et al.’s
seminal paper [1]. With the recently completed Multichannel Airborne Radar Measurement project
(MCARM) [2]– [5], STAP has been established as a valuable alternative to the traditional approaches,
such as ultra-low sidelobe beamforming and Displaced Phase Center Antenna (DPCA) [6]. Much of
STAP research and development efforts have been driven by the needs to make the system affordable,
to simplify its front-hardware calibration, and to minimize the system’s performance loss in severely
nonhomogeneous environments. Figure 70.1 is a general configuration of STAP functional blocks [5,
7] whose principles will be discussed in the following sections.
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FIGURE 70.1: A general STAP configuration with auxiliary and main arrays.

70.1 Main Receive Aperture and Analog Beamforming

For conceptual clarity, the STAP configuration of Fig. 70.1 separates a possibly integrated aperture
into two parts: the main aperture which is most likely shared by the radar transmitter, and an
auxiliary array of spatially distributed channels for suppression of Wideband Noise Jammers (WNJ).
For convenience of discussion, the main aperture is assumed to have Nc columns of elements, with
the column spacing equal to a half wavelength and elements in each column being combined to
produce a pre-designed, nonadaptive elevation beam-pattern.

The size of the main aperture in terms of the system’s chosen wavelength is an important system
parameter, usuallydeterminedby the systemspecificationsof the required transmitterpower-aperture
product as well as azimuth resolution. Typical aperture size spans from a few wavelengths for some
short-range radars to over 60 wavelengths for some airborne early warning systems. The analog
beamformingnetworkcombines theNc columnsof themainaperture toproduceNs receiver channels
whose outputs are digitized for further processing. One should note that the earliest STAP approach
presented in [1], i.e., the so-called “element space” approach, is a special case of Fig. 70.1 when
Ns = Nc is chosen.

The design of the analog beamformer affects
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1. the system’s overall performance (especially in nonhomogeneous environments),

2. implementation cost,

3. channel calibration burden,

4. system reliability, and

5. controllability of the system’s response pattern.

The design principle will be briefly discussed in Section 70.9; and because of the array’s element
error, column-combiner error, and column mutual-coupling effects, it is quite different from what
is available in the adaptive array literature such as [8], where already digitized, perfectly matched
channels are generally assumed.

Finally, it should be pointed out that the main aperture and analog beamforming network in
Fig. 70.1 may also include nonphased-array hardware, such as the common reflector-feed as well as
the hybrid reflector and phased-array feed [9]. Also, subarraying such as [10] is considered as a form
of analog beamforming of Fig. 70.1.

70.2 Data to be Processed

Assume that the radar transmits, at each look angle, a sequence of Nt uniformly spaced, phase-
coherent RF pulses as shown in Fig. 70.2 for its envelope only. Each of Ns receivers typically consists of
a front-end amplifier, down-converter, waveform-matched filter, and A/D converter with a sampling
frequency at least equal to the signal bandwidth. Consider the kth sample of radar return over the
Nt pulse repetition intervals (PRI) from a single receiver, where the index “k” is commonly called
the range index or cell. The total number of range cells, K0 is approximately equal to the product of
the PRI and signal bandwidth. The coherent processing interval (CPI) is the product of the PRI and
Nt ; and since a fixed PRI can usually be assumed at a given look angle, CPI and Nt are often used
interchangeably.

FIGURE 70.2: A sequence of Nt phase-coherent RF pulses (only envelope shown) transmitted at a
given angle. The pulse repetition frequency (PRF) is 1/T.

With Ns receiver channels, the data at the kth range cell can be expressed by a matrix Xk , Ns ×Nt ,
for k = 1, 2, . . . K0. The total amount of data visually forms a “cube” shown in Fig. 70.3, which is
the raw data cube to be processed at a given look angle. It is important to note from Fig. 70.3 that
the term “time” is associated with the CPI for any given range cell, i.e., across the multiple PRIs,
while the term “range” is used within a PRI. Therefore, the meaning of the frequency corresponding
to the time is the so-called doppler frequency, describing the rate of the phase-shift progression of a
return component with respect to the initial phase of the phase-coherent pulse train. The doppler
frequency of a return, e.g., from a moving target, depends on the target velocity and direction as well
as the airborne radar’s platform velocity and direction, etc.
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FIGURE 70.3: Raw data at a given look angle and the space, time, and range axes.

70.3 The Processing Needs and Major Issues

At a given look angle, the radar is to detect the existence of targets of unknown range and unknown
doppler frequency in the presence of various interference. In other words, one can view the processing
as a mapping from the data cube to a range-doppler plane with sufficient suppression of unwanted
components in the data. Like any other filtering, the interference suppression relies on the differences
between wanted target components and unwanted interference components in the angle-doppler
domain. Figure 70.4 illustrates the spectral distribution of potential interference in the spatial and
temporal (doppler) frequency domain before the analog beamforming network, while Fig. 70.5 shows
a typical range distribution of interference power. As targets of interest usually have unknown doppler
frequencies and unknown distances, detection needs to be carried out at sufficiently dense doppler
frequencies along the look angle for each range cell within the system’s surveillance volume. For each
cell at which target detection is being carried out, some of surrounding cells can be used to produce an
estimate of interference statistics (usually up to the second order), i.e., providing “sample support”,
under the assumption that all cells involved have an identical statistical distribution. Figure 70.4
also shows that, in terms of their spectral differences, traditional wideband noise jammers, whether
entering the system through direct path or multipath (terrain scattering/near-field scattering), require
spatial nulling only; while clutter and chaff require angle-doppler coupled nulling. Coherent repeater
jammers (CRJ) represent a nontraditional threat of a target-like spectral feature with randomized
ranges and doppler frequencies, making them more harmful to adaptive systems than to conventional
nonadaptive systems [11].

Although Fig. 70.5 has already served to indicate that the interference is nonhomogeneous in range,
i.e., its statistics vary along the range axis, recent airborne experiments have revealed that its severe-
ness may have long been underestimated, especially over land [3]. Figure 70.6 [5, 7] summarizes
the sources of various nonhomogeneity together with their main features. As pointed out in [12], a
serious problem associated with any STAP approach is its basic assumption that there is a sufficient
amount of sample support for its adaptive learning, which is most often void in real environments
even in the absence of any nonhomogeneity type of jammers such as CRJ. Therefore, a crucial issue
for the success of STAP in real environments is the development of data-efficient STAP approaches,
in conjunction with the selection of reasonably identically distributed samples before estimating
interference statistics. To achieve a sufficient level of the data efficiency in nonhomogeneous envi-
ronments, the three most performance- and cost-effective methods are temporal degrees-of-freedom
(DOF) reduction, analog beamforming to control the spatial DOF creation, and pre-suppression of
WNJ as shown in Fig. 70.1.

Another crucial issue is the affordability of STAP-based systems. As pointed out in [9], phased-
arrays, especially those active ones (i.e., with the so-called T/R modules), remain very expensive
despite the 30-year research and development. For multichannel systems, the cost of adding more
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FIGURE 70.4: Illustration of interference spectral distribution for a side-mounted aperture.

receivers and A/D converters with a sufficient quality makes the affordability even worse.

Of course, more receiver channelsmeanmore system’s available spatialDOF.However, it is often the
case in practice that the excessive amount of the DOF, e.g., obtained via one receiver channel for each
column of a not-so-small aperture, is not necessary to the system. Ironically, excessive DOF can make
the control of the response pattern more difficult, even requiring significant algorithm constraints [8];
andafter all, it has tobe reduced toa level supportableby theavailable amountof reasonably identically
distributed samples in real environments. An effective solution, as demonstrated in a recent STAP
experiment [13], is via the design of the analog beamformer that does not create unnecessary spatial
DOF from the beginning — a sharp contrast to the DOF reduction/constraint applied in the spatial
domain.

Channel calibration is a problem issue for many STAP approaches. In order to minimize perfor-
mancedegradation, the channelswith someSTAPapproachesmustbematchedacross the signalband,
and steering vectors must be known to match the array. Considering the fact that channels generally
differ in both elevation and azimuth patterns (magnitude as well as phase) even at a fixed frequency,
the calibration difficulty has been underestimated as experienced in recent STAP experiments [5].
It is still commonly wished that the so-called “element-space” approaches, i.e., the special case of
Ns = Nc in Fig. 70.1, with an adaptive weight for each error-bearing “element” which hopefully
can be modeled by a complex scalar, could solve the calibration problem at a significantly increased
system-implementation cost as each element needs a digitized receiver channel. Unfortunately, such
a wish can rarely materialize for a system with a practical aperture size operated in nonhomogeneous
environments. With a spatial DOF reduction required by these approaches to bring down the number
of adaptive weights to a sample-supportable level, the element errors are no longer directly accessible
by the adaptive weights, and thus the wishful “embedded robustness” of these element-space STAP
approaches is almost gone. In contrast, the MCARM experiment has demonstrated that, by mak-
ing best use of what has already been excelled in antenna engineering [13], the channel calibration
problem associated with STAP can be largely solved at the analog beamforming stage , which will be
discussed in Section 70.9.

The above three issues all relate to the question: “What is the minimal spatial and temporal DOF
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FIGURE 70.5: Illustration of interference-power range distribution, where 1h indicates the radar
platform height.

required?” To simplify the answer, it can be assumed first that clutter has no Doppler spectral spread
caused by its internal motion during the CPI, i.e., its spectral width cut along the doppler frequency
axis of Fig. 70.4 equals to zero. For WNJ components of Fig. 70.4, the required minimal spatial
DOF is well established in array processing, and the required minimal temporal DOF is zero as no
temporal processing can help suppress these components. The CRJ components appear only in
isolated range cells as shown in Fig. 70.5, and thus they should be dealt with by sample conditioning
and selection so that the system response does not suffer from their random disturbance. With the
STAP configuration of Fig. 70.1, i.e., pre-suppression of WNJ and sample conditioning and selection
for CRJ, the only interference components left are those angle-doppler coupled clutter/chaff spectra
of Fig. 70.4. It is readily available from the two-dimensional filtering theory [14] that suppression of
each of these angle-doppler coupled components only requires one spatial DOF and one temporal
DOF of the joint domain processor! In other words, a line of infinitely many nulls can be formed
with one spatial DOF and one temporal DOF on top of one angle-doppler coupled interference
component under the assumption that there is no clutter internal motion over the CPI. It is also
understandable that, when such an assumption is not valid, one only needs to increase the temporal
DOF of the processor so that the null width along the doppler axis can be correspondingly increased.

For conceptual clarity, Ns − 1 will be called the system’s available spatial DOF and Nt − 1 the
system’s available temporal DOF. While the former has a direct impact on the implementation cost,
calibration burden, and system reliability, the latter is determined by the CPI length and PRI with
little cost impact, etc. Mainly due to the nonhomogeneity-caused sample support problem discussed
earlier, the adaptive joint domain processor may have its spatial DOF and temporal DOF, denoted by
Nps and Npt respectively, different from the system’s availables by what is so-called DOF reduction.
However, the spatial DOF reduction should be avoided by establishing the system’s available spatial
DOF as close to what is needed as possible from the beginning.

70.4 Temporal DOF Reduction

Typically an airborne surveillance radar has Nt anywhere between 8 and 128, depending on the CPI
and PRI. With the processor’s temporal DOF, Npt , needed for the adjustment of the null width,
normally being no more than 2 ∼ 4, huge DOF reduction is usually performed for the reasons of the
sample support and better response-pattern control explained in Section 70.3.
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FIGURE 70.6: Typical nonhomogeneities.

An optimized reduction could be found, given Nt , Npt , and the interference statistics which are
still unknown at this stage of processing in practice [7]. There are several non-optimized temporal
DOF reduction methods available, such as the Doppler-domain (joint domain) localized processing
(DDL/JDL) [12, 15, 16] and the PRI-staggered Doppler-decomposed processing (PRI-SDD) [17],
which are well behaved and easy to implement. The DDL/JDL principle will be discussed below.

The DDL/JDL consists of unwindowed/untapered DFT of (at least) Nt -point long, operated on
each of the Ns receiver outputs. The same Npt + 1 most adjacent frequency bins of the DFTs of the
Ns receiver outputs form the new data matrix at a given range cell, for detection of a target whose
Doppler frequency is equal to the center bin. Figure 70.7 shows an example for Ns = 3, Nt = 8, and
Npt = 2. In other words, the DDL/JDL transforms the raw data cube of Ns ×Nt ×K0 into (at least)
Nt smaller data cubes, each of Ns × (Npt + 1) × K0 for target detection at the center doppler bin.

The DDL/JDL is noticeable for the following features.

1. There is no so-called signal cancellation, as the unwindowed/untapered DFT provides no
desired signal components in the adjacent bins (i.e., reference “channel”) for the assumed
target doppler frequency.

2. The grouping of Npt +1most adjacent bins gives a high degree of correlation between the
interference component at the center bin and those at the surrounding bins — a feature
important to cancellation of any spectrum-distributed interference such as clutter. The
cross-spectral algorithm [18] also has this feature.

3. The response pattern can be well controlled as Npt can be kept small — just enough for
the needed null-width adjustment; and Npt itself easily can be adjusted to fit different
clutter spectral spread due to its internal motion.

4. Obviously the DDL/JDL is suitable for parallel processing.

While the DDL/JDL is a typical transformation-based temporal DOF reduction method, other
methods involving the use of DFTs are not necessarily transformation-based. An example is the
PRI-SDD [17] which applies time-domain temporal DOF reduction on each doppler component.
This explains why the PRI-SDD requires Npt times more DFTs that should be tapered. It also serves
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FIGURE 70.7: The DDL/JDL principle for temporal DOF reduction illustrated with Ns = 3, Nt = 8,
and Npt = 2.

as an example that an algorithm classification by the existence of the DFT use may cause a conceptual
confusion.

70.5 Adaptive Filtering with Needed and Sample-Supportable DOF
and Embedded CFAR Processing

After the above temporal DOF reduction, the dimension of the new data cube to be processed at a
given look angle for each doppler bin is Ns × (Npt + 1) × K0. Consider a particular range cell at
which target detection is being performed. Let x, Ns(Npt + 1) × 1, be the stacked data vector of this
range cell, which is usually called the primary data vector. Let y1, y2, . . . , yk , all Ns(Npt + 1) × 1
and usually called the secondary data, be the same-stacked data vectors of the K surrounding range
cells, which have been selected and/or conditioned to eliminate any significant nonhomogeneities
with respect to the interference contents of the primary data vector. Let s, Ns(Npt + 1) × 1, be
the target-signal component of x with the assumed angle of arrival equal to the look angle and the
assumed doppler frequency corresponding to the center doppler bin. In practice, a look-up table of
the “steering vector” s for all look-angles and all doppler bins usually has to be stored in the processor,
based on updated system calibration. A class of STAP systems with the steering-vector calibration-free
feature has been developed, and an example from [13] will be presented in Section 70.9.

There are two classes of adaptive filtering algorithms: one with a separately designed constant false
alarm rate (CFAR) processor, and the other with embedded CFAR processing. The original sample
matrix inversion algorithm (SMI) [1] belongs to the former, which is given by

η
SMI

=
∣∣∣ŵH

SMI
x
∣∣∣
2 H1

>
<
H0

η0 (70.1)

where

w
SMI

= R̂−1s , (70.2)
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and

R̂ = 1

K

K∑

k=1

ykyH
k (70.3)

The SMI performance under the Gaussian noise/interference assumption has been analyzed in
detail [1], and in general it is believed that acceptable performance can be expected if the data vectors
are independent and identically distributed (iid) with K , the number of the secondary, being at least
two times Ns(Npt +1). Detection performance evaluation using a SINR-like measure deserves some
care when K is finite, even under the iid assumption [19, 20].

If the output of an adaptive filter, when directly used for threshold detection, produces a probability
of false alarm independent of the unknown interference correlation matrix under a set of given
conditions, the adaptive filter is said to have an embedded CFAR. Under the iid Gaussian condition,
two well-known algorithms with embedded CFAR are the Modified SMI [21] and Kelly’s generalized
likelihood ratio detector (GLR) [22], both of which are linked to the SMI as shown in Fig. 70.8. The

FIGURE 70.8: The link among the SMI, modified SMI (MSMI), and GLR where N = (Nps +
1)(Npt + 1) × 1.

GLR has the following interesting features:

1. 0 < 1
K

η
GLR

< 1, which is a necessary condition for robustness in nongaussian interfer-
ence [23].

2. Invariance with respect to scaling all data or scaling s.

3. One cannot express η
GLR

as ŵH x; and with a finite K , an objective definition of its output
SINR becomes questionable.

Table 70.1 summarizes the modified SMI and GLR performance, based on [21, 24].
It should be noted that the use of the scan-to-scan track-before-detect processor (SSTBD to be

discussed in Section 70.6) does not make the CFAR control any less important because the SSTBD
itself is not error-free even with the assumption that almost infinite computing power would be
available. Moreover, the initial CFAR thresholding can actually optimize the overall performance,
in addition to a dramatic reduction of the computation load of the SSTBD processor. Traditionally,
filter and CFAR designs have been carried out separately, which is valid as long as the filter is not data-
dependent. Therefore, such a traditional practice becomes questionable for STAP, especially when K
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TABLE 70.1 Performance Summary of Modified SMI and

GLR
Performance compared GLR Modified SMI

Gaussian interference suppression Similar performance
Nongaussian interference suppression More robust Less robust

Rejection of signals mismatched
to the steering vector Better Worse

is not very large with respect to Ns(Npt + 1), or when some of the secondary data depart from the
iid Gaussian assumption that will affect both filtering and CFAR portions. The GLR and Modified
SMI start to change the notion that “CFAR is the other guy’s job”, and their performance has been
evaluated in some nongaussian interference [21] as well as in some nonhomogeneities [25]. Finally,
it should be pointed out that performance evaluation of STAP algorithms with embedded CFAR by
an output SINR-like measure may result in underestimating the effects of some nonhomogeneity
such as the CRJ [11].

70.6 Scan-To-Scan Track-Before-Detect Processing

The surveillance volume is usually visited by the radar many times, and the output data collected over
multiple scans (i.e., revisits) are correlated and should be further processed together for the updated
and improved final target-detection report. For example, random threshold-crossings over multiple
scans due to the noise/interference suppression residue can rarely form a meaningful target trajectory
and therefore their effect can be deleted from the final report with a certain level of confidence (but
not error-free).

For a conventional ground-based radar, scan-to-scan track-before-detect processing (SSTBD) has
been well studied and a performance demonstration can be found in [26]. With a STAP-based
airborne system, however, much remains to be researched. One crucial issue, coupled with the initial
CFAR control, is to answer what is the optimal or near optimal setting of the first CFAR threshold,
given an estimate of the current environment including the detected nonhomogeneity. Further
discussion of this subject seems out of the scope of this book and still premature.

70.7 Real-Time Nonhomogeneity Detection and Sample
Conditioning and Selection

Recent experience with MCARM Flight 5 data has further demonstrated that successful STAP sys-
tem operation over land heavily relies on the handling of the nonhomogeneity contamination of
samples [3, 5], even without intentional nonhomogeneity producing jammers such as CRJ. It is
estimated that the total number of reasonably good samples over land may be as few as 10 ∼ 20.
Although some system approaches to obtaining more good samples are available, such as multiband
signaling [27, 28], it is still essential that a system has the capability of real-time detection of non-
homogeneities, selection of sufficiently good samples to be used as the secondary, and conditioning
not-so-good samples in the case of a severe shortage of the good samples. The development of a
nonhomogeneity detector can be found in [3], and its integration into the system remains to be a
research issue.

Finally, it should be pointed out that the utilization of a sophisticated sample selection scheme
makes it nearly unnecessary to look into the so-called training strategy such as sliding window,
sliding hole, etc. Also, desensitizing a STAP algorithm via constraints and/or diagonal loading has
been found to be less effective than the sample selection [28].
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70.8 Space or Space-Range Adaptive Pre-Suppression of Jammers

Wideband noise jammers (WNJ) have a flat or almost flat Doppler spectrum which means that
without multipath/terrain-scattering (TS), only spatial nulling is necessary. Although STAP could
handle, at least theoretically, the simultaneous suppression of WNJ and clutter simply with an increase
of the processor’s spatial DOF (Nps), doing so would unnecessarily raise the size of the correlation
matrix which, in turn, requires more samples for its estimation. Therefore, spatial adaptive pre-
suppression (SAPS) of WNJ, followed by STAP-based clutter suppression, is preferred for systems
to be operated in severely nonhomogenous environments. Space-range adaptive processing (SRAP)
may become necessary in the presence of multipath/TS to exploit the correlation between the direct
path and indirect paths for better suppression of the total WNJ effects on the system performance.

The idea of cascading SAPS and STAP itself is not new, and the original work can be found in [29],
with other names such as “two step nulling (TSN)” used in [30]. A key issue in applying this idea is the
acquisition of the necessary jammer-only statistics for adaptive suppression, free from strong clutter
contamination. Available acquisition methods include the use of clutter-free range-cells for low PRF
systems, clutter-free Doppler bins for high PRF systems, or receive-only mode between two CPIs.
All of these techniques require jammer data to be collected within a restricted region of the available
space-time domain, and may not always be able to generate sufficient jammer-only data. Moreover,
fast-changing jamming environments and large-scale PRF hopping can also make these techniques
unsuitable. Reference [31] presents a new technique that makes use of frequency sidebands close to,
but disjointed from, the radar’s mainband, to estimate the jammer-only covariance matrix. Such an
idea can be applied to a system with any PRF, and the entire or any appropriate portion of the Range
Processing Interval (RPI) could be used to collect jammer data. It should be noted that wideband
jammers are designed to sufficiently cover the radar’s mainband, making sidebands, of more or less
bandwidth, containing their energy always available to the new SAPS technique.

The discussion of the sideband-based STAP can be carried out with different system configurations,
which determine the details on the sideband-to-mainband jammer information conversion, as well
as the mainband jammer-cancellation signal generation. Reference [31] chooses a single array-based
system, while a discussion involving an auxiliary-main array configuration can be found in [7].

70.9 A STAP Example with a Revisit to Analog Beamforming

In the early stage of STAP research, it is always assumed that Ns = Nc, i.e., each column consumes a
digitized receiver channel, regardless of the size of the aperture. More recent research and experiments
have revealed that such an “element-space” set up is only suitable for sufficiently small apertures, and
the analog beamforming network has become an important integrated part of STAP-based systems
with more practical aperture sizes.

The theoretically optimized analogbeamformerdesign couldbe carriedout for anygivenNs , which
yields a set of Ns nonrealizable beams once the element error, column-combiner error, and column
mutual-coupling effects are factored in. A more practical approach is to select, from what antenna
design technology has excelled, those beams that also meet the basic requirements for successful adap-
tive processing, such as the “signal blocking” requirement developed under the generalized sidelobe
canceller [32]. Two examples of proposed analog beamforming methods for STAP applications are
(1) multiple shape-identical Fourier beams via the Butler matrix [12], and (2) the sum and difference
beams [13]. Both selections have been shown to enable the STAP system to achieve near optimal
performance with Ns very close to the theoretical minimum of two for clutter suppression.

In the following, the clutter suppression performance of a STAP with the sum(6)-difference(1)
beams is presented using the MCARM Flight 2 data. The clutter in this case was collected from a rural
area in the eastern shore region south of Baltimore, Maryland. A known target signal was injected at
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a Doppler frequency slightly offset from mainlobe clutter and the results compared for the factored
approach (FA-STAP) [16] and 61-STAP. A Modified SMI processor was used in each case to provide
a known threshold level based on a false alarm probability of 10−6. As seen in Figs. 70.9 and 70.10, the
injected target lies below the detection threshold for FA-STAP , but exceeds the threshold in the case
of 61-STAP. This performance was obtained using far fewer samples for covariance estimation in
the case of 61-STAP. Also, the 61-STAP uses only 2 receiver channels, while the FA-STAP consumes
all 16 channels.

FIGURE 70.9: Range-Doppler plot of MCARM data, factored approach.

In terms of calibration burden, the 61-STAP uses two different channels to begin with and its
corresponding signal (steering) vector easily remains the simplest form as long as the null of the 1

beam is correctly placed (a job in which antenna engineers have excelled already). In that sense, the
61-STAP is both channel calibration-free and steering-vector calibration-free. On the other hand,
keeping the 16 channels of FA-STAP calibrated and updating its steering vector look-up table have
been a considerable burden during the MCARM experiment [4].

Another significant affordability issue is the applicability of 61-STAP to existing radar systems,
both phased array and continuous aperture. Adaptive clutter rejection in the joint angle-doppler
domain can be incorporated into existing radar systems by digitizing the difference channel, or
making relatively minor antenna modifications to add such a channel. Such a relatively low cost
add-on can significantly improve the clutter suppression performance of an existing airborne radar
system, whether its original design is based on low sidelobe beamforming or 61-DPCA.

While the trend is toward more affordable computing hardware, STAP processing still imposes
a considerable burden which increases sharply with the order of the adaptive processor and radar
bandwidth. In this respect, 61-STAP reduces computational requirements in matrix order N3

adaptive problems. Moreover, the signal vector characteristic (mostly zero) can be exploited to
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FIGURE 70.10: Range-Doppler plot of MCARM data, 61-STAP.

further reduce test statistic numerical computations.
Finally, it should be pointed out that more than one 1-beam can be incorporated if needed for

clutter suppression [33].

70.10 Summary

Over the 22 years from a theoretical paper [1] to the MCARM experimental system, STAP has been
established as a valuable alternative to the traditional airborne surveillance radar design approaches.
Initially, STAP was viewed as an expensive technique only for newly designed phased-arrays with
many receiver channels; and now it has become much more affordable for both new and some
existing systems. Future challenges lie in the area of real system design and integration, to which the
MCARM experience is invaluable.
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T
RADITIONALLY, SIGNAL PROCESSING as a discipline has relied heavily on a theoretical
foundation of linear time-invariant system theory in the development of algorithms for a
broad range of applications. In recent years a considerable broadening of this theoretical

base has begun to take place. In particular, there has been substantial growth in interest in the use
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of a variety of nonlinear systems with special properties for diverse applications. Promising new
techniques for the synthesis and analysis of such systems continue to emerge. At the same time, there
has also been rapid growth in interest in systems that are not constrained to be time-invariant. These
may be systems that exhibit temporal fluctuations in their characteristics, or, equally importantly,
systems characterized by other invariance properties, such as invariance to scale changes. In the latter
case, this gives rise to systems with fractal characteristics.

In some cases, these systems are directly applicable for implementing various kinds of signal
processing operations such as signal restoration, enhancement, or encoding, or for modeling certain
kinds of distortion encountered in physical environments. In other cases, they serve as mechanisms
for generating new classes of signal models for existing and emerging applications. In particular,
when autonomous or driven by simpler classes of input signals, they generate rich classes of signals at
their outputs. In turn, these new classes of signals give rise to new families of algorithms for efficiently
exploiting them in the context of applications.

The spectrum of techniques for nonlinear signal processing is extremely broad, and in this chapter
we make no attempt to cover the entire array of exciting new directions being pursued within the
community. Rather, we present a very small sampling of several highly promising and interesting
ones to suggest the richness of the topic.

A brief overview of the specific chapters comprising this section is as follows.
Chapters 71 and 72 discuss the chaotic behavior of certain nonlinear dynamical systems and suggest

ways in which this behavior can be exploited. In particular, Chapter 71 focuses on continuous-time
chaotic systems characterized by a special self-synchronization property that makes them potentially
attractive for a range of secure communications applications. Chapter 72 describes a family of
discrete-time nonlinear dynamical and chaotic systems that are particularly attractive for use in
a variety of signal processing applications ranging from signal modeling in power converters to
pseudorandom number generation and error-correction coding in signal transmission applications.

Chapter 73 discusses fractal signals which arise out of self-similar system models characterized by
scale-invariance. These represent increasingly important models for a range of natural and man-
made phenomena in applications involving both signal synthesis and analysis. Multidimensional
fractals also arise in the state-space representation of chaotic signals, and the fractal properties in this
representation are important in the identification, classification, and characterization of such signals.

Chapter 74 focuses on morphological signal processing, which encompasses an important class
of nonlinear filtering techniques together with some powerful associated signal representations.
Morphological signal processing is closely related to a number of classes of algorithms including
order-statistics filtering, cellular automata methods for signal processing, and others. Morphological
algorithms are currently among the most successful and widely used nonlinear signal processing
techniques in image processing and vision for such tasks as noise suppression, feature extraction,
segmentation, and others.

Chapter 75 discusses the analysis and synthesis of soliton signals and their potential use in com-
munication applications. These signals arise in systems satisfying certain classes of nonlinear wave
equations. Because they propagate through those equations without dispersion, there has been
longstanding interest in their use as carrier waveforms over fiber-optic channels having the appro-
priate nonlinear characteristics. As they propagate through these systems, they also exhibit a special
type of reduced-energy superposition property that suggests an interesting multiplexing strategy for
communications over linear channels.

Finally, Chapter 76 discusses nonlinear representations for stochastic signals in terms of their
higher-order statistics. Such representations are particularly important in the processing of non-
Gaussian signals for which more traditional second-moment characterizations are often inadequate.
The associated tools of higher-order spectral analysis find increasing application in many signal
detection, identification, modeling, and equalization contexts, where they have led to new classes of
powerful signal processing algorithms.
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Again, these articles are only representative examples of the many emerging directions in this active
area of research within the signal processing community, and developments in many other important
and exciting directions can be found in the community’s journal and conference publications.
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71.1 Introduction

Signals generated by chaotic systems represent a potentially rich class of signals both for detecting and
characterizing physical phenomena and in synthesizing new classes of signals for communications,
remote sensing, and a variety of other signal processing applications.

In classical signal processing a rich set of tools has evolved for processing signals that are deter-
ministic and predictable such as transient and periodic signals, and for processing signals that are
stochastic. Chaotic signals associated with the homogeneous response of certain nonlinear dynamical
systems do not fall in either of these classes. While they are deterministic, they are not predictable in
any practical sense in that even with the generating dynamics known, estimation of prior or future
values from a segment of the signal or from the state at a given time is highly ill-conditioned. In
many ways these signals appear to be noise-like and can, of course, be analyzed and processed using
classical techniques for stochastic signals. However, they clearly have considerably more structure
than can be inferred from and exploited by traditional stochastic modeling techniques.

The basic structure of chaotic signals and the mechanisms through which they are generated are
described in a variety of introductory books, e.g., [1, 2] and summarized in [3].

Chaotic signals are of particular interest and importance in experimental physics because of the
wide range of physical processes that apparently give rise to chaotic behavior. From the point of
view of signal processing, the detection, analysis, and characterization of signals of this type present
a significant challenge. In addition, chaotic systems provide a potentially rich mechanism for signal
design and generation for a variety of communications and remote sensing applications.
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71.2 Modeling and Representation of Chaotic Signals

The state evolution of chaotic dynamical systems is typically described in terms of the nonlinear
state equation ẋ(t) = F [x(t)] in continuous time or x[n] = F(x[n − 1]) in discrete time. In a
signal processing context, we assume that the observed chaotic signal is a nonlinear function of the
state and would typically be a scalar time function. In discrete-time, for example, the observation
equation would be y[n] = G(x[n]). Frequently the observation y[n] is also distorted by additive
noise, multipath effects, fading, etc.

Modeling a chaotic signal can be phrased in terms of determining from clean or distorted obser-
vations, a suitable state space and mappings F(·) and G(·) that capture the aspects of interest in the
observed signal y. The problem of determining from the observed signal a suitable state space in
which to model the dynamics is referred to as the embedding problem. While there is, of course, no
unique set of state variables for a system, some choices may be better suited than others. The most
commonly used method for constructing a suitable state space for the chaotic signal is the method
of delay coordinates in which a state vector is constructed from a vector of successive observations.

It is frequently convenient to view the problem of identifying the map associated with a given
chaotic signal in terms of an interpolation problem. Specifically, from a suitably embedded chaotic
signal it is possible to extract a codebook consisting of state vectors and the states to which they
subsequently evolve after one iteration. This codebook then consists of samples of the function
F spaced, in general, non-uniformly throughout state space. A variety of both parametric and
nonparametric methods for interpolating the map between the sample points in state space have
emerged in the literature, and the topic continues to be of significant research interest. In this section
we briefly comment on several of the approaches currently used. These and others are discussed and
compared in more detail in [4].

Oneapproach isbasedon theuseof locally linear approximations toF throughout the state space [5,
6]. This approach constitutes a generalization of autoregressive modeling and linear prediction and
is easily extended to locally polynomial approximations of higher order. Another approach is based
on fitting a global nonlinear function to the samples in state space [7].

A fundamentally rather different approach to the problem of modeling the dynamics of an em-
bedded signal involves the use of hidden Markov models [8, 9, 10]. With this method, the state
space is discretized into a large number of states, and a probabilistic mapping is used to characterize
transitions between states with each iteration of the map. Furthermore, each state transition spawns
a state-dependent random variable as the observation y[n]. This framework can be used to simulta-
neously model both the detailed characteristics of state evolution in the system and the noise inherent
in the observed data. While algorithms based on this framework have proved useful in modeling
chaotic signals, they can be expensive both in terms of computation and storage requirements due
to the large number of discrete states required to adequately capture the dynamics.

While many of the above modeling methods exploit the existence of underlying nonlinear dy-
namics, they do not explicitly take into account some of the properties peculiar to chaotic nonlinear
dynamical systems. For this reason, in principle, the algorithms may be useful in modeling a broader
class of signals. On the other hand, when the signals of interest are truly chaotic, the special prop-
erties of chaotic nonlinear dynamical systems ought to be taken into account, and, in fact, may
often be exploited to achieve improved performance. For instance, because the evolution of chaotic
systems is acutely sensitive to initial conditions, it is often important that this numerical instability
be reflected in the model for the system. One approach to capturing this sensitivity is to require
that the reconstructed dynamics exhibit Lyapunov exponents consistent with what might be known
about the true dynamics. The sensitivity of state evolution can also be captured using the hidden
Markov model framework since the structural uncertainty in the dynamics can be represented in
terms of the probabilistic state transactions. In any case, unless sensitivity of the dynamics is taken
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into account during modeling, detection and estimation algorithms involving chaotic signals often
lack robustness.

Another aspect of chaotic systems that can be exploited is that the long term evolution of such
systems lies on an attractor whose dimension is not only typically non-integral, but occupies a small
fraction of the entire state space. This has a number of important implications both in the modeling
of chaotic signals and ultimately in addressing problems of estimation and detection involving these
signals. For example, it implies that the nonlinear dynamics can be recovered in the vicinity of
the attractor using comparatively less data than would be necessary if the dynamics were required
everywhere in state space.

Identifying the attractor, its fractal dimension, and related invariant measures governing, for
example, the probability of being in the neighborhood of a particular state on the attractor, are also
important aspects of the modeling problem. Furthermore, we can often exploit various ergodicity
and mixing properties of chaotic systems. These properties allow us to recover information about
the attractor using a single realization of a chaotic signal, and assure us that different time intervals
of the signal provide qualitatively similar information about the attractor.

71.3 Estimation and Detection

A variety of problems involving the estimation and detection of chaotic signals arises in potential
application contexts. In some scenarios, the chaotic signal is a form of noise or other unwanted
interference signal. In this case, we are often interested in detecting, characterizing, discriminating,
and extracting known or partially known signals in backgrounds of chaotic noise. In other scenarios,
it is the chaotic signal that is of direct interest and which is corrupted by other signals. In these
cases we are interested in detecting, discriminating, and extracting known or partially known chaotic
signals in backgrounds of other noises or in the presence of other kinds of distortion.

The channel through which either natural or synthesized signals are received can typically be
expected to introduce a variety of distortions including additive noise, scattering, multipath effects,
etc. There are, of course, classical approaches to signal recovery and characterization in the presence
of such distortions for both transient and stochastic signals. When the desired signal in the channel is
a chaotic signal, or when the distortion is caused by a chaotic signal, many of the classical techniques
will not be effective and do not exploit the particular structure of chaotic signals.

The specific properties of chaotic signals exploited in detection and estimation algorithms depend
heavily on the degree of a priori knowledge of the signals involved. For example, in distinguishing
chaotic signals from other signals, the algorithms may exploit the functional form of the map, the
Lyapunov exponents of the dynamics, and/or characteristics of the chaotic attractor such as its
structure, shape, fractal dimension and/or invariant measures.

To recover chaotic signals in the presence of additive noise, some of the most effective noise
reduction techniques proposed to date take advantage of the nonlinear dependence of the chaotic
signal by constructing accurate models for the dynamics. Multipath and other types of convolutional
distortion can best be described in terms of an augmented state space system. Convolution or filtering
of chaotic signals can change many of the essential characteristics and parameters of chaotic signals.
Effects of convolutional distortion and approaches to compensating for it are discussed in [11].

71.4 Use of Chaotic Signals in Communications

Chaotic systems provide a rich mechanism for signal design and generation, with potential appli-
cations to communications and signal processing. Because chaotic signals are typically broadband,
noise-like, and difficult to predict, they can be used in various contexts in communications. A partic-
ularly useful class of chaotic systems are those that possess a self-synchronization property [12, 13, 14].
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This property allows two identical chaotic systems to synchronize when the second system (receiver)
is driven by the first (transmitter). The well-known Lorenz system is used below to further describe
and illustrate the chaotic self-synchronization property.

The Lorenz equations, first introduced by E. N. Lorenz as a simplified model of fluid convec-
tion [15], are given by

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz ,

(71.1)

where σ, r, and b are positive parameters. In signal processing applications, it is typically of interest
to adjust the time scale of the chaotic signals. This is accomplished in a straightforward way by
establishing the convention that ẋ, ẏ, and ż denote dx/dτ, dy/dτ , and dz/dτ , respectively, where
τ = t/T is normalized time and T is a time scale factor. It is also convenient to define the normalized
frequency ω = �T , where � denotes the angular frequency in units of rad/s. The parameter values
T = 400µsec, σ = 16, r = 45.6, and b = 4 are used for the illustrations in this chapter.

Viewing the Lorenz system (71.1) as a set of transmitter equations, a dynamical receiver system
that will synchronize to the transmitter is given by

ẋr = σ(yr − xr)

ẏr = rx(t) − yr − x(t)zr

żr = x(t)yr − bzr .

(71.2)

In this case, the chaotic signal x(t) from the transmitter is used as the driving input to the receiver
system. In Section 71.4.1, an identified equivalence between self-synchronization and asymptotic
stability is exploited to show that the synchronization of the transmitter and receiver is global, i.e.,
the receiver can be initialized in any state and the synchronization still occurs.

71.4.1 Self-Synchronization and Asymptotic Stability

A close relationship exists between the concepts of self-synchronization and asymptotic stability.
Specifically, self-synchronization in the Lorenz system is a consequence of globally stable error dy-
namics. Assuming that the Lorenz transmitter and receiver parameters are identical, a set of equations
that govern their error dynamics is given by

ėx = σ(ey − ex)

ėy = −ey − x(t)ez

ėz = x(t)ey − bez.

(71.3)

where

ex(t) = x(t) − xr(t)

ey(t) = y(t) − yr(t)

ez(t) = z(t) − zr(t).

A sufficient condition for the error equations to be globally asymptotically stable at the origin can be
determined by considering a Lyapunov function of the form

E(e) = 1

2
(

1

σ
e2
x + e2

y + e2
z ).

Since σ and b in the Lorenz equations are both assumed to be positive, E is positive definite and Ė

is negative definite. It then follows from Lyapunov’s theorem that e(t) → 0 as t → ∞. Therefore,
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synchronization occurs as t → ∞ regardless of the initial conditions imposed on the transmitter
and receiver systems.

For practical applications, it is also important to investigate the sensitivity of the synchronization to
perturbations of the chaotic drive signal. Numerical experiments are summarized in Section 71.4.2,
which demonstrates the robustness and signal recovery properties of the Lorenz system.

71.4.2 Robustness and Signal Recovery in the Lorenz System

When a message or other perturbation is added to the chaotic drive signal, the receiver does not
regenerate a perfect replica of the drive; there is always some synchronization error. By subtracting
the regenerated drive signal from the received signal, successful message recovery would result if the
synchronization error was small relative to the perturbation itself. An interesting property of the
Lorenz system is that the synchronization error is not small compared to a narrowband perturbation;
nevertheless, the message can be recovered because the synchronization error is nearly coherent
with the message. This section summarizes experimental evidence for this effect; a more detailed
explanation has been given in terms of an approximate analytical model [16].

The series of experiments that demonstrate the robustness of synchronization to white noise
perturbations and the ability to recover speech perturbations focus on the synchronizing properties
of the transmitter Eqs. (71.1) and the corresponding receiver equations,

ẋr = σ(yr − xr)

ẏr = rs(t) − yr − s(t)zr

żr = s(t)yr − bzr .

(71.4)

Previously, it was stated that with s(t) equal to the transmitter signal x(t), the signals xr , yr , and zr

will asymptotically synchronize to x, y, and z, respectively. Below, we examine the synchronization
error when a perturbation p(t) is added to x(t), i.e., when s(t) = x(t) + p(t).

First, we consider the case where the perturbation p(t) is Gaussian white noise. In Fig. 71.1,
we show the perturbation and error spectra for each of the three state variables vs. normalized
frequency ω. Note that at relatively low frequencies, the error in reconstructing x(t) slightly exceeds
the perturbation of the drive but that for normalized frequencies above 20 the situation quickly
reverses. An analytical model closely predicts and explains this behavior [16]. These figures suggest
that the sensitivity of synchronization depends on the spectral characteristics of the perturbation
signal. For signals that are bandlimited to the frequency range 0 < ω < 10, we would expect that
the synchronization errors will be larger than the perturbation itself. This turns out to be the case,
although the next experiment suggests there are additional interesting characteristics as well.

In a second experiment, p(t) is a low-level speech signal (for example a message to be transmitted
and recovered). The normalizing time parameter is 400 µsec and the speech signal is bandlimited
to 4 kHz or equivalently to a normalized frequency ω of 10. Figure 71.2 shows the power spectrum
of a representative speech signal and the chaotic signal x(t). The overall chaos-to-perturbation ratio
in this experiment is approximately 20 dB.

To recover the speech signal, the regenerated drive signal is subtracted at the receiver from the
received signal. In this case, the recovered message is p̂(t) = p(t) + ex(t). It would be expected
that successful message recovery would result if ex(t) was small relative to the perturbation signal.
For the Lorenz system, however, although the synchronization error is not small compared to the
perturbation, the message can be recovered because ex(t) is nearly coherent with the message. This
coherence has been confirmed experimentally and an explanation has been developed in terms of an
approximate analytical model [16].
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FIGURE 71.1: Power spectra of the error signals: (a) Ex(ω). (b) Ey(ω). (c) Ez(ω).

71.4.3 Circuit Implementation and Experiments

In Section 71.4.2, we showed that, theoretically, a low-level speech signal could be added to the
synchronizing drive signal and approximately recovered at the receiver. These results were based on
an analysis of the exact Lorenz transmitter and receiver equations. When implementing synchronized
chaotic systems in hardware, the limitations of available circuit components result in approximations
of the defining equations. The Lorenz transmitter and receiver equations can be implemented
relatively easily with standard analog circuits [17, 20, 21]. The resulting system performance is in
excellent agreement with numerical and theoretical predictions. Some potential implementation
difficulties are avoided by scaling the Lorenz state variables according to u = x/10, v = y/10, and
w = z/20. With this scaling, the Lorenz equations are transformed to

u̇ = σ(v − u)

v̇ = ru − v − 20uw

ẇ = 5uv − bw.

(71.5)

For this system, which we refer to as the circuit equations, the state variables all have similar dynamic
range and circuit voltages remain well within the range of typical power supply limits. Below, we
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FIGURE 71.2: Power spectra of x(t) and p(t) when the perturbation is a speech signal.

discuss and demonstrate some applied aspects of the Lorenz circuits.
In Fig. 71.3, we illustrate a communication scenario that is based on chaotic signal masking and

recovery [18, 19, 20, 21]. In this figure, a chaotic masking signal u(t) is added to the information-
bearing signal p(t) at the transmitter, and at the receiver the masking is removed. By subtracting the
regenerated drive signal ur(t) from the received signal s(t) at the receiver, the recovered message is

p̂(t) = s(t) − ur(t) = p(t) + [u(t) − ur(t)] .

In this context, eu(t), the error between u(t) and ur(t), corresponds directly to the error in the
recovered message.

FIGURE 71.3: Chaotic signal masking and recovery system.

For this experiment, p(t) is a low-level speech signal (the message to be transmitted and recovered).
The normalizing time parameter is 400 µsec and the speech signal is bandlimited to 4 kHz or,
equivalently, to a normalized frequency ω of 10. In Fig. 71.4, we show the power spectrum of p(t)

and p̂(t), where p̂(t) is obtained from both a simulation and from the circuit. The two spectra for
p̂(t) are in excellent agreement, indicating that the circuit performs very well. Because p̂(t) includes
considerable energy beyond the bandwidth of the speech, the speech recovery can be improved by
lowpass filtering p̂(t). We denote the lowpass filtered version of p̂(t) by p̂f (t). In Fig. 71.5(a) and (b),
we show a comparison of p̂f (t) from both a simulation and from the circuit, respectively. Clearly, the
circuit performs well and, in informal listening tests, the recovered message is of reasonable quality.

Although p̂f (t) is of reasonable quality in this experiment, the presence of additive channel noise
will produce message recovery errors that cannot be completely removed by lowpass filtering; there
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will always be some error in the recovered message. Because the message and noise are directly added
to the synchronizing drive signal, the message-to-noise ratio should be large enough to allow a faithful
recovery of the original message. This requires a communication channel that is nearly noise free.

FIGURE 71.4: Power spectra of p(t) and p̂(t) when the perturbation is a speech signal.

An alternative approach to private communications allows the information-bearing waveform to
be exactly recovered at the self-synchronizing receiver(s), even when moderate-level channel noise
is present. This approach is referred to as chaotic binary communications [20, 21]. The basic idea
behind this technique is to modulate a transmitter parameter with the information-bearing waveform
and to transmit the chaotic drive signal. At the receiver, the parameter modulation will produce a
synchronization error between the received drive signal and the receiver’s regenerated drive signal
with an error signal amplitude that depends on the modulation. Using the synchronization error,
the modulation can be detected.

This modulation/detection process is illustrated in Fig. 71.6. To illustrate the approach, we use a
periodic square-wave for p(t) as shown in Fig. 71.7(a). The square-wave has a repetition frequency
of approximately 110 Hz with zero volts representing the zero-bit and one volt representing the
one-bit. The square-wave modulates the transmitter parameter b with the zero-bit and one-bit
parameters given by b(0) = 4 and b(1) = 4.4, respectively. The resulting drive signal u(t) is
transmitted and the noisy received signal s(t) is used as the driving input to the synchronizing receiver
circuit. In Fig. 71.7(b), we show the synchronization error power e2(t). The parameter modulation
produces significant synchronization error during a “1” transmission and very little error during a
“0” transmission. It is plausible that a detector based on the average synchronization error power,
followed by a threshold device, could yield reliable performance. We illustrate in Fig. 71.7(c) that
the square-wave modulation can be reliably recovered by lowpass filtering the synchronization error
powerwaveformandapplying a threshold test. The thresholddeviceused in this experiment consisted
of a simple analog comparator circuit.

The allowable data rate of this communication technique is, of course, dependent on the synchro-
nization response time of the receiver system. Although we have used a low bit rate to demonstrate
the technique, the circuit time scale can be easily adjusted to allow much faster bit rates.

While the results presented above appear encouraging, there are many communication scenarios
where it is undesirable to be restricted to the Lorenz system, or for that matter, any other low-
dimensional chaotic system. In private communications, for example, the ability to choose from a
wide variety of synchronized chaotic systems would be highly advantageous. In the next section,
we briefly describe an approach for synthesizing an unlimited number of high-dimensional chaotic
systems. The significance of this work lies in the fact that the ability to synthesize high-dimensional
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FIGURE 71.5: (a) Recovered speech (simulation). (b) Recovered speech (circuit).

chaotic systems further enhances their applicability for practical applications.

71.5 Synthesizing Self-Synchronizing Chaotic Systems

An effective approach to synthesis is based on a systematic four step process. First, an algebraic model
is specified for the transmitter and receiver systems. As shown in [22, 23], the chaotic system models
can be very general; in [22] the model represents a large class of quadratically nonlinear systems,
while in [23] the model allows for an unlimited number of Lorenz oscillators to be mutually coupled
via an N-dimensional linear system.

The second step in the synthesis process involves subtracting the receiver equations from the
transmitter equations and imposing a global asymptotic stability constraint on the resulting error
equations. Using Lyapunov’s direct method, sufficient conditions for the error system’s global sta-

FIGURE 71.6: Communicating binary-valued bit streams with synchronized chaotic systems.
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FIGURE 71.7: (a) Binary modulation waveform. (b) Synchronization error power. (c) Recovered
binary waveform.

bility are usually straightforward to obtain. The sufficient conditions determine constraints on the
free parameters of the transmitter and receiver which guarantee that they possess the global self-
synchronization property.

The third step in the synthesis process focuses on the global stability of the transmitter equations.
First, a familyof ellipsoids in state space is definedand then sufficient conditions aredeterminedwhich
guarantee the existence of a trapping region. The trapping region imposes additional constraints on
the free parameters of the transmitter and receiver equations.

The final step involves determining sufficient conditions that render all of the transmitter’s fixed
points unstable. In most cases, this involves numerically integrating the transmitter equations and
computing the system’s Lyapunov exponents and/or attractor dimension. If stable fixed points exist,
the system’s bifurcation parameter is adjusted until they all become unstable. Below, we demonstrate
the synthesis approach for linear feedback chaotic systems.

Linear feedback chaotic systems (LFBCSs) are composed of a low-dimensional chaotic system and
a linear feedback system as illustrated in Fig. 71.8. Because the linear system is N-dimensional,
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considerable design flexibility is possible with LFBCSs. Another practical property of LFBCSs is that
they synchronize via a single drive signal while exhibiting complex dynamics.

FIGURE 71.8: Linear feedback chaotic systems.

While many types of LFBCSs are possible, two specific cases have been considered in detail: (1) the
chaotic Lorenz signal x(t) drives an N-dimensional linear system and the output of the linear system
is added to the equation for ẋ in the Lorenz system; and (2) the Lorenz signal z(t) drives an N-
dimensional linear system and the output of the linear system is added to the equation for ż in the
Lorenz system. In both cases, a complete synthesis procedure was developed.

Below, we summarize the procedure; a complete development is given elsewhere [24].

Synthesis Procedure

1. Choose any stable A matrix and any N × N symmetric positive definite matrix Q.

2. Solve PA + AT P + Q = 0 for the positive definite solution P .

3. Choose any vector B and set C = −BT P/r .

4. Choose any D such that σ − D > 0.

The first step of the procedure is simply the self-synchronization condition; it requires the linear
system to be stable. Clearly, many choices for A are possible. The second and third steps are akin
to a negative feedback constraint, i.e., the linear feedback tends to stabilize the chaotic system. The
last step in the procedure restricts σ − D > 0 so that the ẋ equation of the Lorenz system remains
dissipative after feedback is applied.

For the purpose of demonstration, consider the following five-dimensional x-input/x-output
LFBCS.

ẋ = σ(y − x) + ν

ẏ = rx − y − xz

ż = xy − bz[
l̇1
l̇2

]
=

[ −1
2 10

−10 −1
2

] [
l1
l2

]
+

[
1
1

]
x

ν = − [
1 1

] [
l1
l2

]
(71.6)
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FIGURE 71.9: Lyapunov dimension of a 5-D LFBCS.

FIGURE 71.10: Self-synchronization in a 5-D LFBCS.

c©1999 by CRC Press LLC



It can be shown in a straightforward way that the linear system satisfies the synthesis procedure for
suitable choices of P, Q, and R. For the numerical demonstrations presented below, the Lorenz
parameters chosen are σ = 16and b = 4; the bifurcation parameter r will be varied.

In Fig. 71.9, we show the computed Lyapunov dimension as r is varied over the range, 20 <

r < 100. This figure demonstrates that the LFBCS achieves a greater Lyapunov dimension than the
Lorenz system without feedback. The Lyapunov dimension could be increased by using more states
in the linear system. However, numerical experiments suggest that stable linear feedback creates only
negative Lyapunov exponents, limiting the dynamical complexity of LFBCSs. Nevertheless, their
relative ease of implementation is an attractive practical feature.

In Fig. 71.10, we demonstrate the rapid synchronization between the transmitter and receiver sys-
tems. The curve measures the distance in state space between the transmitter and receiver trajectories
when the receiver is initialized from the zero state. Synchronization is maintained indefinitely.
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72.1 Introduction

One-dimensional nonlinear systems, although simple in form, are applicable in a surprisingly wide
variety of engineering contexts. As models for engineering systems, their richly complex behavior
has provided insight into the operation of, for example, analog-to-digital converters [1], nonlinear
oscillators [2], and power converters [3]. As realizable systems, they have been proposed as random
number generators [4] and as signal generators for communication systems [5, 6]. As analytic tools,
they have served as mirrors for the behavior of more complex, higher dimensional systems [7, 8, 9].

Although one-dimensional nonlinear systems are, in general, hard to analyze, certain useful classes
of them are relatively well understood. These systems are described by the recursion

x[n] = f (x[n − 1]) (72.1a)

y[n] = g(x[n]) ,  (72.1b)

initialized by a scalar initial condition x[0], wheref (·) andg(·) are real-valued functions that describe
the evolution of a nonlinear system and the observation of its state, respectively. The dependence
of the sequence x[n] on its initial condition is emphasized by writing x[n] = f n(x[0]) where f n(·)
represents the n-fold composition of f (·) with itself.

Without further restrictions of the form of f (·) and g(·), this class of systems is too large to
easily explore. However, systems and signals corresponding to certain “well-behaved” maps f (·)
and observation functions g(·) can be rigorously analyzed. Maps of this type often generate chaotic
signals—loosely speaking, bounded signals that are neither periodic nor transient—under easily
verifiable conditions. These chaotic signals, although completely deterministic, are in many ways
analogous to stochastic processes. In fact, one-dimensional chaotic maps illustrate in a relatively
simple setting that the distinction between deterministic and stochastic signals is sometimes artificial
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and can be profitably emphasized or deemphasized according to the needs of an application. For
instance, problems of signal recovery from noisy observations are often best approached with a
deterministic emphasis, while certain signal generation problems [10] benefit most from a stochastic
treatment.

72.2 Eventually Expanding Maps and Markov Maps

Although signal models of the form [1] have simple, one-dimensional state spaces, they can behave
in a variety of complex ways that model a wide range of phenomena. This flexibility comes at a cost,
however; without some restrictions on its form, this class of models is too large to be analytically
tractable. Two tractable classes of models that appear quite often in applications are eventually
expanding maps and Markov maps.

72.2.1 Eventually Expanding Maps

Eventually expanding maps—which have been used to model sigma-delta modulators [11], switching
power converters [3], other switched flow systems [12], and signal generators [6, 13]—have three
defining features: they are piecewise smooth, they map the unit interval to itself, and they have some
iterate with slope that is everywhere greater than unity. Maps with these features generate time series
that are chaotic, but on average well behaved. For reference, the formal definition is as follows, where
the restriction to the unit interval is convenient but not necessary:

DEFINITION 72.1 A nonsingular map f : [0, 1] → [0, 1] is called eventually expanding if

1. There is a set of partition points 0 = a0 < a1 < · · · aN = 1 such that restricted to each
of the intervals V i = [ai−1, ai), called partition elements, the map f (·) is monotonic,
continuous and differentiable.

2. The function 1/|f ′(x)| is of bounded variation [14]. (In some definitions, this smooth-
ness condition on the reciprocal of the derivative is replaced with a more restrictive
bounded slope condition, i.e., there exists a constant B such that |f ′(x)| < B for all x.)

3. There exists a real λ > 1 and a integer m such that∣∣∣∣ d

dx
f m(x)

∣∣∣∣ ≥ λ

wherever the derivative exists. This is the eventually expanding condition.

Every eventually expanding map can be expressed in the form

f (x) =
N∑

i=1

fi(x)χi(x) (72.2)

where each fi(·) is continuous, monotonic, and differentiable on the interior of the ith partition
element and the indicator function χi(x) is defined by

χi(x) =
{

1 x ∈ Vi ,

0 x 6∈ Vi .
(72.3)

This class is broad enough to include for example, discontinuous maps and maps with discontinuous
or unbounded slope. Eventually expanding maps also include a class that is particularly amenable to
analysis—the Markov maps.
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Markov maps are analytically tractable and broadly applicable to problems of signal estimation,
signal generation, and signal approximation. They are defined as eventually expanding maps that
are piecewise-linear and have some extra structure.

DEFINITION 72.2 A map f : [0, 1] → [0, 1] is an eventually expanding, piecewise-linear, Markov
map if f is an eventually expanding map with the following additional properties:

1. The map is piecewise-linear, i.e., there is a set of partition points 0 = a0 < a1 < · · · <

aN = 1 such that restricted to each of the intervals Vi = [ai−1, ai), called partition
elements, the map f (·) is affine, i.e., the functions fi(·) on the right side of (72.2) are of
the form

fi(x) = six + bi .

2. The map has the Markov property that partition points map to partition points, i.e., for
each i, f (ai) = aj for some j .

Every Markov map can be expressed in the form

f (x) =
N∑

i=1

(six + bi) χi(x) , (72.4)

where si 6= 0 for all i. Fig. 72.1 shows the Markov map

f (x) =
{

(1 − a)x/a + a 0 ≤ x ≤ a

(1 − x)/(1 − a) a < x ≤ 1 ,
(72.5)

which has partition points {0, a, 1}, and partition elements V1 = [0, a) and V2 = [a, 1).

FIGURE 72.1: An example of a piecewise-linear Markov map with two partition elements.

Markov maps generate signals with two useful properties: they are, when suitably quantized,
indistinguishable from signals generated by Markov chains; they are close, in a sense, to signals
generated by more general eventually expanding maps [15]. These two properties lead to applications
of Markov maps for generating random numbers and approximating other signals. The analysis
underlying these types of applications depends on signal representations that provide insight into
the structure of chaotic signals.
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72.3 Signals From Eventually Expanding Maps

There are several general representations for signals generated by eventually expanding maps. Each
providesdifferent insights into the structureof these signals andprovesuseful indifferent applications.
First, and most obviously, a sequence generated by a particular map is completely determined by
(and is thus represented by) its initial condition x[0]. This representation allows certain signal
estimation problems to be recast as problems of estimating the scalar initial condition. Second, and
less obviously, the quantized signal y[n] = g(x[n]), for n ≥ 0 generated by (72.1) with g(·) defined
by

g(x) = i x ∈ Vi , (72.6)

uniquely specifies the initial condition x[0] and hence the entire state sequence x[n]. Such quantized
sequences y[n] are called the symbolic dynamics associated with f (·) [7]. Certain properties of a
map, such as the collection of initial conditions leading to periodic points, are most easily described
in terms of its symbolic dynamics. Finally, a hybrid representation of x[n] combining the initial
condition and symbolic representations

H[N ] = {g(x[0]), . . . , g(x[N ]), x[N ]}
is often useful.

72.4 Estimating Chaotic Signals in Noise

The hybrid signal representation described in the previous section can be applied to a classical signal
processing problem—estimating a signal in white Gaussian noise. For example, suppose the problem
is to estimate a chaotic sequence x[n], n = 0, . . . , N − 1 from the noisy observations

r[n] = x[n] + w[n], n = 0, . . . , N − 1 (72.7)

where w[n] is a stationary, zero-mean white Gaussian noise sequence with variance σ 2
w , and x[n]

is generated by iterating (72.1) from an unknown initial condition. Because w[n] is white and
Gaussian, the maximum likelihood estimation problem is equivalent to the constrained minimum
distance problem

minimize
x[n] : x[i] = f (x[i − 1]) ε[N ] =

N∑
k=0

(r[k] − x[k])2 (72.8)

and to the scalar problem

minimize
x[0] ∈ [0, 1] ε[N ] =

N∑
k=0

(
r[k] − f k(x[0])

)2
(72.9)

Thus, the maximum-likelihood problem can, in principle, be solved by first estimating the initial
condition, then iterating (72.1) to generate the remaining estimates. However, the initial condition is
oftendifficult to estimatedirectly because the likelihood function (72.9), which is highly irregularwith
fractal characteristics, is unsuitable for gradient-descent type optimization [16]. Another solution
divides the domain of f (·) into subintervals and then solves a dynamic programming problem [17];
however, this solution is, in general, suboptimal and computationally expensive.

Although the maximum likelihood problem described above need not, in general, have a computa-
tionally efficient recursive solution, it does have one when, for example, the map f (·) is a symmetric
tent map of the form

f (x) = β − 1 − β|x| , x ∈ [−1, 1] (72.10)
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with parameter 1 < β ≤ 2 [5]. This algorithm solves for the hybrid representation of the initial
condition from which an estimate of the entire signal can be determined. The hybrid representation
is of the form

H[N ] = {y[0], . . . , y[N ], x[N ]} ,

where each y[i] takes one of two values which, for convenience, we define as y[i] = sgn (x[i]). Since
each y[n] can independently takes one of two values, there are 2N feasible solutions to this problem
and a direct search for the optimal solution is thus impractical even for moderate values of N .

The resultingalgorithmhas computational complexity that is linear in the lengthof theobservation,
N . This efficiency is the result of a special separation property, possessed by the map [10]: given
y[0], . . . , y[i − 1] and y[i + 1], . . . , y[N ] the estimate of the parameter y[i] is independent of
y[i + 1], . . . , y[N ]. The algorithm is as follows. Denoting by φ̂[n|m] the ML estimates of any
sequence φ[n] given r[k] for 0 ≤ k ≤ m, the ML solution is of the form,

x̂[n|n] =
(
β2 − 1

)
β2nr[n] + (

β2n − 1
)
x̂[n|n − 1]

β2(n+1) − 1
(72.11)

ŷ[n|N ] = sgn x̂[n|n] (72.12)

x̂ML[n|n] = Lβ(x̂[n|n]) ,  (72.13)

where x̂[n|n−1] = f (x̂[n−1|n−1]), the initialization is x̂[0|0] = r[0], and the functionLβ(x̂[n|n]),
defined by

Lβ(x) =



x x ∈ (−1, β − 1)

−1 x ≤ −1 ·
β − 1 x ≥ β − 1

, (72.14)

serves to restrict the ML estimates to the interval x ∈ (−1, β−1). The smoothed estimates x̂ML[n|N ]
are obtained by converting the hybrid representation to the initial condition and then iterating the
estimated initial condition forward.

72.5 Probabilistic Properties of Chaotic Maps

Almost all waveforms generated by a particular eventually expanding map have the same average
behavior [18], in the sense that the time average

h̄(x[0]) = lim
n→∞

1

n

n−1∑
k=0

h(x[k]) = lim
n→∞

1

n

n−1∑
k=0

h
(
f k(x[0])

)
(72.15)

exists and is essentially independent of the initial condition x[0] for sufficiently well-behaved func-
tions h(·). This result, which is reminiscent of results from the theory of stationary stochastic
processes [19], forms the basis for a probabilistic interpretation of chaotic signals, which in turn
leads to analytic methods for characterizing their time-average behavior.

To explore the link between chaotic and stochastic signals, first consider the stochastic process
generated by iterating (72.1) from a random initial condition x[0], with probability density function
p0(·). Denote by pn(·) the density of the nth iterate x[n]. Although, in general, the members of the
sequence pn(·) will differ, there can exist densities, called invariant densities, that are time-invariant,
i.e.,

p0(·) = p1(·) = . . . = pn(·) 1= p(·) .  (72.16)

When the initial condition x[0] is chosen randomly according to an invariant density, the resulting
stochastic process is stationary [19] and its ensemble averages depend on the invariant density. Even
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when the initial condition is not random, invariant densities play an important role in describing the
time-average behavior of chaotic signals. This role depends on, among other things, the number of
invariant densities that a map possesses.

A general one-dimensional nonlinear map may possess many invariant densities. For example,
eventually expanding maps with N partition elements have at least one and at most N invariant
densities [20]. However, maps can often be decomposed into collections of maps, each with only one
invariant density [19], and little generality is lost by concentrating on maps with only one invariant
density. In this special case, the results that relate the invariant density to the average behavior of
chaotic signals are more intuitive.

The invariant density, although introduced through the device of a random initial condition,
can also be used to study the behavior of individual signals. Individual signals are connected to
ensembles of signals, which correspond to random initial conditions, through a classical result due to
Birkhoff, which asserts that the time average h̄(x[0]) defined by Eq. (72.15) exists whenever f (·) has
an invariant density. When the f (·) has only one invariant density, the time average is independent
of the initial condition for almost all (with respect to the invariant density p(·)) initial conditions
and equals

lim
n→∞

1

n

n−1∑
k=0

h(x[k]) = lim
n→∞

1

n

n−1∑
k=0

h
(
f k(x[0])

)
=
∫

h(x)p(x)dx . (72.17)

where the integral is performed over the domain of f (·) and where h(·) is measurable.
Birkhoff ’s theorem leads to a relative frequency interpretation of time-averages of chaotic signals.

To see this, consider the time-averageof the indicator function χ̃[s−ε,s+ε](x), which is zero everywhere
but in the interval [s − ε, s + ε] where it is equal to unity. Using Birkhoff ’s theorem with Eq. (72.17)
yields

lim
n→∞

1

n

n−1∑
k=0

χ̃[s−ε,s+ε](x[k]) =
∫

χ̃[s−ε,s+ε](x)p(x)dx (72.18)

=
∫

[s−ε,s+ε]
p(x)dx (72.19)

≈ 2εp(s) , (72.20)

where Eq. (72.20) follows from Eq. (72.19) when ε is small and p(·) is sufficiently smooth. The
time-average (72.18) is exactly the fraction of time that the sequence x[n] takes values in the interval
[s − ε, s + ε]. Thus, from (72.20), the value of the invariant density at any point s is approximately
proportional to the relative frequency with which x[n] takes values in a small neighborhood of the
point. Motivated by this relative frequency interpretation, the probability that an arbitrary function
h(x[n]) falls into an arbitrary set A can be defined by

Pr {h(x) ∈ A} = lim
n→∞

1

n

n−1∑
k=0

χ̃A(h(x[k])) . (72.21)

Using this definition of probability , it can be shown that for any Markov map, the symbol sequence
y[n] defined in Section 72.3 is indistinguishable from a Markov chain in the sense that

Pr {y[n]|y[n − 1], . . . , y[0]} = Pr {y[n]|y[n − 1]} , (72.22)

holds for all n [21]. The first order transition probabilities can be shown to be of the form

Pr(y[n]|y[n − 1]) =
∣∣Vy[n]

∣∣∣∣sy[n]
∣∣ ∣∣Vy[n−1]

∣∣ ,
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where the si are the slopes of the map f (·) as in Eq. (72.4) and |Vy[n]| denotes the length of the
interval Vy[n]. As an example, consider the asymmetric tent map

f (x) =
{

x/a 0 ≤ x ≤ a

(1 − x)/(1 − a) a < x ≤ 1 ,

with parameter in the range 0 < a < 1 and a quantizer g(·) of the form (72.6). The previous
results establish that y[n] = g(x[n]) is equivalent to a sample sequence from the Markov chain with
transition probability matrix

[P ]ij =
[

a 1 − a

a 1 − a

]
,

where [P ]ij = Pr{y[n] = i|y[n − 1] = j}. Thus, the symbolic sequence appears to have been
generated by independent flips of a biased coin with the probability of heads, say, equal to a. When
the parameter takes the value a = 1/2, this corresponds to a sequence of independent equally likely
bits. Thus, a sequence of Bernoulli random variables can been constructed from a deterministic
sequence x[n]. Based on this remarkable result, a circuit that generates statistically independent bits
for cryptographic applications has been designed [4].

Some of the deeper probabilistic properties of chaotic signals depend on the integral (72.17), which
in turn depends on the invariant density. For some maps, invariant densities can be determined
explicitly. For example, the tent map (72.10) with β = 2 has invariant density

p(x) =
{

1/2 −1 ≤ x ≤ 1
0 otherwise

as can be readily verified using elementary results from the theory of derived distributions of functions
of random variables [22]. More generally, all Markov maps have invariant densities that are piecewise-
constant function of the form

n∑
i=1

ciχi(x) (72.23)

where ci are real constants that can be determined from the map’s parameters [23]. This makes
Markov maps especially amenable to analysis.

72.6 Statistics of Markov Maps

The transition probabilities computed above may be viewed as statistics of the sequence x[n]. These
statistics, which are important in a variety of applications, have the attractive property that they
are defined by integrals having, for Markov maps, readily computable, closed-form solutions. This
property holds more generally—Markov maps generate sequences for which a large class of statistics
can be determined in closed form. These analytic solutions have two primary advantages over
empirical solutions computed by time averaging: they circumvent some of the numerical problems
that arise when simulating the long sequences of chaotic data that are necessary to generate reliable
averages; and they often provide insight into aspects of chaotic signals, such as dependence on a
parameter, that could not be easily determined by empirical averaging.

Statistics that can be readily computed include correlations of the form

Rf ;h0,h1,...,hr
[k1, . . . , kr ] = lim

L→∞
1

L

L−1∑
n=0

h0(x[n])h1 (x[n + k1]) · · ·hr (x[n + kr ])(72.24)

=
∫

h0(x[n])h1 (x[n + k1]) · · ·hr (x[n + kr ]) p(x) dx ,(72.25)
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where the hi(·)′s are suitably well-behaved but otherwise arbitrary functions, the k′
i s are nonnegative

integers, the sequence x[n] is generated by Eq. (72.1), and p(·) is the invariant density. This
class of statistics includes as important special cases the autocorrelation function and all higher-
order moments of the time-series. Of primary importance in determining these statistics is a linear
transformation called the Frobenius-Perron (FP) operator, which enters into the computation of
these correlations in two ways. First, it suggests a method for determining an invariant density.
Second, it provides a “change of variables” within the integral that leads to simple expressions for
correlation statistics.

The definition of the FP operator can be motivated by using the device of a random initial condition
x[0] with density p0(x) as in Section 72.5. The FP operator describes the time evolution of this initial
probability density. More precisely, it relates the initial density to the densities pn(·) of the random
variables x[n] = f n(x[0]) through the equation

pn(x) = P n
f p0(x) (72.26)

where P n
f denotes the n-fold self-composition of Pf . This definition of the FP operator, although

phrased in terms of its action on probability densities, can be extended to all integrable functions. This
extended operator, which is also called the FP operator, is linear and continuous. Its properties are
closely related to the statistical structure of signals generated by chaotic maps (see [9] for a thorough
discussion of these issues). For example, the evolution equation (72.26) implies that an invariant
density of a map is a fixed point of its FP operator, that is, it satisfies

p(x) = Pf p(x) . (72.27)

This relation can be used to determine explicitly the invariant densities of Markov maps [23], which
may in turn be used to compute more general statistics.

Using the change of variables property of the FP operator, the correlation statistic (72.25) can be
expressed as the ensemble average

Rf ;h0,h1,...,hr
[k1, . . . , kr ] = (72.28)∫

hr(x)P
kr−kr−1
f

{
hr−1(x) · · ·P k2−k1

f

{
h1(x)P

k1
f {h0(x)p(x)}

}
· · ·
}

dx . (72.29)

Although such integrals are, for general one-dimensionalnonlinearmaps, difficult to evaluate, closed-
form solutions exist when f (·) is a Markov map— a development that depends on an explicit
expression for FP operator.

The FP operator of a Markov map has a simple, finite-dimensional matrix representation when it
operates on certain piecewise polynomial functions. Any function of the form

h(·) =
K∑

i=0

N∑
j=1

aij x
iχj (x)

can be represented by an N(K + 1) dimensional coordinate vector with respect to the basis

{
θ1(x), θ2(x), . . . , θN(K+1)

} 1={
χ1(x), . . . , χN(x), xχ1(x), . . . , xχN(x), . . . , xKχ1(x), . . . , xKχN(x)

}
.(72.30)

The action of the FP operator on any such function can be expressed as a matrix-vector product:
when the coordinate vector of h(x) is h, the coordinate vector of q(x) = Pf h(x) is

q = PKh ,
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where Pk is the square N(K + 1) dimensional, block upper-triangular matrix

PK =




P00 P01 · · · · · · P0K

0 P11 P12 · · · P1K

...
...

...
...

...

0 0 · · · · · · PKK


 , (72.31)

and where each nonzero N × N block is of the form

Pij =
(

j

i

)
P0Bj−iSj for j ≥ i . (72.32)

The N × N matrices B and S are diagonal with elements Bii = −bi and Sii = 1/si , respectively,
while P0 = P00 is the N × N matrix with elements

[P0]ij =
{

1/
∣∣sj ∣∣ i ∈ Ij ,

0 otherwise.
(72.33)

The invariant density of aMarkovmap, which is needed to compute the correlation statistic (72.25),
can be determined as the solution of an eigenvector problem. It can be shown that such invariant
densities are piecewise constant functions so that the fixed point equation (72.27) reduces to the
matrix expression

P0p = p .

Due to the properties of the matrix P0, this equation always has a solution that can be chosen to have
nonnegative components. It follows that the correlation statistic (72.29) can always be expressed as

Rf ;h0,h1,...,hr
[k1, . . . , kr ] = gT

1 Mg2 (72.34)

where M is a basis correlation matrix with elements

[M]ij =
∫

θi(x)θj (x) dx . (72.35)

and gi are the coordinate vectors of the functions

g1(x) = hr(x) (72.36)

g2(x) = P
kr−kr−1
f

{
hr−1(x) · · ·P k2−k1

f

{
h1(x)P

k1
f {h0(x)p(x)}

}
· · ·
}

. (72.37)

By the previous discussion, the coordinate vectors g1 and g2 can be determined using straightforward
matrix-vector operations. Thus, expression (72.34) provides a practical way of exactly computing
the integral (72.29), and reveals some important statistical structure of signals generated by Markov
maps.

72.7 Power Spectra of Markov Maps

An important statistic in the context of many engineering applications is the power spectrum. The
power spectrum associated with a Markov map is defined as the Fourier transform of its autocorre-
lation sequence

Rxx[k] =
∫

x[n]x[n + k]p(x)dx (72.38)
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which, using Eq. (72.34) can be rewritten in the form

Rxx[k] = gT
1 M1Pk

1g̃2 , (72.39)

where P1 is the matrix representation of the FP operator restricted to the space of piecewise linear
functions, and where g1 is the coordinate vector associated with the function x, and where g̃2 is the
coordinate vector associated with g̃2(x) = xp(x).

The power spectrum is obtained from the Fourier transform of Eq. (72.39), yielding,

Sxx

(
ejω

)
= gT

1 M1

( +∞∑
k=−∞

P|k|
1 e−jωk

)
g̃2 . (72.40)

This sum can be simplified by examining the eigenvalues of the FP matrix P1. In general, P1 has
eigenvalues whose magnitude is strictly less than unity, and others with unit-magnitude [9]. Using
this fact, Eq. (72.40) can be expressed in the form

Sxx

(
ejω

)
= hT

1 M
(
I − 02e

−jω
)−1 (

I − 02
2

) (
I − 02e

jω
)−1

g̃2 +
m∑

i=1

Ciδ (ω − ωi) , (72.41)

where 02 has eigenvalues that are strictly less than one in magnitude, and Ci and ωi depend on the
unit magnitude eigenvalues of P1.

As Eq. (72.41) reflects, the spectrum of a Markov map is a linear combination of an impulsive
component and a rational function. This implies that there are classes of rational spectra that can
be generated not only by the usual method of driving white noise through a linear time-invariant
filter with a rational system function, but also by iterating deterministic nonlinear dynamics. For
this reason it is natural to view chaotic signals corresponding to Markov maps as “chaotic ARMA
(autoregressive moving-average) processes”. Special cases correspond to the “chaotic white noise”
described in [5] and the first order autoregressive processes described in [24].

Consider now a simple example involving the Markov map defined in Eq. (72.5) and shown in
Figure 72.1. Using the techniques described above, the invariant density is determined to be the
piecewise-constant function

p(x) =
{

1/(1 + a) 0 ≤ x ≤ a

1/
(
1 − a2

)
a ≤ x ≤ 1 .

Using Eq. (72.41) and a parameter value a = 8/9, the rational part of the autocorrelation sequence
associated with f (·) is determined to be

Sxx(z) = −42632

459

36z−1 − 145+ 36z

(9 + 8z)(9 + 8z−1)(64z2 + z + 81)(64z−2 + z−1 + 81)
. (72.42)

The power spectrum corresponding to evaluating Eq. (72.42) on the unit circle z = ejω is plotted in
Figure 72.2, along with an empirical spectrum computed by periodogram averaging with a window
length of 128 on a time series of length 50,000. The solid line corresponds to the analytically
obtainedexpression(72.42), while thecircles represent the spectral samples estimatedbyperiodogram
averaging.

72.8 Modeling Eventually Expanding Maps with Markov Maps

One approach to studying the statistics of more general eventually expanding maps involves approx-
imation by Markov maps—the statistics of any eventually expanding map can be approximated to
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FIGURE 72.2: Comparison of analytically computed power spectrum to empirical power spectrum
for the map of Figure 72.1. The solid line indicates the analytically computed spectrum, while the
circles indicate the samples of the spectrum estimated by applying periodogram averaging to a time
series of length 50,000.

arbitrary accuracy by those of some Markov map. This approximation strategy provides a powerful
method for analyzing chaotic time series from eventually expanding maps: first approximate the map
by a Markov map, then use the previously described techniques to determine its statistics. In order
for this approach to be useful, an appropriate notion, the approximation quality, and a constructive
procedure for generating an approximate map are required.

A sequence of piecewise-linear Markov maps f̂i (·) with statistics that converge to those of a given
eventually expanding map f (·) is said to statistically converge to f (·). More formally:

DEFINITION 72.3 Let f (·) be an eventually expanding map with a unique invariant density p(·).
A sequence of maps {f̂i (·)} statistically converges to f (·) if each f̂i (·) has a unique invariant density
pi(·) and

R
f̂i ,h0,h1,...,hr

[k1, . . . , kr ] → Rf,h0,h1,...,hr [k1, . . . , kr ] as i → ∞
for any continuous hj (·) and all finite kj and finite r .

Any eventually expanding map f (·) is the limit of a sequence of Markov maps that statistically
converges and can be constructed in a straightforward manner. The idea is to define a Markov map
on an increasingly fine set of partition points that includes the original partition points of f (·).
Denote by Q the set of partition points of f (·), and by Qi the set of partition points of the ith map
in the sequence of Markov map approximations. The sets of partition points for the increasingly fine
approximations are defined recursively via

Qi = Qi−1 ∪ f −1 (Qi−1) . (72.43)

In turn, each approximating map f̂i (·) is defined by specifying its value at the partition points Qi by
a procedure that ensures that the Markov property holds [15]. At all other points, the map f̂i (·) is
defined by linear interpolation.
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Conveniently, if f (·) is an eventually expanding map in the sense of Definition 72.1, then the
sequence of piecewise-linear Markov approximations f̂i (·) obtained by the above procedure statisti-
cally converges to f (·), i.e., converges in the sense of Definition 72.3. This means that, for sufficiently
large i, the statistics of f̂i (·) are close to those of f (·). As a practical consequence, the correlation
statistics of the eventually expanding map f (·) can be approximated by first determining a Markov
map f̂k(·) that is a good approximation to f (·), and then finding the statistics of Markov map using
the techniques described in Section 72.6.
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73.1 Introduction

Fractal signal models are important in a wide range of signal processing applications. For example,
they are often well-suited to analyzing and processing various forms of natural and man-made phe-
nomena. Likewise, the synthesis of such signals plays an important role in a variety of electronic
systems for simulating physical environments. In addition, the generation, detection, and manipu-
lation of signals with fractal characteristics has become of increasing interest in communication and
remote-sensing applications.

A defining characteristic of a fractal signal is its invariance to time- or space-dilation. In general,
such signals may be one-dimensional (e.g., fractal time series) or multidimensional (e.g., fractal
natural terrain models). Moreover, they may be continuous-time or discrete-time in nature, and
may be continuous or discrete in amplitude.

73.2 Fractal Random Processes

Most generally, fractal signals are signals having detail or structure on all temporal or spatial scales.
The fractal signals of most interest in applications are those in which the structure at different scales
is similar. Formally, a zero-mean random process x(t) defined on −∞ < t < ∞ is statistically
self-similar if its statistics are invariant to dilations and compressions of the waveform in time. More
specifically, a random process x(t) is statistically self-similar with parameter H if for any real a > 0

it obeys the scaling relation x(t)
P= a−Hx(at), where

P= denotes equality in a statistical sense. For
strict-sense self-similar processes, this equality is in the sense of all finite-dimensional joint probability
distributions. For wide-sense self-similar processes, the equality is interpreted in the sense of second-
order statistics, i.e., the

Rx(t, s)
4= E [x(t)x(s)] = a−2HRx(at, as)

A sample path of a self-similar process is depicted in Fig. 73.1.
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FIGURE 73.1: A sample waveform from a statistically scale-invariant random process, depicted on
three different scales.

While regular self-similar random processes cannot be stationary, many physical processes ex-
hibiting self-similarity possess some stationary attributes. An important class of models for such
phenomena are referred to as “1/f processes”. The 1/f family of statistically self-similar random
processes are empirically defined as processes having measured power spectra obeying a power law
relationship of the form

Sx(ω) ∼ σ 2
x

|ω|γ (73.1)

for some spectral parameter γ related toH according to γ = 2H + 1.
Generally, the power law relationship (73.1) extends over several decades of frequency. While data

length typically limits access to spectral informationat lower frequencies, anddata resolution typically
limits access to spectral content at higher frequencies, there are many examples of phenomena for
which arbitrarily large data records justify a 1/f spectrum of the form (73.1) over all accessible
frequencies. However, (73.1) is not integrable and hence, strictly speaking, does not constitute
a valid power spectrum in the theory of stationary random processes. Nevertheless, a variety of
interpretations of such spectra have been developed based on notions of generalized spectra [1, 2, 3].

As a consequence of their inherent self-similarity, the sample paths of 1/f processes are typically
fractals [4]. The graphs of sample paths of random processes are one-dimensional curves in the plane;
this is their “topological dimension”. However, fractal random processes have sample paths that are so
irregular that their graphs have an “effective” dimension that exceeds their topological dimension of
unity. It is this effective dimension that is usually referred to as the “fractal” dimension of the graph.
However, it is important to note that the notion of fractal dimension is not uniquely defined. There
are several different definitions of fractal dimension from which to choose for a given application—
each with subtle but significant differences [5]. Nevertheless, regardless of the particular definition,
the fractal dimensionD of the graph of a fractal function typically ranges betweenD = 1andD = 2.
Larger values ofD correspond to functions whose graphs are increasingly rough in appearance and,
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in an appropriate sense, fill the plane in which the graph resides to a greater extent. For 1/f processes,
there is an inverse relationship between the fractal dimensionD and the self-similarity parameterH
of the process: an increase in the parameterH yields a decrease in the dimensionD, and vice-versa.
This is intuitively reasonable, since an increase inH corresponds to an increase in γ , which, in turn,
reflects a redistribution of power from high to low frequencies and leads to sample functions that are
increasingly smooth in appearance.

A truly enormous and tremendously varied collection of natural phenomena exhibit 1/f -type
spectral behavior over many decades of frequency. A partial list includes (see, e.g., [4, 6, 7, 8, 9] and the
references therein): geophysical, economic, physiological, and biological time series; electromagnetic
and resistance fluctuations in media; electronic device noises; frequency variation in clocks and
oscillators; variations in music and vehicular traffic; spatial variation in terrestrial features and
clouds; and error behavior and traffic patterns in communication networks.

While γ ≈ 1 in many of these examples, more generally 0 ≤ γ ≤ 2. However, there are many
examples of phenomena in which γ lies well outside this range. For γ ≥ 1, the lack of integrability of
(73.1) in a neighborhood of the spectral origin reflects the preponderance of low-frequency energy in
the corresponding processes. This phenomenon is termed the infrared catastrophe. For many physical
phenomena, measurements corresponding to very small frequencies show no low-frequency roll off,
which is usually understood to reveal an inherent nonstationarity in the underlying process. Such is
the case for the Wiener process (regular Brownian motion), for which γ = 2. For γ ≤ 1, the lack
of integrability in the tails of the spectrum reflects a preponderance of high-frequency energy and is
termed the ultraviolet catastrophe. Such behavior is familiar for generalized Gaussian processes such
as stationary white Gaussian noise (γ = 0) and its usual derivatives. When γ = 1, both catastrophes
are experienced. This process is referred to as “pink” noise, particularly in the audio applications
where such noises are often synthesized for use in room equalization.

An important property of 1/f processes is their persistent statistical dependence. Indeed, the
generalized Fourier pair [10]

|τ |γ−1

20(γ ) cos(γ π/2)
F←→ 1

|ω|γ (73.2)

valid for γ > 0 but γ 6= 1,2,3, . . . , reflects that the autocorrelation Rx(τ) associated with the
spectrum (73.1) for 0< γ < 1 is characterized by slow decay of the form Rx(τ) ∼ |τ |γ−1.

This power law decay in correlation structure distinguishes 1/f processes from many traditional
models for time series analysis. For example, the well-studied family of autoregressive moving-
average (ARMA) models have a correlation structure invariably characterized by exponential decay.
As a consequence, ARMA models are generally inadequate for capturing long-term dependence in
data.

One conceptually important characterization for 1/f processes is that based on the effects of
bandpass filtering on such processes [11]. This characterization is strongly tied to empirical char-
acterizations of 1/f processes, and is particularly useful for engineering applications. With this
characterization, a 1/f process is formally defined as a wide-sense statistically self-similar random
process having the property that when filtered by some arbitrary ideal bandpass filter (where ω = 0
and ω = ±∞ are strictly not in the passband), the resulting process is wide-sense stationary and has
finite variance.

Amongavariety of implicationsof this definition, it follows that suchaprocess alsohas theproperty
that when filtered by any ideal bandpass filter (again such that ω = 0 and ω = ±∞ are strictly not
in the passband), the result is a wide-sense stationary process with a spectrum that is σ 2

x /|ω|γ within
the passband of the filter.
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73.2.1 Models and Representations for 1/f Processes

A variety of exact and approximate mathematical models for 1/f processes are useful in signal
processing applications. These include fractional Brownian motion, generalized autoregressive-
moving-average, and wavelet-based models.

Fractional Brownian Motion and Fractional Gaussian Noise

Fractional Brownian motion and fractional Gaussian noise have proven to be useful mathe-
matical models for Gaussian 1/f behavior. In particular, the fractional Brownian motion framework
provides a useful construction for models of 1/f -type spectral behavior corresponding to spectral
exponents in the range−1< γ < 1 and 1< γ < 3; see, e.g., [4, 7]. In addition, it has proven useful
for addressing certain classes of signal processing problems; see, e.g., [12, 13, 14, 15].

Fractional Brownian motion is a nonstationary Gaussian self-similar processx(t)with the property
that its corresponding self-similar increment process

1x(t; ε) 4= x(t + ε)− x(t)
ε

is stationary for every ε > 0.
A convenient though specialized definition of fractional Brownian motion is given by Barton and

Poor [12]:

x(t)
4= 1

0(H + 1/2)

[∫ 0

−∞

(
|t − τ |H−1/2− |τ |H−1/2

)
w(τ) dτ

+
∫ t

0
|t − τ |H−1/2w(τ) dτ

]
(73.3)

where 0 < H < 1 is the self-similarity parameter, and where w(t) is a zero-mean, stationary white
Gaussian noise process with unit spectral density. When H = 1/2, (73.3) specializes to the Wiener
process, i.e., classical Brownian motion. Sample functions of fractional Brownian motion have a
fractal dimension (in the Hausdorff-Besicovitch sense) given by [4, 5]

D = 2−H.
Moreover, the correlation function for fractional Brownian motion is given by

Rx(t, s) = E [x(t)x(s)] = σ 2
H

2

(
|s|2H + |t |2H − |t − s|2H

)
,

where

σ 2
H = var x(1) = 0(1− 2H)

cos(πH)

πH
.

The increment process leads to a conceptually useful interpretation of the derivative of fractional
Brownian motion: as ε → 0, fractional Brownian motion has, with H ′ = H − 1, the generalized
derivative [12]

x′(t) = d

dt
x(t) = lim

ε→0
1x(t; ε) = 1

0(H ′ + 1/2)

∫ t

−∞
|t − τ |H ′−1/2w(τ) dτ, (73.4)

which is termed fractional Gaussian noise. This process is stationary and statistically self-similar with
parameter H ′. Moreover, since (73.4) is equivalent to a convolution, x′(t) can be interpreted as the
output of an unstable linear time-invariant system with impulse response

υ(t) = 1

0(H − 1/2)
tH−3/2u(t)
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driven by w(t). Fractional Brownian motion x(t) is recovered via

x(t) =
∫ t

0
x′(t) dt.

The character of the fractional Gaussian noise x′(t) depends strongly on the value of H . This
follows from the autocorrelation function for the increments of fractional Brownian motion, viz.,

R1x(τ ; ε) 4= E [1x(t; ε)1x(t − τ ; ε)]

= σ 2
Hε

2H−2

2

[( |τ |
ε
+ 1

)2H

− 2

( |τ |
ε

)2H

+
( |τ |
ε
− 1

)2H
]
,

which at large lags (|τ | � ε) takes the form

R1x(τ) ≈ σ 2
HH(2H − 1)|τ |2H−2. (73.5)

Since the right side of Eq. (73.5) has the same algebraic sign asH −1/2, for 1/2< H < 1 the process
x′(t) exhibits long-term dependence, i.e., persistent correlation structure; in this regime, fractional
Gaussian noise is stationary with autocorrelation

Rx′(τ ) = E
[
x′(t)x′(t − τ)] = σ 2

H (H
′ + 1)(2H ′ + 1)|τ |2H ′ ,

and the generalized Fourier pair (73.2) suggests that the corresponding power spectral density can be
expressed as Sx′(ω) = 1/|ω|γ ′ , where γ ′ = 2H ′ + 1. In other regimes, for H = 1/2 the derivative
x′(t) is the usual stationary white Gaussian noise, which has no correlation, while for 0< H < 1/2,
fractional Gaussian noise exhibits persistent anti-correlation.

A closely related discrete-time fractional Brownian motion framework for modeling 1/f behavior
has also been extensively developed based on the notion of fractional differencing [16, 17].

ARMA Models for 1/f Behavior

Another class of models that has been used for addressing signal processing problems involving
1/f processes is based on a generalized autoregressive moving-average framework. These models
havebeenusedboth in signalmodelingandprocessingapplications, aswell as in synthesis applications
as 1/f noise generators and simulators [18, 19, 20].

One such framework is based on a “distribution of time constants” formulation [21, 22]. With
this approach, a 1/f process is modeled as the weighted superposition of an infinite number of
independent random processes, each governed by a distinct characteristic time-constant 1/α >

0. Each of these random processes has correlation function Rα(τ) = e−α|τ | corresponding to a
Lorentzian spectra of the form Sα(ω) = 2α/(α2+ω2), and can be modeled as the output of a causal
LTI filter with system function ϒα(s) =

√
2α/(s + α) driven by an independent stationary white

noise source. The weighted superposition of a continuum of such processes has an effective spectrum

Sx(ω) =
∫ ∞

0
Sα(ω) f (α) dα, (73.6)

where the weights f (α) correspond to the density of poles or, equivalently, relaxation times. If an
unnormalizable, scale-invariant density of the form f (α) = α−γ is chosen for 0 < γ < 2, the
resulting spectrum (73.6) is 1/f , i.e., of the form (73.1).

More practically, useful approximate 1/f models result from using a countable collection of single
time-constant processes in the superposition. With this strategy, poles are uniformly distributed
along a logarithmic scale along the negative part of the real axis in the s-plane. The process x(t)
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synthesized in this manner has a nearly-1/f spectrum in the sense that it has a 1/f characteristic
with superimposed ripple that is uniform-spaced and of uniform amplitude on a log-log frequency
plot. More specifically, when the poles are exponentially spaced according to

αm = 1m, −∞ < m <∞, (73.7)

for some 1< 1 <∞, the limiting spectrum

Sx(ω) =
∑
m

1(2−γ )m

ω2+12m
(73.8)

satisfies
σ 2
L

|ω|γ ≤ Sx(ω) ≤
σ 2
U

|ω|γ (73.9)

for some 0< σ 2
L ≤ σ 2

U <∞, and has exponenentially spaced ripple such that for all integers k

|ω|γ Sx(ω) = |1kω|γ Sx(1kω). (73.10)

As 1 is chosen closer to unity, the pole spacing decreases, which results in a decrease in both the
amplitude and spacing of the spectral ripple on a log-log plot.

The 1/f model that results from this discretization may be interpreted as an infinite-order ARMA
process, i.e., x(t) may be viewed as the output of a rational LTI system with a countably infinite
number of both poles and zeros driven by a stationary white noise source. This implies, among other
properties, that the corresponding space descriptions of these models for long-term dependence
require infinite numbers of state variables. These processes have been useful in modeling physical
1/f phenomena; see, e.g., [23, 24, 25]. And practical signal processing algorithms for them can often
be obtained by extending classical tools for processing regular ARMA processes.

The above method focuses on selecting appropriate pole locations for the extended ARMA model.
The zero locations, by contrast, are controlled indirectly, and bear a rather complicated relationship
to the pole locations. With other extended ARMA models for 1/f behavior, both pole and zero
locations are explicitly controlled, often with improved approximation characteristics [20]. As an
example, [6, 26] describe a construction as filtered white noise where the filter structure consists of a
cascade of first-order sections each with a single pole and zero. With a continuum of such sections,
exact 1/f behavior is obtained. When a countable collection of such sections is used, nearly-1/f
behavior is obtained as before. In particular, when stationary white noise is driven through an LTI
system with a rational system function

ϒ(s) =
∞∏

m=−∞

[
s +1m+γ /2
s +1m

]
, (73.11)

the output has power spectrum

Sx(ω) ∝
∞∏

m=−∞

[
ω2+12m+γ

ω2+12m

]
. (73.12)

This nearly-1/f spectrum also satisfies both (73.9) and (73.10). Comparing the spectra (73.12)
and (73.8) reveals that the pole placement strategy for both is identical, while the zero placement
strategy is distinctly different.

The system function (73.11) associated with this alternative extended ARMA model lends useful
insight into the relationshipbetween1/f behavior and the limitingprocesses corresponding toγ → 0
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and γ → 2. On a logarithmic scale, the poles and zeros of (73.11) are each spaced uniformly along
the negative real axis in the s-plane, and to the left of each pole lies a matching zero, so that poles
and zeros are alternating along the half-line. However, for certain values of γ , pole-zero cancellation
takes place. In particular, as γ → 2, the zero pattern shifts left canceling all poles except the limiting
pole at s = 0. The resulting system is therefore an integrator, characterized by a single state variable,
and generates a Wiener process as anticipated. By contrast, as γ → 0, the zero pattern shifts right
canceling all poles. The resulting system is therefore a multiple of the identity system, requires no
state variables, and generates stationary white noise as anticipated.

An additional interpretation is possible in terms of a Bode plot. Stable, rational system functions
composed of real poles and zeros are generally only capable of generating transfer functions whose
Bode plots have slopes that are integer multiples of 20 log10 2 ≈ 6 dB/octave. However, a 1/f
synthesis filter must fall off at 10γ log10 2 ≈ 3γ dB/octave, where 0 < γ < 2 is generally not an
integer. With the extended ARMA models, a rational system function with an alternating sequence of
poles and zeros is used to generate a stepped approximation to a−3γ dB/octave slope from segments
that alternate between slopes of−6 dB/octave and 0 dB/octave.

Wavelet-Based Models for 1/f Behavior

Another approach to 1/f process modeling is based on the use of wavelet basis expansions.
These lead to representations for processes exhibiting 1/f -type behavior that are useful in a wide
range of signal processing applications.

Orthonormal wavelet basis expansions play the role of Karhunen-Loève-type expansions for 1/f -
type processes [11, 27]. More specifically, wavelet basis expansions in terms of uncorrelated random
variables constitute very good models for 1/f -type behavior. For example, when a sufficiently regular
orthonormal wavelet basis {ψmn (t) = 2m/2ψ(2mt − n)} is used, expansions of the form

x(t) =
∑
m

∑
n

xmn ψ
m
n (t),

where the xmn are a collection of mutually uncorrelated, zero-mean random variables with the geo-
metric scale-to-scale variance progression

var xmn = σ 22−γm, (73.13)

lead to a nearly-1/f power spectrum of the type obtained via the extended ARMA models. This
behavior holds regardless of the choice of wavelet within this class, although the detailed structure of
the ripple in the nearly-1/f spectrum can be controlled by judicious choice of the particular wavelet.

More generally, wavelet decompositions of 1/f -type processes have a decorrelating property. For
example, if x(t) is a 1/f process, then the coefficients of the expansion of the process in terms of a
sufficiently regular wavelet basis, i.e., the

xmn =
∫ +∞
−∞

x(t) ψmn (t) dt

are very weakly correlated and obey the scale-to-scale variance progression (73.13). Again, the
detailed correlation structure depends on the particular choice of wavelet [3, 11, 28, 29].

This decorrelating property is exploited in many wavelet-based algorithms for processing 1/f
signals, where the residual correlation among the wavelet coefficients can usually be ignored. In
addition, the resulting algorithms typically have very efficient implementations based on the discrete
wavelet transform. Examples of robust wavelet-based detection and estimation algorithms for use
with 1/f -type signals are described in [11, 27, 30].
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73.3 Deterministic Fractal Signals

While stochastic signals with fractal characteristics are important models in a wide range of engi-
neering applications, deterministic signals with such characteristics have also emerged as potentially
important in engineering applications involving signal generation ranging from communications to
remote sensing.

Signals x(t) of this type satisfying the deterministic scale-invariance property

x(t) = a−Hx(at) (73.14)

for all a > 0, are generally referred to in mathematics as homogeneous functions of degree H .
Strictly homogeneous functions can be parameterized with only a few constants [31], and constitute
a rather limited class of models for signal generation applications. A richer class of homogeneous
signal models is obtained by considering waveforms that are required to satisfy (73.14) only for
values of a that are integer powers of two, i.e., signals that satisfy the dyadic self-similarity property
x(t) = 2−kH x(2kt) for all integers k.

Homogeneous signals have spectral characteristics analogous to those of 1/f processes, and have
fractal properties as well. Specifically, although all non-trivial homogeneous signals have infinite
energy and many have infinite power, there are classes of such signals with which one can associate a
generalized 1/f -like Fourier transform, and others with which one can associate a generalized 1/f -
like power spectrum. These two classes of homogeneous signals are referred to as energy-dominated
and power-dominated, respectively [11, 32]. An example of such a signal is depicted in Fig. 73.2.

FIGURE 73.2: Dilated homogeneous signal.
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Orthonormal wavelet basis expansions provide convenient and efficient representations for these
classes of signals. In particular, the wavelet coefficients of such signals are related according to

xmn =
∫ +∞
−∞

x(t)ψmn (t) = β−m/2q[n],

where q[n] is termed a generating sequence and β = 22H+1 = 2γ . This relationship is depicted
in Fig. 73.3, where the self-similarity inherent in these signals is immediately captured in the time-
frequency portrait of such signals as represented by their wavelet coefficients. More generally, wavelet
expansion naturally lead to “orthonormal self-similar bases” for homogeneous signals [11, 32]. Fast
synthesis and analysis algorithms for these signals are based on the discrete wavelet transform.

FIGURE 73.3: The time-frequency portrait of a homogeneous signal.

For some communications applications, the objective is to embed an information sequence into
a fractal waveform for transmission over an unreliable communication channel. In this context,
it is often natural for q[n] to be the information bearing sequence such as a symbol stream to be
transmitted, and the corresponding modulation

x(t) =
∑
m

∑
n

xmn ψ
m
n (t)

to be the fractal waveform to be transmitted. This encoding, referred to as “fractal modulation” [32]
corresponds to an efficient diversity transmission strategy for certain classes of communication
channels. Moreover, it can be viewed as a multirate modulation strategy in which data is transmitted
simultaneously at multiple rates, and is particularly well-suited to channels having the characteristic
that they are “open” for some unknown time interval T , during which they have some unknown
bandwidth W and a particular signal-to-noise ratio (SNR). Such a channel model can be used, for
example, to capture both characteristics of the transmission medium, such as in the case of meteor-
burst channels, the constraints inherent in disparate receivers in broadcast applications, and/or the
effects of jamming in military applications.

73.4 Fractal Point Processes

Fractal point processes correspond to event distributions in one or more dimensions having self-
similar statistics, and are well-suited to modeling, among other examples, the distribution of stars
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and galaxies, demographic distributions, the sequence of spikes generated by auditory neural firing
in animals, vehicular traffic, and data traffic on packet-switched data communication networks [4,
33, 34, 35, 36].

A point process is said to be self-similar if the associated counting process NX(t), whose value at
time t is the total number of arrivals up to time t , is statistically invariant to temporal dilations and

compressions, i.e., NX(t)
P= NX(at) for all a > 0, where the notation

P= again denotes statistical
equality in the sense of all finite-dimensional distributions. An example of a sample path for such a
counting process is depicted in Fig. 73.4.

FIGURE 73.4: Dilated fractal renewal process sample path.

Physical fractal point process phenomena generally also possess certain quasi-stationary attributes.
For example, empirical measurements of the statistics of the interarrival times X[n], i.e., the time
interval between the (n−1)st and nth arrivals, are consistent with a renewal process. Moreover, the
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associated interarrival density is a power-law, i.e.,

fX(x) ∼ σ 2
x

xγ
u(x), (73.15)

where u(x) is the unit-step function. However, (73.15) is an unnormalizable density, which is a
reflection of the fact that a point process cannot, in general, be both self-similar and renewing. This
is analogous to the result that a continuous process cannot, in general, be simultaneously self-similar
and stationary.

However, self-similar processes can possess a milder “conditionally renewing” property [37, 38].
Such processes are referred to as “fractal renewal processes” and have an effectively stationary charac-
ter. The shape parameter γ in the unnormalizable interarrival density (73.15) is related to the fractal
dimension D of the process via [4] D = γ − 1, and is a measure of the extent to which arrivals
“cover” the line.

73.4.1 Multiscale Models

As in the case of continuous fractal processes, multiscale models are both conceptually and practically
important representations for discrete fractal processes. As an example, one useful class of multiscale
models corresponds to a mixture of simple Poisson processes on different time scales [37]. The
construction of such processes involves a collection {NWA(t)} of mutually independent Poisson

counting processes such that NWA(t)
P= NW0(e

−At). The process NW0(t) is a prototype whose
mean arrival rate we denote by λ, so that the mean arrival rates of the constituent processes are
related according to λA = e−Aλ. A random mixture of this continuum of Poisson processes yields
a fractal renewal process when the index choice A[n] for the nth arrival is distributed according to
the extended exponential density fA(a) ∼ σ 2

Ae
−(γ−1)a . In particular, the first interarrival of the

composite process is chosen to be the first arrival of the Poisson process indexed byA[1]; the second
arrival of the composite process is chosen to be the next arrival in the Poisson process indexed by
A[2]; and so on.

Useful alternative but equivalent constructions result from exploiting the memoryless property of
Poisson processes. For example, interarrival times can be generated according to X[n] = WA[n][n]
or

X[n] = eA[n]W0[n], (73.16)

whereWA[n] is the nth interarrival time for the Poisson process indexed byA. The synthesis (73.16)
is particularly appealing in that it requires access to only exponential random variables that can be
obtained in practice from a single prototype Poisson process. The construction (73.16) also leads to
the interpretation of a fractal point process as a Poisson process in which the arrival rate is selected
randomly and independently after each arrival (and held constant between consecutive arrivals).
Related doubly stochastic process models are described by Johnson et al. [39].

In addition to their use in applications requiring the synthesis of fractal point processes, these
multiscale models have also proven useful in signal estimation problems. For these kinds of signal
analysis applications, it is frequently convenient to replace the continuum Poisson mixture with a
discrete Poisson mixture. Typically, a collection of constituent Poisson counting processesNWM(t) is
used, whereM is an integer-valued scale index, and where the mean arrival rates are related according
to λM = ρ−Mλ for some λ. In this case, the scale selection is governed by an extended geometric
probability mass function of the form pM(m) ∼ σ 2

Mρ
−(γ−1)m. This discrete synthesis leads to

processes that are approximate fractal renewal processes, in the sense that the interarrival densities
follow a power law with a typically small amount of superimposed ripple. A number of efficient
algorithms for exploiting such models in the development of robust signal estimation algorithms for
use with fractal renewal processes are described in, e.g., [37].
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From a broader perspective, the Poisson mixtures can be viewed as a nonlinear multiresolution
signal analysis framework that can be generalized to accommodate a broad class of point process
phenomena. As such, this framework is the point process counterpart to the linear multiresolution
signal analysis framework based on wavelets that is used for a broad class of continuous-valued
signals.

73.4.2 Extended Markov Models

An equivalent description of the discrete Poisson mixture model is in terms of an extended Markov
model. The associated multiscale pure-birth process, depicted in Fig. 73.5, involves a state space
consisting of a set of “superstates”, each of which corresponds to fixed number of arrivals (births).
Included in a superstate is a set of states corresponding to the scales in the Poisson mixture. Hence,
each state is indexed by an ordered pair (i, j), where i is the superstate index and j is the scale index
within each superstate.

FIGURE 73.5: Multiscale pure-birth process corresponding to Poisson mixture.

The extended Markov model description has proven useful in analyzing the properties of fractal
point processes under some fundamental transformations, including superposition and random
erasure. These properties, in turn, provide key insight into the behavior of merging and branching
traffic at nodes in data communication, vehicular, and other networks. See, e.g., [40].

Other important classes of fractal point process transformations that arise in applications involving
queuing. And the extended Markov model also plays an important role in analyzing fractal queues.
To address these problems, a multiscale birth-death process model is generally used [40].
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74.1 Introduction

This chapter provides a brief introduction to the theory of morphological signal processing and its
applications to image analysis and nonlinear filtering. By “morphological signal processing” we mean
a broad and coherent collection of theoretical concepts, mathematical tools for signal analysis, non-
linear signal operators, design methodologies, and applications systems that are based on or related
to mathematical morphology (MM), a set- and lattice-theoretic methodology for image analysis. MM
aims at quantitatively describing the geometrical structure of image objects. Its mathematical origins
stem from set theory, lattice algebra, convex analysis, and integral and stochastic geometry. It was
initiated mainly by Matheron [42] and Serra [58] in the 1960s. Some of its early signal operations are
also found in the work of other researchers who used cellular automata and Boolean/threshold logic
to analyze binary image data in the 1950s and 1960s, as surveyed in [49, 54]. MM has formalized
these earlier operations and has also added numerous new concepts and image operations. In the
1970s it was extended to gray-level images [22, 45, 58, 62]. Originally MM was applied to analyzing
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images from geological or biological specimens. However, its rich theoretical framework, algorith-
mic efficiency, easy implementability on special hardware, and suitability for many shape-oriented
problems have propelled its widespread diffusion and adoption by many academic and industry
groups in many countries as one among the dominant image analysis methodologies. Many of these
research groups have also extended the theory and applications of MM. As a result, MM nowadays
offers many theoretical and algorithmic tools to and inspires new directions in many research areas
from the fields of signal processing, image processing and machine vision, and pattern recognition.

As thename ‘morphology’ implies (study/analysis of shape/form), morphological signal processing
can quantify the shape, size, and other aspects of the geometrical structure of signals viewed as image
objects, in a rigorous way that also agrees with human intuition and perception. In contrast, the
traditional tools of linear systems and Fourier analysis are of limited or no use for solving geometry-
based problems in image processing because they do not directly address the fundamental issues of
how to quantify shape, size, or other geometrical structures in signals and may distort important
geometrical features in images. Thus, morphological systems are more suitable than linear systems for
shape analysis. Further, they offer simple and efficient solutions to other nonlinear problems, such as
non-Gaussian noise suppression or envelope estimation. They are also closely related to another class
of nonlinear systems, the median, rank, and stack operators, which also outperform linear systems
in non-Gaussian noise suppression and in signal enhancement with geometric constraints. Actually,
rank and stack operators can be represented in terms of elementary morphological operators. All
of the above, coupled with the rich mathematical background of mathematical morphology, make
morphological signal processing a rigorous andefficient framework to study and solvemanyproblems
in image analysis and nonlinear filtering.

74.2 Morphological Operators for Sets and Signals

74.2.1 Boolean Operators and Threshold Logic

Early works in the fields of visual pattern recognition and cellular automata dealt with analysis of
binary digital images using local neighborhood operations of the Boolean type. For example, given a
sampled1 binary image signal f [x] with values 1 for the image foreground and 0 for the background,
typical signal transformations involving a neighborhood of n samples whose indices are arranged in
a window setW = {y1, y2, . . . , yn} would be

ψb(f )[x] = b (f [x − y1], . . . , f [x − yn])
where b(v1, . . . , vn) is a Boolean function of n variables. The mapping f 7→ ψb(f ) is a nonlinear
system, called a Boolean operator. By varying the Boolean function b, a large variety of Boolean
operators can be obtained; see Table 74.1 whereW = {−1,0,1}. For example, choosing a Boolean
AND for b would shrink the input image foreground, whereas a Boolean OR would expand it.

Two alternative implementations and views of these Boolean operations are (1) thresholded convo-
lutions, where a binary input is linearly convolved with ann-point mask of ones and then the output is
thresholded at 1 or n to produce the Boolean OR or AND, respectively, and (2) min/maxoperations,
where the moving local minima and maxima of the binary input signal produce the same output
as Boolean AND/OR, respectively. In the thresholded convolution interpretation, thresholding at
an intermediate level r between 1 and n produces a binary rank operation of the binary input data
(inside the moving window). For example, if r = (n+1)/2, we obtain the binary median filter whose

1Signals of a continuous variable x ∈ R
d

are usually denoted by f (x), whereas for signals with discrete variable x ∈ Z
d

we write f [x].
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TABLE 74.1 Discrete Set Operators and Their

Generating Boolean Function

Set Operator 9(X), X ⊆ Z Boolean function b(v1, v2, v3)

Erosion: X 	 {−1,0,1} v1v2v3
Dilation: X ⊕ {−1,0,1} v1 + v2 + v3
Median: X22{−1,0,1} v1v2 + v1v3 + v2v3

Hit-Miss: X ⊗ ({−1,1}, {0}) v1v2v3
Opening: X ◦ {0,1} v1v2 + v2v3
Closing: X • {0,1} v2 + v1v3

Boolean function expresses the majority voting logic; see the third example of Table 74.1. Of course,
numerous other Boolean operators are possible, since there are 22n possible Boolean functions of n
variables. The main applications of such Boolean signal operations have been in biomedical image
processing, character recognition, object detection, and general 2D shape analysis. Detailed accounts
and more references of these approaches and applications can be found in [49, 54].

74.2.2 Morphological Set Operators

Among the new important conceptual leaps offered by mathematical morphology was to use sets
to represent binary image signals and set operations to represent binary image transformations.
Specifically, given a binary image, let its foreground be represented by the set X and its background
by the set complement Xc. The Boolean OR transformation of X by a (window) set B (local
neighborhood of pixels) is mathematically equivalent to the Minkowski set addition ⊕, also called
dilation, of X by B:

X ⊕ B ≡ {x + y : x ∈ X, y ∈ B} =
⋃
y∈B

X+y (74.1)

whereX+y ≡ {x+y : x ∈ X} is the translation ofX along the vector y. Likewise, ifBr ≡ {x : −x ∈
B} denotes the reflection of B with respect to the axes’ origin, the Boolean AND transformation of
X by the reflected B is equivalent to the Minkowski set subtraction [24] 	, also called erosion, ofX
or B:

X 	 B ≡ {x : B+x ⊆ X} =
⋂
y∈B

X−y (74.2)

In applications, B is usually called a structuring element and has a simple geometrical shape and a
size smaller than the image set X. As shown in Fig. 74.1, erosion shrinks the original set, whereas
dilation expands it.

The erosion (74.2) can also be viewed as Boolean template matching since it gives the center points
at which the shifted structuring elements fits inside the image foreground. If we now consider a setA
probing the image foreground setX and another set B probing the backgroundXc, the set of points
at which the shifted pair (A,B) fits inside the images is the hit-miss transformation ofX by (A,B):

X ⊗ (A,B) ≡ {x : A+x ⊆ X,B+x ⊆ Xc} (74.3)

In the discrete case, this can be represented by a Boolean product function whose uncomplemented
(complemented) variables correspond to points ofA(B); see Table 74.1. It has been used extensively
for binary feature detection [58] and especially in document image processing [8, 9].

Dilating an eroded set by the same structuring element in general does not recover the original set
but only a part of it, its opening. Performing the same series of operations to the set complement
yields a set containing the original, its closing. Thus, cascading erosion and dilation gives rise to two
new operations, the opening X ◦ B ≡ (X 	 B)⊕ B and the closing X • B ≡ (X ⊕ B)	 B of X
by B. As shown in Fig. 74.1, the opening suppresses the sharp capes and cuts the narrow isthmuses
of X, whereas the closing fills in the thin gulfs and small holes. Thus, if the structuring element B
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FIGURE 74.1: Erosion, dilation, opening, and closing of X (binary image of an island) by a disk B
centered at the origin. The shaded areas correspond to the interior of the sets, the dark solid curve to
the boundary of the transformed sets, and the dashed curve to the boundary of the original set X.

has a regular shape, both opening and closing can be thought of as nonlinear filters which smooth
the contours of the input signal.

These set operations make mathematical morphology more general than previous approaches
because it unifies and systematizes all previous digital and analog binary image operations, mathe-
matically rigorous and notationally elegant since it is based on set theory, and intuitive since the set
formalism is easily connected to mathematical logic. Further, the basic morphological set operators
directly relate to the shape and size of binary images in a way that has many common points with
human perception about geometry and spatial reasoning.

74.2.3 Morphological Signal Operators and Nonlinear Convolutions

In the 1970s, morphological operators were extended from binary to gray-level images and real-
valued signals. Going from sets to functions was made possible by using set representations of signals
and transforming these input sets via morphological set operations. Thus, consider a signal f (x)
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defined on the d-dimensional continuous or discrete domain D = R
d or Z

d and assuming values
in R̄ = R ∪ {−∞,∞}. Thresholding the signal at all amplitude values v produces an ensemble of
threshold binary signals

θv(f )(x) ≡ 1 if f (x) ≥ v, and 0 else, (74.4)

represented by the threshold sets [58]

2v(f ) ≡ {x ∈ D : f (x) ≥ v} , −∞ < v < +∞ (74.5)

The signal can be exactly reconstructed from all its thresholded versions since

f (x) = sup{v ∈ R : x ∈ 2v(f )} = sup{v ∈ R : θv(f )(x) = 1} (74.6)

Transforming each threshold set by a set operator 9 and viewing the transformed sets as threshold
sets of a new signal creates a flat signal operator ψ whose output is

ψ(f )(x) = sup{v ∈ R : x ∈ 9[2v(f )]} (74.7)

Using set dilation and erosion in place of 9, the above procedure creates the two most elementary
morphological signal operators: the dilation and erosion of a signal f (x) by a set B:

(f ⊕ B)(x) ≡
∨
y∈B

f (x − y) (74.8)

(f 	 B)(x) ≡
∧
y∈B

f (x + y) (74.9)

where
∨

denotes supremum (or maximum for finite B) and
∧

denotes infimum (or minimum
for finite B). These gray-level morphological operations can also be created from their binary
counterparts using concepts from fuzzy sets where set union and intersection becomes maximum
and minimum on gray-level images [22, 45]. As Fig. 74.2 shows, flat erosion (dilation) of a function
f by a small convex set B reduces (increases) the peaks (valleys) and enlarges the minima (maxima)
of the function. The flat opening f ◦ B = (f 	 B) ⊕ B of f by B smooths the graph of f from
below by cutting down its peaks, whereas the closing f •B = (f ⊕B)	B smoothes it from above
by filling up its valleys.

More general morphological operators for gray-level 2D image signals f (x) can be created [62] by
representing the surface of f and all the points underneath by a 3D setU(f ) = {(x, v) : v ≤ f (x)},
called its umbra; then dilating or erodingU(f ) by the umbra of another signal g yields the umbras of
two new signals, the dilation or erosion of f by g, which can be computed directly by the formulae:

(f ⊕ g)(x) ≡
∨
y∈D

f (x − y)+ g(y) (74.10)

(f 	 g)(x) ≡
∧
y∈D

f (x + y)− g(y) (74.11)

and two supplemental rules for adding and subtracting with infinities: r ± s = −∞ if r = −∞
or s = −∞, and +∞ − r = +∞ if r ∈ R ∪ {+∞}. These two signal transformations are
nonlinear and translation-invariant. Their computational structure closely resembles that of a linear
convolution (f ∗ g)[x] = ∑

y f [x− y]g[y] if we correspond the sum of products to the supremum
of sums in the dilation. Actually, in the areas of convex analysis [50] and optimization [6], the
operation (74.10) has been known as the supremal convolution. Similarly, replacing −g(−x) with
g(x) in the erosion (74.11) yields the infimal convolution

(f2g)(x) ≡
∧
y∈D

f (x − y)+ g(y) (74.12)
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FIGURE 74.2: (a) Original signal f . (b) Structuring function g (a parabolic pulse). (c) Erosion f 	 g with dashed line and flat
erosion f 	 B with solid line, where the set B = {x ∈ Z : |x| ≤ 10} is the support of g. Dotted line shows original signal f .
(d) Dilation f ⊕ g (dashed line) and flat dilation f ⊕ B (solid line). (e) Opening f ◦ g (dashed line) and flat opening f ◦ B
(solid line). (f) Closing f • g (dashed line) and flat closing f • B (solid line).
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The nonlinearity of⊕ and	 causes some differences between these signal operations and the linear
convolutions. A major difference is that serial or parallel interconnections of systems represented
by linear convolutions are equivalent to an overall linear convolution, whereas interconnections of
dilations and erosions lead to entirely different nonlinear systems. Thus, there is an infinite variety
of nonlinear operators created by cascading dilations and erosions or by interconnecting them in
parallel via max/min or addition. Two such useful examples are the opening ◦ and closing •:

f ◦ g ≡ (f 	 g)⊕ g (74.13)

f • g ≡ (f ⊕ g)	 g (74.14)

which act as nonlinear smoothers.

Figure 74.2 shows that the four basic morphological transformations of a 1D signal f by a concave
even function g with a compact support B have similar effects as the corresponding flat transforma-
tions by the set B. Among the few differences, the erosion (dilation) of f by g subtracts from (adds
to) f the values of the moving template g during the decrease (increase) of signal peaks (valleys)
and the broadening of the local signal minima (maxima) that would incur during erosion (dilation)
by B. Similarly, the opening (closing) of f by g cuts the peaks (fills up the valleys) inside which no
translated version of g(−g) can fit and replaces these eliminated peaks (valleys) by replicas of g(−g).
In contrast, the flat opening or closing byB only cuts the peaks or fills valleys and creates flat plateaus
in the output.

The four above morphological operators of dilation, erosion, opening, and closing have a rich
collection of algebraic properties, some of which are listed in Tables 74.2 and 74.3, which endow
them with a broad range of applications, make them rigorous, and lead to a variety of efficient serial
or parallel implementations.

TABLE 74.2 Definitions of Operator Properties
Property Set operator 9 Signal operator ψ

Translation-Invar. 9(X+y ) = 9(X)+y ψ[f (x − y)+ c] = c + ψ(f )(x − y)
Shift-Invariant 9(X+y ) = 9(X)+y ψ[f (x − y)] = ψ(f )(x − y)

Increasing X ⊆ Y H⇒ 9(X) ⊆ 9(Y) f ≤ g H⇒ ψ(f ) ≤ ψ(g)
Extensive X ⊆ 9(X) f ≤ ψ(f )

Anti-extensive 9(X) ⊆ X ψ(f ) ≤ f
Idempotent 9(9(X)) = 9(X) ψ(ψ(f )) = ψ(f )

TABLE 74.3 Properties of Basic Morphological Signal Operators
Property Dilation Erosion Opening Closing

Duality f ⊕ g = −[(−f )	 gr ] f ◦ g = −[(−f ) • gr ]
Distributivity (∨i fi )⊕ g = ∨i fi ⊕ g (∧i fi )	 g = ∧i fi 	 g No No
Composition (f ⊕ g)⊕ h = f ⊕ (g ⊕ h) (f 	 g)	 h = f 	 (g ⊕ h)

Extensive Yes if g(0) ≥ 0 No No Yes
Anti-Extensive No Yes if g(0) ≥ 0 Yes No
Commutative f ⊕ g = g ⊕ f No No No

Increasing Yes Yes Yes Yes
Translation-Invar. Yes Yes Yes Yes

Idempotent No No Yes Yes
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74.3 Median, Rank, and Stack Operators

Flat erosion and dilation of a discrete-domain signalf [x] by a finite windowW = {y1, . . . , yn} ⊆ Z
d

is a moving local minimum or maximum. Replacing min/maxwith a more general rank leads to
rank operators. At each location x ∈ Z

d , sorting the signal values within the reflected and shifted
n-point window (Wr)+x in decreasing order and picking the pth largest value, p = 1,2, . . . , n =
card (W), yields the output signal from the pth rank operator:

(f2pW)[x] ≡ pth rank of (f [x − y1], . . . , f [x − yn]) (74.15)

For odd n and p = (n+1)/2we obtain the median operator. If the input signal is binary, the output
is also binary since sorting preserves a signal’s range. Representing the input binary signal with a set
S ⊆ Z

d , the output set produced by the pth rank set operators is

S2pW ≡ {x : card ((Wr)+x ∩ S) ≥ p} (74.16)

Thus, computing the output from a set rank operator involves only counting of points and no sorting.
All rank operators commute with thresholding [21, 27, 41, 45, 58, 65]; i.e.,

2v
[
f2pW

] = [2v(f )] 2pW, ∀v , ∀p . (74.17)

This property is also shared by all morphological operators that are finite compositions or max-
ima/minima of flat dilations and erosions, e.g., openings and closings, by finite structuring elements.
All such signal operators ψ that have a corresponding set operator 9 and commute with thresh-
olding can be alternatively implemented via threshold superposition [41, 58] as in (74.7). Namely, to
transform a multilevel signal f byψ is equivalent to decomposing f into all its threshold sets, trans-
forming each set by the corresponding set operator9, and reconstructing the output signalψ(f ) via
its thresholded versions. This allows us to study all rank operators and their cascade or parallel (using
∨,∧) combinations by focusing on their corresponding binary operators. Such representations are
much simpler to analyze and they suggest alternative implementations that do not involve numeric
comparisons or sorting.

Binary rank operators and all other binary discrete translation-invariant finite-window operators
can be described by their generating Boolean function; see Table 74.1. Thus, in synthesizing discrete
multilevel signal operators from their binary countparts via threshold superposition all that is needed
is knowledge of this Boolean function. Specifically, transforming all the threshold binary signals
θv(f )[x] of an input signal f [x] with an increasing Boolean function b(u1, . . . , un) (i.e., containing
no complemented variables) in place of the set operator9 in (74.7) creates a large variety of nonlinear
signal operators via threshold superposition, called stack filters [41, 70]

φb(f )[x] ≡ sup{v : b (θv(f )[x − y1], . . . , θv(f )[x − yn]) = 1} (74.18)

For example,φb becomes thepth rankoperator ifb is equal to the sum
(
n

p

)
product termswhere each

contains one distinct p-point subset from the n variables. In general, the use of Boolean functions
facilitates the design of such discrete flat operators with determinable structural properties. Since
each increasing Boolean function can be uniquely represented by an irreducible sum (product) of
product (sum) terms, and each product (sum) term corresponds to an erosion (dilation), each stack
filter can be represented as a finite maximum (minimum) of flat erosions (dilations) [41].

74.4 Universality of Morphological Operators

Dilations or erosions, the basic nonlinear convolutions of morphological signal processing, can be
combined in many ways to create more complex morphological operators that can solve a broad
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variety of problems in image analysis and nonlinear filtering. In addition, they can be implemented
using simple and fast software or hardware; examples include various digital [58, 61] and analog,
i.e., optical or hybrid optical-electronic implementations [46, 63]. Their wide applicability and
ease of implementation poses the question which signal processing systems can be represented by
using dilations and erosions as the basic building blocks. Toward this goal, a theory was introduced
in [33, 34] that represents a broad class of nonlinear and linear operators as a minimal combination
of erosions or dilations. Here we summarize the main results of this theory, in a simplified way,
restricting our discussion only to signals with discrete domain D = Z

d .
Consider a translation-invariant set operator9 on the class P(D) of all subsets of D. Any such9

is uniquely characterized by its kernel that is defined [42] as the subclass Ker(9) ≡ {X ∈ P(D) : 0 ∈
9(X)} of input sets, where 0 is the origin of D. If9 is also increasing, then it can be represented [42]
as the union of erosions by its kernel sets and as the intersection of dilations by the reflected kernel
sets of its dual operator 9d(X) ≡ [9(Xc)]c. This kernel representation can be extended to signal
operatorsψ on the class Fun(D, R̄) of signals with domain D and range R̄. The kernel ofψ is defined
as the subclass Ker(ψ) = {f ∈ Fun(D, R̄) : [ψ(f )](0) ≥ 0} of input signals. If ψ is translation-
invariant and increasing, then it can be represented [33, 34] as the pointwise supremum of erosions
by its kernel functions, and as the infimum of dilations by the reflected kernel functions of its dual
operator ψd(f ) ≡ −ψ(−f ).

The two previous kernel representations require an infinite number of erosions or dilations to
represent a given operator because the kernel contains an infinite number of elements. However, we
can find more efficient (requiring less erosions) representations by using only a substructure of the
kernel, its basis. The basis Bas(·) of a set (signal) operator is defined [33, 34] as the collection of
kernel elements that are minimal with respect to the ordering ⊆ (≤).

If a translation-invariant increasing set operator9 is also upper semicontinuous, i.e., obeys a mono-
tonic continuity where 9(

⋂
n Xn) = ⋂

n 9(Xn) for any decreasing set sequence Xn, then 9 has a
nonempty basis and can be represented via erosions only by its basis sets. If the dual9d is also upper
semicontinuous, then its basis sets provide an alternative representation of9 via dilations:

9(X) =
⋃

A∈Bas(9)

X 	 A =
⋂

B∈Bas(9d)

X ⊕ Br (74.19)

Similarly, any signaloperatorψ that is translation-invariant, increasing, andupper semicontinuous
(i.e., ψ(∧nfn) = ∧nψ(fn) for any decreasing function sequence fn) can be represented as the
supremum of erosions by its basis functions, and (if ψd is upper semicontinuous) as the infimum of
dilations by the reflected basis functions of its dual operators:

ψ(f ) =
∨

g∈Bas(ψ)

f 	 g =
∧

h∈Bas(ψd)

f ⊕ hr (74.20)

where hr(x) ≡ h(−x). Finally, if φ is a flat signal operator as in (74.7) that is translation-invariant
and commutes with thresholding, then φ can be represented as a supremum of erosions by the basis
sets of its corresponding set operator8:

φ(f ) =
∨

A∈Bas(8)

f 	 A =
∧

B∈Bas(8d)

f ⊕ Br (74.21)

While all the above representations express translation-invariant increasing operators via erosions
or dilations, operators that are not necessarily increasing can be represented [4] via operations closely
related to hit-miss transformations.

Representing operators that satisfy a few general properties in terms of elementary morphological
operations can be applied to more complex morphological systems and various other filters such as
linear rank, hybrid linear/rank, and stack filters, as the following examples illustrate.
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EXAMPLE 74.1: Morphological Filters

All systems made up of serial or sup/inf combinations of erosions, dilations, opening, and closings
admit a basis, which is finite if the system’s local definition depends on a finite window. For example,
the set opening 8(X) = X ◦ A has as a basis the set collection Bas(8) = {A−a : a ∈ A}. Consider
now 1D discrete-domain signals and let A = {−1,0,1}. Then, the basis of 8 has 3 sets: G1 =
A−1,G2 = A,G3 = A+1. The basis of the dual operator 8d(X) = X • A has 4 sets: H1 =
{0}, H2 = {−2,1}, H3 = {−1,2}, H4 = {−1,1}. The flat signal operator corresponding to8 is the
opening φ(f ) = f ◦ A. Thus, from (74.21), the signal opening can also be realized as a max (min)
of local minima (maxima):

(f ◦ A)[x] =
3∨
i=1


 ∧
y∈Gi

f [x + y]

 =

4∧
k=1


 ∨
y∈Hk

f [x + y]

 . (74.22)

EXAMPLE 74.2: Linear Filters

A linear shift-invariant filter is translation-invariant and increasing (see Table 74.2 for definitions)
if its impulse response is everywhere nonnegative and has area equal to one. Consider the 2-point FIR
filterψ(f )[x] = af [x]+ (1−a)f [x−1], where 0< a < 1. The basis ofψ consists of all functions
g[x] with g[0] = r ∈ R, g[−1] = −ar/(1 − a), and g[x] = −∞ for x 6= 0,−1. Then (74.20)
yields

af [x] + (1 − a)f [x − 1] =
∨
r∈R

[
min

{
f [x] − r, f [x − 1] + ar

1 − a

}]
, (74.23)

which expresses a linear convolution as a supremum of erosions. FIR linear filters have an infinite
basis, which is a finite-dimensional vector space.

EXAMPLE 74.3: Median Filters

All rank operators have a finite basis; hence, they can be expressed as a finite max-of-erosions
or min-of-dilations. Further, they commute with thresholding, which allows us to focus only on
their binary versions. For example, the set median by the windowW = {−1,0,1} has 3 basis sets:
{−1,0}, {−1,1}, and {0,1}. Hence, (74.21) yields

median (f [x − 1], f [x], f [x + 1]) = max




min(f [x − 1], f [x]) ,
min[f (x − 1), f (x + 1)] ,
min[f (x), f (x + 1)]


 . (74.24)

EXAMPLE 74.4: Stack Filters

Stack filters (74.18) are discrete translation-invariant flat operators φb, locally defined on a finite
windowW , and are generated by a increasing Boolean function b(v1, . . . , vn), where n = card(W).
This function corresponds to a translation-invariant increasing set operator8. For example, consider
1D signals, letW = {−2,−1,0,1,2} and

b(v1, . . . , v5) = v1v2v3 + v2v3v4 + v3v4v5 = v3(v1 + v4)(v2 + v4)(v2 + v5) . (74.25)
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This function generates via threshold superposition the flat openingφb(f ) = f ◦A,A = {−1,0,1},
of (74.22). There is one-to-one correspondence between the three prime implicants of b and the
erosions (local min) by the three basis sets of8, as well as between the four prime implicates of β and
the dilations (local max) by the four basis sets of the dual8d . In general, given b,8 or φb is found
by replacing Boolean AND/OR with set ∩/∪ or with min/max, respectively. Conversely, given φb,
we can find its generating Boolean function from the basis of its set operator (or directly from its
max/min representation if available) [41].

The above examples show the power of the general representation theorems. An interesting
applications of these results is the design of morphological systems via their basis [5, 20, 31]. Given
the wide applicability of erosions/dilations, their parallelism, and their simple implementations, the
previous theorems theoretically support a general purpose vision (software or hardware) module
that can perform erosions/dilations, based on which numerous other complex image operations can
be built.

74.5 Morphological Operators and Lattice Theory

In the late 1980s and 1990s a new and more general formalization of morphological operators was
introduced [59, chaps.1,5-8], [26, 51, 52], which views them as operators on complete lattices. A
complete lattice is a set L equipped with a partial ordering ≤ such that (L,≤) has the algebraic
structure of a partially ordered set (poset) where the supremum and infimum of any of its subsets
exist in L. For any subset K ⊆ L, its supremum ∨K and infimum ∧K are defined as the lowest (with
respect to ≤) upper bound and greatest lower bound of K, respectively. The two main examples
of complete lattices used in morphological processing are: (1) the set space P(D) where the ∨/∧
lattice operations are the set union/intersection, and (2) the signal space Fun(D, R̄) where the ∨/∧
lattice operations are the supremum/infimum of sets of real numbers. Increasing operators on L are
of great importance because they preserve the partial ordering, and among them four fundamental
examples are:

δ is dilation ⇐⇒ δ(
∨
i∈I
fi) =

∨
i∈I
δ(fi) (74.26)

ε is erosion ⇐⇒ ε(
∧
i∈I
fi) =

∧
i∈I
ε(fi) (74.27)

α is opening ⇐⇒ α is increasing, idempotent, and anti-extensive (74.28)

β is closing ⇐⇒ β is increasing, idempotent, and extensive (74.29)

where I is an arbitrary index set.
The above definitions allow broad classes of signal operators to be grouped as lattice dilations,

erosions, openings, or closing and their common properties to be studied under the unifying lattice
framework. Thus, the translation-invariantmorphologicaldilations, erosions, openings, andclosings
we saw before are simply special cases of their lattice counterparts. Next, we see some examples and
applications of the above general definitions.

EXAMPLE 74.5: Dilation and Translation-Invariant (DTI) Systems

Consider a signal operator that is shift-invariant and obeys a supremum-of-sums superposition:

D
[∨

i

ci + fi(x)

]
=

∨
i

ci + D[fi(x)] (74.30)

c©1999 by CRC Press LLC



Then D is both a lattice dilation and translation-invariant. We call it a DTI system in analogy
to linear time-invariant (LTI) systems that are shift-invariant and obey a linear (sum-of-products)
superposition. As an LTI system corresponds in the time-domain to a linear convolution with
its impulse response, a DTI system can be represented as a supremal convolution with its upper
‘impulse response’ g∨(x) defined as its output when the input is the upper zero impulse ı(x), defined
in Table 74.4. Specifically,

D is DTI ⇐⇒ D(f ) = f ⊕ g∨, g∨ ≡ D(ı) (74.31)

A similar class is the erosion and translation-invariant (ETI) systems ε which are shift-invariant
and obey an infimum-of-sums superposition as in (74.30) but with ∨ replaced by ∧. Such systems
are equivalent to infimal convolutions with their lower impulse response g∧ = ε(−ı), defined as
the system’s output due to the lower impulse −ı(x). Thus, DTI and ETI systems are uniquely
determined in the time/spatial domain by their impulse responses, which also control their causality
and stability [37].

TABLE 74.4 Examples of Upper Slope Transform
Signal: f (x) Transform: F∨(a)

ı(x − x0) ≡ 0 if x = x0, and −∞ else −ax0

a0x −ı(a − a0)

λ(x) ≡ 0 if x ≥ 0, and −∞ else −λ(a)
a0x + λ(x) −λ(a − a0){

0, |x| ≤ r
−∞, |x| > r

r|a|

−a0|x|, a0 > 0

{
0, |a| ≤ a0+∞, |a| > a0√

1 − x2, |x| ≤ 1
√

1 + a2

−(|x|p)/p , p > 1 (|a|q )/q , 1/p + 1/q = 1

exp(x) a(1 − loga)

EXAMPLE 74.6: Shift-Varying Dilation

Let δB(f ) = f ⊕ B be the shift-invariant flat dilation of (74.8). In applying it to nonstationary
signals, the need may arise to vary the moving window B by actually having a family of windows
B(x), possibly varying at each location x. This creates the new operator

δB(f )(x) =
∨

y∈B(x)
f (x − y) (74.32)

which is still a lattice dilation, i.e., it distributes over suprema, but it is shift-varying.

EXAMPLE 74.7: Adjunctions

An operator pair (ε, δ) is called an adjunction if δ(f ) ≤ g ≤⇐⇒ f ≤ ε(g) for all f, g ∈ L.
Given a dilation δ, there is a unique erosion ε such that (ε, δ) is adjunction, and vice versa. Further, if
(ε, δ) is an adjunction, then δ is a dilation, ε is an erosion, δε is an opening, and εδ is a closing. Thus,
from any adjunction we can generate an opening via the composition of its erosion and dilation.
If ε and δ are the translation-invariant morphological erosion and dilation in (74.11) and (74.10),
then δε coincides with the translation-invariant morphological opening of (74.13). But there are
also numerous other possibilities.
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EXAMPLE 74.8: Radial Opening

If a 2D image f contains 1D objects, e.g., lines, and B is a 2D convex structuring element, then
the opening or closing of f by B will eliminate these 1D objects. Another problem arises when f
contains large-scale objects with sharp corners that need to be preserved; in such cases opening or
closing f by a disk B will round these corners. These two problems could be avoided in some cases
if we replace the conventional opening with

α(f ) =
∨
θ

f ◦ Lθ (74.33)

where the setsLθ are rotated versions of a line segmentL at various angles θ ∈ [0,2π). The operator
α, called radial opening, is a lattice opening in the sense of (74.28). It has the effect of preserving
an object in f if this object is left unchanged after the opening by Lθ in at least one of the possible
orientations θ .

EXAMPLE 74.9: Opening by Reconstruction

Consider a set X = ⋃
i Xi as a union of disjoint connected components Xi and letM ⊆ Xj be a

marker in the j th component; i.e.,M could be a single point or some feature set in X that lies only
in Xj . Then, define the conditional dilation ofM by B within X as

δB|X(M) ≡ (M ⊕ B) ∩X (74.34)

If B is a disk with a radius smaller than the distance between Xj and any of the other components,
then by iterating this conditional dilation we can obtain in the limit

MRB|X(M) = lim
n→∞

(
δB|X · · · (δB|X(δB|X(M))

)︸ ︷︷ ︸
n times

(74.35)

the whole componentXj . The operatorMR is a lattice opening, called opening by reconstruction,
and its output is called the morphological reconstruction of the component from the marker. An
example is shown in Fig. 74.3. It can extract large-scale components of the image from knowledge
only of a smaller marker inside them.

74.6 Slope Transforms

Fourier transforms are among the most useful linear signal transformations because they enable us
to analyze the processing of signals by linear time-invariant (LTI) systems in the frequency domain,
which could be more intuitive or easier to implement. Similarly, there exist some nonlinear sig-
nal transformations, called slope transforms, which allow the analysis of the dilation and erosion
translation-invariant (DTI and ETI) systems in a transform domain, the slope domain. First, we
note that the lines f (x) = ax + b are eigenfunctions of any DTI system D or ETI system E because

D[ax + b] = ax + b +G∨(a) , G∨(a) ≡
∨
x

g∨(x)− ax

E[ax + b] = ax + b +G∧(a) , G∧(a) ≡
∧
x

g∧(x)− ax (74.36)

with corresponding eigenvalues G∨(a) and G∧(a), which are called, respectively, the upper and
lower slope response of the DTI and ETI system. They measure the amount of shift in the intercept
of the input lines with slope a and are conceptually similar to the frequency response of LTI systems.
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FIGURE 74.3: Let X be the union of the two region boundaries in the top left image, and let M
be the single-point marker inside the left region. Top right shows the complement Xc. If Y0 = M

and B is a disk-like set whose radius does not exceed the width of the region boundary, iterating the
conditional dilation Yi = (Yi−1 ⊕B)∩Xc, for i = 1,2,3, . . ., yields in the limit (reached at i = 18
in this case) the interior Y∞ of the left region via morphological reconstruction, shown in bottom
right. (Bottom left shows an intermediate result for i = 9.)

Then, by viewing the slope response as a signal transform with variable the slope a ∈ R, we
define [37] for a 1D signal f : D → R̄ its upper slope transform F∨ and its lower slope transform2

F∧ as the functions

F∨(a) ≡
∨
x∈D

f (x)− ax (74.37)

F∧(a) ≡
∧
x∈D

f (x)− ax (74.38)

Since f (x)−ax is the intercept of a line with slope a passing from the point (x, f (x)) on the signal’s
graph, for each a the upper (lower) slope transform of f is the maximum (minimum) value of this
intercept, which occurs when the above line becomes a tangent. Examples of slope transforms are
shown in Fig. 74.4. For differentiable signals, f , the maximization or minimization of the intercept
f (x) − ax can also be done by finding the stationary point(s) x∗ such that df (x∗)/dx = a. This
extreme value of the intercept is the Legendre transform of f :

FL(a) ≡ f
(
(df/dx)−1(a)

)
− a[(df/dx)−1(a)] (74.39)

It is extensively used in mathematical physics. If the signal f (x) is concave or convex and has an
invertible derivative, its Legendre transform is single-valued and equal (over the slope regions it is

2In convex analysis [50], to a convex function h there uniquely corresponds its Fenchel conjugate h∗(a) = ∨
x ax − h(x),

which is the negative of the lower slope transform of h.
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defined) to the upper or lower transform; e.g., see the last three examples in Table 74.4. If f is neither
convex nor concave or if it does not have an invertible derivative, its Legendre transform becomes a
setFL(a) = {f (x∗)−ax∗ : df (x∗)/dx = a} of real numbers for each a. This multivalued Legendre
transform, defined and studied in [19] as a ‘slope transform’, has properties similar to those of the
upper/lower slope transform, but there are also some important differences [37].

FIGURE 74.4: (a) Original parabola signal f (x) = −x2/2 (in dashed line) and its morphological
opening (in solid line) by a flat structuring element [−5,5]. (b) Upper slope transform F∨(a) of the
parabola (in dashed line) and of its opening (in solid line).

The upper and lower slope transform have a limitation in that they do not admit an inverse for
arbitrary signals. The closest to an ‘inverse’ upper slope transform is

f̂ (x) ≡
∧
a∈R

F∨(a)+ ax (74.40)

which is equal to f only if f is concave; otherwise, f̂ covers f from above by being its smallest
concave upper envelope. Similarly, the supremum over a of all lines F∧(a)+ ax creates the greatest
convex lower envelope f̌ (x) of f , which plays the role of an “inverse” lower slope transform and is
equal to f only if f is convex. Thus, for arbitrary signals we have f̌ ≤ f ≤ f̂ .

Tables 74.4 and 74.5 list several examples and properties of the upper slope transform. The most
striking is that (dilation) supremal convolution in the time/space domain corresponds to addition
in the slope domain. Note the analogy with LTI systems where linearly convolving two signals
corresponds to multiplying their Fourier transforms. Very similar properties also hold for the lower
slope transform, the only differences being the interchange of suprema with infima, concave with
convex, and the supremal ⊕ with the infimal convolution 2.

The upper/lower slope transforms for discrete-domain and/or multi-dimensional signals are de-
fined as in the 1D continuous case by replacing the real variable x with an integer and/or multidi-
mensional variable, and their properties are very similar or identical to the ones for signals defined
on R. See [37, 38] for details.

One of the most useful applications of LTI systems and Fourier transform is the design of frequency-
selective filters. Similarly, it is also possible to design morphological systems that have a slope
selectivity. Imagine a DTI system that rejects all line components with slopes in the band [−a0, a0]
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TABLE 74.5 Properties of Upper Slope

Transform
Signal: f (x) Transform: F∨(a)
∨i ci + fi (x) ∨i ci + Fi (a)

f (x − x0) F (a)− ax0
f (x)+ a0x F(a − a0)

f (rx) F (a/r)

f (x)⊕ g(x) F (a)+G(a)

∨yf (x)+ g(x + y) F (−a)+G(a)

f (x) ≤ g(x) ∀x F(a) ≤ G(a) ∀a
g(x) =

{
f (x), |x| ≤ r
−∞, |x| > r

G(a) = F(a)2r|a|

and passes all the rest unchanged. Then its slope response would be

G(a) = 0 if |a| ≤ a0, and + ∞ else . (74.41)

This is an ideal-cutoff slope bandpass filter. In the time domain it acts as a supremal convolution
with its impulse response

g(x) = −a0|x| (74.42)

However, f ⊕ g is a non-causal infinite-extent dilation, and hence not realizable. Instead, we could
implement it as a cascade of a causal dilation by the half-line g1(x) = −a0x + λ(x) followed by an
anti-causal dilation by another half-line g2(x) = a0x + λ(−x), where λ(x) is the zero step defined
in Table 74.4. This works because g = g1 ⊕ g2. For a discrete-time signal f [x], this slope-bandpass
filtering could be implemented via the recursive max-sum difference equation f1[x] = max(f1[x]−
a0, f [x]) run forward in time, followed by another difference equation f2[x] = max(f2[x + 1] +
a0, f1[x]) run backward in time. The final result would be f2 = f ⊕ g. Such slope filters are useful
for envelope estimation [37].

74.7 Multiscale Morphological Image Analysis

Multiscale signal analysis has recently emerged as a useful framework for many computer vision
and signal processing tasks. Examples include: (1) detecting geometrical features or other events
at large scales and then refining their location or value at smaller scales, (2) video and audio data
compression using multiband frequency analysis, and (3) measurements and modeling of fractal
signals. Most of the work in this area has obtained multiscale signal versions via linear multiscale
smoothing, i.e., convolutions with a Gaussian with a variance proportional to scale [15, 53, 72].
There is, however, a variety of nonlinear smoothing filters, including the morphological openings
and closings [35, 42, 58] that can provide a multiscale image ensemble and have the advantage over
the linear Gaussian smoothers that they do not blur or shift edges, as shown in Fig. 74.5. There we
see that the gray-level close-openings by reconstruction are especially useful because they can extract
the exact outline of a certain object by locking on it while smoothing out all its surroundings; these
nonlinear smoothers have been applied extensively in multiscale image segmentation [56]. The use
of morphological operators for multiscale signal analysis is not limited to operations of a smoothing
type; e.g., in fractal image analysis, erosion and dilation can provide multiscale distributions of the
shrink-expand type from which the fractal dimension can be computed [36].

Overall, many applications of morphological signal processing such as nonlinear smoothing, geo-
metrical feature extraction, skeletonization, size distributions, and segmentation, inherently require
or can benefit from performing morphological operations at multiples scales. The required building
blocks for a morphological scale-space are the multiscale dilations and erosions. Consider a planar
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FIGURE 74.5: (a) Original image and its multiscale smoothings via: (b,c,d) Gaussian convolution at
scales 2, 4, 16; (e,f,g) close-openingbya square at scales 2, 4, 16; (h,i,j) close-openingby reconstruction
at scales 2, 4, 16.
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compact convex set B = {(x, y) : ‖(x, y)‖p ≤ 1} that is the unit ball generated by the Lp norm,
p = 1,2, . . . ,∞. Then the simplest multiscale dilation and erosion of a signal f (x, y) at scales
t > 0 are the multiscale flat sup/inf convolutions by tB = {tz : z ∈ B}

δ(x, y, t) ≡ (f ⊕ tB)(x, y) (74.43)

ε(x, y, t) ≡ (f 	 tB)(x, y) (74.44)

which apply both to gray-level and binary images.

74.7.1 Binary Multiscale Morphology via Distance Transforms

Viewing the boundaries of multiscale erosions/dilations of a binary image by disks as wavefronts
propagating from the original image boundary at uniform unit normal velocity and assigning to each
pixel the time t of wavefront arrival creates a distance function, called the distance transform [10].
This transform is a compact way to represent their multiscale dilations and erosions by disks and
other polygonial structuring elements whose shape depends on the norm ‖ · ‖p used to measure
distances. Formally, the distance transform of the foreground set F of a binary image is defined as

Dp(F)(x, y) ≡
∧

(v,u)∈Fc
{‖(x − v, y − u)‖p} (74.45)

Thresholding the distance transform at various levels t > 0 yields the erosions of the foreground F
(or the dilation of the background Fc) by the norm-induced ball B at scale t :

F 	 tB = 2t [Dp(F)] (74.46)

Another view of the distance transform results from seeing it as the infimal convolution of the
(0,+∞) indicator function of Fc,

IFc (x) ≡ 0 if x ∈ Fc, and + ∞ else, (74.47)

with the norm-induced conical structuring function:

Dp(F)(x) = IFc (x)2‖x‖p (74.48)

Recognizing g∧(x) = ‖x‖p as the lower impulse response of an ETI system with slope response

G∧(a) = 0 if ‖a‖q ≤ 1, and − ∞ else , (74.49)

where 1/p + 1/q = 1, leads to seeing the distance transform as the output of an ideal-cutoff slope-
selective filter that rejects all input planes whose slope vector falls outside the unit ball with respect
to the ‖ · ‖q norm, and passes all the rest unchanged.

To obtain isotropic distance propagation, the Euclidean distance transform is desirable because
it gives multiscale morphology with the disk as the structuring element. However, since this has a
significant computational complexity, various techniques are used to obtain approximations to the
Euclidean distance transform of discrete images at a lower complexity. A general such approach is
the use of discrete distances [54] and their generalization via chamfer metrics [11]. Given a discrete
binary image f [i, j ] ∈ {0,+∞} with 0 marking background/source pixels and +∞ marking fore-
ground/object pixels, its global chamfer distance transform is obtained by propagating local distances
within a small neighborhood mask. An efficient method to implement it is a two-pass sequential
algorithm [11, 54] where for a 3 × 3 neighborhood the min-sum difference equation

un[i, j ] = min( un−1[i, j ], un[i − 1, j ] + a, un[i, j − 1] + a ,

un[i − 1, j − 1] + b, un[i + 1, j − 1] + b ) (74.50)
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is run recursively over the image domain: first (n = 1), in a forward scan starting from u0 = f to
obtain u1, and second (n = 2) in a backward scan on u1 using a reflected mask to obtain u2, which is
the final distance transform. The coefficients a and b are the local distances within the neighborhood
mask. The unit ball associated with chamfer metrics is a polygon whose approximation of the disk
improves by increasing the size of the mask and optimizing the local distances so as to minimize the
error in approximating the true Euclidean distances. In practice, integer-valued local distances are
used for faster implementation of the distance transform. If (a, b) is (1,1) or (1,∞), the chamfer
ball becomes a square or rhombus, respectively, and the chamfer distance transform gives poor
approximations to multiscale morphology with disks. The commonly used (a = 3, b = 4) chamfer
metric gives a maximum absolute error of about 6%, but even better approximations can be found
by optimizing a, b.

74.7.2 Multiresolution Morphology

In certain multiscale image analysis tasks, the need also arises to subsample the multiscale image
versions and thus create a multiresolution pyramid [15, 53]. Such concepts are very similar to the
ones encountered in classical signal decimation. Most research in image pyramids has been based on
linear smoothers. However, since morphological filters preserve essential shape features, they may
be superior in many applications. A theory of morphological decimation and interpolation has been
developed in [25] to address these issues which also provides algorithms on reconstructing a signal
after morphological smoothing and decimation with quantifiable error. For example, consider a
binary discrete image represented by a set X that is smoothed first to Y = X ◦ B via opening and
then down-sampled to Y ∩ S by intersecting it with a periodic sampling set S (satisfying certain
conditions). Then the Hausdorff distance between the smoothed signal Y and the interpolation (via
dilation) (Y ∩ S)⊕B of its down-sampled version does not exceed the radius of B. These ideas also
extend to multilevel signals.

74.8 Differential Equations for Continuous-Scale Morphology

Thus far, most of the multiscale image filtering implementations have been discrete. However, due
to the current interest in analog VLSI and neural networks, there is renewed interest in analog
computation. Thus, continuous models have been proposed for several computer vision tasks based
on partial differential equations (PDEs). In multiscale linear analysis [72] a continuous (in scale t
and spatial argument x, y) multiscale signal ensemble

γ (x, y, t) = f (x, y) ∗Gt(x, y) , Gt (x, y) = exp[−(x2 + y2)/4t]√
4πt

(74.51)

is created by linearly convolving an original signal f with a multiscale Gaussian function Gt whose
variance (2t) is proportional to the scale parameter t . The Gaussian multiscale function γ can be
generated [28] from the linear diffusion equation

∂γ

∂t
= ∂2γ

∂x2
+ ∂2γ

∂y2
(74.52)

starting from the initial condition γ (x, y,0) = f (x, y).
Motivated by the limitations or inability of linear systems to successfully model several image

processing problems, several nonlinear PDE-based approaches have been developed. Among them,
some PDEs have been recently developed to model multiscale morphological operators as dynamical
systems evolving in scale-space [1, 14, 66].
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Consider the multiscale morphological flat dilation and erosion of a 2D image signal f (x, y) by
the unit-radius disk at scales t ≥ 0 as the space-scale functions δ(x, y, t) and ε(x, y, t) of (74.43)
and (74.44). Then [14] the PDE generating these multiscale flat dilations is

∂δ

∂t
= ‖∇δ‖ =

√(
∂δ

∂x

)2

+
(
∂δ

∂y

)2

(74.53)

and for the erosions is ∂ε/∂t = −‖∇ε‖. These morphological PDEs directly apply to binary images
because flat dilations/erosions commute with thresholding and hence, when the gray-level image is
dilated/eroded, each one of its thresholded versions representing a binary image is simultaneously
dilated/eroded by the same element and at the same scale.

In equivalent formulations [10, 57, 66], the boundary of the original binary image is considered
as a closed curve and this curve is expanded perpendicularly at constant unit speed. The dilation
of the original image with a disk of radius t is the expanded curve at time t . This propagation of
the image boundary is a special case of more general curvature-dependent propagation schemes for
curve evolution studied in [47]. This general curve evolution methodology was applied in [57] to
obtain multiscale morphological dilations/erosions of binary images, using an algorithm [47] where
the original curve is first embedded in the surface of a 2D continuous function 80(x, y) as its zero
level set and then the evolving 2D curve is obtained as the zero level set of a 2D function 8(x, y, t)
that evolves from the initial condition8(x, y,0) = 80(x, y) according to the PDE ∂8/∂t = ‖∇8‖.
This function evolution PDE makes zero level sets expand at unit normal speed and is identical to
the PDE (74.53) for flat dilation by disk. The main steps in its numerical implementations [47] are:

8ni,j = estimate of8(i1x, j1y, n1t) on a grid

D+
x =

(
8ni+1,j −8ni,j

)
/1x , D−

x =
(
8ni,j −8ni−1,j

)
/1x

D+
y =

(
8ni,j+1 −8ni,j

)
/1y , D−

y =
(
8ni,j −8ni,j−1

)
/1y

G2 = min2(0,D−
x )+ max2(0,D+

x )+ min2(0,D−
y )+ max2(0,D+

y )

8ni,j = 8n−1
i,j +G1t , n = 1,2, . . . , (R/1t)

where R is the maximum scale (radius) of interest, 1x,1y are the spatial grid spacings, and 1t is
the time (scale) step.

Continuous multiscale morphology using the above curve evolution algorithm for numerically
implementing the dilation PDE yields better approximations to disks and avoids the abrupt shape
discretization inherent in modeling digital multiscale using discrete polygons [16, 57]. Comparing it
to discrete multiscale morphology using chamfer distance transforms, we note that for binary images:
(1) the chamfer distance transform is easier to implement and yields similar errors for small scale
dilations/erosions; (2) implementing the distance transform via curve evolution is more complex,
but at medium and large scales gives a better and very close approximation to Euclidean geometry,
i.e., to morphological operations with the disk structuring element. See Fig. 74.6.

74.9 Applications to Image Processing and Vision

There are numerous applications of morphological image operators to image processing and com-
puter vision. Examples of broad application areas include biomedical image processing, automated
visual inspection, character and document image processing, remote sensing, nonlinear filtering,
multiscale image analysis, feature extraction, motion analysis, segmentation, and shape recogni-
tion. Next we shall review a few of these applications to specific problems of image processing and
low/mid-level vision.
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FIGURE 74.6: Distance transforms of a binary image, shown as intensity images modulo 20, obtained
using: (a) Metric ‖ · ‖∞ (chamfer metric with local distances (1,1)), (b) chamfer metric with 3 × 3
neighborhood and local distances (24,34)/25, and (c) curve evolution.

74.9.1 Noise Suppression

Rank filters and especially medians have been applied mainly to suppress impulse noise or noise
whose probability density has heavier tails than the Gaussian for enhancement of image and other
signals [2, 12, 27, 64, 65], since they can remove this type of noise without blurring edges, as would
be the case for linear filtering. The rank filters have also been used for envelope detection. In their
behavior as nonlinear smoothers, as shown in Fig. 74.7, the medians act similarly to an ‘open-closing’
(f ◦B) •B by a convex setB of diameter about half the diameter of the median window. The open-
closing has the advantages over the median that it requires less computation and decomposes the noise
suppression task into two independent steps, i.e., suppressing positive spikes via the opening and
negative spikes via the closing. Further, cascading open-closings βtαt at multiple scales t = 1, . . . , r ,
where αt (f ) = f ◦ tB and βt (f ) = f • tB, generates a class of efficient nonlinear smoothing
filters βrαr . . . β2α2β1α1, called alternating sequential filters, which smooth progressively from the
smallest scale possible up to a maximum scale r and have a broad range of applications [59, 60, 62].

74.9.2 Feature Extraction

Residuals between a signal and some morphologically transformed versions of it can extract line- or
blob-type features or enhance their contrast. An example is the difference between the flat dilation
and erosion of an image f by a symmetric disk-like set B whose diameter, diam(B), is very small;

edge (f ) = (f ⊕ B)− (f 	 B)

diam (B)
(74.54)

If f is binary, edge (f ) extracts its boundary. If f is gray-level, the above residual enhances its
edges [7, 58] by yielding an approximation to ‖∇f ‖, which is obtained in the limit of (74.54) as
diam(B) → 0. See Fig. 74.8. This morphological edge operator can be made more robust for
edge detection by first smoothing the input image signal and compares favorably with other gradient
approaches based on linear filtering.

Another example involves subtracting the opening of a signal f by a compact convex set B from
the input signal yields an output consisting of the signal peaks whose support cannot containB. This
is the top-hat transformation [43, 58]

peak (f ) = f − (f ◦ B) (74.55)

and can detect bright blobs, i.e., regions with significantly brighter intensities relative to the surround-
ings. Similarly, to detect dark blobs, modeled as intensity valleys, we can use the closing residual
operator f 7→ (f •B)− f . See Fig. 74.8. The morphological peak/valley extractors, in addition to
their being simple and efficient, have some advantages over curvature-based approaches.
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FIGURE 74.7: (a) Noisy image f , corrupted with salt-and-pepper noise of probability 10%.
(b) Opening f ◦ B of f by a 2 × 2-pixel square B. (c) Open-closing (f ◦ B) • B. (d) Median
of f by a 3 × 3-pixel square window.

74.9.3 Shape Representation via Skeleton Transforms

There are applications in image processing and vision where a binary shape needs to be summarized
down to its thin medial axis and then reconstructed exactly from this axial information. This process,
known as medial axis (or skeleton) transform has been studied extensively for shape representation and
description [10, 54]. Among many approaches, it can also be obtained via multiscale morphological
operators, which offer as a by-product a multiscale representation of the original shape via its skeleton
components [39, 58]. Let X ⊆ Z

2 represent the foreground of a finite discrete binary image and let
B ⊆ Z

2 be a convex disk-like set at scale 1 and B⊕n be its multiscale version at scale n = 1,2, . . .
The nth skeleton component of X is the set

Sn = (X 	 B⊕n)\ [(
X 	 B⊕n) ◦ B]

, n = 0,1, . . . , N , (74.56)

where \ denotes the difference, n is a discrete scale parameter, and N = max{n : X 	 B⊕n 6= ∅} is
the maximum scale. The Sn are disjoint subsets of X, whose union is the morphological skeleton
of X.

The morphological skeleton transform of X is the finite sequence (S0, S1, . . . , SN). The union
of all the Sns dilated by a n-scale disk reconstructs exactly the original shape; omitting the first k
components leads to a smooth partial reconstruction, the opening of X at scale k:

X ◦ B⊕k =
⋃

k≤n≤N
Sn ⊕ B⊕n , 0 ≤ k ≤ N . (74.57)

Thus, we can view the Sn as ‘shape components’, where the small-scale components are associated with
the lack of smoothness of the boundary of X, whereas skeleton components of large scale indices n
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FIGURE 74.8: (a) Image f . (b) Edge enhancement: dilation-erosion residual f ⊕B−f 	B, where
B is a 21-pixel octagon. (c) Peak detection: opening residual f − f ◦ B⊕3. (d) Valley detection:
closing residual f • B⊕3 − f .

are related to the bulky interior parts of X that are shaped similarly to B⊕n. Figure 74.9 shows a
detailed description of the skeletal decomposition and reconstruction of an image.

Several generalizations or modifications of the morphological skeletonization include: using struc-
turing elements different than disks that might result in fewer skeletal points, or removing redundant
points from the skeleton [29, 33, 39]; using different structuring elements for each skeletonization
step [23, 33]; using lattice generalizations of the erosions and openings involved in skeletoniza-
tion [30]; image representation based on skeleton-like multiscale residuals [23]; and shape decom-
position based on residuals between image parts and maximal openings [48]. In addition to its
general use for shape analysis, a major application of skeletonization has been binary image cod-
ing [13, 30, 39].

74.9.4 Shape Thinning

The skeleton is not necessarily connected; for connected skeletons see [3]. Another approach for
summarizing a binary shape down to a thin medial axis that is connected but does not necessarily
guarantee reconstruction is via thinning. Morphological thinning is defined [58] as the difference
between the original set X (representing the foreground of a binary image) and a set of feature
locations extracted via hit-miss transformations by pairs of foreground-background probing sets
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FIGURE 74.9: Morphological skeletonization of a binary image X (top left image) with respect to a
3 × 3-pixel square structuring element B. (a) Erosions X 	 B⊕n, n = 0,1,2,3. (b) Openings of
erosions (X	B⊕n) ◦B. (c) Skeleton subsets Sn. (d) Dilated skeleton subsets Sn ⊕B⊕n. (e) Partial
unions of skeleton subsets∪N≥k≥nSk . (f) Partial unions of dilated skeleton subsets∪N≥k≥nSk⊕B⊕k .

(Ai, Bi) designed to detect features that thicken the shape’s axis:

X©◦ {(Ai, Bi)}ni=1 ≡ X\
n⋃
i=1

X ⊗ (Ai, Bi) (74.58)

Usually each hit-miss by a pair (Ai, Bi) detects a feature at some orientation, and then the difference
from the original peels off this feature fromX. Since this feature might occur at several orientations,
the above thinning operator is applied iteratively by rotating its set of probing elements until there is
no further change in the image. Thinning has been applied extensively to character images. Examples
are shown in Fig. 74.10, where each thinning iteration used n = 3 template pairs (Ai, Bi) for the
hit-miss transformations of (74.58) designed in [8].

74.9.5 Size Distributions

Multiscale openings X 7→ X ◦ rB and closings X 7→ X • rB of compact sets X in R
d by convex

compact structuring elements rB, parameterizedby a scale parameter r ≥ 0, are called granulometries
and can unify all sizing (sieving) operations [42]. Because they satisfy a monotonic ordering

. . . X ◦ sB ⊆ X ◦ rB ⊆ . . . ⊆ X ⊆ . . . X • rB ⊆ X • sB ⊆ . . . , r < s , (74.59)

if we measure the volume (or area) of these sets as a function of scale, this function will also satisfy
the same ordering and hence create size distributions. Further, taking its derivative leads to a size
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FIGURE 74.10: Left column shows binary images of handwritten characters. Right column shows
their thinned version.

density function (or size histogram in the discrete case)

h(r) ≡



− dvol (X◦rB)
dr

, r ≥ 0

dvol (X•|r|B)
d|r| , r < 0

(74.60)

This conveys several types of information useful for shape description and multiscale image analysis.
For example, the boundary roughness ofX relative toB manifests itself as contributions in the lower-
size part of the size histogram. Long capes or bulky protruding parts inX that consist of patterns sB
show up as isolated impulses in the histogram around positive r = s. Finally, the size density can
be defined for ‘negative’ sizes by using closings instead of openings; in this case impulses at negative
sizes indicate the existence of prominent intruding gulfs or holes in X.

If X is a random set [42], then probabilistic measures of its size distribution have been used
extensively in image analysis applications to petrography and biology [58]. All of the above ideas
can be extended to gray-level images [35]. One application of gray-level size distributions is texture
classification [17].

74.9.6 Fractals

A large variety of natural image objects (e.g., clouds, coastlines, mountains, islands, trees, leaves, etc.)
can be modeled with fractals [32]. Fractals are mathematical sets with a very high level of geometrical
complexity; formally, their Hausdorff dimension is larger than their topological dimension. An
important characteristic of fractals to measure for purposes of shape description or classification is
their fractal dimension. Among the various methods [32] to estimate the fractal dimension D of the
surface of a set F ⊆ R

3, the covering method is based conceptually on Minkowski’s idea of finding
the area of irregular sets; dilate them with spheres of radius r , find the volume V (r) of the dilated
set, and set its area equal to limr↓0A(r), where A(r) = V (r)/2r . Further, the fractal dimension of
F can be found by

D = lim
r↓0

log[V (r)/r3]
log[(1/r)] (74.61)

The intuitive meaning ofD is thatV (r) ≈ (constant) ·r3−D as r ↓ 0, from whichD can be estimated
by least-squares fitting a straight line to a log-log plot of V (r).

The theory of morphological operators allows us to find more efficient implementations of the
above idea whenF is the graph of a 2D function f (x, y). Then, instead of multiscale 3D set dilations
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of F by spheres, it is computationally more efficient to perform 2D multiscale signal dilations and
erosions of f by disks rB and measure the multiscale volumes by

V (r) =
∫ ∫

[(f ⊕ rB)(x, y)− (f 	 rB)(x, y)]dxdy (74.62)

Thus, morphological flat dilations and erosions are used to create a volume-blanket as a layer either
covering or being peeled off from the surface of f at various scales. This morphological covering
method can also be applied to 1D signals f (x) by replacing volumes with areas and disks rB with
horizontal linear segments [−r, r]; such a 1D application is shown in Fig. 74.11.

FIGURE 74.11: Speech waveform of the word ‘soothing’ sampled at 10 kHz and its short-time fractal
dimension over 10-ms speech segments, computed every 1 ms and post-smoothed by a 3-point
median filter. The short-time fractal dimension increases with the amount of turbulence existing
during production of the corresponding sound, having a small value for vowels, medium for weak
voiced fricatives, and high for unvoiced fricatives.

74.9.7 Image Segmentation

One of the most powerful and advanced tools of mathematical morphology is the watershed trans-
formation [7] as applied to image segmentation. Let us regard the gray-level image to be segmented
as a topographic relief and assume a drop of water falling at a point on it and flowing down along a
steep slope path until it is trapped in a local minimum M of the relief. The set of points such that a
drop falling on them eventually reachesM is the catchment basin associated with the minimumM .
The union of the boundaries of the different catchment basins of the image constitute its watershed.
Thus, the watershed consists of contours located on crest lines separating adjacent minima.

To ease the segmentation of the original image f , the watershed transformation is usually applied
to its gradient magnitude g = ‖∇f ‖, which has higher contrast. However, direct computation
of the watershed of g usually leads to poor results, i.e., oversegmentation of f , because, even after
smoothing f or g, the latter often exhibits far too many minima. One of the best solutions to this
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problem is to use markers for the regions to be extracted. A marker is a small connected component
of pixels, a feature, located inside a region. Once the markers have been extracted, the gradient
image g is modified via morphological reconstruction so that these markers are imposed as the only
minima of the modified function while preserving the highest crest lines of g located between two
markers. Then, computing the watershed of the modified g usually provides a good segmentation
whose quality depends mainly on the markers and somewhat on g and the initial smoothing of f .
An example is shown in Fig. 74.12. The power of this approach as well as its difficulty lies in the
choice of the markers. Efficient ways to choose markers as well as fast algorithms for the watershed
computation are detailed in [44, 69]. This watershed methodology has already proved to be very
useful in various fields of image analysis, ranging from medical imaging to material sciences, remote
sensing, and digital elevation models.

FIGURE 74.12: (a) Image f . (b) Edge enhancement (magnitude of gradient) of f . (c) Markers.
(d) Watershed.

74.10 Conclusions

This chapter has provided a brief introduction of the theory of morphological signal processing and
its applications to image analysis and nonlinear filtering. This methodology nowadays offers a large
diversity of theoretical and algorithmic ideas that provide useful tools and inspire new directions
in the following research areas from the fields of signal processing, image processing and machine
vision, and pattern recognition: nonlinear filtering, nonlinear signal and system representation,
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image feature extraction, multiscale analysis and geometry-driven diffusion, image segmentation,
region-based image coding, motion analysis, automated visual inspection, and detection/estimation
in random sets.

Some attractive aspects of morphological signal operators for efficiently solving problems in the
above areas include: (1) suitability for geometry-related signal/image analysis problems; (2) unifi-
cation power because they can be defined both for numerical signals as well as for more abstract
data using their lattice generalizations; (3) simplicity of software or hardware implementations of the
basic operators; and (4) existence of efficient algorithms for implementing complex morphological
systems [68].

Three current research areas where successful future developments may significantly broaden and
improve the applicability of morphological signal processing are: (A) Optimal design of nonlinear sys-
tems based on morphological and related signal operators, where, despite their numerous applications,
very few ideas exist for their optimal design. (The current three main approaches are: (1) designing
binary systems as a finite union of erosions [20, 31] or hit-miss operations [5] using the morphological
representation theory of [33, 34] or [4]; (2) designing stack filters via threshold decomposition and
linear programming [18]; (3) gradient-based optimization of morphological/rank filters either via
simulated annealing [71] or via a least-mean-square algorithm and adaptive filtering [55].) (B) The
continuous (differential) approach to mathematical morphology via PDEs and exploitation of its excit-
ing relationships to the physics of wave propagation and eikonal optics [38, 57, 67]. (C) Development
of morphological systems for image pattern recognition by exploiting the efficiency of morphological
operators for shape analysis and their logic-related structure.
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75.1 Introduction

As we increasingly turn to nonlinear models to capture some of the more salient behavior of physical
or natural systems that cannot be expressed by linear means, systems that support solitons may be a
natural class toexplorebecause they sharemanyof theproperties thatmakeLTI systemsattractive from
an engineering standpoint. Although nonlinear, these systems are solvable through inverse scattering,
a technique analogous to the Fourier transform for linear systems [1]. Solitons are eigenfunctions of
these systems which satisfy a nonlinear form of superposition. We can therefore decompose complex
solutions in terms of a class of signals with simple dynamical structure. Solitons have been observed
in a variety of natural phenomena from water and plasma waves [7, 12] to crystal lattice vibrations [2]
and energy transport in proteins [7]. Solitons can also be found in a number of man-made media
including super-conducting transmission lines [11] and nonlinear circuits [6, 13]. Recently, solitons
have become of significant interest for optical telecommunications, where optical pulses have been
shown to propagate as solitons for tremendous distances without significant dispersion [4].

We view solitons from a different perspective. Rather than focusing on the propagation of solitons
over nonlinear channels, we consider using these nonlinear systems to both generate and process
signals for transmission over traditional linear channels. By using solitons for signal synthesis, the
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corresponding nonlinear systems become specialized signal processors which are naturally suited to
a number of complex signal processing tasks. This section can be viewed as an exploration of the
properties of solitons as signals. In the process, we explore the potential application of these signals
in a multi-user wireless communication context. One possible benefit of such a strategy is that
the soliton signal dynamics provide a mechanism for simultaneously decreasing transmitted signal
energy and enhancing communication performance.

75.2 Soliton Systems: The Toda Lattice

The Toda lattice is a conceptually simple mechanical example of a nonlinear system with soliton solu-
tions.1 It consists of an infinite chain of masses connected with springs satisfying the nonlinear force
law fn = a(e−b(yn−yn−1)−1)where fn is the force on the spring between masses with displacements
yn and yn−1 from their rest positions. The equations of motion for the lattice are given by

mÿn = a
(
e−b(yn−yn−1) − e−b(yn+1−yn)

)
, (75.1)

wherem is the mass, and a and b are constants. This equation admits pulse-like solutions of the form

fn(t) =
( m
ab

)
β2sech2(sinh−1(

√
m/ab β)n− βt) , (75.2)

which propagate as compressional waves stored as forces in the nonlinear springs. A single right-
traveling wave fn(t) is shown in Fig. 75.1(a).

FIGURE 75.1: Propagating wave solutions to the Toda lattice equations. Each trace corresponds to
the force fn(t) stored in the spring between mass n and n− 1.

This compressional wave is localized in time, and propagates along the chain maintaining constant
shape and velocity. The parameter β appears in both the amplitude and the temporal- and spatial-
scales of this one parameter family of solutions giving rise to tall, narrow pulses which propagate
faster than small, wide pulses. This type of localized pulse-like solution is what is often referred to as
a solitary wave.

1A comprehensive treatment of the lattice and its associated soliton theory can be found in the monograph by Toda [18].
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The study of solitary wave solutions to nonlinear equations dates back to the work of John Scott
Russell in 1834 and perhaps the first recorded sighting of a solitary wave. Scott Russell’s observations
of an unusual water wave in the Union Canal near Edinburgh, Scotland, are interpreted as a solitary
wave solution to the Korteweg deVries (KdV) equation [12].2 In a 1965 paper, Zabusky and Kruskal
performed numerical experiments with the KdV equation and noticed that these solitary wave solu-
tions retained their identity upon collision with other solitary waves, which prompted them to coin
the term soliton implying a particle-like nature. The ability to form solutions to an equation from a
superposition of simpler solutions is the type of behavior we would expect for linear wave equations.
However, that nonlinear equations such as the KdV or Toda lattice equations permit such a form of
superposition is an indication that they belong to a rather remarkable class of nonlinear systems.

An example of this form of soliton superposition is illustrated in Fig. 75.1(b) for two solutions of
the form of Eq. (75.2). Note that as a function of time, a smaller, wider soliton appears before a taller,
narrower one. However, as viewed by, e.g., the thirtieth mass in the lattice, the larger soliton appears
first as a function of time. Since the larger soliton has arrived at this node before the smaller soliton,
it has therefore traveled faster. Note that when the larger soliton catches up to the smaller soliton as
viewed on the fifteenth node, the combined amplitude of the two solitons is actually less than would
be expected for a linear system, which would display a linear superposition of the two amplitudes.
Also, the signal shape changes significantly during this nonlinear interaction.

An analytic expression for the two soliton solution for β1 > β2 > 0 is given by [6]

fn(t) = m

ab

β2
1sech2(η1)+ β2

2sech2(η2)+ Asech2(η1)sech2(η2)

(cosh(φ/2)+ sinh(φ/2) tanh(η1) tanh(η2))
2

, (75.3)

where

A = sinh(φ/2)
((
β2

1 + β2
2

)
sinh(φ/2)+ 2β1β2 cosh(φ/2)

)
,

φ = ln

(
sinh((p1 − p2)/2)

sinh((p1 + p2)/2)

)
, (75.4)

and βi = √
ab/m sinh(pi), and ηi = pin−βi(t− δi). Although Eq. (75.3) appears rather complex,

Fig. 75.1(b) illustrates that for large separations, |δ1 − δ2|, fn(t) essentially reduces to the linear
superposition of two solitons with parameters β1 and β2. As the relative separation decreases, the
multiplicative cross term becomes significant, and the solitons interact nonlinearly. This asymptotic
behavior can also be evidenced analytically

fn(t) = m

ab
β2

1sech2(p1n− β1(t − δ1)± φ/2)

+ m

ab
β2

2sech2(p2n− β2(t − δ2)∓ φ/2), t → ±∞ , (75.5)

where each component soliton experiences a net displacement φ from the nonlinear interaction.
The Toda lattice also admits periodic solutions which can be written in terms of Jacobian elliptic
functions [18].

An interesting observation can be made when the Toda lattice equations are written in terms of
the forces,

d2

dt2
ln

(
1 + fn

a

)
= b

m
(fn+1 − 2fn + fn−1) . (75.6)

2A detailed discussion of linear and nonlinear wave theory including KdV can be found in [21].
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If the substitution fn(t) = d2

dt2
ln φn(t) is made into Eq. (75.6), then the lattice equations become

m

ab

(
φ̇2
n − φnφ̈n

)
= φ2

n − φn−1φn+1 . (75.7)

In view of the Teager energy operator introduced by Kaiser in [8], the left-hand side of Eq. (75.7) is the
Teager instantaneous-time energy at the node n, and the right-hand side is the Teager instantaneous-
space energy at time t . In this form, we may view solutions to Eq. (75.7) as propagating waveforms that
have equal Teager energy as calculated in time and space, a relationship also observed by Kaiser [9].

75.2.1 The Inverse Scattering Transform

Perhaps the most significant discovery in soliton theory was that under a rather general set of condi-
tions, certain nonlinear evolution equations such as KdV or the Toda lattice could be solved analyti-
cally. That is, given an initial condition of the system, the solution can be explicitly determined for
all time using a technique called inverse scattering. Since much of inverse scattering theory is beyond
the scope of this section, we will only present some of the basic elements of the theory and refer the
interested reader to [1].

The nonlinear systems that have been solved by inverse scattering belong to a class of systems
called conservative Hamiltonian systems. For the nonlinear systems that we discuss in this section,
an integral component of their solution via inverse scattering lies in the ability to write the dynamics
of the system implicitly in terms of an operator differential equation of the form

dL(t)

dt
= B(t)L(t)− L(t)B(t), (75.8)

where L(t) is a symmetric linear operator, B(t) is an anti-symmetric linear operator, and both L(t)
and B(t) depend explicitly on the state of the system.

Using the Toda lattice as an example, the operators L and B would be the symmetric and anti-
symmetric tridiagonal matrices

L =


. . . an−1
an−1 bn an

an
. . .

 , B =


. . . −an−1
an−1 0 −an

an
. . .

 , (75.9)

where an = e(yn−yn+1)/2/2, and bn = ẏn/2, for mass positions yn in a solution to Eq. (75.1). Written
in this form, the entries of the matrices in Eq. (75.8) yield the following equations

ȧn = an(bn − bn+1) ,

ḃn = 2(a2
n−1 − a2

n) . (75.10)

These are equivalent to the Toda lattice equations, Eq. (75.1), in the coordinates an and bn. Lax has
shown [10] that when the dynamics of such a system can be written in the form of Eq. (75.8), then
the eigenvalues of the operator L(t) are time-invariant, i.e., λ̇ = 0. Although each of the entries of
L(t), an(t), and bn(t) evolve with the state of a solution to the Toda lattice, the eigenvalues of L(t)
remain constant.

If we assume that the motion on the lattice is confined to lie within a finite region of the lattice, i.e.,
the lattice is at rest for |n| → ∞, then the spectrum of eigenvalues for the matrixL(t) can be separated
into two sets. There is a continuum of eigenvalues λ ∈ [−1,1] and a discrete set of eigenvalues for
which |λk| > 1. When the lattice is at rest, the eigenvalues consist only of the continuum. When
there are solitons in the lattice, one discrete eigenvalue will be present for each soliton excited. This
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separation of eigenvalues of L(t) into discrete and continuous components is common to all of the
nonlinear systems solved with inverse scattering.

The inverse scattering method of solution for soliton systems is analogous to methods used to solve
linear evolution equations. For example, consider a linear evolution equation for the state y(x, t).
Given an initial condition of the system, y(x,0), a standard technique for solving for y(x, t) employs
Fourier methods. By decomposing the initial condition into a superposition of simple harmonic
waves, each of the component harmonic waves can be independently propagated. Given the Fourier
decomposition of the state at time t , the harmonic waves can then be recombined to produce the
state of the system y(x, t). This process is depicted schematically in Fig. 75.2(a).

FIGURE 75.2: Schematic solution to evolution equations.

An outline of the inverse scattering method for soliton systems is similar. Given an initial condition
for the nonlinear system, y(x,0), the eigenvalues λ and eigenfunctionsψ(x,0) of the linear operator
L(0) can be obtained. This step is often called forward scattering by analogy to quantum mechanical
scattering, and the collection of eigenvalues and eigenfunctions is called the nonlinear spectrum of
the system in analogy to the Fourier spectrum of linear systems. To obtain the nonlinear spectrum at
a point in time t , all that is needed is the time evolution of the eigenfunctions, since the eigenvalues do
not change with time. For these soliton systems, the eigenfunctions evolve simply in time, according
to linear differential equations. Given the eigenvalue-eigenfunction decomposition ofL(t), through
a process called inverse scattering, the state of the system y(x, t) can be completely reconstructed.
This process is depicted in Fig. 75.2(b) in a similar fashion to the linear solution process.

For a large class of soliton systems, the inverse scattering method generally involves solving either
a linear integral equation or a linear discrete-integral equation. Although the equation is linear,
finding its solution is often very difficult in practice. However, when the solution is made up of pure
solitons, then the integral equation reduces a set of simultaneous linear equations.

Since the discovery of the inverse scattering method for the solution to KdV, there has been a large
class of nonlinear wave equations, both continuous and discrete, for which similar solution methods
have been obtained. In most cases, solutions to these equations can be constructed from a nonlinear
superposition of soliton solutions. For a comprehensive study of inverse scattering and equations
solvable by this method, the reader is referred to the text by Ablowitz and Clarkson [1].

75.3 New Electrical Analogs for Soliton Systems

Since soliton theory has its roots in mathematical physics, most of the systems studied in the literature
have at least some foundation in physical systems in nature. For example, KdV has been attributed
to studies ranging from ion-acoustic waves in plasma [22] to pressure waves in liquid gas bubble
mixtures [12]. As a result, the predominant purpose of soliton research has been to explain physical
properties of natural systems. In addition, there are several examples of man-made media that have
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been designed to support soliton solutions and thus exploit their robust propagation. The use of
optical fiber solitons for telecommunications and of Josephson junctions for volatile memory cells
are two practical examples [11, 12].

Whether its goal has been to explain natural phenomena or to support propagating solitons,
this research has largely focused on the properties of propagating solitons through these nonlinear
systems. In this section, we will view solitons as signals and consider exploiting some of their
rich signal properties in a signal processing or communication context. This perspective is illustrated
graphically in Fig. 75.3, where a signal containing two solitons is shown as an input to a soliton system
which can either combine or separate the component solitons according to the evolution equations.
From the “solitons-as-signals” perspective, the corresponding nonlinear evolution equations can be

FIGURE 75.3: Two-soliton signal processing by a soliton system.

viewed as special-purpose signal processors that are naturally suited to such signal processing tasks as
signal separation or sorting. As we shall see, these systems also form an effective means of generating
soliton signals.

75.3.1 Toda Circuit Model of Hirota and Suzuki

FIGURE 75.4: Nonlinear LC ladder circuit of Hirota and Suzuki.

Motivated by the work of Toda on the exponential lattice, the nonlinear LC ladder network imple-
mentation shown in Fig. 75.4 was given by Hirota and Suzuki in [6]. Rather than a direct analogy to
the Toda lattice, the authors derived the functional form of the capacitance required for the LC line
to be equivalent. The resulting network equations are given by

d2

dt2
ln

(
1 + Vn(t)

V0

)
= 1

LC0V0
(Vn−1(t)− 2Vn(t)+ Vn+1(t)) , (75.11)

which is equivalent to the Toda lattice equation for the forces on the nonlinear springs given in
Eq. (75.6). The capacitance required in the nonlinear LC ladder is of the form

C(V ) = C0V0

V0 + V
, (75.12)
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whereV0 andC0 are constants representing the bias voltage and the nominal capacitance, respectively.
Unfortunately, such a capacitance is rather difficult to construct from standard components.

75.3.2 Diode Ladder Circuit Model for Toda Lattice

In [14], the circuit model shown in Fig. 75.5(a) is presented which accurately matches the Toda lattice
and is a direct electrical analog of the nonlinear spring mass system. When the shunt impedance Zn

FIGURE 75.5: Diode ladder network in (a), with Zn realized with a double capacitor as shown in
(b).

has the voltage-current relation v̈n(t) = α(in(t)− in+1(t)), then the governing equations become

d2vn(t)

dt2
= αIs

(
e(vn−1(t)−vn(t))/vt − e(vn(t)−vn+1(t))/vt

)
, (75.13)

or,
d2

dt2
ln

(
1 + in(t)

Is

)
= α

vt
(in−1(t)− 2in(t)+ in+1(t)) , (75.14)

where i1(t) = iin(t). These are equivalent to the Toda lattice equations with a/m = αIs and
b = 1/vt . The required shunt impedance is often referred to as a double capacitor, which can be
realized using ideal operational amplifiers in the gyrator circuit shown in Fig. 75.5(b), yielding the
required impedance of Zn = α/s2 = R3/R1R2C

2s2 [13].
This circuit supports a single soliton solution of the form

in(t) = β2sech2(pn− βτ) , (75.15)

where β = √
Is sinh(p), and τ = t

√
α/vt . The diode ladder circuit model is very accurate over a

large range of soliton wavenumbers, and is significantly more accurate than the LC circuit of Hirota
and Suzuki. Shown in Fig. 75.6(a) is an HSPICE simulation with two solitons propagating in the
diode ladder circuit.

As illustrated in the bottom trace of Fig. 75.6(a), a soliton can be generated by driving the circuit
with a square pulse of approximately the same area as the desired soliton. As seen on the third node
in the lattice, once the soliton is excited, the non-soliton components rapidly become insignificant.
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FIGURE 75.6: Evolution of a two-soliton signal through the diode lattice. Each horizontal trace
shows the current through one of the diodes 1,3,4, and 5.

A two-soliton signal generated by a hardware implementation of this circuit is shown on the
oscilloscope traces in Fig 75.6(b). The bottom trace in the figure corresponds to the input current
to the circuit, and the remaining traces, from bottom to top, show the current through the third,
fourth, and fifth diodes in the lattice.

75.3.3 Circuit Model for Discrete-KdV

The discrete-KdV equation (dKdV), sometimes referred to as the nonlinear ladder equations [1], or
the KM system (Kac and vanMoerbeke) [17] is governed by the equation

u̇n(t) = eun−1(t) − eun+1(t). (75.16)

In [14], the circuit shown in Fig. 75.7, is shown to be governed by the discrete-KdV equation

v̇n(t) = Is

C

(
evn−1(t)/vt − evn+1(t)/vt

)
, (75.17)

where Is is the saturation current of the diode, C is the capacitance, and vt is the thermal voltage.
Since this circuit is first order, the state of the system is completely specified by the capacitor voltages.

Rather than processing continuous-time signals as with the Toda lattice system, we can use this
system to process discrete-time solitons as specified by vn. For the purposes of simulation, we
consider the periodic dKdV equation by setting vn+1(t) = v0(t) and initializing the system with the
discrete-time signal corresponding to a listing of node capacitor voltages. We can place a multi-soliton
solution in the circuit using inverse scattering techniques to construct the initial voltage profile. The
single soliton solution to the dKdV system is given by

vn(t) = ln

(
cosh(γ (n− 2)− β t) cosh(γ (n+ 1)− β t)

cosh(γ (n− 1)− β t) cosh(γ n− β t)

)
, (75.18)

where β = sinh(2γ ). Shown in Fig. 75.8, is the result of an HSPICE simulation of the circuit with
30 nodes in a loop configuration.
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FIGURE 75.7: Circuit model for discrete-KdV.

FIGURE 75.8: To the left, the normalized node capacitor voltages, vn(t)/vt for each node is shown
as a function of time. To the right, the state of the circuit is shown as a function of node index for
five different sample times. The bottom trace in the figure corresponds to the initial condition.

75.4 Communication with Soliton Signals

Many traditional communication systems use a form of sinusoidal carrier modulation, such as am-
plitude modulation (AM) or frequency/phase modulation (FM/PM) to transmit a message-bearing
signal over a physical channel. The reliance upon sinusoidal signals is due in part to the simplicity
with which such signals can be generated and processed using linear systems. More importantly,
information contained in sinusoidal signals with different frequencies can easily be separated using
linear systems or Fourier techniques. The complex dynamic structure of soliton signals and the ease
with which these signals can be both generated and processed with analog circuitry renders them
potentially applicable in the broad context of communication in an analogous manner to sinusoidal
signals.

We define a soliton carrier as a signal that is composed of a periodically repeated single soliton
solution to a particular nonlinear system. For example, a soliton carrier signal for the Toda lattice
is shown in Fig. 75.9. As a Toda lattice soliton carrier is generated, a simple amplitude modulation
scheme could be devised by slightly modulating the soliton parameter β, since the amplitude of these
solitons is proportional to β2. Similarly, an analog of FM or pulse-position modulation could be
achieved by modulating the relative position of each soliton in a given period, as shown in Fig. 75.9.

As a simple extension, these soliton modulation techniques can be generalized to include multiple
solitons ineachperiodandaccommodatemultiple information-bearing signals, as shown inFig. 75.10
for a four soliton example using the Toda lattice circuits presented in [14]. In the figure, a signal
is generated as a periodically repeated train of four solitons of increasing amplitude. The relative
amplitudes or positions of each of the component solitons could be independently modulated about
their nominal values to accommodate multiple information signals in a single soliton carrier.

The nominal soliton amplitudes can be appropriately chosen so that as this signal is processed
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FIGURE 75.9: Modulating the relative amplitude or position of soliton carrier signal for the Toda
lattice.

FIGURE 75.10: Multiplexing of a four soliton solution to the Toda lattice.

by the diode ladder circuit, the larger amplitude solitons propagate faster than the smaller solitons,
and each of the solitons can become nonlinearly superimposed as viewed at a given node in the
circuit. From an input-output perspective, the diode ladder circuit can be used to make each of the
solitons coincidental in time. As indicated in the figure, this packetized soliton carrier could then be
transmitted over a wireless communication channel. At the receiver, the multi-soliton signal can be
processed with an identical diode ladder circuit which is naturally suited to perform the nonlinear
signal separation required to demultiplex the multiple soliton carriers. As the larger amplitude
solitons emerge before the smaller, after a given number of nodes, the original multi-soliton carrier
re-emerges from the receiver in amplitude-reversed order. At this point, each of the component
soliton carriers could be demodulated to recover the individual message signals it contains. Aside
from a packetization of the component solitons, we will see that multiplexing the soliton carriers in
this fashion can lead to an increased energy efficiency for such carrier modulation schemes, making
such techniques particularly attractive for a broad range of portable wireless and power-limited
communication applications.

Since the Toda lattice equations are symmetric with respect to time and node index, solitons can
propagate in either direction. As a result, a single diode ladder implementation could be used as both
a modulator and demodulator simultaneously. Since the forward propagating solitons correspond
to positive eigenvalues in the inverse scattering transform and the reverse propagating solitons have
negative eigenvalues, the dynamics of the two signals will be completely decoupled.

A technique for modulation of information on soliton carriers was also proposed by Hirota et
al. in [15] and [16]. In their work, an amplitude and phase modulation of a two-soliton solution
to the Toda lattice were presented as a technique for private communication. Although their signal
generation and processing methods relied on an inexact phenomenon known as recurrence, the
modulation paradigm they presented is essentially a two-soliton version of the carrier modulation
paradigm presented in [14].
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75.4.1 Low Energy Signaling

A consequence of some of the conservation laws satisfied by the Toda lattice is a reduction of energy
in the transmitted signal for the modulation techniques of this section. In fact, as a function of
the relative separation of two solitons, the minimum energy of the transmitted signal is obtained
precisely at the point of overlap. This can be shown [14] for the two soliton case by analysis of the
form of the equation for the energy in the waveform, v(t) = fn(t),

E =
∫ ∞

−∞
v(t; δ1, δ2)2dt , (75.19)

where v(t; δ1, δ2) is given in Eq. (75.3). In [14] it is proven thatE is exactly minimized when δ1 = δ2,
i.e., the two solitons are mutually co-located. Significant energy reduction can be achieved for a fairly
wide range of separations and amplitudes, indicating that the modulation techniques described here
could take advantage of this reduction.

75.5 Noise Dynamics in Soliton Systems

In order to analyze the modulation techniques presented here, accurate models are needed for the
effects of random fluctuations on the dynamics of soliton systems. Such disturbances could take
the form of additive or convolutional corruption incurred during terrestrial or wired transmission,
circuit thermal noise, or modeling errors due to system deviation from the idealized soliton dynamics.
A fundamental property of solitons is that they are stable in the presence of a variety of disturbances.

With the development of the inverse scattering framework and the discovery that many soliton
systems were conservative Hamiltonian systems, many of the questions regarding the stability of
soliton solutions are readily answered. For example, since the eigenvalues of the associated linear
operator remain unchanged under the evolution of the dynamics, then any solitons that are initially
present in a system must remain present for all time, regardless of their interactions. Similarly,
the dynamics of any non-soliton components that are present in the system are uncoupled from
the dynamics of the solitons. However, in the communication scenario discussed in [14], soliton
waveforms are generated and then propagated over a noisy channel. During transmission, these
waveforms are susceptible to additive corruption from the channel. When the waveform is received
and processed, the inverse scattering framework can provide useful information about the soliton
and noise content of the received waveform.

In this section, we will assume that soliton signals generated in a communication context have
been transmitted over an additive white Gaussian noise channel. We can then consider the effects
of additive corruption on the processing of soliton signals with their nonlinear evolution equations.
Two general approaches are taken to this problem. The first primarily deals with linearized models
and investigates the dynamic behavior of the noise component of signals composed of an information
bearing soliton signal and additive noise. The second approach is taken in the framework of inverse
scattering and is based on some results from random matrix theory. Although the analysis techniques
developed here are applicable to a large class of soliton systems, we focus our attention on the Toda
lattice as an example.

75.5.1 Toda Lattice Small Signal Model

If a signal that is processed in a Toda lattice receiver contains only a small amplitude noise component,
then the dynamics of the receiver can be approximated by a small signal model,

d2Vn(t)

dt2
= 1

LC
(Vn−1(t)− 2Vn(t)+ Vn+1(t)) , (75.20)
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when the amplitude of Vn(t) is appropriately small.
If we consider processing signals with an infinite linear lattice and obtain an input-output rela-

tionship where a signal is input at the zeroth node and the output is taken as the voltage on the N th
node, it can be shown that the input-output frequency response of the system can be given by

HN(jω) =
{
e−2j sin−1(ω

√
LC/2)N , |ω| < 2/

√
LC

e[jπ−2 cosh−1(ω
√
LC/2)]N, else ,

(75.21)

which behaves as a low pass filter, and forN � 1, approaches

|HN(jω)|2 =
{

1, |ω| < ωc = 2/
√
LC

0, else .
(75.22)

Our small signal model indicates that in the absence of solitons in the received signal, small
amplitude noise will be processed by a low pass filter. If the received signal also contains solitons,
then the small signal model of Eq. (75.20) will no longer hold. A linear small signal model can still be
used if we linearize Eq. (75.11) about the known soliton signal. Assuming that the solution contains
a single soliton in small amplitude noise, Vn(t) = Sn(t)+ vn(t), we can write Eq. (75.11) as an exact
equation that is satisfied by the non-soliton component

d2

dt2
ln

(
1 + vn(t)

1 + Sn(t)

)
= 1

LC
(vn−1(t)− 2vn(t)+ vn+1(t)) , (75.23)

which can be viewed as the fully nonlinear model with a time-varying parameter, (1 + Sn(t)). As
a result, over short time scales relative to Sn(t), we would expect this model to behave in a similar
manner to the small signal model of Eq. (75.20). With vn(t) � (1 + Sn(t)), we obtain

d2

dt2

vn(t)

1 + Sn(t)
≈ 1

LC
(vn−1(t)− 2vn(t)+ vn+1(t)) . (75.24)

When the contribution fromthe soliton is small, Eq. (75.24) reduces to the linear systemofEq. (75.20).
We would therefore expect that both before and after a soliton has passed through the lattice, the
system essentially low pass filters the noise. However, as the soliton is processed, there will be a
time-varying component to the filter.

To confirm the intuition developed through small signal analyses, the fully nonlinear dynamics
are shown in Fig. 75.11 in response to a single soliton at 20dB signal-to-noise ratio. As expected, the
response to the lattice is essentially the unperturbed soliton with an additional low pass perturbation.
The spectrum of the noise remains essentially flat over the bandwidth of the soliton and is attenuated
out of band.

75.5.2 Noise Correlation

The statistical correlation of the system response to the noise component can also be estimated from
our linear analyses. Given that the lattice behaves as a lowpass filter, the small amplitude noise vn(t)
is zero mean and has an auto-correlation function given by

Rn,n(τ ) = E{vn(t)vn(t + τ)} ≈ N0
sin(ωcτ)

πτ
, (75.25)

and a variance σ 2
vn

≈ N0ωc/π , for n � 1.
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FIGURE 75.11: Response to a single soliton with β = sinh(1) in 20 dB Gaussian noise.

Although the autocorrelation of the noise at each node is only affected by the magnitude response
of Eq. (75.21), the cross-correlation between nodes is also affected by the phase response. The
cross-correlation between nodesm and n is given by

Rm,n(τ ) = Rm,m(τ) ∗ hn−m(−τ) , (75.26)

where hm(τ) is the inverse Fourier transform of Hm(jω) in Eq. (75.21). Since hm(τ) ∗ hm(−τ)
approaches the impulse response of an ideal low pass filter for m � 1, we have

Rm,n(τ ) ≈ N0
sin(ωcτ)

πτ
∗ hn−m(τ) . (75.27)

For small amplitude noise, the correlation structure can be examined through the linear lattice,
which acts as a dispersive low pass filter. A corresponding analysis of the nonlinear system in the
presence of solitons is prohibitively complex. However, we can explore the analyses numerically by
linearizing the dynamics of the system about the known soliton trajectory.

From our earlier linearized analyses, the linear time-varying small signal model can be viewed over
short time scales as a linear time-invariant chain, with a slowly varying parameter. The resulting
input-output transfer function can be viewed as a low pass filter with time varying cutoff frequency
equal toωc when a soliton is far from the node, and toω0

√
1 + V 0

n as a soliton passes through. Thus,
we would expect the variance of the node voltage to rise from a nominal value as a soliton passes
through. This intuition can be verified experimentally by numerically integrating the corresponding
Riccati equation for thenodecovariance andcomputing the resultingvarianceof thenoise component
on each node. Since the lattice was assumed initially at rest, there will be a startup transient, as well
as an initial spatial transient at the beginning of the lattice, after which the variance of the noise is
amplified from the nominal variance as each soliton passes through, confirming our earlier intuition.

75.5.3 Inverse Scattering-Based Noise Modeling

The inverse scattering transform provides a particularly useful mechanism for exploring the long term
behavior of soliton systems. In a similar manner to the use of the Fourier transform for describing the
ability of linear processors to extract a signal from a stationary random background, the nonlinear
spectrum of a received soliton signal in noise can effectively characterize the ability of the nonlinear
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system to extract or process the component solitons. In this section, we focus on the effects of random
perturbations on the dynamics of solitons in the Toda lattice from the viewpoint of inverse scattering.

As seen in Section 75.2.1, the dynamics of the Toda lattice may be described by the evolution of
the matrix

L(t) =


. . . an−1(t)

an−1(t) bn(t) an(t)

an(t)
. . .

 , (75.28)

whose eigenvalues outside the range |λ| ≤ 1 give rise to soliton behavior. By considering the effects
of small amplitude perturbations to the sequences an(t) and bn(t) on the eigenvalues ofL(t), we can
observe the effects on the soliton dynamics through the eigenvalues corresponding to solitons.

Following [20], we write the N × N matrix L as L = L0 + D, where L0 is the unperturbed
symmetric matrix, and D is the symmetric random perturbation. To second order, the eigenvalues
are given by

λg = µg + d̂gg −
N∑

i=1,i 6=g

d̂gi d̂ig

µig
, (75.29)

where µg is the gth eigenvalue of L0, µig = µi − µg , and d̂ij are the elements of the matrix D̂
defined by D̂ = C>DC, and C is a matrix that diagonalizes L, C>L0C = diag(µ1, . . . , µN).

To second order, the means of the eigenvalues are given by

E{λg} = µg −
N∑

i=1,i 6=g

d̂gi d̂ig

µig
, (75.30)

indicating that the eigenvalues of L are asymptotically (SNR→ ∞) unbiased estimates of the eigen-
values of L0. To first order, λg ≈ µg − d̂gg , and d̂gg is a linear combination of the elements of
D,

d̂gg =
N∑

r=1,s=1

cgrcgsdrs . (75.31)

Therefore, if the elements of D are jointly Gaussian, then to first order, the eigenvalues of L will be
jointly Gaussian, distributed about the eigenvalues of L0.

The variance of the eigenvalues can be shown to be approximately given by

Var(λg) ≈ σ 2
β + 2σ 2

α (1 + cos(4πg/N))

N
, (75.32)

to second order, where σ 2
β and σ 2

α are the variances of the iid perturbations to bn and an, respectively.
This indicates that the eigenvalues of L are consistent estimates of the eigenvalues of L0.

To first order, when processing small amplitude noise alone, the noise only excites eigenvalues
distributed about the continuum, corresponding to non-soliton components. When solitons are
processed in small amplitude noise, to first order, there is a small Gaussian perturbation to the
soliton eigenvalues as well.

75.6 Estimation of Soliton Signals

In the communication techniques suggested in Section 75.4, the parameters of a multi-soliton carrier
are modulated with message-bearing signals and the carrier is then processed with the corresponding
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nonlinear evolution equation. A potential advantage to transmission of this packetized soliton carrier
is a net reduction in the transmitted signal energy. However, during transmission, the multi-soliton
carrier signal can be subjected to distortions due to propagation, which we have assumed can be
modeled as additive white Gaussian noise (AWGN). In this section, we investigate the ability of a
receiver to estimate the parameters of a noisy multi-soliton carrier. In particular, we consider the
problems of estimating the scaling parameters and the relative positions of component solitons of
multi-soliton solutions, once again focusing on the Toda lattice as an example. For each of these
problems, we derive Cramér-Rao lower bounds for the estimation error variance through which
several properties of multi-soliton signals can be observed. Using these bounds, we will see that
although the net transmitted energy in a multi-soliton signal can be reduced through nonlinear
interaction, the estimation performance for the parameters of the component solitons can also be
enhanced. However, at the receiver there are inherent difficulties in parameter estimation imposed by
this nonlinear coupling. We will see that the Toda lattice can act as a tuned receiver for the component
solitons, naturally decoupling them so that the parameters of each soliton can be independently
estimated. Based on this strategy, we develop robust algorithms for maximum likelihood parameter
estimation. We also extend the analogy of the inverse scattering transform as an analog of the Fourier
transform for linear techniques, by developing a maximum likelihood estimation algorithm based
on the nonlinear spectrum of the received signal.

75.6.1 Single Soliton Parameter Estimation: Bounds

In our simplified channel model, the received signal r(t) contains a soliton signal s(t) in an additive
white Gaussian noise background n(t)with noise powerN0. A bound on the variance of an estimate
of the parameter β may be useful in determining the demodulation performance of an AM-like
modulation or PAM, where the component soliton wavenumbers are slightly amplitude modulated
by a message-bearing waveform. When s(t) contains a single soliton for the Toda lattice, s(t) =
β2sech2(βt), the variance of any unbiased estimator β̂ of β must satisfy the Cramér-Rao lower
bound (CRB) [19],

Var
(
β̂
)

≥ N0∫ tf
ti

(
∂s(t;β)
∂β

)2
dt

, (75.33)

where the observation interval is assumed to be ti < t < tf . For the infinite observation interval,
−∞ < t < ∞, the CRB (75.33) is given by

Var
(
β̂
)

≥ N0(
8
3 + 4π2

45

)
β

≈ N0

3.544β
. (75.34)

A slightly different bound may be useful in determining the demodulation performance of an
FM-like modulation or PPM, where the soliton position, or time-delay, is slightly modulated by a
message-bearing waveform. The fidelity of the recovered message waveform will be directly affected
by the ability of a receiver to estimate the soliton position. When the signal s(t) contains a single
soliton s(t) = β2sech2(β(t − δ)), where δ is the relative position of the soliton in a period of the
carrier, the CRB for δ̂ is given by

Var
(
δ̂
)

≥ N0∫ tf
ti

4β6sech4(β(t − δ)) tanh2(β(t − δ))dt
= N0(

16
15

)
β5

. (75.35)

Asacomparison, forestimating the timeofarrivalof the raisedcosinepulse,β2 (1 + cos(2πβ(t − δ))),
the CRB for this more traditional pulse position modulation would be

Var
(
δ̂
)

≥ N0

π2β5
, (75.36)
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which has the same dependence on signal amplitude as Eq. (75.35). These bounds can be used for
multiple soliton signals if the component solitons are well separated in time.

75.6.2 Multi-Soliton Parameter Estimation: Bounds

When the received signal is a multi-soliton waveform where the component solitons overlap in
time, the estimation problem becomes more difficult. It follows that the bounds for estimating the
parameters of such signals must also be sensitive to the relative positions of the component solitons.

We will focus our attention on the two-soliton solution to the Toda lattice, given by Eq. (75.3).
We are generally interested in estimating the parameters of the multi-soliton carrier for an unknown
relative spacing among the solitons present in the carrier signal. Either the relative spacing of the
solitons has been modulated and is therefore unknown, or the parameters β1 and β2 are slightly
modulated and the induced phase shift in the received solitons, φ, is unknown. For large separations,
δ = δ1 − δ2, the CRB for estimating the parameters of either of the component solitons will be
unaffected by the parameters of the other soliton. As shown in Fig. 75.12, when the component
solitons are well separated, the CRB for either β1 or β2 approaches the CRB for estimation of a single
soliton with that parameter value in the same level of noise. The bounds for estimating β1, and β2
are shown in Fig. 75.12 as a function of the relative separation, δ.

FIGURE 75.12: The Cramér-Rao lower bound for estimating β1 = sinh(2) and β2 = sinh(1.75)
with all parameters unknown in AWGN with N0 = 1. The bounds are shown as a function of the
relative separation, δ = δ1 − δ2. The CRB for estimating β1 and β2 of a single soliton with the same
parameter value is indicated with ‘o’ and ‘×’ marks, respectively.

Note that both of the bounds are reduced by the nonlinear superposition, indicating that the
potential performance of the receiver is enhanced by the nonlinear superposition. However, if we let
the parameter difference β2 −β1 increase, we notice a different character to the bounds. Specifically,
we maintain β1 = sinh(2), and let β1 = sinh(1.25). The performance of the larger soliton is
inhibited by the nonlinear superposition, while the smaller soliton is still enhanced. In fact, the CRB
for the smaller soliton becomes lower than that for the larger soliton near the range δ = 0. This
phenomenon results from the relative sensitivity of the signal s(t) to each of the parameters β1 and
β2. The ability to simultaneously enhance estimation performance while decreasing signal energy is
an inherently nonlinear phenomena.
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Combining these results with the results of Section 75.4.1, we see that the nonlinear interaction
of the component solitons can simultaneously enhance the parameter estimation performance and
reduce the net energy of the signal. This property may make superimposed solitons attractive for use
in a variety of communication systems.

75.6.3 Estimation Algorithms

In this section we will present and analyze several parameter estimation algorithms for soliton sig-
nals. Again, we will focus on the diode ladder circuit implementation of the Toda lattice equations,
Eq. (75.14). As motivation, consider the problem of estimating the position, δ, of a single soliton
solution s(t; δ) = β2sech2(β(t−δ)), with the parameter β known. This is a classical time-of-arrival
estimation problem. For observations r(t) = s(t)+ n(t), where n(t) is a stationary white Gaussian
process, the maximum likelihood estimate is given by the value of the parameter δ which minimizes
the expression

δ̂ = arg min
τ

∫ tf

ti

(r(t)− s(t − τ))2dt . (75.37)

Since the replica signals all have the same energy, we can represent the minimization in (75.37) as a
maximization of the correlation

δ̂ = arg min
τ

∫ tf

ti

r(t)s(t − τ)dt . (75.38)

It is well known that an efficient way to perform the correlation (75.38) with all of the replica signals
s(t − τ) over the range δmin < τ < δmax, is through convolution with a matched filter followed by a
peak-detector [19].

When the signal r(t) contains a multi-soliton signal, s(t;β, δ), where we wish to estimate the
parameter vector δ, the estimation problem becomes more involved. If the component solitons
are well separated in time, then the maximum likelihood estimator for the positions of each of
the component solitons would again involve a matched filter processor followed by a peak-detector
for each soliton. If the component solitons are not well separated and are therefore nonlinearly
combined, the estimation problems are tightly coupled and should not be performed independently.
The estimation problems can be decoupled by preprocessing the signal r(t) with the Toda lattice. By
setting iin(t) = r(t), that is the current through the first diode in the diode ladder circuit, then as
the signal propagates through the lattice, the component solitons will naturally separate due to their
different propagation speeds.

Defining the signal and noise components as viewed on the kth node in the lattice as sk(t) and
nk(t), respectively, i.e., ik(t) = sk(t) + nk(t), where n0(t) is the stationary white Gaussian noise
process n(t), in Section 75.5, we saw that in the high SNR limit, nk(t) will be low pass and Gaussian.
In this limit, the ML estimator for the positions, δi , can again be formulated using matched filters
for each of the component solitons. Since the lattice equations are invertible, at least in principle
through inverse scattering, then the ML estimate of the parameter δ based on r(t)must be the same
as the estimate based on in(t) = T (r(t)), for any invertible transformation T (·). If the component
solitons are well separated as viewed on the N th node of the lattice, iN (t), then an ML estimate
based on observations of iN (t) will reduce to the aggregate of ML estimates for each of the separated
component solitons on low pass Gaussian noise. For soliton position estimation, this amounts to
a bank of matched filters. We can view this estimation procedure as a form of nonlinear matched
filtering, whereby first, dynamics matched to the soliton signals are used to perform the necessary
signal separation, and then filters matched to the separated signals are used to estimate their arrival
time.
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75.6.4 Position Estimation

We will focus our attention on the two-soliton signal (75.3). If the component solitons are well-
separated as viewed on theN th node of the Toda lattice, the signal appears to be a linear superposition
of two solitons,

iN (t) ≈ β2
1sech2(β1(t − δ1)− p1N − φ/2)

+ β2
2sech2(β2(t − δ2)− p2N + φ/2) , (75.39)

where φ/2 is the time-shift incurred due to the nonlinear interaction. Matched filters can now be
used to estimate the time of the arrival of each soliton at the N th node. We formulate the estimate

δ̂1 =
(
taN,1 − p1N + φ/2

β1

)
, δ̂2 =

(
taN,2 − p2N − φ/2

β2

)
, (75.40)

where taN,i is the time of arrival of the ith soliton on node N . The performance of this algorithm
for a two-soliton signal with β = [sinh(2), sinh(1.5)] is shown in Fig. 75.13. Note that although the
error variance of each estimate appears to be a constant multiple of the CRB, the estimation error
variance approaches the CRB in an absolute sense asN0 → 0.

FIGURE 75.13: The CRBs for δ1 and δ2 are shown with solid and dashed lines, while the estimation
error results of 100 Monte-Carlo trials are indicated with ‘o’ and ‘×’ marks, respectively.

75.6.5 Estimation Based on Inverse Scattering

The transformation L(t) = T {r(t)}, where L(t) is the symmetric matrix from the inverse scattering
transform, is also invertible in principle. Therefore, an ML estimate based on the matrix L(t)
must be the same as an ML estimate based on r(t). We therefore seek to form an estimate of the
parameters of the signal r(t) by performing the estimation in the nonlinear spectral domain. This
can be accomplished by viewing the Toda lattice as a nonlinear filterbank which projects the signal
r(t) onto the spectral components of L(t). This use of the inverse scattering transform is analogous
to performing frequency estimation with the Fourier transform.

If vn(t) evolves according to the Toda lattice equations, then the eigenvalues of the matrix, L(t)
are time-invariant, where, an(t) = 1

2e
(vn(t)−vn+1(t))/2, and bn = v̇n(t)/2. Further, the eigenvalues of
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L(t) for which |λi | > 1 correspond to soliton solutions, with βi = sinh(cosh−1(λi)) =
√
λ2
i − 1.

The eigenvalues ofL(t) are, to first order, jointly Gaussian and distributed about the true eigenvalues
corresponding to the original multi-soliton signal, s(t). Therefore, estimation of the parameters βi
from the eigenvalues of L(t) as described above constitutes a maximum likelihood approach in the
high SNR limit.

The parameter estimation algorithm now amounts to an estimation of the eigenvalues of L(t).
Note that sinceL(t) is tridiagonal, very efficient techniques for eigenvalue estimation may be used [3].

The estimate of the parameter β is then found by the relation β̂i =
√
λ2
i − 1, where |λi | > 1, and the

sign of βi can be recovered from the sign of λi . Clearly if there is a pre-specified number of solitons,
k, present in the signal, then the k largest eigenvalues would be used for the estimation. If the number
k were unknown, then a simultaneous detection and estimation algorithm would be required.

An example of the joint estimation of the parameters of a two-soliton signal is shown in Fig. 75.14(a).
The estimation error variance decreases with the noise power at the same exponential rate as the
CRB.

To verify that the performance of the estimation algorithm has the same dependence on the relative
separation of solitons as indicated in Section 75.6.2, the estimation error variance is also indicated in
Fig. 75.14(b) vs. the relative separation, δ. In the figure, the mean-squared parameter estimation error
for each of the parameters βi are shown along with their corresponding CRB. At least empirically, we
see that the fidelity of the parameter estimates are indeed enhanced by their nonlinear interaction,
even though this corresponds to a signal with lower energy, and therefore lower observational SNR.

FIGURE 75.14: The estimation error variance for the inverse scattering-based estimates of β1 =
sinh(2), β2 = sinh(1.5). The bounds for β1 and β2 are indicated with solid and dashed lines,
respectively. The estimation results for 100 Monte Carlo trials with a diode lattice of N = 10nodes
for β1 and β2 are indicated by the points labeled ‘o’ and ‘×’, respectively.
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75.7 Detection of Soliton Signals

The problem of detecting a single soliton or multiple non-overlapping solitons in AWGN falls within
the theory of classical detection. The Bayes optimal detection of a known or multiple known signals
in AWGN can be accomplished with matched filter processing. When the signal r(t) contains a multi-
soliton signal where the component solitons are not resolved, the detection problem becomes more
involved. Specifically, consider a signal comprising a two-soliton solution to the Toda lattice, where
we wish to decide which, if any, solitons are present. If the relative positions of the component solitons
are known a priori, then the detection problem reduces to deciding which among four possible known
signals is present,

H0 : r(t) = n(t) ,

H1 : r(t) = s1(t)+ n(t) ,

H2 : r(t) = s2(t)+ n(t) ,

H12 : r(t) = s12(t)+ n(t) ,

where s1(t), s2(t), and s12(t) are soliton one, soliton two, and the multi-soliton signals, respectively.
Once again, this problem can be solved with standard Gaussian detection theory.

If the relative positions of the solitons are unknown, as would be the case for a modulated soliton
carrier, then the signal s12(t)will vary significantly as a function of the relative separation. Similarly,
if the signals are to be transmitted over a soliton channel where different users occupy adjacent
soliton wavenumbers, any detection at the receiver would have to be performed with the possibility
of another soliton component present at an unknown position. We therefore obtain a composite
hypothesis testing problem, whereby under each hypothesis, we have

H0 : r(t) = n(t) ,

H1 : r(t) = s1(t; δ1)+ n(t) ,

H2 : r(t) = s2(t; δ2)+ n(t) ,

H12 : r(t) = s12(t; δ)+ n(t) ,

where δ = [δ1, δ2]>. The general problem of detection with an unknown parameter, δ, can be
handled in a number of ways. For example, if the parameter can be modeled as random and the
distribution for the parameter were known, pδ(δ), along with the distributions pr|δ,H (R|δ,Hi) for
each hypothesis, then the Bayes or Neyman-Pearson criteria can be used to formulate a likelihood
ratio test. Unfortunately, even when the distribution for the parameter δ is known, the likelihood
ratios cannot be found in closed form for even the single soliton detection problem.

Another approach that is commonly used in radar processing [5, 19] applies when the distribution
of δ does not vary rapidly over a range of possible values while the likelihood function has a sharp
peak as a function of δ. In this case, the major contribution to the integral in the averaged likelihood
function is due to the region around the value of δ for which the likelihood function is maximum,
and therefore this value of the likelihood function is used as if the maximizing value, δ̂ML, were the
actual value. Since δ̂ML is the maximum likelihood estimate of δ based on the observation, r(t), such
techniques are called “maximum likelihood detection”. Also, the term “generalized likelihood ratio
test” (GLRT) is used since the hypothesis test amounts to a generalization of the standard likelihood
ratio test.

If we plan to employ a GLRT for the multi-soliton detection problem, we are again faced with the
need for an ML estimate of the position, δ̂ML. A standard approach to such problems would involve
turning the current problem into one with hypotheses H0, H1, and H2 as before, and an additional
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M hypotheses—one for each value of the parameter δ sampled over a range of possible values. The
complexity of this type of detection problem increases exponentially with the number of component
solitons, Ns , resulting in a hypothesis testing problem with O((M + 1)Ns ) hypotheses.

However, as with the estimation problems in Section 75.6, the detection problems can be decoupled
by preprocessing the signal r(t) with the Toda lattice. If the component solitons separate as viewed
on the N th node in the lattice, then the detection problem can be more simply formulated using
iN (t). The invertibility of the lattice equations implies that a Bayes optimal decision based on r(t)
must be the same as that based on iN (t). Since the Bayes optimal decision can be performed based
on the likelihood function 3(r(t)), and 3(iN(t)) = 3(T {r(t)}) = 3(r(t)), the optimal decisions
based on r(t) and iN (t)must be the same for any invertible transformation T {·}. Although we will be
using a GLRT, where the value of δ̂ML is used for the unknown positions of the multi-soliton signal,
since the ML estimates based on r(t) and iN (t)must also be the same, the detection performance of
a GLRT using those estimates must also be the same. Since at high SNR, the noise component of the
signal iN (t) can be assumed low pass and Gaussian, the GLRT can be performed by pre-processing
r(t) with the Toda lattice equations followed by matched filter processing.

75.7.1 Simulations

To illustrate the algorithm, we consider the hypothesis test betweenH0 andH12, where the separation
of the two solitons, δ1 − δ2, varies randomly in the interval [−1/β2,1/β2]. The detection processor
comprises a Toda lattice of N = 20nodes, with the detection performed based on the signal i10(t).
To implement the GLRT, we search over a fixed time interval about the expected arrival time for each
soliton. In this manner we obtain a sequence of 1000 Monte Carlo values of the processor output for
each hypothesis. A set of Monte Carlo runs has been completed for each of three different levels of
the noise power, N0.

The receiver operating characteristic (ROC) for the soliton with β2 = sinh(1.5) is shown in
Fig. 75.15, where the probability of detection,PD , for this hypothesis test is shown as a function of the
false alarm probability,PF . For comparison, we also show the ROC that would result from a detection
of the soliton alone, at the same noise level and with the time-of-arrival known. The detection
index, d = √

E/N0, is indicated for each case, where E is the energy in the component soliton.
The corresponding results for the larger soliton are qualitatively similar, although the detection
indices for that soliton alone, with β1 = sinh(2), are 5.6, 4, and 3.3, respectively. Therefore, the
detection probabilities are considerably higher for a fixed probability of false alarm. Note that the
detection performance for the smaller soliton is well modeled by the theoretical performance for
detection of the smaller soliton alone. This implies, at least empirically, that the ability to detect the
component solitons in a multi-soliton signal appears to be unaffected by the nonlinear coupling with
other solitons. Further, although the unknown relative separation results in significant waveform
uncertainty and would require a prohibitively complex receiver for standard detection techniques,
Bayes optimal performance can still be achieved with a minimal increase in complexity.
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FIGURE 75.15: A set of empirically generated ROCs are shown for the detection of the smaller soliton
from a two-soliton signal. For each of the three noise levels, the ROC for detection of the smaller
soliton alone is also indicated along with the corresponding detection index, d .
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76.1 Introduction

The past 20 years witnessed an expansion of power spectrum estimation techniques, which have
proved essential in many applications, such as communications, sonar, radar, speech/image process-
ing, geophysics, and biomedical signal processing [13, 11, 7]. In power spectrum estimation the
process under consideration is treated as a superposition of statistically uncorrelated harmonic com-
ponents. The distribution of power among these frequency components is the power spectrum. As
such, phase relations between frequency components are suppressed. The information in the power
spectrum is essentially present in the autocorrelation sequence, which would suffice for the complete
statistical description of a Gaussian process of known mean. However, there are applications where
one would need to obtain information regarding deviations from the Gaussianity assumption and
presence of nonlinearities. In these cases power spectrum is of little help, and one would have to
look beyond the power spectrum or autocorrelation domain. Higher-Order Spectra (HOS) (of order
greater than 2), which are defined in terms of higher-order cumulants of the data, do contain such
information [16]. The third-order spectrum is commonly referred to as bispectrum, the fourth-order
one as trispectrum, and in fact, the power spectrum is also a member of the higher-order spectral
class; it is the second-order spectrum.

HOS consist of higher-order moment spectra, which are defined for deterministic signals, and
cumulant spectra, which are defined for random processes. In general, there are three motivations
behind the use of HOS in signal processing: (1) to suppress Gaussian noise of unknown mean and
variance; (2) to reconstruct the phase as well as the magnitude response of signals or systems; and
(3) to detect and characterize nonlinearities in the data.

The first motivation stems from the property of Gaussian processes to have zero higher-order
spectra. Due to this property, HOS are high signal-to-noise ratio domains, in which one can perform
detection, parameter estimation, or even signal reconstruction even if the time domain noise is
spatially correlated. The same property of cumulant spectra can provide means of detecting and
characterizing deviations of the data from the Gaussian model.
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The second motivation is based on the ability of cumulant spectra to preserve the Fourier-phase
of signals. In the modeling of time series, second-order statistics (autocorrelation) have been heavily
used because they are the result of least-squares optimization criteria. However, an accurate phase
reconstruction in the autocorrelation domain can be achieved only if the signal is minimum phase.
Nonminimum phase signal reconstruction can be achieved only in the HOS domain, due to the HOS
ability to preserve phase. Figure 76.1 shows two signals, a nonminimum phase and a minimum
phase, with identical magnitude spectra but different phase spectra. Although power spectrum
cannot distinguish between the two signals, the bispectrum that uses phase information can.

Being nonlinear functions of the data, HOS are quite natural tools in the analysis of nonlinear
systems operating under a random input. General relations for arbitrary stationary random data
passing through an arbitrary linear system exist and have been studied extensively. Such expression,
however, are not available for nonlinear systems, where each type of nonlinearity must be studied
separately. Higher-order correlations between input and output can detect and characterize certain
nonlinearities [34], and for this purpose several higher-order spectra-based methods have been
developed.

The organization of this chapter is as follows. First the definitions and properties of cumulants and
higher-order spectra are introduced. Then two methods for the estimation of HOS from finite length
data are outlined and the asymptotic statistics of the obtained estimates are presented. Following
that, parametric and nonparametric methods for HOS-based identification of linear systems are
described, and the use of HOS in the identification of some particular nonlinear systems is briefly
discussed. The chapter concludes with a section on applications of HOS and available software.

76.2 Definitions and Properties of HOS

In this chapter we will consider random one-dimensional processes only. The definitions can be
easily extended to the two-dimensional case [15].

The joint moments of order r of the random variables x1, . . . , xn are given by [22]

M om
[
x
k1
1 , . . . , x

kn
n

]
= E{xk1

1 , . . . , x
kn
n }

= (−j)r ∂
r8 (ω1, . . . , ωn)

∂ω
k1
1 . . . ∂ω

kn
n

|ω1=···=ωn=0 , (76.1)

where k1 + · · · + kn = r , and 8() is their joint characteristic function. The joint cumulants are
defined as

C um[xk1
1 , . . . , x

kn
n ] = (−j)r ∂

r ln8 (ω1, . . . , ωn)

∂ω
k1
1 . . . ∂ω

kn
n

}|ω1=···=ωn=0 . (76.2)

For a stationary discrete time random processX(k), (k denotes discrete time), the moments of order
n are given by

mxn (τ1, τ2, . . . , τn−1) = E{X(k)X (k + τ1) · · ·X (k + τn−1)} , (76.3)

whereE{.} denotes expectation. The nth order cumulants are functions of the moments of order up
to n, i.e.,
1st order cumulants:

cx1 = mx1 = E{X(k)} (mean) (76.4)

2nd order cumulants:
cx2 (τ1) = mx2 (τ1)− (

mx1
)2

(covariance) (76.5)
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FIGURE 76.1: x(n) is a nonminimum phase signal and y(n) is a minimum phase one. Although their
power spectra are identical, their bispectra are different because they contain phase information.
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3rd order cumulants:

cx3 (τ1, τ2) = mx3 (τ1, τ2)− (
mx1

) [
mx2 (τ1)+mx2 (τ2)+mx2 (τ2 − τ1)

] + 2
(
mx1

)3
(76.6)

4th order cumulants:

cx4 (τ1, τ2, τ3) = mx4 (τ1, τ2, τ3)−mx2 (τ1)m
x
2 (τ3 − τ2)−mx2 (τ2)m

x
2 (τ3 − τ1)

−mx2 (τ3)m
x
2 (τ2 − τ1)

−mx1
[
mx3 (τ2 − τ1, τ3 − τ1)+mx3 (τ2, τ3)+mx3 (τ2, τ4)+mx3 (τ1, τ2)

]

+ (
mx1

)2 [
mx2 (τ1)+mx2 (τ2)+mx2 (τ3)+mx2 (τ3 − τ1)+mx2 (τ3 − τ2)

+ mx1 (τ2 − τ1)
] − 6

(
mx1

)4
(76.7)

where mx3(τ1, τ2) is the 3rd order moment sequence, and mx1 is the mean. The general relationship
between cumulants and moments can be found in [16].

Some important properties of moments and cumulants are summarized next.
[P1] IfX(k) is Gaussian, the cxn(τ1, τ2, . . . , τn−1) = 0 for n > 2. In other words, all the information
about a Gaussian process is contained in its first and second-order cumulants. This property can be
used to suppress Gaussian noise, or as a measure for non-Gaussianity in time series.
[P2] IfX(k) is symmetrically distributed, then cx3(τ1, τ2) = 0. Third-order cumulants suppress not
only Gaussian processes, but also all symmetrically distributed processes, such as uniform, Laplace,
and Bernoulli-Gaussian.
[P3] For cumulants additivity holds. If X(k) = S(k) + W(k), where S(k), W(k) are stationary
and statistically independent random processes, then cxn(τ1, τ2, . . . , τn−1) = csn(τ1, τ2, . . . , τn−1)+
cwn (τ1, τ2, . . . , τn−1). It is important to note that additivity does not hold for moments.

IfW(k) is Gaussian representing noise which corrupts the signal of interest, S(k), then by means
of (P2) and (P3), we get that cxn(τ1, τ2, . . . , τn−1) = csn(τ1, τ2, . . . , τn−1), for n > 2. In other words,
in higher-order cumulant domains the signal of interest propagates noise free. Property (P3) can
also provide a measure of statistical dependence of two processes.
[P4] if X(k) has zero mean, then cxn(τ1, . . . , τn−1) = mxn(τ1, . . . , τn−1), for n ≤ 3.

Higher-order spectra are defined in terms of either cumulants (e.g., cumulant spectra) or moments
(e.g., moment spectra).

Assuming that the nth order cumulant sequence is absolutely summable, the nth order cumulant
spectrum ofX(k),Cxn(ω1, ω2, . . . , ωn−1), exists, and is defined to be the (n−1)-dimensional Fourier
transform of the nth order cumulant sequence. In general, Cxn(ω1, ω2, . . . , ωn−1) is complex, i.e.,
it has magnitude and phase. In an analogous manner, moment spectrum is the multi-dimensional
Fourier transform of the moment sequence.

If v(k) is a stationary non-Gaussian process with zero mean and nth order cumulant sequence

cvn(τ1, . . . , τn−1) = γ vn δ(τ1, . . . , τn−1) , (76.8)

where δ(.) is the delta function, v(k) is said to be nth order white. Its nth order cumulant spectrum
is then flat and equal to γ vn .

Cumulant spectra are more useful in processing random signals than moment spectra since they
posses properties that the moment spectra do not share: (1) the cumulants of the sum of two inde-
pendent random processes equals the sum of the cumulants of the process; (2) cumulant spectra of
order> 2 are zero if the underlying process in Gaussian; (3) cumulants quantify the degree of statis-
tical dependence of time series; and (4) cumulants of higher-order white noise are multidimensional
impulses, and the corresponding cumulant spectra are flat.
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76.3 HOS Computation from Real Data

The definitions of cumulants presented in the previous section are based on expectation operations,
and they assume infinite length data. In practice we always deal with data of finite length; therefore,
the cumulants can only be approximated. Two methods for cumulants and spectra estimation are
presented next for the third-order case.
Indirect Method :

Let X(k), k = 1, . . . , N be the available data.

1. Segment the data into K records of M samples each. LetXi(k), k = 1, . . . ,M , represent
the ith record.

2. Subtract the mean of each record.

3. Estimate the moments of each segmentsXi(k) as follows:

m
xi
3 (τ1, τ2) = 1

M

l2∑
l=l1

Xi(l)Xi (l + τ1)X
i (l + τ2) ,

l1 = max(0,−τ1,−τ2), l2 = min(M − 1,M − 2),

|τ1| < L, |τ2| < L, i = 1,2, . . . , K . (76.9)

Since each segment has zero mean, its third-order moments and cumulants are identical,
i.e., cxi3 (τ1, τ2) = m

xi
3 (τ1, τ2).

4. Compute the average cumulants as:

ĉx3 (τ1, τ2) = 1

K

K∑
i=1

m
xi
3 (τ1, τ2) (76.10)

5. Obtain the third-order spectrum (bispectrum) estimate as

Ĉx3 (ω1, ω2) =
L∑

τ1=−L

L∑
τ2=−L

ĉx3 (τ1, τ2) e
−j(ω1τ1+ω2τ2)w (τ1, τ2) , (76.11)

where L < M − 1, and w(τ1, τ2) is a two-dimensional window of bounded support,
introduced to smooth out edge effects. The bandwidth of the final bispectrum estimate
is1 = 1/L.

A complete description of appropriate windows that can be used in (76.11) and their properties
can be found in [16]. A good choice of cumulant window is:

w (τ1, τ2) = d (τ1) d (τ2) d (τ1 − τ2) , (76.12)

where

d(τ) =



1
π
| sin πτ

L
| + (1 − |τ |

L
) cosπτ

L
|τ | ≤ L

0 |τ | > L

(76.13)

which is known as the minimum bispectrum bias supremum [17].
Direct Method

Let X(k), k = 1, . . . , N be the available data.
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1. Segment the data into K records of M samples each. LetXi(k), k = 1, . . . ,M , represent
the ith record.

2. Subtract the mean of each record.

3. Compute the Discrete Fourier TransformF ix(k) of each segment, based onM points, i.e.,

F ix(k) =
M−1∑
n=0

Xi(n)e−j
2π
M
nk, k = 0,1, . . . ,M − 1, i = 1,2, . . . , K . (76.14)

4. The third-order spectrum of each segment is obtained as

C
xi
3 (k1, k2) = 1

M
Fix(k1)F

i
x(k2)F

i
x

∗
(k1 + k2), i = 1, . . . , K . (76.15)

Due to the bispectrum symmetry properties, Cxi3 (k1, k2) need to be computed only in
the triangular region 0 ≤ k2 ≤ k1, k1 + k2 < M/2.

5. In order to reduce the variance of the estimate additional smoothing over a rectangular
window of size (M3 ×M3) can be performed around each frequency, assuming that the
third-order spectrum is smooth enough, i.e.,

C̃
xi
3 (k1, k2) = 1

M2
3

M3/2−1∑
n1=−M3/2

M3/2−1∑
n2=−M3/2

C
xi
3 (k1 + n1, k2 + n2) . (76.16)

6. Finally, the third-order spectrum is given as the average over all third-order spectra, i.e.,

Ĉx3 (ω1, ω2) = 1

K

K∑
i=1

C̃
xi
3 (ω1, ω2) , ωi = 2π

M
ki, i = 1,2 . (76.17)

The final bandwidth of this bispectrum estimate is 1 = M3/M , which is the spacing
between frequency samples in the bispectrum domain.

For large N , and as long as

1 → 0, and 12N → ∞ (76.18)

[32], both the direct and the indirect methods produce asymptotically unbiased and consistent
bispectrum estimates, with real and imaginary part variances:

var
(

Re
[
Ĉx3 (ω1, ω2)

])
= var

(
Im

[
Ĉx3 (ω1, ω2)

])
(76.19)

= 1

12N
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) =




VL2

MK
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) indirect

M

KM2
3
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) direct ,

where V is the energy of the bispectrum window.
From the above expressions, it becomes apparent that the bispectrum estimate variance can be

reduced by increasing the number of records, or reducing the size of the region of support of the
window in the cumulant domain (L), or increasing the size of the frequency smoothing window (M3),
etc. The relation between the parametersM, K, L, M3 should be such that (76.18) is satisfied.
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76.4 Linear Processes

Let x(k) be generated by exciting a linear time-invariant (LTI) system with frequency responseH(ω)
with a non-Gaussian process v(k). Its nth order spectrum can be written as

Cxn (ω1, ω2, . . . , ωn−1) = Cvn (ω1, ω2, . . . , ωn−1)H (ω1) · · ·H (ωn−1)H
∗ (ω1 + · · · + ωn−1) .

(76.20)
If v(k) is nth order white then (76.20) becomes

Cxn (ω1, ω2, . . . , ωn−1) = γ vn H (ω1) · · ·H (ωn−1)H
∗ (ω1 + · · · + ωn−1) , (76.21)

where γ vn is a scalar constant and equals the nth order spectrum of v(k). For a linear non-Gaussian
random processX(k), the nth order spectrum can be factorized as in (76.21) for every order n, while
for a nonlinear process such a factorization might be valid for some orders only (it is always valid for
n = 2).

If we expressH(ω) = |H(ω)| exp{jφh(ω)}, then (76.21) can be written as

∣∣Cxn (ω1, ω2, . . . , ωn−1)
∣∣ = γ vn |H (ω1)| · · · |H (ωn−1)|

∣∣H ∗ (ω1 + · · · + ωn−1)
∣∣ , (76.22)

and

∣∣ψxn (ω1, ω2, . . . , ωn−1)
∣∣ = φh (ω1)+ · · · + φh (ωn−1)− φh (ω1 + · · · + ωn−1) , (76.23)

where ψxn () is the phase of the nth order spectrum.
It can be shown easily that the cumulant spectra of successive orders are related as follows:

Cxn (ω1, ω2, . . . ,0) = Cxn−1 (ω1, ω2, . . . , ωn−2)H(0)
γ vn

γ vn−1
. (76.24)

As a result, the power spectrum of a Gaussian linear process can be reconstructed from the bispectrum
up to a constant term, i.e.,

Cx3 (ω,0) = Cx2 (ω)
γ v3

γ v2
. (76.25)

To reconstruct the phaseφh(ω) from the bispectral phaseψx3 (ω1, ω2) several algorithms have been
suggested. A description of different phase estimation methods can be found in [14] and also in [16].

76.4.1 Nonparametric Methods

Consider x(k) generated as shown in Fig. 76.2. The system transfer function can be written as

H(z) = cz−r I
(
z−1

)
O(z) = cz−r 5i(1 − aiz

−1)

5i(1 − biz−1)
5i(1 − ciz), |ai |, |bi |, |ci | < 1 , (76.26)

where I (z−1) and O(z) are the minimum and maximum phase parts of H(z), respectively; c is a
constant; and r is an integer. The output nth order cumulant equals [2]

cxn (τ1, . . . , τn−1) = c
y
n (τ1, . . . , τn−1)+ cwn (τ1, . . . , τn−1)

= c
y
n (τ1, . . . , τn−1) (76.27)

= γ vn

∞∑
k=0

h(k)h (k + τ1) · · ·h (k + τn−1) , n ≥ 3 (76.28)
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FIGURE 76.2: Single channel model.

where the noise contribution in (76.27) was zero due to the Gaussianity assumption. The Z-domain
equivalent of (76.28) for n = 3 is

Cx3 (z1, z2) = γ v3H (z1)H (z2)H
(
z−1

1 z−1
2

)
. (76.29)

Taking the logarithm of Cx3 (z1, z2) followed by an inverse 2-D Z-transform we obtain the output
bicepstrum bx(m, n). The bicepstrum of linear processes is nonzero only along the axes (m = 0, n =
0) and the diagonalm = n [21]. Along these lines the bicepstrum is equal to the complex cepstrum,
i.e.,

bx(m, n) =




ĥ(m) m 6= 0, n = 0
ĥ(n) n 6= 0, m = 0
ĥ(−n) m = n, m 6= 0
ln(cγ vn ) m = n = 0,
0 elsewhere

(76.30)

where ĥ(n) denotes complex cepstrum [20]. From (76.30), the system impulse response h(k) can
be reconstructed from bx(m,0) (or bx(0, m), or bx(m,m)), within a constant and a time delay, via
inverse cepstrum operations. The minimum and maximum phase parts ofH(z) can be reconstructed
by applying inverse cepstrum operations on bx(m,0)u(m) and bx(m,0)u(−m), respectively, where
u(m) is the unit step function.

To avoid phase unwrapping with the logarithm of the bispectrum which is complex, the bicepstrum
can be estimated using the group delay approach:

bx(m, n) = 1

m
F−1{F

[
τ1c

x
3(τ1, τ2)

]
Cx3 (ω1, ω2)

}, m 6= 0 (76.31)

with bx(0, n) = bx(n,0), and F {·} and F−1{·} denoting 2-D Fourier transform operator and its
inverse, respectively.

The cepstrum of the system can also be computed directly from the cumulants of the system output
based on the equation [21]:

∞∑
k=1

kĥ(k)
[
cx3(m− k, n)− cx3(m+ k, n+ k)

] + kĥ(−k) [cx3(m− k, n− k)− cx3(m+ k, n)
]

= mcx3(m, n) (76.32)

If H(z) has no zeros on the unit circle its cepstrum decays exponentially, thus (76.32) can be
truncated to yield an approximate equation. An overdetermined system of truncated equations can
be formed for different values of m and n, which can be solved for ĥ(k), k = . . . ,−1,1, . . .. The
system response h(k) then can be recovered from its cepstrum via inverse cepstrum operations.
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The bicepstrum approach for system reconstruction described above led to estimates with smaller
bias and variance than other parametric approaches at the expense of higher computational com-
plexity [21]. The analytic performance evaluation of the bicepstrum approach can be found in [25].

The inverse Z-transform of the logarithm of the trispectrum (fourth-order spectrum), or otherwise
tricepstrum, tx(m, n, l), of linear processes is also zero everywhere except along the axes and the
diagonal m = n = l. Along these lines it equals the complex cepstrum, thus h(k) can be recovered
from slices of the tricepstrum based on inverse cepstrum operations.

For the case of nonlinear processes, the bicepstrum will be nonzero everywhere [4]. The distinctly
different structure of the bicepstrum corresponding to linear and nonlinear processes has led to tests
of linearity [4].

A new nonparametric method has been recently proposed in [1, 26] in which the cepstrum ĥ(k)

is obtained as:

ĥ(−k) = p̂xn
(
k; ejβ1

) − p̂xn
(
k; ejβ2

)
ej (n−2)β1k − ej (n−2)β2k

, k 6= 0, n > 2 (76.33)

where pxn
(
k; ejbi ) is the time domain equivalent of the nth order spectrum slice defined as:

Pxn

(
z; ejβi

)
= Cxn

(
z, ejβi , · · · , ejβi

)
. (76.34)

The denominator of (76.33) is nonzero if

|β1 − β2| 6= 2πl

k(n− 2)
, for every integer k and l . (76.35)

This method reconstructs a complex system using two slices of the nth order spectrum. The slices,
defined as shown above, can be selected arbitrarily as long as their distance satisfy (76.35). If the
system is real, one slices is sufficient for the reconstruction. It should be noted that the cepstra
appearing in (76.33) require phase unwrapping. The main advantage of this method is that the
freedom to choose the higher-order spectra areas to be used in the reconstruction allows one to
avoid regions dominated by noise or finite data length effects. Also, corresponding to different slice
pairs various independent representations of the system can be reconstructed. Averaging out these
representations can reduce estimation errors [26].

Along the lines of system reconstruction from selected HOS slices, another method has been
proposed in [28, 29] where the logH(k) is obtained as a solution to a linear system of equations.
Although logarithimc operation is involved, no phase unwrapping is required and the principal
argument can be used instead of real phase. It was also shown that, as long as the grid size and the
distance between the slices are coprime, reconstruction is always possible.

76.4.2 Parametric Methods

One of the popular approaches in system identification has been the construction of a white noise
driven, linear time invariant model from a given process realization.

Consider the real autoregressive moving average (ARMA) stable process y(k) given by:

p∑
i=0

a(i)y(k − i) =
q∑
j=0

b(j)v(k − j) (76.36)

x(k) = y(k)+ w(k) (76.37)

where a(i), b(j) represent the AR and MA parameters of the system, v(k) is an independent iden-
tically distributed random process, and w(k) represents zero-mean Gaussian noise.
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Equations analogous to the Yule-Walker equations can be derived based on third-order cumulants
of x(k), i.e.,

p∑
i=0

a(i)cx3(τ − i, j) = 0, τ > q , (76.38)

or
p∑
i=1

a(i)cx3(τ − i, j) = −cx3(τ, j), τ > q , (76.39)

where it was assumed a(0) = 1. Concatenating (76.39) for τ = q + 1, . . . , q + M, M ≥ 0 and
j = q − p, . . . , q, the matrix equation

Ca = c (76.40)

can be formed, whereC and c are a matrix and a vector, respectively, formed by third-order cumulants
of the process according to (76.39), and the vector a contains the AR parameters. If the AR order p
is unknown and (76.40) is formed based on an overestimate of p, the resulting matrix C always has
rank p. In this case, the AR parameters can be obtained using a low-rank approximation of C [5].

Using the estimated AR parameters, â(i), i = 1, . . . , p, a pth order filter with transfer function
Â(z) = 1+ ∑p

i=1 â(i)z
−1 can be constructed. Based on the filtered through Â(z) process x(k), i.e.,

x̃(k), or otherwise known as the residual time series [5], the MA parameters can be estimated via any
MA method [15], for example:

b(k) = cx̃3(q, k)

cx̃3(q,0)
, k = 0,1, . . . , q (76.41)

known as the c(q, k) formula [6].
Practical problems associated with the described approach are sensitivity to model order mismatch,

andARestimationerrors thatpropagate in theestimationof theMAparameters. Asignificantamount
of research has been devoted to the ARMA parameter estimation problem. A thorough review of
existing ARMA system identification methods can be found in [15, 16]; a more recent method can
be found in [24].

76.5 Nonlinear Processes

Despite the fact thatprogresshasbeenestablished indeveloping the theoretical propertiesofnonlinear
models, only a few statistical methods exist for detection and characterization of nonlinearities from
a finite set of observations. In this section, we will consider nonlinear Volterra systems excited by
Gaussian stationary inputs. Let y(k) be the response of a discrete time invariant pth order Volterra
filter whose input is x(k). Then,

y(k) = h0 +
∑
i

∑
τ1,...,τi

hi (τ1, . . . , τi) x (k − τ1) · · · x (k − τi) , (76.42)

where hi(τ1, . . . , τi) are the Volterra kernels of the system, which are symmetric functions of their
arguments; for causal systems hi(τ1, . . . , τi) = 0 for any τi < 0.

The output of a second-order Volterra system when the input is zero-mean stationary is

y(k) = h0 +
∑
τ1

h1(τ1)x(k − τ1)+
∑
τ1

∑
τ2

h2 (τ1, τ2) x (k − τ1) x (k − τ2) . (76.43)
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Equation (76.43) can be viewed as a parallel connection of a linear system h1(τ1) and a quadratic
system h2(τ1, τ2) as illustrated in Fig. 76.3. Let

c
xy

2 (τ ) = E
{
x(k + τ)

[
y(k)−m

y

1

]}
(76.44)

be the cross-covariance of input and output, and

c
xxy

3 (τ1, τ2) = E
{
x (k + τ1) x (k + τ2)

[
y(k)−m

y

1

]}
(76.45)

be the third-order cross-cumulant sequence of input and output.

FIGURE 76.3: Second-order Volterra system. Linear and quadratic parts are connected in parallel.

It can be shown that the system’s linear part can be identified by

H1(−ω) = C
xy

2 (ω)

Cx2 (ω)
, (76.46)

and the quadratic part by

H2 (−ω1,−ω2) = C
xxy

3 (ω1, ω2)

2Cx2 (ω1) C
x
2 (ω2)

, (76.47)

where Cxy2 (ω) and Cxxy3 (ω1, ω2) are the Fourier transforms of cxy2 (τ ) and cxxy3 (τ1, τ2), respectively.
It should be noted that the above equations are valid only for Gaussian input signals. More general
results assuming non-Gaussian input have been obtained in [9, 27]. Additional results on particular
nonlinear systems have been reported in [3, 33].

An interesting phenomenon caused by a second-order nonlinearity is the quadratic phase coupling.
There are situations where nonlinear interaction between two harmonic components of a process
contribute to the power of the sum and/or difference frequencies. The signal

x(k) = A cos(λ1k + θ1)+ B cos(λ2k + θ2) (76.48)

after passing through the quadratic system:

z(k) = x(k)+ εx2(k), ε 6= 0 . (76.49)
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contains cosinusoidal terms in (λ1, θ1), (λ2, θ2), (2λ1,2θ1), (2λ2,2θ2), (λ1 + λ2, θ1 + θ2), (λ1 −
λ2, θ1 − θ2). Such a phenomenon that results in phase relations that are the same as the frequency
relations is called quadratic phase coupling [12]. Quadratic phase coupling can arise only among
harmonically related components. Three frequencies are harmonically related when one of them is
the sum or difference of the other two. Sometimes it is important to find out if peaks at harmonically
related positions in the power spectrum are in fact phase coupled. Due to phase suppression, the
power spectrum is unable to provide an answer to this problem.

As an example, consider the process [30]

X(k) =
6∑
i=1

cos(λik + φi) (76.50)

where λ1 > λ2 > 0, λ4 + λ5 > 0, λ3 = λ1 + λ2, λ6 = λ4 + λ5, φ1, . . . , φ5 are all independent,
uniformly distributed random variables over (0,2π), and φ6 = φ4 +φ5. Among the six frequencies,
(λ1, λ2, λ3) and (λ4, λ5, λ6) are harmonically related, however, onlyλ6 is the result of phase coupling
between λ4 and λ5. The power spectrum of this process consists of six impulses at λi, i = 1, . . . ,6
(see Fig. 76.4), offering no indication whether each frequency component is independent or result
of frequency coupling. On the other hand, the bispectrum of X(k), Cx3 (ω1, ω2) (evaluate in its
principal region) is zero everywhere, except at point (λ4, λ5) of the (ω1, ω2) plane, where it exhibits
an impulse (Fig. 76.4(b)). The peak indicates that only λ4, λ5 are phase coupled.

The bicoherence index, defined as

Px3 (ω1, ω2) = Cx3 (ω1, ω2)√
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2)

, (76.51)

has been extensively used in practical situations for the detection and quantification of quadratic
phase coupling [12]. The value of the bicoherence index at each frequency pair indicates the degree
of coupling among the frequencies of that pair. Almost all bispectral estimators can be used in (76.51).
However, estimates obtained based on parametric modeling of the bispectrum have been shown to
yield superior resolution [30, 31] than the ones obtained with conventional methods.

76.6 Applications/Software Available

Applications of HOS span a wide range of areas [19] such as oceanography (description of wave
phenomena), earth sciences (atmospheric pressure, turbulence), crystallography, plasma physics
(wave interaction, nonlinear phenomena), mechanical systems (vibration analysis, knock detection),
economic time series, biomedical signal analysis (ultrasonic imaging, detection of wave coupling)
image processing (texture modeling and characterization, reconstruction, inverse filtering), speech
processing (pitch detection, voiced/unvoiced decision), communications (equalization, interference
cancellation), array processing (direction of arrival estimation, estimation of number of sources,
beamforming, source signal estimation, source classification), harmonic retrieval (frequency estima-
tion), and time delay estimation. Over 500 references can be found in [37]. Additional references
can be found in [16, 19, 23].

A software package for signal processing with HOS is the Hi-Spec toolbox, product of Mathworks,
Inc. The functions included in Hi-Spec together with a short description are included in Table 76.1.
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FIGURE 76.4: Quadratic phase coupling. (a) The power spectrum of the process described in
Eq. (76.50) cannot determine what frequencies are coupled. (b) The corresponding magnitude
bispectrum is zero everywhere in the principle region, except at points corresponding to phase
coupled frequencies.
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TABLE 76.1 Functions Included in the Hi-Spec Package
Function name Description

AR RCEST AR parameter estimation based on cumulants
ARMA QS ARMA parameter estimation via the Q-slice algorithm
ARMA RTS ARMA parameter estimation via the residual time series method
ARMA SYN Generates ARMA synthetics
BICEPS System identification via the bicepstrum approach
BISPEC D Bispectrum estimation via the direct method
BISPEC I Bispectrum estimation via the indirect method
CUM EST Estimates 2nd, 3rd, or 4th order cumulants
CUM TRUE Computes the theoretical cumulants of an ARMA model
DOA Direction-of-arrival estimation
DOA GEN Generates synthetics for direction-of-arrival estimation
GL STAT Detection statistics for Hinich’s Gaussianity and linearity tests
HARM EST Estimates frequencies of harmonics in colored noise
HARM GEN Generates synthetics for the harmonic retrieval problem
MA EST MA parameters estimation
MATUL System identification via the Matsuoka-Ulrych algorithm
QPC GEN Simulation generator for quadratic phase coupling
QPC TOR Detects quadratic phase coupling via parametric modeling of bispectrum
RP IID Generates samples of an i.i.d. random process
TDE Estimates time delay between two signals using the parametric cross-cumulant method
TDE GEN Synthetics for time delay estimation
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T
HE PRIMARY TRAITS OF EMBEDDED signal processing systems that distinguish them
from general purpose computer systems are their predictable reactions to real-time1 stimuli
from the environment, their form- and cost-optimized design, and their compliance with

required or specified modes of response behavior and functionality [1].

1Real-time indicates behavior related to wall-clock time and does not necessarily imply a quick response.
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Other traits that they share with other forms of digital products include the need for reliability,
fault-tolerance, and maintainability, to name just a few. An embedded system usually consists
of hardware components such as memories, application-specific ICs (ASICs), processors, DSPs,
buses, analog-digital interfaces, and also software components that provide control, diagnostic, and
application-specific capabilities required of it. In addition, they often contain electromechanical
(EM) components such as sensors and transducers and operate in harsh environmental conditions.
Unlike general purpose computers they may not allow much flexibility in support of a diverse range
of programming applications, and it is not unusual to dedicate such systems to specific application.
Embedded systems, thus, range from simple, low-cost sensor/actuator systems consisting of a few
tens of lines of code and 8/16-bit processors (CPU) (e.g., bank ATM machines) to sophisticated high-
performance signal processing systems consisting of runtime operating system support, tens of x86-
class processors, digital signal processing (DSP) chips, interconnection networks, complex sensors,
and other interfaces (e.g., radar-based tracking and navigational systems). Their lack of flexibility
may be apparent when one considers that an ATM machine cannot be easily programmed to support
additional image processing tasks, unless upgraded in terms of resources. Finally, embedded systems
typically do not support direct user interaction in terms of higher order programming languages
(HOLs) such as Fortran or C, but allow users to provide inputs that are sensor- or menu-driven. The
debug and diagnostic interfaces, however, support HOLs and other lower level software and hardware
programmability.

Embedded systems in general may be classified into one of the following four general categories of
products. The prices are indicative of the multi-billion dollar marketplace in 1996, and their relative
magnitudes are more significant than their actual values. The relationship of the categories to dollar
cost is intentional and is an early harbinger of the fact that underlying cost and performance tradeoffs
motivate and drive most of the system design and prototyping methodologies.

Commodity DSP Products: High-volume market and valued at less than $ 300 a piece. These include
CD players, recorders, VCRs, facsimile and answering machines, telemetry applications, simple signal
processing filtering packages, etc., primarily aimed at the highly competitive mass-volume consumer
market.

Portable DSP Products: High-volume market and valued at less than $ 800. These include
portable and hand-held low-power electronic products for man-machine communications such as
DSP boards, digital audio, security systems, modems, camcorders, industrial controllers, scanners,
communications equipment, and others.

Cost-Performance DSP Products: High-volume market, and valued at less than $ 3000. These
products trade off cost for performance, and include DSP products such as video teleconferenc-
ing equipment, laptops, audio, telecommunications switches, high-performance DSP boards and
coprocessors, and DSP CAD packages for hardware and software design.

High-Performance Products: Low-to-moderate volume market, and valued at over $8000. These
products include high-end workstations with DSP coprocessors, real-time signal processors, real-
time database processing systems, digital HDTV, radar signal processor systems, avionics and military
systems, sensor and data processing hardware and software systems. This class of products contains
a significant amount of software compared to the earlier classes, which often focus on large volume,
low-cost, hardware-only solutions.

It may be useful to classify high-performance products further into three categories.

• Real-time embedded control systems: These systems are characterized by the following features:
interrupt driven, large numerical processing requirements, small databases, tight real-time
constraints, well-defined user interface, requirements and design driven by performance re-
quirements. Examples include an aircraft control system, or a control system for a steel plant.

• Embedded information systems: These systems are characterized by the following features:
transaction-based, moderate numerical/DSP processing, flexible time constraints, complex
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user interfaces, requirements and design driven by user interface. Examples include accounting
and inventory management systems.

• Command, control, communication, and intelligence (C4I) systems: These systems are charac-
terized by large numerical processing, large databases, moderate to tight real-time constraints,
flexible and complex user interfaces, requirements and design driven by performance and user
interface. Examples include missile guidance systems, radar-tracking systems, and inventory
and manufacturing control systems.

These four categories of embedded systems can be further distinguished in terms of other met-
rics such as computing speed (integer or floating point performance), input/output transfer rates,
memory capacities, market volume, environmental issues, typical design and development budgets,
lifetimes, reliability issues, upgrades, and other lifecycle support costs. Another interesting fact is
that the higher the software value in a product, the greater its profitability margin. Recent studies
by Andersen Consulting have shown that profit margin pressures are increasing due to increasing
semiconductor content in systems’ sales’ values. In 1985, silicon represented 9.5 percent of a system’s
value. By 1995, that had shot up to 19.1 percent. The higher the silicon content, the greater the
pressure on margins resulting in lower profits. In PCs, integrated circuit components represent 30
to 35 percent of the sales value and the ratio is steadily increasing. More than 50 percent of value of
the new network computers (NCs) is expected to be in integrated circuits. In the area of DSPs, we
estimate that this ratio is about 20 percent.

In this section, the chapter “Introduction to the TMS320 Family of Digital Signal Processors" by
Panos Papamichalis, outlines the programmable DSP families developed by Texas Instruments, the
leading organization in this area. In, “Rapid Design and Prototyping of DSP Systems", T. Egolf,
M. Pettigrew, J. Debardelaben, R. Hezar, S. Famorzadeh, A. Kavipurapu, M. Khan, L.-R. Dung, K.
Balemarthy, N. Desai, Y. Jung, and V. Madisetti, discuss how signal processing systems are designed
and integratedusing anovel topdowndesignapproachdevelopedaspart ofDARPA’sRASSPprogram.
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This article discusses the architecture and the hardware characteristics of the TMS320
family of Digital Signal Processors. The TMS320 family includes several generations
of programmable processors with several devices in each generation. Since the pro-
grammable processors are split between fixed-point and floating-point devices, both
categories are examined in some detail. The TMS320C25 serves here as a simple example
for the fixed-point processor family, while the TMS320C30 is used for the floating-point
family.

77.1 Introduction

Since its introduction in 1982 with the TMS32010 processor, the TMS320 family of DSPs has been
exceedingly popular. Different members of this family were introduced to address the existing
needs for real-time processing, but then, designers capitalized on the features of the devices to create
solutions and products in ways never imagined before. In turn, these innovations fed the architectural
and hardware configurations of newer generations of devices.

Digital Signal Processing encompasses a variety of applications, such as digital filtering, speech
and audio processing, image and video processing, and control. All DSP applications share some
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common characteristics:

• The algorithms used are mathematically intensive. A typical example is the computa-
tion of an FIR filter, implemented as sum-of-products. This operation involves a lot of
multiplications combined with additions.

• DSP algorithms must typically run in real time: i.e., the processing of a segment of the
arriving signal must be completed before the next segment arrives, or else data will be
lost.

• DSP techniques are under constant development. This implies that DSP systems should
be flexible to support changes and improvements in the state of the art. As a result,
programmable processors have been the preferred way of implementation. In recent
times, though, fixed-function devices have also been introduced to address high-volume
consumer applications with low-cost requirements.

These needs are addressed in the TMS320 family of DSPs by using appropriate architecture, in-
struction sets, I/O capabilities, as well as the raw speed of the devices. However, it should be kept
in mind that these features do not cover all the aspects describing a DSP device, and especially a
programmable one. Availability and quality of software and hardware development tools (such as
compilers, assemblers, linker, simulators, hardware emulators, and development systems), applica-
tion notes, third-party products and support, hot-line support, etc. play an important role on how
easy it will be to develop an application on the DSP processor. The TMS320 family has very extensive
such support, but its description goes beyond the scope of this article. The interested reader should
contact the TI DSP hotline (Tel. 713-274-2320).

For the purposes of this article, two devices have been selected to be highlighted from the Texas
Instruments TMS320 family of digital signal processors. One is the TMS320C25, a 16-bit, fixed-point
DSP, and the other is the TMS320C30, a 32-bit, floating-point DSP. As a short-hand notation, they
will be called ‘C25 and ‘C30, respectively. The choice was made so that both fixed-point issues are
considered.

There have been newer (and more sophisticated) generations added to the TMS320 family but,
since the objective of this article is to be more tutorial, they will be discussed as extensions of the
‘C25 and the ‘C30. Such examples are other members of the ‘C2x and the ‘C3x generations, as well
as the TMS320C5x generation (‘C5x for short) of fixed-point devices, and the TMS320C4x (‘C4x) of
floating-point devices. Customizable and fixed-function extensions of this family of processors will
be also discussed.

Texas Instruments, like all vendors of DSP devices, publishes detailed User’s Guides that explain at
great length the features and the operation of the devices. Each of these User’s Guides is a pretty thick
book, so it is not possible (or desirable) to repeat all this information here. Instead, the objective of
this article is to give an overview of the basic features for each device. If more detail is necessary for
an application, the reader is expected to refer to the User’s Guides. If the User’s Guides are needed,
it is very easy to obtain them from Texas Instruments.

77.2 Fixed-Point Devices: TMS320C25 Architecture and
Fundamental Features

The Texas Instruments TMS320C25 is a fast, 16-bit, fixed-point digital signal processor. The speed
of the device is 10 MHz, which corresponds to a cycle time of 100 ns. Since the majority of the
instructions execute in a single cycle, the figure of 100 ns also indicates how long it takes to execute
one instruction. Alternatively, we can say that the device can execute 10 million instructions per
second (MIPS). The actual signal from the external oscillator or crystal has a frequency four times
higher, at 40 MHz. This frequency is then divided on-chip to generate the internal clock with a
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period of 100 ns. Figure 77.1 shows the relationship between the input clock CLKIN from the
external oscillator, and the output clock CLKOUT. CLKOUT is the same as the clock of the device,
and it is related to CLKIN by the equation CLKOUT = CLKIN /4. Note that in Fig. 77.1 the shape
of the signal is idealized ignoring rise and fall times.

FIGURE 77.1: Clock timing of the TMS320C25. CLKIN = external oscillator; CLKOUT = clock of
the device.

Newer versions of the TMS320C25 operate in higher frequencies. For instance, there is a spinoff
that has a cycle time of 80 ns, resulting in a 12.5 MIPS operation. There are also slower (and cheaper)
versions for applications that do not need this computational power.

Figure 77.2 shows in a simplified form the key features of the TMS320C25. The major parts of the
DSP processor are the memory, the Central Processing Unit (CPU), the ports, and the peripherals.
Each of these parts will be examined in more detail later. The on-chip memory consists of 544
words of RAM (read/write memory) and 4K words of ROM (read-only memory). In the notation
used here, 1K = 1024 words, and 4K = 4 × 1024 = 4096 words. Each word is 16 bits wide and,
when some memory size is given, it is measured in 16-bit words, and not in bytes (as is the custom
in microprocessors). Of the 544 words of RAM, 256 words can be used as either program or data
memory, while the rest is only data memory. All 4K of on-chip ROM is program memory. Overall,
the device can address 64K words of data memory and 64K words of program memory. Except for
what resides on-chip, the rest of the memory is external, supplied by the designer.

The CPU is the heart of the processor. Its most important feature, distinguishing it from the
traditional microprocessors, is a hardware multiplier that is capable of performing a 16 × 16 bit
multiplication in a single cycle. To preserve higher intermediate accuracy of results, the full 32-
bit product is saved in a product register. The other important part of the CPU is the Arithmetic
Logic Unit (ALU) that performs additions, subtractions, and logical operations. Again, for increased
intermediate accuracy, there is a 32-bit accumulator to handle all the ALU operations.

All the arithmetic and logical functions are accumulator-based. In other words, these operations
have two operands, one of which is always the accumulator. The result of the operation is stored in
the accumulator.

Because of this approach the form of the instructions is very simple indicating only what the other
operand is. This architectural philosophy is very popular but it is not universal. For instance, as is
discussed later, the TMS320C30 takes a different approach, where there are several “accumulators”
in what is called a register file.

Other components of the TMS320C25 CPU are several shifters to facilitate manipulation of the
data and increase the throughput of the device by performing shifting operations in parallel with
other functions. As part of the CPU, there are also eight auxiliary registers that can be used as memory
pointers or loop counters. There are two status registers, and an 8-deep hardware stack. The stack
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FIGURE 77.2: Key architectural features of the TMS320C25.

is used to store the memory address where the program will continue execution after a temporary
diversion to a subroutine.

To communicate with external devices, the TMS320C25 has 16 input and 16 output parallel ports.
It also has a serial port that can serve the same purpose. The serial port is one of the peripherals that
have been implemented on chip. Other peripherals include the interrupt mask, the global memory
capability, and a timer. The above components of the TMS320C25 are examined in more detail
below.

The device has 68 pins that are designated to perform certain functions, and to communicate
with other devices on the same board. The names of the signals and the corresponding definitions
appear in Table 77.1. The first column of the table gives the pin names. Note that a bar over the
name indicates that the pin is in the active position when it is electrically low. For instance, if the
pins take the voltage levels of 0 V and 5 V, a pin indicated with an overbar is asserted when it is set
at 0 V. Otherwise, assertion occurs at 5 V. The second column indicates if the pin is used for input
to the device or output from the device or both. The third column gives a description of the pin
functionality.

Understanding the functionality of the device pins is as important as understanding the internal
architecture because it provides the designer with the tools available to communicate with the external
world. The DSP device needs to receive data and, often, instructions from the external sources, and
send the results back to the external world. Depending on the paths available for such transactions,
the design of a program can take very different forms. Within this framework, it is up to the designer
to generate implementations that are ingenious and elegant.

The TMS320C25 has its own assembly language to be programmed. This assembly language
consists of 133 instructions that perform general-purpose and DSP-specific functions. Familiarity
with the instruction set and the device architecture are the two components of efficient program
implementation. High-level-language compilers have also been developed that make the writing of
programs an easier task. For the TMS320C25, there is a C compiler available. However, there is
always a loss of efficiency when programming in high-level languages, and this may not be acceptable
in computation-bound real-time systems. Besides, for complete understanding of the device it is
necessary to consider the assembly language.
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TABLE 77.1 Names and Functionality of the 68 pins of the TMS320C25
Signals I/O/Za Definition

VCC I 5-V supply pins
VSS I Ground pins
X1 O Output from internal oscillator for crystal
X2/CLKIN I Input to internal oscillator from crystal or external clock
CLKOUT1 O Master clock output (crystal or CLKIN frequency/4)
CLKOUT2 O A second clock output signal
D15-D0 I/O/Z 16-bit data bus D15 (MSB) through DO (LSB). Multiplexed between program,

data, and I/O spaces.
A15-A0 O/Z 16-bit address bus A15 (MSB) through AO (LSB)
PS, DS, IS O/Z Program, data, and I/O space select signals
R/W O/Z Read/write signal
ST RB O/Z Strobe signal
RS I Reset input
INT 2-INT 0 I External user interrupt inputs
MP/MC I Microprocessor/microcomputer mode select pin
MSC O Microstate complete signal
IACK O Interrupt acknowledge signal
READY I Data ready input. Asserted by external logic when using slower devices to

indicate that the current bus transaction is complete.
BR O Busrequest signal. Assertedwhen theTMS320C25requires access toanexternal

global data memory space.
XF O External flag output (latched software-programmable signal)
HOLD I Hold input. When asserted. TMS320C25 goes into an idle mode and places

the data, address, and control lines in the high impedance state.
HOLDA O Hold acknowledge signal.
SYNC I Synchronization input.
BIO I Branch control input. Polled by BIOZ instruction
DR I Serial data receive input
CLKR I Clock for receive input for serial port
FSR I Frame synchronization pulse for receive input
DX O/Z Serial data transmit output
CLKX I Clock for transmit output for serial port
FSX I/O/Z Frame synchronization pulse for transmit. Configurable as either an input or

an output.

a I/O/Z denotes input/output/high-impedance state.
Note: The first column is the pin name; the second column indicates if it is an input or an output pin; the third

column gives a description of the pin functionality.

A very important characteristic of the device is its Harvard architecture. In Harvard architecture
(see Fig. 77.3), the program and data memory spaces are separated and they are accessed by different
buses. One bus accesses the program memory space to fetch the instructions, while another bus is
used to bring operands from the data memory space and store the results back to memory. The
objective of this approach is to increase the throughput by bringing instructions and data in parallel.
An alternate philosophy is the von Neuman architecture. The von Neuman architecture (see Fig. 77.4)
uses a single bus and a unified memory space. Unification of the memory space is convenient for
partitioning it between program and data, but it presents a bottleneck since both data and program
instructions must use the same path and, hence, they must be multiplexed. The Harvard architecture
of multiple buses is used in digital signal processors because the increased throughput is of paramount
importance in real-time systems.

The difference of the architectures is important because it influences the programming style. In
Harvard architecture, two memory locations can have the same address, as long as one of them is
in the data space and the other is in the program space. Hence, when the programmer uses an
address label, he has to be alert as to what space he is referring. Another restriction of the Harvard
architecture is that the data memory cannot be initialized during loading because loading refers
only to placing the program on the memory (and the program memory is separate from the data
memory). Data memory can be initialized during execution only. The programmer must incorporate
such initialization in his program code. As it will be seen later, such restrictions have been removed
from the TMS320C30 while retaining the convenient feature of multiple buses.

Figure 77.5 shows a functional block diagram of the TMS320C25 architecture. The Harvard
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FIGURE 77.3: Simplified block diagram of the Harvard architecture.

FIGURE 77.4: Simplified block diagram of the von Neuman architecture.

architecture of the device is immediately apparent from the separate program and data buses. What
is not apparent is that the architecture has been modified to permit communication between the
two buses. Through such communication, it is possible to transfer data between the program and
memory spaces. Then, the program memory space also can be used to store tables. The transfer
takes place by using special instructions such as TBLR (Table Read), TBLW (Table Write), and BLKP
(Block transfer from Program memory).

As shown in the block diagram, the program ROM is linked to the program bus, while data RAM
blocks B1 and B2 are linked to the data bus. The RAM block B0 can be configured either as program
or data memory (using the instructions CNFP and CNFD), and it is multiplexed with both buses.
The different segments, such as the multiplier, the ALU, the memories, etc. are examined in more
detail below.

77.3 TMS320C25 Memory Organization and Access

Besides the on-chip memory (RAM and ROM), the TMS320C25 can access external memory through
the external bus. This bus consists of the 16 address pins A0-A15, and the 16 data pins D0-D15.
The address pins carry the address to be accessed, while the data pins carry the instruction word or
the operand, depending on whether program or data memory is accessed. The bus can access either
program or data memory, the difference indicated by which of the pins PS and DS (with overbars)
becomes active. The activation is done automatically when, during the execution, an instruction or
a piece of data needs to be fetched. Since the address is 16-bits wide, the maximum memory space
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FIGURE 77.5: Functional block diagram of the TMS320C25 architecture.c©1999 by CRC Press LLC



FIGURE 77.6: Memory maps for program and data memory of the TMS320C25.

is 64K words for program and 64K words for data.
The device starts execution after a reset signal, i.e., after the RS pin is pulled low for a short

period of time. The execution always begins at program memory location 0, where there should
be an instruction to direct the program execution to the appropriate location. This direction is
accomplished by a branch instruction.

B PROG
which loads the program counter with the program memory address that has the label PROG (or

any other label you choose). Then, execution continues from the address PROG, where, presumably,
a useful program has been placed.

It is clear that the program memory location 0 is very important, and you need to know where
it is physically located. The TMS320C25 gives you the flexibility to use as location 0 either the first
location of the on-chip ROM, or the first location of the external memory. In the first case, we say that
the device operates in the microcomputer mode, while in the second one it is in the microprocessor
mode. In the microprocessor mode, the on-chip ROM is ignored altogether. You can choose between
the two modes by pulling the device MP/MC high or low. The microcomputer mode is useful for
production purposes, while for laboratory and development work the microprocessor mode is used
exclusively.

Figure 77.6 shows the memory configuration of the TMS320C25, where the microprocessor and
microcomputer configurations of the program memory are depicted separately. The data memory
is partitioned in 512 sections, called pages, of 128 words each. The reason of the partitioning is for
addressing purposes, as will be discussed below. Memory boundaries of the 64K memory space are
shown in both decimal and hexadecimal notation (hexadecimal notation indicated by an “h” or “H”
at the end.) Compare this map with the block diagram in Fig. 77.5.

As mentioned earlier, in two-operand operations, one of the operands resides in the accumulator,
and the result is also placed in the accumulator. (The only exceptions is the multiplication operation
examined later.) The other operand can either reside in memory or be part of the instruction. In the
latter case, the value to be combined with the accumulator is explicitly specified in the instruction, and
this addressing mode is called immediate addressing mode. In the TMS320C25 assembly language,
the immediate addressing mode instructions are indicated by a “K” at the end of the instruction.
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For example, the instruction
ADDK 5
increments the contents of the accumulator by 5.
If the value to be operated upon resides in memory, there are two ways to access it: either by

specifying the memory address directly (direct addressing) or by using a register that holds the
address of that number (indirect addressing).

As a general rule, it is desirable to describe an instruction as briefly as possible so that the whole
description can be held in one 16-bit word. Then, when the program is executed, only one word
needs to be fetched before all the information from the instruction is available for execution. This
is not always possible and there are two-word instructions as well, but the chip architects always
strive to achieve one-word instructions. In the direct addressing mode, full description of a memory
address would require a 16-bit word by itself because the memory space is 64K words. To reduce
that requirement, the memory space is divided in 512 pages of 128 words each. An instruction using
direct addressing contains the 7 bits indicating what word you want to access within a page. The
page number (9 bits) is stored in a separate register (actually, part of a register), called the Data Page
pointer (DP). You store the page number in the DP pointer by using the instructions LDP (Load Data
Page pointer) or LDPK (Load Data Page pointer immediate).

In the indirect addressing mode, the data memory address is held in a register that acts as a memory
pointer. There are eight such registers available, called auxiliary registers, AR0-AR7. The auxiliary
registers can also be used for other functions, such as loop counters, etc. To save bits in the instruction,
the auxiliary register used as memory pointer is not indicated explicitly, but it is stored in a separate
register (actually, part of a register), the auxiliary register pointer (ARP). In other words, there is
the concept of the “current register”. In an operation using indirect addressing, the contents of the
current auxiliary register point to the desired memory location. The current AR is specified by the
contents of the ARP as shown in Fig. 77.7. In an instruction, indirect addressing is indicated by an
asterisk.

FIGURE 77.7: Example of indirect addressing mode.

A “+” sign at the end of an instruction using indirect addressing means “after the present memory
access, increment the contents of the current auxiliary register by 1”. This is done in parallel with
the load-accumulator operation. The above autoincrementing of the auxiliary register is an optional
operation that offers additional flexibility to the programmer. And it is not the only one available.
The TMS320C25 has an auxiliary register arithmetic unit (ARAU, see Fig. 77.5) that can execute
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such operations in parallel with the CPU, and increase the throughput of the device in this way.
Table 77.2 summarizes the different operations that can be done while using indirect addressing.
As seen from this table, the contents of an auxiliary register can be incremented or decremented by
1, incremented or decremented by the contents of AR0, and incremented or decremented by AR0
in a bit-reversed fashion. The last operation is useful when doing Fast Fourier Transforms. The
bit-reversed addressing is implemented by adding AR0 with reverse carry propagation, an operation
explained in the TMS320C25 User’s Guide. Additionally, it is possible to load at the same time the
ARP with a new value, thus saving an extra instruction.

TABLE 77.2 Operations That Can Be

Performed in Parallel with Indirect

Addressing
Notation Operation

ADD ∗ No manipulation of AR or ARP
ADD ∗, Y Y → ARP
ADD ∗+ AR(ARP)+1 → AR(ARP)
ADD ∗+,Y AR(ARP)+1 → AR(ARP)

Y → ARP
ADD ∗- AR(ARP) - 1 → AR(ARP)
ADD ∗-,Y AR(ARP) - 1 → AR(ARP)

Y → ARP
ADD ∗0+ AR(ARP) + AR0 → AR(ARP)
ADD ∗0+,Y AR(ARP) + AR0 → AR(ARP)

Y → ARP
ADD ∗0- AR(ARP)-AR0 → AR(ARP)
ADD ∗0-,Y AR(ARP)-AR0 → AR(ARP)

Y → ARP
ADD ∗BR0+ AR(ARP) +rcAR0 → AR(ARP)
ADD ∗BR0+,Y AR(ARP) +rcAR0 → AR(ARP)

Y → ARP
ADD ∗BR0- AR(ARP)-rcAR0 → AR(ARP)
ADD ∗BR0-,Y AR(ARP)-rcAR0 → AR(ARP)

Y → ARP

Note: Y = 0, . . . , 7 is the new “current” AR. AR(ARP)
is the AR pointed to by the ARP. BR = bit reversed, rc
= reverse carry.

77.4 TMS320C25 Multiplier and ALU

The heart of the TMS320C25 is the CPU consisting, primarily, of the multiplier and the arithmetic
logic unit (ALU). The hardware multiplier can perform a 16 bit × 16 bit multiplication in a single
machine cycle. This capability is probably the major distinguishing feature of digital signal processors
because it permits high throughput in numerically intensive algorithms.

Associated with the multiplier, there are two registers that hold operands and results. The T-
register (for temporary register) holds one of the two factors. The other factor comes from a memory
location. Again, this construct, with one implied operand residing in the T-register, permits more
compact instruction words. When multiplier and multiplicand (two 16-bit words) are multiplied
together, the result is 32-bits long. In traditional microprocessors, this product would have been
truncated to 16 bits, and presented as the final result. In DSP applications, though, this product
is only an intermediate result in a long stream of multiply-adds, and if truncated at this point, too
much computational noise would be introduced to the final result. To preserve higher final accuracy,
the full 32-bit result is held in the P-register (for product register). This configuration is shown in
Fig. 77.8 which depicts the multiplier and the ALU of the TMS320C25.

Actually, the P-register is viewed as two 16-bit registers concatenated. This viewpoint is convenient
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if you need to save the product using the instructions SPH (store product high) and SPL (store
product low). Otherwise, the product can operate on the accumulator, which is also 32-bits wide.
The contents of the product register can be loaded on the accumulator, overwriting whatever was
there, using the PAC (product to accumulator) instruction. It can also be added to or subtracted
from the accumulator using the instructions APAC or SPAC.

FIGURE 77.8: Diagram of the TMS320C25 multiplier and ALU.

When moving the contents of the T-register to the accumulator, you can shift this number using the
built-in shifters. For instance you can shift the result left by 1 or 4 locations (essentially multiplying
it by 2 or 16), or you can shift it right by 6 (essentially dividing it by 64). These operations are done
automatically, without spending any extra machine cycles, simply by setting the appropriate product
mode with SPM instruction. Why would you want to do such shifting? The left shifts have as a
main purpose to eliminate any extra sign bits that would appear in computations. The right shift
scales down the result and permits accumulation of several products before you start worrying about
overflowing the accumulator.

At this point, it is appropriate to discuss the data formats supported on the TMS320C25. This
device, as most fixed-point processors, uses two’s-complement notation to represent the negative
numbers. In two’s complement notation, to form the negative of a given number, you take the
complement of that number and you add 1. In two’s-complement notation, the most significant bit
(MSB, the left-most bit) of a positive number is zero, while the MSB of a negative number is one. In
the ‘C25, the two’s complement numbers are sign-extended, which means that, if the absolute value
of the number is not large enough to fill all the bits of the word, there will be more than one sign bits.

As seen from Fig. 77.8, the multiplier path is not the only way to access the accumulator. Actually,
the ALU and the accumulator support a wealth of arithmetic (ADD, SUB, etc.) and logical (OR,
AND, XOR, etc.) instructions, in addition to load and store instructions for the accumulator (LAC,
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FIGURE 77.9: Partial memory configuration of the TMS320C25 after the CNFD and the CNFP
instructions.

ZALH, SACL, SACH, etc.).
An interesting characteristic of the TMS320C25 architecture is the existence of several shifters that

can perform such shifts in parallel with other operations. Except for the right shifter at the multiplier,
all the other shifters are left shifters. An input shifter to the ALU and the accumulator can shift the
input value to the left by up to 16 locations, while output shifters from the accumulator can shift
either the high or the low part of the accumulator by up to 7 locations to the left.

A construct that appears very often in mathematical computations is the sum of products. Sums
of products appear in the computation of dot products, in matrix multiplication, and in convolution
sums for filtering, among other applications. Since it is important to carry out this computation as
fast as possible for real-time operation, all digital signal processors have special instructions to speed
up this particular function.

The TMS320C25 has the instruction LTA which loads the T-register and, in parallel with that, adds
the previous product (which already resides in the P-register) to the accumulator. LTS subtracts the
product from the accumulator. Another instruction, LTD, does the same thing as LTA, but it also
moves the value that was just loaded on the T-register to the next higher location in memory. This
move realizes the delay line that is needed in filtering applications. LTA, when combined with the
MPY instruction, can implement very efficiently the sum of products.

For even higher efficiency, there is a MAC instruction that combines LTA and MPY. An additional
MACD instruction combines LTD and MPY. The increased efficiency is achieved by using both the
data and the program buses to bring in the operands of the multiplication. The data coming from
the data bus can be traced in memory by an AR, using indirect addressing. The data coming from the
program bus are traced by the program counter (actually, the pre-fetch counter, PFC) and, hence,
they must reside in consecutive locations of program memory. To be able to modify the data and
then use it in such multiply-add operations, the TMS320C25 permits reconfiguration of block B0
in the on-chip memory. B0 can be configured either as program or as data memory, as shown in
Fig. 77.9, using the CNFD and CNFP instructions.
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77.5 Other Architectural Features of the TMS320C25

The TMS320C25 has many interesting features and capabilities that can be found in the user’s
guide [1]. Here, we present briefly only the most important of them.

The program counter is a 16-bit register, hidden from the user, which contains the address of
the next instruction word to be fetched and executed. Occasionally, the program execution may be
redirected, for instance, through a subroutine call. In this case, it is necessary to save the contents
of the program counter so that the program flow continues from the correct instruction after the
completion of the subroutine call. For this purpose, a hardware stack is provided to save and recover
the contents of the program counter.

The hardware stack is a set of eight registers, of which only the top one is accessible to the user.
Upon a subroutine call, the address after the subroutine call is pushed on the stack, and it is reinstated
in the program counter when the execution returns from the subroutine call. The programmer has
control over the stack by using the PUSH, PSHD, POP, and POPD instructions. The PUSH and
POP operations push the accumulator on the stack or pop the top of the stack to the accumulator
respectively. PSHD and POPD do the same functions but with memory locations instead of the
accumulator.

Occasionally the program execution in a processor must be interrupted in order to take care
of urgent functions, such as receiving data from external sources. In these cases, a special signal
goes to the processor, and an interrupt occurs. The interrupts can be internal or external. During
an interrupt, the processor stops execution, wherever it may be, pushes the address of the next
instruction on the stack, and starts executing from a predetermined location in memory. The
interrupt approach is appropriate when there are functions or devices that need immediate attention.
On theTMS320C25, there are several internal andexternal interrupts, which areprioritized, i.e., when
several of the interrupts occur at the same time, the one with the highest priority is executed first.
Typically, the memory location where the execution is directed to during an interrupt contains a
branch instruction. This branch instruction directs the program execution to an area in the program
memory where an interrupt service routine exists. The interrupt service routine will perform the tasks
that the interrupt has been designed for, and then return to the execution of the original program.

Besides the external hardware interrupts (for which there are dedicated pins on the device), there
are internal interrupts generated by the serial port and the timer. The serial port provides direct
communication with serial devices, such as codecs, serial analog-to-digital converters, etc. In these
devices, the data are transmitted serially, one bit at a time, and not in parallel, which would require
several parallel lines. When 16 bits have been input, the 16-bit word can be retrieved from the register
DRR (data receive register). Conversely, to transmit a word, you put it in the DXR (data transmit
register). These two registers occupy data memory locations 0 and 1, respectively, and they can be
treated like any other memory location.

The timer consists of a period register and a timer register. At the beginning of the operation, the
contents of the period register are loaded on the timer register, which is then decremented at every
machine cycle. When the value of the timer register reaches zero, it generates a timer interrupt, the
period register is loaded again on the timer register, and the whole operation is repeated.

77.6 TMS320C25 Instruction Set

The TMS320C25 has an instruction set consisting of 133 instructions. Some of these assembly
language instructions perform general purpose operations, while others are more specific to DSP
applications. This section discusses examples of instructions selected from different groups. For a
detailed description of each instruction, the reader is referred to the TMS320C25 User’s Guide [1].

Each instruction is represented by one or two 16-bit words. Part of the instruction is a unique code
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identifying the operation to be performed, while the rest of the instruction contains information on
the operation. For instance, this additional information determines if direct or indirect addressing is
used, if there is a shift of the operand, what is the address of the operand, etc. In the case of two-word
instructions, the second word is typically a 16-bit constant or program memory address. As it should
be obvious, a two-word instruction takes longer to execute because it has to fetch two words, and it
should be avoided if the same operation could be accomplished with a single-word instruction.

For example, if you want to load the accumulator with the contents of the memory location 3FH,
shifting it to the left by 8 locations at the same time, you can write the instruction

LAC 3FH,8
The above instruction, when encoded, is represented by the word 283FH. The left-most four bits in

this example, i.e., 0010, represent the “opcode” of the instruction. The opcode is the unique identifier
of the instruction. The next four bits, 1000, are the shift of the operand. Then there is one bit (zero in
this case) to signal that the direct addressing mode is used, and the last 7 bits are the operand address
3Fh (in hexadecimal).

Below, some of the more typical instructions are listed, and the ones that have an important
interpretation are discussed. It is a good idea to review carefully the full set of instructions so that
you know what tools you have available to implement any particular construct. The instructions are
grouped here by functionality.

The accumulator and memory reference instructions involve primarily the ALU and the accumula-
tor. Note that there is a symmetry in the instruction set. The addition instructions have counterparts
for subtraction, the direct and indirect-addressing instructions have complementary immediate in-
structions, and so on.

ABS Absolute value of accumulator
ADD Add to accumulator with shift
ADDH Add to high accumulator
ADDK Add to accumulator short immediate
AND Logical AND with accumulator
LAC Load accumulator with shift
SACH Store high accumulator with shift
SACL Store low accumulator with shift
SUB Subtract from accumulator with shift
SUBC Subtract conditionally
ZAC Zero accumulator
ZALH Zero low accumulator and load high accumulator.

Operations involving the accumulator have versions affecting both the high part and the low part
of the accumulator. This capability gives additional flexibility in scaling, logical operations, and
double-precision arithmetic.

For example, let location A contain a 16-bit word that you want to scale down dividing by 16, and
store the result in B. The following instructions perform this operation:

LAC A,12 ; Load ACC with A shifted by 12 locations
SACH B ; Store ACCH to B:B = A/16

The auxiliary registers and data page pointer instructions deal with loading, storing, and modifying
the auxiliary registers and the data page pointer. Note that the auxiliary registers and the ARP can also
be modified during operations using indirect addressing. Since this last approach has the advantage
of making the modifications in parallel with other operations, it is the most common method of AR
modification.

LAR Load auxiliary register
LARP Load auxiliary register pointer
LDP Load data memory page pointer
MAR Modify auxiliary register
SAR Store auxiliary register
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The multiplier instructions are more specific to signal processing applications.

APAC Add P-register to accumulator
LT Load T-register
LTD Load T-register, accumulate previous product, and move data
MAC Multiply and accumulate
MACD Multiply and accumulate with data move
MPY Multiply
MPYK Multiply immediate
PAC Load accumulator with P-register
SQRA Square and accumulate

Note that the instructions that perform multiplication and accumulation at the same time do not
accumulate the present product but the result of an earlier multiplication. This result is found in the
P-register. The square and accumulate function, SQRA, is a special case of the multiplication that
appears often enough to prompt the inclusion of this specific instruction.

The branch instructions correspond to the GOTO instruction of high-level languages. They
redirect the flow of the execution either unconditionally or depending on some previous result.

B Branch unconditionally
BANZ Branch on auxiliary register non zero
BGEZ Branch if accumulator >= 0
CALA Call with subroutine address in the accumulator
CALL Call subroutine
RET Return from subroutine

The CALL and RET instructions go together because the first one pushes the return address on
the stack, while the second one pops the address from the stack into the program counter. The
BANZ instruction is very helpful in loops where an AR is used as a loop counter. BANZ tests the AR,
modifies it, and branches to the indicated address.

The I/Ooperations are, probably, among themost important in termsoffinal systemconfiguration,
because they help the device interact with the rest of the world. Two instructions that perform that
function are the IN and OUT instructions.

BLKD Block move from data memory to data memory
IN Input data from port
OUT Output data to port
TBLR Table read
TBLW Table write

The IN and OUT instructions read from or write to the 16 input and the 16 output ports of the
TMS320C25. Any transferofdatagoes toa specifiedmemory location. TheBLKDinstructionpermits
movement of data from one memory location to another without going through the accumulator. To
make such a movement effective, though, it is recommended to use BLKD with a repeat instruction,
in which case every data move takes only one cycle.

The TBLR and TBLW instructions represent a modification to the Harvard architecture of the
device. Using them, data can be moved between the program and the data spaces. In particular, if
any tables have been stored in the program memory space they can be moved to data memory before
they can be used. That is how the terminology of the instructions originated.

Some other instructions include:

DINT Disable interrupts
EINT Enable interrupts
IDLE Idle until interrupt
RPT Repeat instruction as specified by data memory value
RPTK Repeat instruction as specified by immediate value
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77.7 Input/Output Operations of the TMS320C25

During program execution on a digital signal processor, the data is moved between the different
memory locations, on-chip and off-chip, as well as between the accumulator and the memory lo-
cations. This movement is necessary for the execution of the algorithm that is implemented on the
processor. However, there is a need to communicate with the external world in order to receive data
that will be processed, and return the processed results.

Devices communicate with the external world through their external memory or through the serial
and parallel ports. Such a communication can be achieved, for instance, by sharing the external
memory. Most often, the communication with the external world takes place through the external
parallel or serial ports that the device has. Some devices may have ports of only one kind, serial or
parallel, but most modern processors have both types. The two kinds of ports differ in the way in
which the bits are read. In a parallel port, there is a physical line (and a processor pin) dedicated to
every bit of a word. For example, if the processor reads in words that are 16 bits wide, as is the case
with the TMS320C25, it has 16 lines available to read a whole word in a single operation. Typically,
the same pins that are used for accessing external memory are also used for I/O.

The TMS320C25 has 16 input and 16 output ports that are accessed with the IN and OUT instruc-
tions. These instructions transfer data between memory locations and the I/O port specified.

77.8 Subroutines, Interrupts, and Stack on the TMS320C25

When writing a large program, it is advisable to structure it in a modular fashion. Such modularity
is achieved by segmenting the program in small, self-contained tasks that are encoded as separate
routines. Then, the overall program can be simply a sequence of calls to these subroutines, possibly
with some“glue” code. Constructing the program as a sequence of subroutines has the advantage that
it produces a much more readable algorithm that can greatly help in debugging and maintaining it.
Furthermore, each subroutine can be debugged separately, which is far easier than trying to uncover
programming errors in a “spaghetti-code” program.

Typically, the subroutine is called during the program execution with an instruction such as
CALL SUBRTN
where SUBRTN is the address where the subroutine begins. In this example, SUBRTN would be

the label of the first instruction of the subroutine. The assembler and the linker resolve what the
actual value is. Calling a subroutine has the following effects:

• Increments the program counter (PC) by one and pushes its contents on the top of the
stack (TOS). The TOS now contains the address of the instruction to be executed after
returning from the subroutine.

• Loads the address SUBRTN on the PC.

• Starts execution from where the PC is pointing at (i.e., from location SUBRTN).

At the end of the subroutine execution, a return instruction (RET) will pop the contents of the top
of the stack on the program counter, and the program will continue execution from that location.

The stack is a set of memory locations where you can store data, such as the contents of the PC. The
difference from regular memory is that the stack keeps track of the location where the most recent
data was stored. This location is the TOS. The stack is implemented either in hardware or software.

The TMS320C25 has a hardware stack that is eight locations deep. When a piece of data is put
(“pushed”) on the stack, everything already there is moved down by one location. Notice that the
contents of the last location (bottom of the stack) are lost. Conversely, when a piece of data is retrieved
from the stack (it is “popped”), all the other locations are moved up by one location. Pushing and
popping always occur at the top of the stack.
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The interrupt is a special case of subroutine. The TMS320C25 supports interrupts generated either
internally or from external hardware. An interrupt causes a redirection of the program execution in
order to accomplish a task. For instance, data may be present at an input port, and the interrupt forces
the processor to go and “service” this port (inputting the data). As another example, an external
D/A converter may need a sample from the processor, and it uses an interrupt to indicate to the DSP
device that it is ready to receive the data. As a result, when the processor is interrupted, it “knows”
by the nature of the interrupt that it has to go and do a specific task, and it does just that.

The performance of the designated task is done by the interrupt service routine (ISR). An ISR is
like a subroutine with the only difference on the way it is accessed, and in the functions performed
upon return. When an interrupt occurs, the program execution is automatically redirected to specific
memory locations, associated with each interrupt. As explained earlier, the TMS320C25 continues
execution from a specified memory location which, typically, contains a branch instruction to the
actual location of the interrupt service routine.

The return from the interrupt service routine, like in a subroutine, pops the top of the stack to the
program counter. However, it has the additional effect of re-enabling the interrupts. This is necessary
because when an interrupt is serviced, the first thing that happens is that all interrupts are disabled
to avoid confusion from additional interrupts. Re-enabling is done explicitly in the TMS320C25 (by
using the EINT command).

77.9 Introduction to the TMS320C30 Digital Signal Processor

The Texas Instruments TMS320C30 is a floating-point processor that has some commonalities with
the TMS320C25, but that also has a lot of differences. The differences are due more to the fact that
the TMS320C30 is a newer processor than that it is a floating-point processor. The TMS320C30 is a
fast, 32-bit, digital signal processor that can handle both fixed-point and floating-point operations.
The speed of the device is 16.7 MHz, which corresponds to a cycle time of 60 ns. Since the majority of
the instructions execute in a single cycle (after the pipeline is filled), the figure of 60 ns also indicates
how long it takes to execute one instruction. Alternatively, we can say that the device can execute
16.7 MIPS. Another figure of merit is based on the fact that the device can perform a floating-point
multiplication and addition in a single cycle. Then, it is said that the device has a (maximum)
throughput of 33 million floating-point operations per second (MFLOPS).

The actual signal from the external oscillator or crystal has a frequency twice that of the internal
device speed, at 33.3 MHz (and period of 30 ns). This frequency is then divided on-chip to generate
the internal clock with a period of 60 ns. Newer versions of the TMS320C30 and other members of
the ‘C3x generation operate in higher frequencies.

Figure 77.10 shows in a simplified form the key features of the TMS320C30. The major parts of the
DSP processor are the memory, the CPU, the peripherals, and the direct memory access (DMA) unit.
Each of these parts will be examined in more detail later in this article. The on-chip memory consists
of 2K words of RAM and 4K words of ROM. There is also a 64-word long program cache. Each
word is 32-bits wide and the memory sizes for the TMS320C30 are measured in 32-bit words, and
not in bytes. The memory (RAM or ROM) can be used to store either program instructions or data.
This presents a departure from the practice of separating the two spaces that the TMS320C25 uses,
combining features of a von Neuman architecture with a Harvard architecture. Overall, the device
can address 16 M words of memory through two external buses. Except for what resides on-chip, the
rest of the memory is external, supplied by the designer.

The CPU is the heart of the processor. It has a hardware multiplier that is capable of performing a
multiplication in a single cycle. The multiplication can be between two 32-bit floating point numbers,
or between two integers. To achieve a higher intermediate accuracy of results, the product of two
floating-point numbers is saved as a 40-bit result. In integer multiplication, two 24-bit numbers are
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FIGURE 77.10: Key architectural features to the TMS320C30.

multiplied together to give a 32-bit result. The other important part of the CPU is the arithmetic
logic unit (ALU) that performs additions, subtractions, and logical operations. Again, for increased
intermediate accuracy, the ALU can operate on 40-bit long floating-point numbers and generates
results that are also 40-bit long.

The ‘C30 can handle both integers and floating-point numbers using corresponding instructions.
There are three kinds of floating-point numbers, as shown in Fig. 77.11: short, single-precision, and
extended-precision. In all three kinds, thenumber consists of an exponente, a sign s andamantissaf .
Both the mantissa (part of which is the sign) and the exponent are expressed in two’s-complement
notation.

FIGURE 77.11: TMS320C30 floating point formats.

In the short floating-point format, the mantissa consists of 12 bits and the exponent of 4 bits. The
short format is used only in immediate operands, where the actual number to operate upon becomes
part of the instruction. The single-precision format is the regular format representing the numbers
in the TMS320C30, which is a 32-bit device. It has 24 bits for mantissa and 8 bits for exponent.
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Finally, the extended-precision format is encountered only in the extended-precision registers, to be
discussed below. In this case, the exponents is also 8-bits long, but the mantissa is 32 bits, giving extra
precision. The mantissa is normalized so that it has a magnitude |f | such that 1.0 =< |f | < 2.0.

The integer formats supported in the TMS320C30 are shown in Fig. 77.12. Both the short and
the single-precision integer formats represent the numbers in two’s complement notation. The short
format is used in immediate operands, where the actual number to be operated upon is part of the
instruction itself.

FIGURE 77.12: TMS320C30 integer (fixed-point) formats.

All the arithmetic and logical functions are register-based. In other words, the destination and
at least one source operand in every instruction are register file associated with the TMS320C30
CPU. Figure 77.13 shows the components of the register file. There are eight extended-precision
registers, R0-R7, that can be used as general purpose accumulators for both integer and floating-
point arithmetic. These registers are 40-bits wide. When they are used in floating-point operations,
the top 8 bits are the exponent and the bottom 32 bits are the mantissa of the number. When they
are used as integers, the bottom 32 bits are the integer, while the top 8 bits are ignored and are left
intact.

FIGURE 77.13: TMS320C30 register file.
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The eight auxiliary registers, AR0-AR7, are designated to be used as memory pointers or loop
counters. When treated as memory pointers, they are used during the indirect addressing mode,
to be examined below. AR0-AR7 can also be used as general-purpose registers but only for integer
arithmetic.

Additionally, there are 12 control registers designated for specific purposes. These registers too can
be treated as general purpose registers for integer arithmetic if they are not used for their designated
purpose. Examples of such control registers are the status register, the stack pointer, the block repeat
registers, and the index registers.

To communicate with the external world, the TMS320C30 has two parallel buses, the primary bus
and the expansion bus. It also has two serial ports that can serve the same purpose. The serial ports
are part of the peripherals that have been implemented on chip. Other peripherals include the direct
memory access (DMA) unit, and two timers. These components of the TMS320C30 are examined
in more detail in the following.

The device has 181 pins that are designated to perform certain functions, and to communicate
with other devices on the same board. The names of the signals and the corresponding definitions
appear in Table 77.3. The first column of the table gives the pin names; the second one indicates if the
pin is used for input or output; the third column gives a description of the pin functionality. Note
that a bar over the name indicates that the pin is in the active position when it is electrically low. The
second column indicates if the pin is used for input to the device, output from the device, or both.

TABLE 77.3 Names and Functionality of the 181 Pins of the TMS320C30
Signal I/O Description

D(31-0) I/O 32-bit data port of the primary bus
A(23-0) O 24-bit address port of the primary bus
R/W O Read/write signal for primary bus interface
ST RB O External access strobe for the primary bus
RDY I Ready signal
HOLD I Hold signal for primary bus
HOLDA O Hold acknowledge signal for primary bus
XD(31-0) I/O 32-bit data port of the expansion bus
XA(12-0) O 13-bit address port of the expansion bus
XR/W O Read/write signal for expansion bus interface
MST RB O External access strobe for the expansion bus
IOST RB O External access strobe for the expansion bus
XRDY I Ready signal
RESET I Reset
INT (3-0) I External interrupts
LACK O Interrupt acknowledge signal
MC/MP I Microcomputer/microprocessor mode pin
XF(1-0) I/O External flag pins
CLKX(1-0) I/O Serial port (1-0) transmit clock
DX(1-0) O Data transmit output for port (1-0)
FSX(1-0) I/O Frame synchronization pulse for transmit
CLKR(1-0) I/O Serial port (1-0) receive clock
DR(1-0) I Data receive for serial port (1-0)
FSR(1-0) I Frame synchronization pulse for receive
TCLK(1-O) I/O Timer (1-0) clock
VDD , etc. I 12 + 5 V supply pins
VSS , etc. I 11 ground pins
X1 O Output pin from internal oscillator for the crystal
X2/CLKIN I Input pin to the internal oscillator from the crystal
H1, H3 O External H1, H3 clock. H1 = H3 = 2 CLKIN
EMU, etc. I/O 20 reserved and miscellaneous pins

TheTMS320C30has itsownassembly languageconsistingof114 instructions thatperformgeneral-
purpose and DSP-specific functions. High-level-language compilers have also been developed that
make thewritingofprogramsaneasier task. TheTMS320C30wasdesignedwith ahigh-level language
compiler in mind, and its architecture incorporates some appropriate features. For instance, the
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presence of the software stack, the register file, and the large memory space were to a large extent
motivated by compiler considerations.

The TMS320C30 combines the features of the Harvard and the von Neuman architectures to offer
more flexibility. The memory is a unified space where the designer can select the places for loading
program instructions or data. This von Neuman feature maximizes the efficient use of the memory.
On the other hand, there are multiple buses to access the memory in a Harvard style, as shown in
Fig. 77.14. Two of the buses are used for the program, to carry the instruction address and fetch
the instruction. Three buses are associated with data: two of those carry data addresses, so that two
memory accesses can be done in the same machine cycle. The third bus carries the data. The reason
that one bus is sufficient to carry the data is that the device needs only one-half of a machine cycle
to fetch an operand from the internal memory. As a result, two data fetches can be accomplished in
one cycle over the same bus.

FIGURE 77.14: Internal bus structure of the TMS320C30.

The last two buses are associated with the DMA unit, which transfers data in parallel with and
transparently to the CPU. Because of the multiple buses, program instructions and data operands can
be moved simultaneously increasing the throughput of the device. Of course, it is conceivable that
too many accesses can be attempted to the same memory area, causing access conflicts. However, the
TMS320C30 has been designed to resolve such conflicts automatically by inserting the appropriate
delays in instruction execution. Hence, the operations always give the correct results.

Figure 77.15 shows a functional block diagram of the TMS320C30 architecture with the buses,
the CPU, and the register file. It also points out the peripheral bus with the associated peripherals.
Because of the peripheral bus, all the peripherals are memory-mapped, and any operations with them
are seen by the programmer as accesses (reads/writes) to the memory.
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FIGURE 77.15: Functional block diagram of the TMS320C30 architecture.
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77.10 TMS320C30 Memory Organization and Access

The TMS320C30 has on-chip 2K words (32-bits wide) of RAM and 4K of ROM. This memory can
be accessed twice in a single cycle, a fact that is reflected in the instruction set, which includes three-
operand instructions: two of the operands reside in memory, while the third operand is the register
where the result is placed.

Besides the on-chip memory, the TMS320C30 can access external memory through two external
buses, the primary and the expansion. The primary bus consists of 24 address pins A0-A23, and 32
data pins D0-D31. As the number of address pins suggests, the maximum memory space available
is 16M words. Not all of that, though, resides on the primary bus. The primary bus has 16M words
minus the on-chip memory, and minus the memory available on the expansion bus.

The expansion bus has 13 address pins, XA0-XA12, and 32 data pins, XD0-XD31. The 13 address
pins can address 8K words of memory. However, there are two strobes, MSTRB and IOSTRB, that
select two different segments of 8K of memory. In other words, the total memory available on the
expansion bus is 16K. The differences between the two strobes is in timing. The timing differences
can make one of the memory spaces more preferable to the other in certain applications, such as
peripheral devices.

As mentioned earlier, the destination operand is always a register in the register file (except for
storing a result, where, of course, the destination is a memory location.) The register can also be
one of the source operands. It is possible to specify a source operand explicitly and include it in the
instruction. This addressing mode is called immediate addressing mode. The immediate constant
should be accommodated by a 16-bit wide word, as discussed earlier in the data formats.

For example, if it is desired to increment the (integer) contents of the register R0 by 5, the following
instruction can be used:

ADDI 5,R0
To increment the (floating-point) contents of the register R3 by -2.75, you can use the instruction
ADDF -2.75,R3
If the value to be operated upon resides in memory, there are two ways to access it: either by

specifying the memory address directly (direct addressing) or by using an auxiliary register holding
that address and, hence, pointing to that number indirectly (indirect addressing). In the direct
addressing mode, full description of a memory address would require a 24-bit word because the
memory space is 16M words. To reduce that requirement, the memory space is divided in 256 pages
of 64K words each. An instruction using direct addressing contains the 16 bits indicating what word
you want to access within a page. The page number (8 bits) is stored in one of the control registers,
the data page (DP) pointer. The DP pointer can be modified by using either a load instruction or the
pseudo-instruction LDP. During assembly time, LDP picks the top 8 bits of a memory address and
places them in the DP register.

Of course, if several locations need to be accessed in the same page, you can set the DP pointer only
once. Since the majority of the routines written are expected to be less than 64K words long, setting
the DP register at the beginning of the program suffices. The exception to that would be placing the
code over the boundary of two consecutive pages.

In the indirect addressing mode, the data memory address is held in a register that acts as a memory
pointer. There are eight such registers available, AR0-AR7. These registers can also be used for other
functions, such as loop counters or general purpose registers. If they are used as memory pointers,
they are explicitly specified in the instruction. In an instruction, indirect addressing is indicated by
an asterisk preceding the auxiliary register.

For example, the instruction
LDF ∗ AR3++,R0 ; Load R0 with -612
loads R0 with the contents of the memory location pointed at by AR3.
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The “++” sign in the above instruction means “after the present memory access, increment the
contents of the current auxiliary register by1”. This is done inparallelwith the load-register operation.

The above autoincrementing of the auxiliary register is an optional operation that offers additional
flexibility to the programmer, and it is not the only one available. The TMS320C30 has two auxiliary
register arithmetic units (ARAU0 and ARAU1) that can execute such operations in parallel with the
CPU, and increase the throughput of the device in this way. The primary function of ARAU0 and
ARAU1 is to generate the addresses for accessing operands.

Table 77.4 summarizes the different operations that can be done while using indirect addressing.
As seen from this table, the contents of an auxiliary register can be incremented or decremented
before or after accessing the memory location. In the case of pre-modification, this modification can
be permanent or temporary. When an auxiliary register ARn, n = 0-7, is modified, the displacement
disp is either a constant (0-255) or the contents of one of the two index registers IR0, IR1 in the register
file. If the displacement is missing, a 1 is implied. The auxiliary register contents can be incremented
or decremented in a circular fashion, or incremented by the contents of IR0 in a bit-reversed fashion.

TABLE 77.4 Operations That Can Be Performed in Parallel with

Indirect Addressing in the TMS320C30
Notation Operation Description

∗ARn addr = ARn Indirect without modification∗+ARn(disp) addr = ARn + disp With predisplacement add∗−ARn(disp) addr = ARn − disp With predisplacement subtract∗ + +ARn(disp) addr = ARn + disp With predisplacement add
ARn = ARn + disp and modify∗ − −ARn(disp) addr = ARn − disp With predisplacement subtract
ARn = ARn − disp and modify∗ARn++(disp) addr = ARn With postdisplacement add
ARn = ARn + disp and modify∗ARn−−(disp) addr = ARn With postdisplacement subtract
ARn = ARn − disp and modify∗ARn++(disp)% addr = ARn With postdisplacement add
ARn = circ(ARn + disp) and circular modify∗ARn−−(disp)% addr = ARn With postdisplacement subtract
ARn = circ(ARn − disp) and circular modify∗ARn++(IR0)B addr = ARn With postdisplacement add
ARn = rc(ARn + IR0) and bit-reversed modify

Note: circ = circular modification, B = bit reversed, rc = reverse carry.

The last two kinds of operation have special purposes. Circular addressing is used to create a
circular buffer, and it is helpful in filtering applications. Bit-reversed addressing is useful when doing
Fast Fourier Transforms. The bit-reversed addressing is implemented by adding IR0 with reverse
carry propagation, an operation explained in the TMS320C30 User’s Guide.

The TMS320C30 has a software stack that is part of its memory. The software stack is implemented
by having one of the control registers, the SP, point to the next available memory location. Whenever
a subroutine call occurs, the address to return to after the subroutine completion is pushed on the
stack (i.e., it is written on the memory location that SP is pointing at), and SP is incremented by one.
Upon return from a subroutine, the SP is decremented by one and the value in that memory location
is copied on the program counter.

Since the SP is a regular register, it can be read or written to. As a result, you can specify what part
of the memory is used for the stack by initializing SP to the appropriate address. There are specific
instructions to push on or pop from the stack any of the registers in the register file: PUSH, POP for
integer values, PUSHF, POPF for floating-point numbers. Such instructions can use the stack to pass
arguments to subroutines or to save information during an interrupt. In other words, the stack is a
convenient scratch-pad that you designate at the beginning, so that you do not have to worry where
to store some temporary values.
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77.11 Multiplier and ALU of the TMS320C30

Theheart of theTMS320C30 is theCPUconsisting, primarily, of themultiplier and theALU.TheCPU
configuration is shown in Fig. 77.16 which depicts the multiplier and the ALU of the TMS320C30.
The hardware multiplier can perform both integer and floating-point multiplications in a single
machine cycle.

FIGURE 77.16: Central processing unit (CPU) of the TMS320C30.

The inputs to the multiplier come from either the memory or the registers of the register file.
The outputs are placed in the register file. When multiplying floating-point numbers, the inputs
are 32-bits long (8 bits exponent and 24 bits mantissa), and the result is 40-bits wide directed to one
of the extended precision registers. If the input is longer than 32 bits (extended precision) or shorter
than 32 bits (short format) it is truncated or extended, respectively, by the device to become a 32-bit
number before the operation. Multiplication of integers consists of multiplying two 24-bit numbers
to generate a 32-bit result. In this case, the registers used can be any of the registers in the register
file.

Theothermajorpartof theCPUis theALU.TheALUcanalso take inputs fromeither thememoryor
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the register file and perform arithmetic or logical operations. Operations on floating-point numbers
can be done on 40-bit wide inputs (8 bits exponent and 32 bits mantissa) to give also 40-bit results.
Integer operations are done on 32-bit numbers. Associated with the ALU, there is a barrel shifter that
can perform either a right-shift or a left-shift of a register’s contents for any number of locations in
a single cycle. The instructions for shifting are ASH (Arithmetic SHift) and LSH (Logical SHift).

77.12 Other Architectural Features of the TMS320C30

The TMS320C30 has many interesting features and capabilities. For a full account, the reader is
urged to look them up in the User’s Guide [2]. Here, we briefly present only the most important of
them so that you have a global view of the device and its salient characteristics.

The TMS320C30 is a very fast device, and it can execute very efficiently instructions from the
on-chip memory. Often, though, it is necessary to use external memory for program storage. The
existing memory devices either are not as fast as needed, or are quite expensive. To ameliorate this
problem, the TMS320C30 has 64 words of program cache on-chip. When executing a program from
external memory, every instruction is stored on the cache as it is brought in. Then, if the same
instruction needs to be executed again (as is the case for instructions in a loop), it is not fetched from
the external memory but from the cache. This approach speeds up the execution, but it also frees
the external bus to fetch, for instance, operands. Obviously, the cache is most effective for loops that
are shorter than 64 words long, something usual in DSP applications. On the other hand, it does
not offer any advantages in the case of straight-line code. However, the structure of DSP problems
suggests that the cache is a feature that can be put to good use.

In the instruction set of the ‘C30 there is the RPTS (RePeaT Single) instruction
RPTS N
that repeats the following instruction N+1times. A more generalized repeated mode is imple-

mented by the RPTB (RePeaT Block) instruction that repeats a number of times all the instructions
between RPTB and a label that is specified in the block-repeat instruction. The number of repetitions
is one more than the number stored in the repeat count register, RC, one of the control registers in
the register file.

For example the following instructions are repeated one time more than the number included in
the RC.

LDI 63,RC ; The loop is to be repeated 64 times
RPTB LOOP ; Repeat up to the label LOOP
LDI ∗AR0,R0 ; Load the number on R0
ADDI 1,R0 ; Increment it by 1

LOOP STI R0,∗AR0++ ; Store the result; point to the next
; number; and loop back

Besides RC, there are two more control registers used with the block repeat instruction. The
repeat-start (RS) contains the beginning of the loop, and the repeat-end (RE) the end of the loop.
These registers are initialized automatically by the processor, but they are available to the user in case
he needs to save them.

On the TMS320C30, there are several internal and external interrupts, which are prioritized, i.e.,
when several of the interrupts occur at the same time, the one with the highest priority is executed
first.

Besides the reset signal, there are 4 external interrupts, INT0-INT3. Internally, there are the
receive and transmit interrupts of the serial ports, and the timer interrupts. There is also an interrupt
associated with the DMA. Typically, the memory location where the execution is directed to during an
interrupt contains the address where an interrupt service routine starts. The interrupt service routine
will perform the tasks for which the interrupt has been designed, and then return to the execution of
the original program. All the interrupts (except the reset) are maskable, i.e., they can be ignored by
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setting the interrupt enable (IE) register to appropriate values. Masking of interrupts, as well as the
memory locations where the interrupt addresses are stored, are discussed in the TMS320C30 User’s
Guide [2].

Each of the two serial ports provides direct communication with serial devices, such as codes, serial
analog-to-digital converters, etc. In these devices, the data are transmitted serially, one bit at a time,
and not in parallel, which would require several parallel lines. The serial ports have the flexibility to
consider the incoming stream as 8-, 16-, 24-, or 32-bit words. Since they are memory-mapped, the
programmer goes to certain memory locations to read in or write out the data.

Each of the two timers consists of a period register and a timer register. At the beginning of the
operation, the contents of the timer register are incremented at every machine cycle. When the value
of the timer register becomes equal to the one in the period register, it generates a timer interrupt,
the period register is zeroed out, and the whole operation is repeated.

A very interesting addition to the TMS320C30 architecture is the DMA unit. The DMA can transfer
data between memory locations in parallel with the CPU execution. In this way, blocks of data can be
transferred transparently, leaving the CPU free to perform computational tasks, and thus increasing
the device throughput.

The DMA is controlled by a set of registers, all of which are memory mapped: you can modify
these registers by writing to certain memory locations. One register is the source address from
where the data is coming. The destination address is where the data is going. The transfer count
register specifies how many transfers will take place. A control register determines if the source and
the destination addresses are to be incremented, decremented, or left intact after every access. The
programmer has several options of synchronizing the DMA data transfers with interrupts or leaving
them asynchronous.

77.13 TMS320C30 Instruction Set

The TMS320C30 has an instruction set consisting of 114 instructions. Some of these instructions
perform general purpose operations, while others are more specific to DSP applications. The in-
struction set of the TMS320C30 presents an interesting symmetry that makes programming very
easy. Instructions that can be used with integer operands are distinguished from the same instruc-
tions for floating-point numbers with the suffix “I” vs. “F”. Instructions that take three operands are
distinguished from the ones with two operands by using the suffix “3”. However, since the assembler
permits elimination of the symbol “3”, the notation becomes even simpler.

A whole new class of TMS320C30 instructions (as compared to the TMS320C25) are the parallel
instructions. Any multiplier or ALU operation can be performed in parallel with a store instruction.
Additionally, two stores, two loads, or a multiply and an add/subtract can be performed in parallel.
Parallel instructions are indicated by placing two vertical lines in front of the second instruction.

For example, the following instruction adds the contents of ∗AR3 to R2 and puts the result in R5.
At the same time, it stores the previous contents of the R5 into the location ∗AR0.

ADDF ∗AR3++,R2,R5
‖ STF R5,∗AR0−−

Note that the parallel instructions are not really two instructions but one, which is also different
from its two components. However, the syntax used helps remembering the instruction mnemonics.
One of the most important parallel instructions for DSP applications is the parallel execution of
a multiplication with an addition or subtraction. This single-cycle multiply-accumulate is very
important in the computation of dot products appearing in vector arithmetic, matrix multiplication,
digital filtering, etc.
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For example, assume that we want to take the dot product of two vectors having 15 points each.
Assume that AR0 points to one vector and AR1 to the other. The dot product can be computed with
the following code:

LDF 0.0,R2 ; Initialize R2=0.0
LDF 0.0,R0 ; Initialize R0=0.0
RPTS 14 ; Repeat loop (single instruction)
MPYF ∗AR0++, ∗AR1++, R0 ; Multiply two points, and

‖ ADDF R0,R2 ; Accumulate previous product
ADDF R0,R2 ; Accumulate last product

After the operation is completed, R2 holds the dot product.

Before proceeding with the instructions, it is important to understand the working of the device
pipeline. At every instant in time, there are 4 execution units operating in parallel in the TMS320C30:
the fetch, decode, read, and execute unit, in order of increasing priority. The fetch unit fetches the
instruction; the decode unit decodes the instruction and generates the addresses; the read unit reads
the operands from the memory or the registers; and the execute unit performs the operation specified
in the instruction. Each one of these units takes one cycle to complete. So, an instruction in isolation
takes, actually, four cycles to complete. Of course, you never run a single instruction alone.

In the pipeline configuration, as shown in Fig. 77.17, when an instruction is fetched, the previous
instruction is decoded. At the same time, the operands of the instruction before that are read, while
the third instruction before the present one is executed. So, after the pipeline is full, each instruction
takes a single cycle to execute.

FIGURE 77.17: Pipeline structure of the TMS320C30.

Is it true that all the instructions take a single cycle to execute? No. There are some instructions,
like the subroutine calls and the repeat instructions, that need to flush the pipeline before proceeding.
The regular branch instructions also need to flush the pipeline. All the other instructions, though,
should take one cycle to execute, if there are no pipeline conflicts.

There are a few reasons that can cause pipeline conflicts, and if the programmer is aware of where
the conflicts occur, he can take steps to reorganize his code and eliminate them. In this way, the device
throughput is maximized. The pipeline conflicts are examined in detail in the User’s Guide [2].

The load and store instructions can load a word into a register, store the contents of a register to
memory, or manipulate data on the system stack. Note that the instructions with the same func-
tionality that operate on integers or floating-point numbers are presented together in the following
selective listing.
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LDF, LDI Load a floating-point or integer value
LDFcond, LDIcond Load conditionally
POPF, POP Pop value from stack
PUSHF, PUSH Push value on stack
STF, STI Store value to memory

The conditional loads perform the indicated load only if the condition tested is true. The condition
tested is, typically, the sign of the last performed operation.

The arithmetic instructions include both multiplier and ALU operations.

ABSF, ABSI Absolute value
ADDF, ADDI Add
CMPF, CMPI Compare values
FIX, FLOAT Convert between fixed- and floating-point
MPYF, MPYI Multiply
NEGF, NEGI Negate
SUBF, SUBI Subtract
SUBRF,SUBRI Reverse subtract

The difference between the subtract and the reverse subtract instructions is that the first one
subtracts the first operand from the second, while the second one subtracts the second operand from
the first.

The logical instructions always operate on integer (or unsigned) operands.

AND Bitwise logical AND
ANDN Bitwise logical AND with complement
LSH Logical shift
NOT Bitwise logical complement
OR Bitwise logical OR
XOR Bitwise exclusive OR

The logical shift differs from an arithmetic shift (which is part of the arithmetic instructions)
in that, on a right shift, the logical shift fills the bits to the left with zeros. The arithmetic shift
sign-extends the (integer) number.

The program control instructions include the branch instructions (corresponding to GOTO of a
high-level languages), and the subroutine call and return instructions.

Bcond[D] Branch conditionally [with delay]
CALL, CALLcond Call or call conditionally a subroutine
RETIcond, RETScond Return from interrupt or subroutine conditionally
RPTB, RPTS Repeat block or repeat a single instruction

The branch instructions can have an optional “D” at the end to convert them into delayed branches.
The delayed branch does the same operation as a regular branch but it takes fewer cycles. A regular
branch needs to flush the pipeline before proceeding with the next instruction because it is not known
in advance if the branch will be taken or not. As a result, a regular branch costs four machine cycles.
If, however, there are three instructions that can be executed no matter if the branch is taken or
not, a delayed branch can be used. In a delayed branch, the three instructions following the branch
instruction are executed before the branch takes effect. This reduces the effective cost of the delayed
branch to one cycle.

77.14 Other Generations and Devices in the TMS320 Family

So far, the discussion in this article has focused on two specific devices of the TMS320 family in
order to examine in detail their features. However, the TMS320 family consists of five generations
(three fixed-point and two floating-point) of digital signal processors (as well as the latest addition, the
TMS320C8x generation, also known as MVP, Multimedia Video Processors). The fixed-point devices
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are members of the TMS320C1x, TMS320C2x, or TMS320C5x generation, and the floating-point
devices belong to the TMS320C3x or TMS320C4x generation.

The TMS320C5x generation is the highest-performance generation of the TI 16-bit fixed-point
digital signal processors. The ‘C5x performance level is achieved through a faster cycle time, larger on-
chip memory space, and systematic integration of more signal-processing functions. As an example,
theTMS320C50 (Fig. 77.18) features largeon-chipRAMblocks. It is source-codeupward-compatible
with the first- and second-generation TMS320 devices.

FIGURE 77.18: TMS320C50 Block diagram.

Some of the key features of the TMS320C5x generation are listed below. Specific devices that have
a particular feature are enclosed in parentheses.
• CPU

• 25-, 35-, 50-ns single-cycle instruction execution time

• Single-cycle multiply/accumulate for program code

• Single-cycle/single-word repeats and block repeats for program code

• Block memory moves

• Four-deep pipeline

• Indexed-addressing mode

• Bit-reversed/indexed-addressing mode to facilitate FFTs

• Power-down modes

• 32-bit ALU, 32-bit accumulator, and 32-bit accumulator buffer

• Eight auxiliary registers with a dedicated arithmetic unit for indirect addressing

• 16-bit parallel logic unit (PLU)

• 16×16-bit parallel multiplier with a 32-bit product capacity

• 0- to 16-bit right and left barrel-shifters

• 64-bit incremental data shifter

• Two indirectly addressed circular data buffers for circular addressing
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• Peripherals

• Eight-level hardware stack

• 11 context-switch registers to shadow the contents of strategic CPU-controlled registers
during interrupts

• Full-duplex, synchronous serial port, which directly interfaces to codec

• Time-division multiplexed (TDM) serial port (TMS320C50/C51/C53)

• Interval timer with period and control registers for software stops, starts, and resets

• Concurrent external DMA performance, using extended holds

• On-chip clock generator

• Divide-by-one clock generator (TMS320C50/C51/C53)

• Multiply-by-two clock generator (TMS320C52)

• Memory

• 10K×16-bit single cycle on-chip program/data RAM (TMS320C50)

• 2K×16-bit single cycle on-chip program/data RAM (TMS320C51)

• 1K×16 RAM (TMS320C52)

• 4K×16 RAM (TMS320C53)

• 2K×16-bit single cycle on-chip boot ROM (TMS320C50)

• 8K×16-bit single cycle on-chip boot ROM (TMS320C51)

• 4K×16 ROM (TMS320C52)

• 16K×16 ROM (TMS320C53)

• 1056X16-bit dual-access on-chip data/program RAM

• Memory interfaces

• 16 programmable software wait-state generators for program, data, and I/O memories

• 224K-word × 16-bit maximum addressable external memory space

Table 77.5 shows the overall TMS320 family. It provides a tabulated overview of each mem-
ber’s memory capacity, number of I/O ports (by type), cycle time, package type, technology, and
availability.

Many features are common among these TMS320 processors. When the term TMS320 is used, it
refers to all fivegenerationsofDSPdevices. Whenreferring toa specificmemberof theTMS320 family
(e.g., TMS320C15), thenamealso implies enhanced-speed inMHz(-14, -25, etc.), erasable/programmable
(TMS320E15), low-power (TMS320LC15), and one-time programmable (TMS320P15) versions.
Specific features are added to each processor to provide different cost/performance alternatives.
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TABLE 77.5 TMS320 Family Overview
Memory (words) I/Oa Cycle

Data On-chip Off-chip On-chip time
type Device RAM ROM EPROM Dat / Pro Ser Par DMA Com timer (ns) Package

TMS320C10b 144 1.5K — –/4K — 8 × 16 — — — 200 DIP/PLCC
TMS320C10-14 144 1.5K — –/4K — 8 × 16 — — — 280 DIP/PLCC
TMS320C10-25b 144 1.5K — –/4K — 8 × 16 — — — 160 DIP/PLCC
TMS320C14 256 4K — –/4K 1 7 × 16 — — 4 160 PLCC
TMS320E14b 256 — 4K –/4K 1 7 × 16 — — 4 160 CERQUAD
TMS320E14-25b 256 — 4K –/4K 1 7 × 16 — — 4 167 CERQUAD
TMS320P14 256 — 4K –/4K 1 7 × 16 — — 4 160 PLCC
TMS320C15b 256 4K — –/4K — 8 × 16 — — — 200 DIP/PLCC/

Fixed- PQFP
point TMS320C15-25b 256 4K — –/4K — 8 × 16 — — — 160 DIP/PLCC
(16-bit TMS320E15b 256 — 4K –/4K — 8 × 16 — — — 200 DIP/CER-
word QUAD
size) TMS320E15-25 256 — 4K –/4K — 8 × 16 — — — 160 DIP/CER-

QUAD
TMS320LC15 256 4K — –/4K — 8 × 16 — — — 200 DIP/PLCC
TMS320P15 256 — 4K –/4K — 8 × 16 — — — 200 DIP/PLCC
TMS320P15-25 256 — 4K –/4K — 8 × 16 — — — 160 DIP/PLCC
TMS320C16 256 8K — –/64K — 8 × 16 — — — 114 PQFP
TMS320LC16 256 8K — –/64K — 8 × 16 — — — 250 PQFP
TMS320C17 256 4K — –/– 2 6 × 16 — — 1 200/160 DIP/PLCC
TMS320E17 256 — 4K –/– 2 6 × 16 — — 1 200/160 DIP

a Ser = serial; Par = parallel; DMA = direct memory access (Int = internal; Ext = external); Com = parallel communication ports
b A military version is available/planned; contact the nearest TI field sales office for availability.
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TABLE 77.5 TMS320 Family Overview (Continued)
Memory (words) I/Oa,c Cycle

Data On-chip Off-chip On-chip time Package
type Device RAM ROM EPROM Dat / Pro Ser Par DMA Com timer (ns) type

TMS320LC17 256 4K — –/– 2 6 × 16 — — 1 200 DIP/PLCC
TMS320P17 256 — 4K –/– 2 6 ×16 — — 1 160 DIP
TMS320C25b 544 4K — 64K/ 1 16 ×16 Ext — 1 100 PGA/PLCC/

64K PQFP
Fixed- TMS320C25-33 544 4K — 64K/ 1 16 × 16 Ext — 1 120 PLCC
point 64K
(16-bit TMS320C25-50b 544 4K — 64K/ 1 16 × 16 Ext — 1 80 PGA/PLCC
word 64K
size) TMS320E25 544 — 4K 64K/ 1 16 × 16 Ext — 1 100 PQFP/PLCC

64K
TMS320C26b 1.5K — — 64K/ 1 16 × 16 Ext — 1 100 PLCC

64K
TMS320C28 544 8K — 64K/ 1 16 × 16 Ext — 1 100 PQFP/PLCC

64K
TMS320C28-50 544 8K — 64K/ 1 16 × 16 Ext — 1 80 PQFP/PLCC

64K
a Ser = serial; Par = parallel; DMA = direct memory access; Int = internal; Ext = external; Com = parallel communication ports.
b A military version is available/planned; contact the nearest TI field sales office for availability.
c Programmed transcoders (TMS320SS16 and TMS320SA32) are also available.
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TABLE 77.5 TMS320 Family Overview (Continued)
Memory (words) I/Oa,c Cycle

Data On-chip Off-chip On-chip time
type Device RAM ROM EPROM Dat / Pro Ser Par DMA Com timer (ns) Package

TMS320C50b 10K BL — 64K/ 2 64K × 16d Ext — 1 50/35/ PQFP
64K 25/20e

TMS320C51 2K 8K — 64K/ 2 64K × 16d Ext — 1 50/35/ PQFP/TQFP
64K 25/20e

TMS320BC51 2K BL — 64K/ 2 64K × 16d Ext — 1 50/35/ PQFP/TQFP
Fixed- 64K 25/20e

point TMS320C52 1K 4K — 64K/ 1 64K × 16d Ext — 1 50/35/ PQFP/TQFP
(16-bit 64K 25/20e

word TMS320BC52 1K BL — 64K/ 1 64K × 16d Ext — 1 50/35/ PQFP/TQFP
size) 64K 25/20e

TMS320C53 4K 16K — 64K/ 2 64K × 16d Ext — 1 50/35/ PQFP/TQFP
64K 25/20e

TMS320BC53 4K BL — 64K/ 2 64K × 16d Ext — 1 50/35/ PQFP/TQFP
64K 25/20e

a Ser = serial; Par = parallel; DMA = direct memory access concurrent with CPU operation; Int = internal; Ext = external; Com = parallel communication
ports; BL = bootloader.
b A military version is available/planned; contact the nearest TI field sales office for availability.
c Programmed transcoders (TMS320SS16 and TMS320SA32) are also available.
d Sixteen of these parallel I/O ports are memory-mapped.
e Planned
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TABLE 77.5 TMS320 Family Overview (Continued)
Memory (words) I/Oa,c Cycle

Data On-chip Off-chip On-chip time Package
type Device RAM ROM EPROM Dat / Pro Ser Par DMA Com timer (ns) type

TMS320C30 2K 4K — 16Mf 2 16M × 32g Int/Ext — 2(6)d 60 PGA and PQFP
TMS320C30-50 2K 4K — 16Mf 2 16M × 32g Int/Ext — 2(6)d 40 PGA and PQFP
TMS320C30-27 2K 4K — 16Mf 2 16M × 32g Int/Ext — 2(6)d 74 PGA and PQFP
TMS320C30-40 2K 4K — 16Mf 2 16M × 32g Int/Ext — 2(6)d 50 PGA and PQFP

Floating TMS320C30-50 2K 4K — 16Mf 2 16M × 32g Int/Ext — 2(6)d 40 PGA and PQFP
point TMS320C31b 2K e — 16Mf 1 16M × 32 Int/Ext — 2(4)d 60 PQFP
(32-bit TMS320LC31 2K e — 16Mf 1 16M × 32 Int/Ext — 2(4)d 60 PQFP
word TMS320C31-27 2K e — 16Mf 1 16M × 32 Int/Ext — 2(4)d 74 PQFP
size) TMS320C31-40 2K e — 16Mf 1 16M × 32 Int/Ext — 2(4)d 50 PQFP

TMS320C31-50 2K e — 16Mf 1 16M × 32 Int/Ext — 2(4)d 40 PQFP
TMS320C40 2K 4Ke — 4Gf — 4G × 32g Int/Ext 6 2 40 PGA
TMS320C40-40 2K 4Ke — 4Gf — 4G × 32g Int/Ext 6 2 50 PGA

a Ser = serial; Par = parallel; DMA = direct memory access concurrent with CPU operation; Int = internal; Ext = external; Com = parallel communication ports.
b A military version is available/planned; contact the nearest TI field sales office for availability.
c Programmed transcoders (TMS320SS16 and TMS320SA32) are also available.
d Includes the use of serial port timers.
e Preprogrammed ROM bootloader.
f Single logical memory space for program, data, and I/O; not including on-chip RAM, peripherals, and reserved spaces.
g Dual buses.
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The Rapid Prototyping of Application-Specific Signal Processors (RASSP) [1, 2, 3] pro-
gram of the U.S. Department of Defense (ARPA and Tri-Services) targets a 4X im-
provement in the design, prototyping, manufacturing, and support processes (relative
to current practice). Based on a current practice study (1993) [4], the prototyping time
from system requirements definition to production and deployment, of multiboard sig-
nal processors, is between 37 and 73 months. Out of this time, 25 to 49 months are
devoted to detailed hardware/software (HW/SW) design and integration (with 10 to 24
months devoted to the latter task of integration). With the utilization of a promising
top-down hardware-less codesign methodology based on VHDL models of HW/SW
components at multiple abstractions, reduction in design time has been shown espe-
cially in the area of hardware/software integration [5]. The authors describe a top-down
design approach in VHDL starting with the capture of system requirements in an exe-
cutable form and through successive stages of design refinement, ending with a detailed
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hardware design. This hardware/software codesign process is based on the RASSP pro-
gram design methodology called virtual prototyping, wherein VHDL models are used
throughout the design process to capture the necessary information to describe the de-
sign as it develops through successive refinement and review. Examples are presented
to illustrate the information captured at each stage in the process. Links between stages
are described to clarify the flow of information from requirements to hardware.

78.1 Introduction

We describe a RASSP-based design methodology for application specific signal processing systems
which supports reengineering and upgrading of legacy systems using a virtual prototyping design
process. The VHSIC Hardware Description Language (VHDL) [6] is used throughout the process
for the following reasons. One, it is an IEEE standard with continual updates and improvements;
two, it has the ability to describe systems and circuits at multiple abstraction levels; three, it is suitable
for synthesis as well as simulation; and four, it is capable of documenting systems in an executable
form throughout the design process.

A Virtual Prototype (VP) is defined as an executable requirement or specification of an embedded
system and its stimuli describing it in operation at multiple levels of abstraction. Virtual prototyping
is defined as the top-down design process of creating a virtual prototype for hardware and software
cospecification, codesign, cosimulation, and coverification of the embedded system. The proposed
top-down design process stages and corresponding VHDL model abstractions are shown in Fig. 78.1.
Each stage in the process serves as a starting point for subsequent stages. The testbench developed for
requirements capture is used for design verification throughout the process. More refined subsystem,
board, and component level testbenches are also developed in-cycle for verification of these elements
of the system.

The process begins with requirements definition which includes a description of the general algo-
rithms to be implemented by the system. An algorithm is here defined as a system’s signal processing
transformations required to meet the requirements of the high level paper specification. The model
abstraction created at this stage, the executable requirement, is developed as a joint effort between
contractor and customer in order to derive a top-level design guideline which captures the customer
intent. The executable requirement removes the ambiguity associated with the written specification.
It also provides information on the types of signal transformations, data formats, operational modes,
interface timing data and control, and implementation constraints. A description of the executable
requirement for an MPEG decoder is presented later. Section 78.4 addresses this subject in more
detail.

Following the executable requirement, a top-level executable specification is developed. This is
sometimes referred to as functional level VHDL design. This executable specification contains three
general categories of information: (1) the system timing and performance, (2) the refined internal
function, and (3) the physical constraints such as size, weight, and power. System timing and
performance information include I/O timing constraints, I/O protocols, and system computational
latency. Refined internal function information includes algorithm analysis in fixed/floating point,
control strategies, functional breakdown, and task execution order. A functional breakdown is
developed in terms of primitive signal processing elements which map to processing hardware cells
or processor specific software libraries later in the design process. A description of the executable
specification of the MPEG decoder is presented later. Section 78.5 investigates this subject in more
detail.

The objective of data and control flow modeling is to refine the functional descriptions in the
executable specification and capture concurrency information and data dependencies inherent in the
algorithm. The intent of the refinement process is to generate multiple implementation independent
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FIGURE 78.1: The VHDL top-down design process.

representations of the algorithm. The implementations capture potential parallelism in the algorithm
at a primitive level. The primitives are defined as the set of functions contained in a design library
consisting of signal processing functions such as Fourier transforms or digital filters at course levels
and of adders and multipliers at more fine-grained levels. The control flow can be represented in
a number of ways ranging from finite state machines for low level hardware to run-time system
controllers with multiple application data flow graphs. Section 78.6 investigates this abstraction
model.

After defining the functional blocks, data flow between the blocks, and control flow schedules,
hardware-software design trade-offs are explored. This requires architectural design and verification.
In support of architecture verification, performance level modeling is used. The performance level
model captures the time aspects of proposed design architectures such as system throughput, latency,
and utilization. The proposed architectures are compared using cost function analysis with system
performance and physical design parameter metrics as input. The output of this stage is one or
few optimal or nearly optimal system architectural choice(s). In this stage, the interaction between
hardware and software is modeled and analyzed. In general, models at this abstraction level are not
concerned with the actual data in the system but rather the flow of data through the system. An
abstract VHDL data type known as a token captures this flow of data. Examples of performance
level models are shown later. Sections 78.7 and 78.8 address architecture selection and architecture
verification, respectively.

Following architecture verification using performance level modeling, the structure of the system
in terms of processing elements, communications protocols, and input/output requirements is estab-
lished. Various elements of the defined architecture are refined to create hardware virtual prototypes.
Hardware virtual prototypes are defined as software simulatable models of hardware components,
boards, or systems containing sufficient accuracy to guarantee their successful realization in actual
hardware. At this abstraction level, fully functional models (FFMs) are utilized. FFMs capture both
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internal and external (interface) functionality completely. Interface models capturing only the exter-
nal pin behavior are also used for hardware virtual prototyping. Section 78.9 describes this modeling
paradigm.

Application specific component designs are typically done in-cycle and use register transfer level
(RTL) model descriptions as input to synthesis tools. The tool then creates gate level descriptions and
final layout information. The RTL description is the lowest level contained in the virtual prototyping
process and will not be discussed in this paper because existing RTL methodologies are prevalent in
the industry.

At least six different hardware/software codesign methodologies have been proposed for rapid
prototyping in the past few years. Some of these describe the various process steps without providing
specifics for implementation. Others focus more on implementation issues without explicitly con-
sidering methodology and process flow. In the next section, we illustrate the features and limitations
of these approaches and show how they compare to the proposed approach.

Following the survey, Section 78.3 lays the groundwork necessary to define the elements of the
design process. At the end of the paper, Section 78.10 describes the usefulness of this approach for
life cycle support and maintenance.

78.2 Survey of Previous Research

The codesign problem has been addressed in recent studies by Thomas et al. [7], Kumar et al. [8],
Gupta et al. [9], Kalavade et al. [10, 11], and Ismail et al. [12]. A detailed taxonomy of HW/SW
codesign was presented by Gajski et al. [13]. In the taxonomy, the authors describe the desired
features of a codesign methodology and show how existing tools and methods try to implement
them. However, the authors do not propose a method for implementing their process steps. The
features and limitations of the latter approaches are illustrated in Fig. 78.2 [14]. In the table, we show
how these approaches compare to the approach presented in this chapter with respect to some desired
attributes of a codesign methodology. Previous approaches lack automated architecture selection
tools, economic cost models, and the integrated development of test benches throughout the design
cycle. Very few approaches allow for true HW/SW cosimulation where application code executes on
a simulated version of the target hardware platform.

FIGURE 78.2: Features and limitations of existing codesign methodologies.
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78.3 Infrastructure Criteria for the Design Flow

Four enabling factors must be addressed in the development of a VHDL model infrastructure to
support the design flow mentioned in the introduction. These include model verification/validation,
interoperability, fidelity, and efficiency.

Verification, as defined by IEEE/ANSI, is the process of evaluating a system or component to de-
termine whether the products of a given development phase satisfy the conditions imposed at the
start of that phase. Validation, as defined by IEEE/ANSI, is the process of evaluating a system or
component during or at the end of the development process to determine whether it satisfies the
specified requirements. The proposed methodology is broken into the design phases represented
in Figure 78.1 and uses black- and white-box software testing techniques to verify, via a structured
simulation plan, the elements of each stage. In this methodology, the concept of a reference model,
defined as the next higher model in the design hierarchy, is used to verify the subsequently more
detailed designs. For example, to verify the gate level model after synthesis, the test suite applied to
the RTL model is used. To verify the RTL level model, the reference model is the fully functional
model. Moving test creation, test application, and test analysis to higher levels of design abstraction,
the test description developed by the test engineer is more easily created and understood. The higher
functional models are less complex than their gate level equivalents. For system and subsystem veri-
fication, which include the integration of multiple component models, higher level models improve
the overall simulation time. It has been shown that a processor model at the fully functional level
can operate over 1000 times faster than its gate level equivalent while maintaining clock cycle accu-
racy [5]. Verification also requires efficient techniques for test creation via automation and reuse and
requirements compliance capture and test application via structured testbench development.

Interoperability addresses the ability of two models to communicate in the same simulation envi-
ronment. Interoperability requirements are necessary because models usually developed by multiple
design teams and from external vendors must be integrated to verify system functionality. Guidelines
and potential standards for all abstraction levels within the design process must be defined when
current descriptions do not exist. In the area of fully functional and RTL modeling, current practice
is to use IEEE Std. 1164− 1993nine-valued logic packages [15]. Performance modeling standards
are an ongoing effort of the RASSP program.

Fidelity addresses the problem of defining the information captured by each level of abstraction
within the top-down design process. The importance of defining the correct fidelity lies in the fact that
information not relevant within a model at a particular stage in the hierarchy requires unnecessary
simulation time. Relevant information must be captured efficiently so simulation times improve as
one moves toward the top of the design hierarchy. Figure 78.3 describes the RASSP taxonomy [16]
for accomplishing this objective. The diagram illustrates how a VHDL model can be described using
five resolution axes; temporal, data value, functional, structural, and programming level. Each line
is continuous and discrete labels are positioned to illustrate various levels ranging from high to low
resolution. A full specification of a model’s fidelity requires two charts, one to describe the internal
attributes of the model and the second for the external attributes. An “X” through a particular
axis implies the model contains no information on the specific resolution. A compressed textual
representation of this figure will be used throughout the remainder of the paper. The information is
captured in a 5-tuple as follows,

{(Temporal Level), (Data Value), (Function), (Structure), (Programming Level)}
The temporal axis specifies the time scale of events in the model and is analogous to precision

as distinguished from accuracy. At one extreme, for the case of purely functional models, no time
is modeled. Examples include Fast Fourier Transform and FIR filtering procedural calls. At the
other extreme, time resolutions are specified in gate propagation delays. Between the two extremes,
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FIGURE 78.3: A model fidelity classification scheme.

models may be time accurate at the clock level for the case of fully functional processor models, at the
instruction cycle level for the case of performance level processor models, or at the system level for the
case of application graph switching. In general, higher resolution models require longer simulation
times due to the increased number of event transactions.

The data value axis specifies the data resolution used by the model. For high resolution models,
data is represented with bit true accuracy and is commonly found in gate level models. At the low end
of the spectrum, data is represented by abstract token types where data is represented by enumerated
values, for example, blue. Performance level modeling uses tokens as its data type. The token only
captures the control information of the system and no actual data. For the case of no data, the axis
would be represented with an “X”. At intermediate levels, data is represented with its correct value
but at a higher abstraction (i.e., integer or composite types, instead of the actual bits). In general,
higher resolutions require more simulation time.

Functional resolution specifies the detail of device functionality captured by the model. At one
extreme, no functions are modeled and the model represents the processing functionality as a simple
time delay (i.e., no actual calculations are performed). At the high end, all the functions are imple-
mented within the model. As an example, for a processor model, a time delay is used to represent the
execution of a specific software task at low resolutions while the actual code is executed on the model
for high resolution simulations. As a rule of thumb, the more functions represented, the slower the
model executes during simulation.

The structural axis specifies how the model is constructed from its constituent elements. At the low
end, the model looks like a black box with inputs and outputs but no detail as to the internal contents.
At the high end the internal structure is modeled with very fine detail, typically as a structural net
list of lower level components. In the middle, the major blocks are grouped according to related
functionality.
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The final level of detail needed to specify a model is its programmability. This describes the
granularity at which the model interprets software elements of a system. At one extreme, pure
hardware is specified and the model does not interpret software, for example, a special purpose FFT
processor hard wired for 1024 samples. At the other extreme, the internal micro-code is modeled at
the detail of its datapath control. At this resolution, the model captures precisely how the micro-code
manipulates the datapath elements. At decreasing resolutions the model has the ability to process
assembly code and high level languages as input. At even lower levels, only DSP primitive blocks are
modeled. In this case, programming consists of combining functional blocks to define the necessary
application. Tools such as MATLAB/Simulink provide examples for this type of model granularity.
Finally, models can be programmed at the level of the major modes. In this case, a run-time system
is switched between major operating modes of a system by executing alternative application graphs.

Finally, efficiency issues are addressed at each level of abstraction in the design flow. Efficiency will
be discussed in coordination with the issues of fidelity where both the model details and information
content are related to improving simulation speed.

78.4 The Executable Requirement

The methodology for developing signal processing systems begins with the definition of the system
requirement. In the past, common practice was to develop a textual specification of the system. This
approach is flawed due to the inherent ambiguity of the written description of a complex system.
The new methodology places the requirements in an executable format enforcing a more rigorous
description of the system. Thus, VHDL’s first application in the development of a signal processing
system is an executable requirement which may include signal transformations, data format, modes of
operation, timing at data and control ports, test capabilities, and implementation constraints [17].
The executable requirement can also define the minimum required unit of development in terms of
performance (e.g., SNR, throughput, latency, etc.). By capturing the requirements in an executable
form, inconsistencies and missing information in the written specification can also be uncovered
during development of the requirements model.

An executable requirement creates an “environment” wherein the surroundings of the signal pro-
cessing system are simulated. Figure 78.4 illustrates a system model with an accompanying testbench.
The testbench generates control and data signals as stimulus to the system model. In addition, the
testbench receives output data from the system model. This data is used to verify the correct operation
of the system model. The advantages of an executable requirement are varied. First, it serves as a
mechanism to define and refine the requirements placed on a system. Also, the VHDL source code
along with supporting textual description becomes a critical part of the requirements documentation
and life cycle support of the system. In addition, the testbench allows easy examination of different
command sequences and data sets. The testbench can also serve as the stimulus for any number
of designs. The development of different system models can be tested within a single simulation
environment using the same testbench. The requirement is easily adaptable to changes that can
occur in lower levels of the design process. Finally, executable requirements are formed at all levels
of abstraction and create a documented history of the design process. For example, at the system
level, the environment may consist of image data from a camera while at the ASIC level it may be an
interface model of another component.

The RASSP program, through the efforts of MIT Lincoln Laboratory, created an executable re-
quirement [18] for a synthetic aperture radar (SAR) algorithm and documented many of the lessons
learned in implementing this stage in the top-down design process. Their high level requirements
model served as the baseline for the design of two SAR systems developed by separate contractors,
Lockheed Sanders and Martin Marietta Advanced Technology Labs. A test bench generation system
for capturing high level requirements and automating the creation of VHDL is presented in [19]. In
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FIGURE 78.4: Illustration of the relation between executable requirements and specifications.

the following sections, we present the details of work done at Georgia Tech in creating an executable
requirement and specification for an MPEG-1 decoder.

78.4.1 An Executable Requirements Example: MPEG-1 Decoder

MPEG-1 is avideocompression-decompressionstandarddevelopedunder the InternationalStandard
Organization originally targeted at CD-ROMs with a data rate of 1.5 Mbits/sec [20]. MPEG-1
is broken into 3 layers: system, video, and audio. Table 78.1 depicts the system clock frequency
requirement taken from layer 1 of the MPEG-1 document.1 The system time is used to control when
video frames are decoded and presented via decoder and presentation time stamps contained in the
ISO 11172 MPEG-1 bitstream. A VHDL executable rendition of this requirement is illustrated in 
78.5.

TABLE 78.1 MPEG-1 System Clock Frequency Requirement Example
Layer 1 - System requirement example from ISO 11172 standard

System clock frequency The value of the system clock frequency is measured in Hz
and shall meet the following constraints:

90, 000 − 4.5 Hz ≤ system clock frequency ≤ 90, 000 + 4.5 Hz
Rate of change of system clock frequency ≤ 250 ∗ 10−6 Hz/s

The testbench of this system uses an MPEG-1 bitstream created from a “golden C model” to ensure

1Our efforts at Georgia Tech have only focused on layers 1 and 2 of this standard.
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FIGURE 78.5: System clock frequency requirement example translated to VHDL.

correct input. A public-domain C version of an MPEG encoder created at UCal-Berkeley [21] was
used as the golden C model to generate the input for the executable requirement. From the testbench,
an MPEG bitstream file is read as a series of integers and transmitted to the MPEG decoder model
at a constant rate of 174300 Bytes/sec along with a system clock and a control line named mpeg go

which activates the decoder. Only 50 lines of VHDL code are required to characterize the top level
testbench. This is due to the availability of the golden C MPEG encoder and a shell script which
wraps around the output of the golden C MPEG encoder bitstream with system layer information.
This script is necessary because there are no complete MPEG software codecs in the public domain,
i.e., they do not include the system information in the bitstream. Figure 78.6 depicts the process of
verification using golden C models. The golden model generates the bitstream sent to the testbench.
The testbench reads the bitstream as a series of integers. These are in turn sent as data into the VHDL
MPEG decoder model driven with appropriate clock and control lines. The output of the VHDL
model is compared with the output of the golden model (also available from Berkeley) to verify the
correct operation of the VHDL decoder. A warning message alerts the user to the status of the model’s
integrity.

The advantage of the configuration illustrated in Figure 78.6 is its reusability. An obvious example
is MPEG-2 [22], another video compression-decompression standard targeted for the all-digital
transmission of broadcast TV quality video at coded bit rates between 4 and 9 Mbits/sec. The same
testbench structure could be used by replacing the golden C models with their MPEG-2 counterparts.
While the system layer information encapsulation script would have to be changed, the testbench itself
remains the samebecause the interfacebetweenanMPEG-1decoderand its surroundingenvironment
is identical to the interface for an MPEG-2 decoder. In general, this testbench configuration could
be used for a wide class of video decoders. The only modifications would be the golden C models
and the interface between the VHDL decoder model and the testbench. This would involve making
only minor alterations to the testbench itself.

78.5 The Executable Specification

The executable specification depicted in Fig. 78.4 processes and responds to the outside stimulus,
provided by the executable requirement, through its interface. It reflects the particular function and
timing of the intended design. Thus, the executable specification describes the behavior of the design
and is timing accurate without consideration of the eventual implementation. This allows the user to
evaluate the completeness, logical correctness, and algorithmic performance of the system through
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FIGURE 78.6: MPEG-1 decoder executable requirement.

the test bench. The creation of this formal specification helps identify and correct functional errors
at an early stage in the design and reduce total design time [13, 16, 23, 24].

The development of an executable specification is a complex task. Very often, the required func-
tionality of the system is not well-understood. It is through a process of learning, understanding,
and defining that a specification is crystallized. To specify system functionality, we decompose it into
elements. The relationship between these elements is in terms of their execution order and the data
passing between them. The executable specification captures:

• the refined internal functionality of the unit under development (some algorithm par-
allelism, fixed/floating point bit level accuracies required, control strategies, functional
breakdown, task execution order)

• physical constraints of the unit such as size, weight, area, and power

• unit timing and performance information (I/O timing constraints, I/O protocols, com-
putational complexity)

The purpose of VHDL at the executable specification stage is to create a formalization of the elements
in a system and their relationships. It can be thought of as the high level design of the unit under
development. And although we have restricted our discussion to the system level, the executable
specification may describe any level of abstraction (algorithm, system, subsystem, board, device,
etc.).

The allure of this approach is based on the user’s ability to see what the performance “looks” like. In
addition, a stable test mechanism is developed early in the design process (note the complementary
relation between the executable requirement and specification). With the specification precisely
defined, it becomes easier to integrate the system with other concurrently designed systems. Finally,
this executable approach facilitates the re-use of system specifications for the possible redesign of the
system.

In general, when considering the entire design process, executable requirements and specifications
can potentially cover any of the possible resolutions in the fidelity classification chart. However, for
any particular specification or requirement, only a small portion of the chart will be covered. For
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example, the MPEG decoder presented in this and the previous section has the fidelity information
represented by the 5-tuple below,

Internal: {(Clock cycle), (Bit true → Value true), (All), (Major blocks), (X)}
External: {(Clock cycle), (Value true), (Some), (Black box), (X)},

where (Bit true → Value true) means all resolutions between bit true and value true inclusive.
From an internal viewpoint, the timing is at the system clock level, data is represented by bits

in some cases and integers in others, the structure is at the major block level, and all the functions
are modeled. From an external perspective, the timing is also at the system clock level, the data is
represented by a stream of integers, the structure is seen as a single black box fed by the executable
requirement and from an external perspective the function is only modeled partially because this
does not represent an actual chip interface.

78.5.1 An Executable Specification Example: MPEG-1 Decoder

As an example, an MPEG-1 decoder executable specification developed at Georgia Tech will be ex-
amined in detail. Figure 78.7 illustrates how the system functionality was broken into a discrete
number of elements. In this diagram each block represents a process and the lines connecting
them are signals. Three major areas of functionality were identified from the written specification:
memory, control, and the video decoder itself. Two memory blocks, video decode memory and
system level memory are clearly labeled. The present f rame to decode f ile process contains a
frame reorder buffer which holds a frame until its presentation time. All other VHDL processes with
the exception of decode video f rame process are control processes and pertain to the systems
layer of the MPEG-1 standard. These processes take the incoming MPEG-1 bitstream and extract sys-
tem layer information. This information is stored in the system level memory process where other
control processes and the video decoder can access pertinent data. After removing the system layer
information from the MPEG-1 bitstream, the remainder is placed in the video decode memory.
This is the input buffer to the video decoder. It should be noted that although MPEG-1 is capable of
up to 16 simultaneous video streams multiplexed into the MPEG-1 bitstream only one video stream
was selected for simplicity.

The last process, decode video f rame process, contains all the subroutines necessary to decode
the video bitstream from the video buffer (video decode memory). MPEG video frames are broken
into 3 types: (I)ntra, (P)redictive, and (B)idirectional. I frames are coded using block discrete cosine
transform (DCT) compression. Thus, the entire frame is broken into 8x8 blocks, transformed with
a DCT and the resulting coefficients transmitted. P frames use the previous frame as a prediction of
the current frame. The current frame is broken into 16 × 16 blocks. Each block is compared with
a corresponding search window (e.g., 32 × 32, 48 × 48) in the previous frame. The 16 × 16 block
within the search window which best matches the current frame block is determined. The motion
vector identifies the matching block within the search window and is transmitted to the decoder. B
frames are similar to P frames except a previous frame and a future frame are used to estimate the
best matching block from either of these frames or an average of the two. It should be noted that this
requires the encoder and decoder to store these 2 reference frames.

The functions contained in the decode video f rame process are shown in Fig. 78.8. In the
diagram, there are three main paths representing the procedures or functions in the executable spec-
ification which process the I, P, or B frame, respectively. Each box below a path encloses all the
procedures executed from within that function. Beneath each path is an estimate of the number of
computations required to process each frame type. Comparing the three executable paths in this dia-
gram, one observes the large similarity between each path. Overall, only 25 unique routines are called
to process the video frame. By identifying key functions within the video decoding algorithm itself,
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FIGURE 78.7: System functionality breakdown for MPEG-1 decoder.
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efficient and reusable code can be created. For instance, the data transmitted from the encoder to the
decoder is compressed using a Huffman scheme. The procedures vlc, advance bit, and extract n bits
perform the Huffman decode function and miscellaneous parsing of the MPEG-1 video bitstream.
Thus, this set of procedures can be used in each frame type execution path. Reuse of these procedures
can be applied in the development of an MPEG-2 decoder executable specification. Since MPEG-2
is structured as a super set of the syntax defined in MPEG-1, there are many procedures that can be
utilized with only minor modifications. Other procedures such as motion compensate forward and
idct can be reused in a variety of DCT-based video compression algorithms.

The executable specification also allows detailed analysis of the computational complexity on a
procedural level. Table 78.2 lists the computational complexity of some of the procedures identified
in Fig. 78.8. This breakdown identifies what areas of the algorithm are the most computationally
intensive and the numbers were arrived at through a data flow analysis of the VHDL code. Within the
MPEG-1 video decoder algorithm, the most intense computational loads occur in the inverse DCT
and motion compensation procedures. Thus, such an analysis can alert the user early in the design
process to potential design issues. While parallelism is a logical topic for the data and control flow

TABLE 78.2 Computational Complexity of Some Specification Procedures
Procedure Int Adds Int Div Comp Int Mult exp Real Add Real Mult

vlc — - 2 - - - -
advance bit 10 16 9 - - - -
int to unsigned bit 8 16 8 - - - -
extract n bits 24 16 20 - - - -
look for start codes 9 16 10 - - - -
runlength decode 2 - 1 1 - - -
block reconstruct 66 64 258 193 - - -
idct - - - - - 1024 1216
qmotion compensate forward 1422 646 1549 16 - - -

modeling section, preliminary investigations can be made from the executable specification itself.
With the specifications captured in a language, execution order and data passing between procedures
are known precisely. This knowledge facilitates the user in extracting potential parallelism from
the specification. From the MPEG-1 decoder executable specification, potential parallelism can be
seen in several areas. In an I frame, no data dependencies are present between each 8 × 8 block.
Therefore, an inverse DCT could potentially be performed on each 8 × 8 block in parallel. In P
and B frames, data dependencies occur between consecutive 16 × 16 blocks (called macroblocks)
but no data dependencies occur between slices (a grouping of consecutive macroblocks). Thus,
parallelism is potentially exploitable at the slice and macroblock level. This information is passed to
the data/control flow modeling phase where more detailed analysis of parallelism is done.

It is also possible to delve into implementation requirement issues at the executable specification
level. Fixed vs. floating point trade-offs can be examined in detail. The necessary accuracy and
resolution required to meet system requirements can be determined through the use of floating and
fixed point packages written in VHDL. At Georgia Tech, fixed point packages have been developed.
These packages allow the user to experiment with the executable specification and see the effect finite
bit accuracy has on the system model. In addition, packages have been developed which implement
specific arithmetic architectures such as the ADSP 2100 [25]. This analysis results in additional design
requirements being passed to hardware and software developers in later design phases.

Finally, the executable specification allows the explicit capture of internal timing and control
flow requirements of the MPEG-1 decoding algorithm itself. The written document is imprecise
about the details of how timing considerations for presentation and decoder time stamps will be
handled. The control necessary to trigger present and decode video frame events is difficult to
articulate in a written form. The most difficult aspects of coding the executable specification for a
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FIGURE 78.8: Description of procedural flow within MPEG-1 decoder executable specification.
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MPEG-1 decoder were these considerations. The decoder itself hinges on developing a mechanism
for robustly determining when to decode or present a frame in the buffer. Events must be triggered
using a system time clock which is updated from the input bitstream itself. This task is handled by
five processes (start code, mpeg layer one, video decode trigger , present f rame trigger ,
present f rame to decode f ile) grouped around a common memory (system level memory).
This memory was necessary to allow each concurrent process to access timing information extracted
from the system layer of the input bitstream. These timing and control considerations had to fit into
a larger system timing requirement. For a MPEG-1 decoder, the most critical timing constraints are
initial latency and the fixed presentation rate (e.g., 30 frames/sec). All other timing considerations
were driven by this requirement.

78.6 Data and Control Flow Modeling

This modeling level captures data and control flow information in the system algorithms. The ob-
jective of data flow modeling is to refine the functional descriptions in the executable specification
and capture concurrency information and data dependencies inherent in the algorithm. The output
of the refinement process is one or a few manually generated implementation independent represen-
tations of the algorithm. These multiple implementations capture potential algorithmic parallelism
at a primitive level where primitives are defined as that set of functions contained in a design library.
The primitives are signal processing functions such as Fast Fourier Transforms or filter routines
at coarse-grained levels to adders and multipliers at more fine-grained levels. The breakdown of
primitive elements depend on the granularity exploited by the algorithm as well as potential archi-
tectural design paradigms to which the algorithm is mapped. For example, if the design paradigm
demands architectures using multiple commercial-off-the-shelf (COTS) RISC processors, the prim-
itives consist of signal processing functional block level elements such as FFTs or FIR filters which
exist as performance optimized library elements available for the specific processor. For custom
computationally intense designs, the data flow of the algorithm may be dissected into lower primitive
components such as adders and multipliers using bit-slice architectures. In our design flow, the
fidelity captured by data/control flow models is shown below:

Internal: {(X), (Value true → Composite), (All), (X), (Major modes)}
External: {(X), (Value true → Composite), (X), (X), (X)}.

Because the models are purely functional and their major objective is to refine the internal representa-
tion of the algorithm, there is no time information captured by its internal or external representation
as illustrated by the “X”. The internal data processed by the model and external data loaded into the
model are typically represented by standard data types such as float and/or integer and in some cases
by composite data types such as records or arrays. All internal functionality is represented and is
verified using the same data presented to the executable specification. No function is captured via
external interfaces since data is input to the model through file input/output. The data processed by
the executable specification is also processed by the data/control flow model. No internal or external
structural information is captured since the model is implementation independent. Its level of pro-
grammability is represented at the application graph level. The applications are major modes of the
system under investigation and hence at a low resolution. In general, because the primitive elements
can represent adders and/or multipliers, programmability for data/control flow models can resolve
to higher resolutions including the microcode level.

The implementation independent representations are compared with the executable specification
using the test data supplied by the requirements development phase to verify compliance with the
original algorithm design. The representations are then input to the architecture selection phase and,
with additional metrics, determine the final architecture of the system.
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Signal processing applications inherently follow the data flow execution model. Processing Graph
Methodology (PGM) [26] from Naval Research Laboratory was developed specifically to capture
signal processing applications. PGM supports specification of full system data flow and its associated
control. An application is first captured as a graph, where nodes of the graph represent processing
and edges represent queues that hold intermediate data between nodes. The scheduling criteria for
each node is based on the state of its corresponding input/output queues. Each queue in the graph can
be linked to one node at a time. Associated with each queue is a control block structure containing
information such as size, current amount of data, and threshold. A run-time system provides a
set of procedures used by each node to check the availability of data from the upstream queue or
available space in the downstream queue. Applications consist of one or more graphs, one or more
I/O procedures, and a run-time system interfaced with one or more command programs. The PGM
graphs serve as the implementation independent representation of the algorithm discussed earlier.
An example of a 2-D FFT PGM graph is presented in the next section.

Under the support of the RASSP program, a set of tools is being developed by Management
Communications and Control, Inc. (MCCI) and Lockheed Martin Advance Technology Labo-
ratories [27, 28]. The toolset automates the translation of software architecture specifications to
design implementations of application and control software for a signal processing system. Hard-
ware/software architectures are presented to the autocoding toolset as PGM application data flow
graphs along with a candidate architectures file and graph partition lists. The lists are generated by
hardware/software partitioning tools. The proposed partitions are then simulated for performance
and verified against the top level specification for correct functionality. The verified partition graphs
are then used as inputs to detailed design level autocode tools that generate actual source code. The
source code implements the partitions processing specifications using the target processor’s math
library. It also produces a memory map converting all queues and variables to static buffers. Finally
the application graph, with its set of source files, are translated to run-time data structures that are
used by the run-time system to create an executable image of the application as distributed tasks on
the target processors.

Other toolsprovidepaths fromspecification tohardwareandarebrieflymentioned. ThePtolemy[29,
30] design system from the University of California at Berkeley provides a synchronous data flow do-
main which can be used to perform system level simulations. Silage, another product of UC Berkeley
is a data flow modeling language. Data Flow Language (DFL), a commercial version of Silage is used
in Mentor Graphics’ DSP Station to perform algorithm/architecture tradeoffs. It also provides a path
to synthesis as a high-level design entry tool.

78.6.1 Data and Control Flow Example

An example of a small PGM application is presented in Fig. 78.9. The graph represents a two
dimensional FFT program implemented in PGM. The graph captures both the functionality and
the data flow aspects of the application. The source data is read from a file and represents the I/O
processor that would normally provide the input data stream. The data are then distributed to a
number of queues serving as inputs to the FFT primitives that perform the operations on the rows
of the input stream. The output of the FFT primitives flow to another set of queues that are input
to the corner turn graph. Once the data are sorted correctly, they are sent to the input queues of
the column FFT primitives. The graph is then executed by the simulator where the functionality,
queue sizes, and communication between nodes are examined. This same graph is input to the
hardware/software partitioning tools that generate the partition list. Given the partition list and the
hardware configuration file, the autocode tool set generates the load image for the target platform.
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FIGURE 78.9: Example PGM application graph.
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78.7 Architectural Design

Signal processing systems are characterized as having high throughput requirements as well as strin-
gent physical constraints. However, due to economic objectives, signal processing systems must also
be developed and produced at minimal cost, while meeting time-to-market constraints in order to
maximize product profits. Such cost-effective systems can only be produced by applying a high
degree of cost emphasis during the early stages of design. Although the conceptual design process
typically involves less than 4% of the total prototyping time and cost, it accounts for more than
70% of a system’s life cycle cost. Consequently, the goal of the architecture designer is to optimize
preliminary architectural design decisions with respect to the dominant system-level cost elements
such as acquisition costs, maintenance costs, and time-to-market costs, while satisfying performance
and physical constraints.

78.7.1 Cost Models

Current rapid prototyping design methodologies have overlooked an important characteristic of
software prototyping. Various parametric studies based on historical project data show that software
is difficult to design and test if “slack” margins for hardware CPU and memory resources are overly
restrictive [31]. Severe resource constraints may require software developers to interact directly with
the operating system and/or hardware in order to optimize the code to meet system requirements.
Such constrained architectures particularly increase the integration and test phase because resource
constraints usually are not pushed until all software pieces come together. In systems in which most
hardware is simply commercial-off-the-shelf (COTS) parts, the time and cost of software prototyping
and design can dominate the schedule and budget. If physical constraints permit, the hardware
platform can be relaxed to achieve significant reductions in overall development cost and time. This
principle of software prototyping is illustrated in Fig. 78.10 [14, 32]. The figure shows how system
costs are dominated by software costs, especially at low production volumes, when CPU and memory
utilization is high. However, as the utilization of these hardware resources is reduced, the software
costs decrease drastically. Most parametric software cost estimation models quantitatively represent
this principle. For example, the embedded mode Revised Intermediate COCOMO (REVIC) [33]
software development cost and time models can be written as follows:

SC = Cs

[
3.312× L1.2 × FE × FM ×

17∏
i=1

Fi

]
(78.1)

ST = 4.376

[
3.312× L1.2 × FE × FM ×

17∏
i=1

Fi

]0.32

(78.2)

SC refers to the software development cost in dollars. ST depicts development time in months. Cs

is the software labor cost per person-month of effort. L denotes the number of delivered source
instructions (thousands) including application code, OS kernel services, control and diagnostics,
and support software. The Fis represent additional cost drivers which model the effect of personnel,
computer, product, and project attributes on software cost. FE and FM are effort adjustment factors
which denote the effect of the execution time margin and storage margin on development cost.
The relation between these effort adjustment factors and CPU and memory utilization is shown in
Table 78.3. Linear interpolation is used to determine the effort multiplier values for utilizations
between the given data points displayed in the table.

Despite the fact that many signal processing systems are being implemented with purely software
solutions due to flexibility and scalability requirements, the combination of high throughput require-
ments and stringent form factor constraints sometimes necessitate the need for implementing part
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TABLE 78.3 Execution Time and

Main Storage Constraint Effort

Multipliers
Rating Utilization FE FM

Nominal Up to 50% 1.00 1.00
High 70% 1.11 1.06

Very high 85% 1.30 1.21
Extra high 95% 1.66 1.56

FIGURE 78.10: Hardware/software prototyping costs.

of the system with dedicated hardware elements such as ASICs or FPGAs. Even though ASICs can
provide sizable increases in performance and size efficiency, they come with a heavy development cost
penalty which can usually only be justified by high volume production. In order to quantify this effect
for trade-off analysis, parametric hardware cost models can be used. For example, the parametric
cost model presented in [34, 35] for ASIC design provides the following hardware development time
and cost relations for ASIC development:

HC = Ch

{
(1 + D)YR

[
A + B(Sh)

H
]}

(78.3)

HT = 3.5
{
(1 + D)YR

[
A + B(Sh)

H
]}0.34

(78.4)

YR is 1984 minus the year of the bulk of the design effort, Ch is the hardware labor cost per person-
month, and A, B, D, and H are parameters of the model. D is the average annual improvement
factor; A is the startup manpower; B is a measure of the productivity; and H is a measure of
economies/diseconomies of scale. FPGAs provide more flexibility and lower cost penalties than
ASICs at the expense of performance and size efficiency. From the FPGA cost model presented
in [36], we will assume that FPGA development time and cost can be modeled as roughly one-third
of that obtained for a comparable size ASIC. Although rising HW/SW development costs have very
detrimental effects on life cycle cost, the effect of an increase in development time can be much more
devastating.

Time-to-market costs can often outweigh design, prototyping, and production costs. A recent
survey showed that being six months late to market resulted in an average of 33%profit loss. En-
gineering managers stated that they would rather have a 100%overrun in design and prototyping
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costs than be three months late to market with a product. Early market entry allows for increased
brand name recognition, market share, and product yields. Market research performed by Logic
Automation has shown that the demand and potential profits for a new HW/SW product can be
modeled by a triangular window of opportunity as shown in Fig. 78.11 [36]. Figure 78.11 illustrates
the effect of delivering a product to market late. The shaded region of the triangle signifies the loss of
revenue due to late entry in the market. This loss in revenue can be quantitatively stated as follows:

RL = R0 × D (3W − D) /(2W2) (78.5)

R0 refers to the expected product revenue, D is the delay (months) in delivering a product to market,
and W is half the product lifetime (months). Therefore, in order to maximize profits, the product
must be on the market by the start of the demand window.

FIGURE 78.11: Time-to-market cost model.

78.7.2 Architectural Design Model

In this section, we present a cost-driven approach to conceptual architecture design. The conceptual
architecture design process consists of HW/SW partitioning, architecture selection, and software
partitioning. As input, this design stage accepts the application data/control flow graph, system-level
performance requirements, form factor constraints, schedule constraints, and HW/SW reuse library
parameters. As output, this stage produces an architecture candidate which serves as input to the
architectural verification stage. VHDL performance models, described in the next section, are used to
verify the architecture candidate. This model is known as the conceptual prototype of the system. If the
conceptual prototype does not meet performance specifications, updated performance parameters
are back annotated to the architecture design process, and the process is repeated.

The architectural design problem can be modeled as a constrained optimization problem. The
objective of cost-effective architecture design is to choose a HW/SW architecture which minimizes
total life cycle cost, whilemaximizingpotential productprofits subject toperformance and formfactor
constraints. Our approach quantitatively models the architecture design process by formulating it as a
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non-linear mixed-integer programming problem. In order to provide support for high performance
signal processing applications, we assume a distributed memory architecture composed of multiple
programmable processors, ASICs, I/O devices, and/or FPGAs connected over a crossbar network.
The goal of the architectural design process in this context is to determine the number and type
of programmable processors (i860, SHARC, etc. ), the memory capacity, the number of dedicated
hardware elements (ASIC, FPGA), and to map the data/control flow graph nodes to the architectural
elements in a manner that optimally meets design and economic objectives.

An example mathematical programming formulation that can be used to model the architecture
design process is shown in Fig. 78.12. The major decision variables of the model are defined as

FIGURE 78.12: Architecture design model.

follows:
αijk = 1, if DFG task i is implemented on the kth programmable processor of type j , otherwise

0;
βij = 1, if DFG task i is implemented on the j th FPGA, otherwise 0;
δij = 1, if DFG task i is implemented on the j th ASIC, otherwise 0;
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ρi = the number of programmable processors of type i in the architecture;
µ = the number of DRAM chips in the architecture;
d = the delay in delivering the product to market(months);
up = the overall processor utilization;
um = the overall memory utilization;
yi = is a binary variable which signifies the processor utilization interval;
gi = is a binary variable which signifies the memory utilization interval;
f E

i = the execution time constraint effort multiplier for processor utilization interval i;

f M
i = the memory constraint effort multiplier for memory utilization interval i;

s = the software development effort (person-months);
hi = the hardware development effort for dedicated hardware type i (person-months);
nij = 1 if processor j of type i is included in the architecture, otherwise 0;
lmjk = the local memory allocated to processor k of type j .

Additional model parameters include:
CNRE = the overall non-recurring engineering cost per unit ASIC die area
N = the number of tasks (nodes) in the data/control flow graph; also, the maximum number

of computational elements in the architecture
V = the production volume
C

proc
i = the procurement cost for a programmable processor of type i

Cmem = the procurement cost for per DRAM chip
M = the number of different types of programmable processors
Cfpga = the production cost per unit size for an FPGA
Casic = the production cost per unit size for an ASIC
TS = the amount of time after system concept when the product should be delivered to market
Z = a very large number
Y = the minimum allowable ASIC yield
K = the process defect density
Ufpga = the size limit on a single FPGA
UA = the area limit on the system
UP = the power limit on the system
Si = the peak throughput of processor i

t
proc
ij = the throughput of task i implemented on processor j

tasic
i = the throughput of task i implemented on an asic

t
fpga
i = the throughput of task i implemented on an fpga

OP
i = theprocessoroverhead(scheduling, resourcemanagement, dispatching, context switch-

ing)(ops/sec)
OM = multiprocessor overhead factor
Tsys = the minimum required system level throughput
mi = the memory requirement for task i

OMEM = the totalmemory required forOSservices, control anddiagnostics, andsupport software
Olm = the localmemoryrequired forOSservices, control anddiagnostics, andsupport software
1p = is a constant that defines the desired utilization range on a processor
ckl = the throughput penalty for transferring data between tasks k and l off-chip
Ccomm = the worst case total throughput penalty due to transferring data between tasks off-chip

We are currently using the GAMS [37] optimization system to solve examples of this form. More
specifically, the GAMS/DICOPT non-linear mixed-integer programming package is being employed.
DICOPT utilizes non-linear optimization programs such as MINOS or CONOPT and mixed-integer
programming packages such as OSL to rigorously solve these problems. Linearization techniques
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such as those described in [38] are also being applied to the models to improve computational
efficiency.

Interestingly, while the rapid prototyping community has largely ignored rigorous integer pro-
gramming methods for “quick” simplified heuristics, the communications industry (e.g., AT&T,
Airlines reservation systems, etc. ) routinely uses optimization algorithms with variables numbering
in a few tens of thousands and more. The authors feel that complex nonlinear and multiobjective
functions cannot be optimized via the “human-in-the-optimization-loop” methods, and any extra
effort spent in the conceptual phase of the design process is time well spent.

78.8 Performance Modeling and Architecture Verification

The selection process for possible system architectures was discussed in the previous section. Perfor-
mance models [39, 40, 41, 42] are used to verify that the architectures adhere to specific time-critical
system constraints. The advantages of performance models include:

• They capture the time aspects of the system under development (i.e., throughput, latency,
and resource utilization) and present this information for rapid evaluation.

• They verify the performance of proposed architectures found in the architectural design
stage.

• They allow for true HW/SW codesign by simulating the behavior of software on per-
formance models of processor hardware. The model of software can take many forms,
one being a simple delay which models the performance of a library software primitive
executing on a specific processor. For example, an Analog Devices SHARC 2106X chip
executes a Fast Fourier Transform (FFT) in shorter time than a Texas Instruments C30
processor. The performance model captures this information through the use of generic
parameters and when simulated, uses this parameter to determine how long the processor
will be utilized while performing the function [40, 41].

• They provide the capability for modeling operating system effects on multiprocessor
network architectures [41].

• Performance model development time is shorter when compared with that of fully func-
tional models and hence library population can be done in-cycle.

The fidelity attributes of token-based performance models used for system architecture verification
through simulation are listed below:

Internal: {(Clock cycle → System event), (X), (X), (X), (Assembly → Primitive )}
External: {(Clock cycle → System event), (X), (X), (Full Structure → Black box), (X)}.

Temporal information for both the internal and external attributes are captured at multiple levels
depending on the application modeled. For example, the system event level can capture large blocks
of data passing over an interconnect network or the simulating of a large time slice of processing
on a single processor. System events occur in the 10s of microseconds to 10s of milliseconds time
span and potentially could contain millions of actual clock cycles. The clock cycles, however, are
not simulated, only the time events where information is interchanged or processed. At higher
resolutions, details may be required to capture how an interconnect network handles data streams
from multiple processors at the clock cycle level. The performance models we use for architecture
verification fall into these categories and an example is presented later. Performance level models
do not capture the function or data values of the system but focus on its time aspects. Internally, a
performance model has no structure, but externally, the structure can be represented by any level in
the resolution hierarchy. For example, a network architecture model consisting of multiple processors
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and interconnect ASICs could be described by first instantiating each of the components in a network
model, then by connecting them using a performance model of a particular bus or interconnect
protocol. At the other extreme, the model may be represented by a black box that outputs tokens
based on a specified control input with the internal details represented by abstract behavior. On the
RASSP program, the programmability generally was captured at the DSP function primitive level
where signal processing procedures (FFT, etc.) are scheduled on performance models of processors.
The processor models can, however, be defined for much higher resolutions where the primitives
represent assembly level instructions.

The efficiency of these models is very high because the code is written at the behavioral level of
abstraction inVHDL.Signals areused topass abstractdata typesknownas tokensbetweencomponent
elements. The tokens are record types in VHDL and take the form as shown in Fig. 78.13. All protocol
handling information is carriedwithin it. This data type is referred to as cue throughout the remainder
of the paper. The cue data type is used as a virtual packet to pass information between elements in
a system architecture. It contains fields for capturing statistical information about how the data is
passed through a processor network (priority, collisions, retries, routes), information on the source
and destination of packet (src id, dest id), packet size (c size, resp size), packet identification number
(c id), and transmission status (c state). There are also user defined fields that allow the performance
model designer to implement model specific details (int user1, int user2, real user1, real user2).

FIGURE 78.13: The declaration of cue. The information of each communication transaction is
contained in three fields — basic information field, protocol field, and user-defined field.

Interoperability is determined by the ability of models with a similar external fidelity to communi-
cate. For performance models to achieve this goal, a token format must be defined and standardized.
Currently, there are no standards to meet this demand. Protocol converters can be developed to link
performance models with alternate token structures but a standard is encouraged. RASSP is pursuing
a standard.
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78.8.1 A Performance Modeling Example: SCI Networks

A Scalable Coherent Interface (SCI) performance model has been developed as an example. The
executable SCI model can serve as an executable specification for the communication protocol. Fig-
ure78.14 illustrates theSCInode interface structure. Linc transmitsorbypassespackets, andperforms
the primary SCI protocols. REC QUEUE and TR QUEUE are First-In-First-Out buffers which store
receive packets and transmit packets. Processor contains a responder and a res handler; responder
generates the response packets for the request packets who ask for responses, and res handler serves
as a response packet consumer. The packet generator is used to create cues according to the required
communication patterns. Connecting the SCI node interface, designers can easily construct an SCI
network and create their inputs to evaluate the performance results.

Among the processes of the SCI node, mux process dominates the primary communication pro-
tocol. The SCI protocol can be converted to the state diagram shown in Fig. 78.15. Based on the state
diagram, the VHDL representation of mux process at the performance level is written as shown in
Fig. 78.16. MUX Process is activated by st pkt, bf pkt, tr pkt, and MUX State and changes MUX State
according to the state diagram.

78.8.2 Deterministic Performance Analysis for SCI

A key requirement of real-time DSP architectures is determinism. Most designers would like to know
the guaranteed worst-case performance rather than the average or peak performance. In order to
make the performance determinable, an SCI network must satisfy the following constraints:

Step 1. The size of each packet is deterministic.

Step 2. The interprocessor communications are deterministic.

Step 3. All arrival packets are accepted. That is to say, packets should not be retransmitted in
an SCI ring. The retry packets might prevent sending the fresh packets and make the
throughput and latency unpredictable.

DEFINITION 78.1 If a packet is retransmitted from the transmit queues, it is called a retry packet.
If a packet is transmitted for the first time, it is called a fresh packet.

A basic SCI network is a unidirectional SCI ring. The maximum number of nodes traversed by a
packet is equal to N in an SCI ring, and the worst-case path contains a MUX, a stripper, and (N − 2)

links. So, we find the worst case latency , Lworst-case, is :

Lworst-case = TMUX + Twire + Tstripper + (N − 2) · Tlinc (78.6)

= (N − 1) · Tlinc − TFIFO (78.7)

where the link delay, Tlinc, is equal to TMUX + TFIFO + Tstripper + Twire, TMUX is the MUX delay, Twire

is the wire delay between nodes, Tstripper is the stripper delay, and TFIFO is the full bypass FIFO delay.
The SCI link bandwidth, BWlink, is equal to 1 byte per second per link; the maximum bandwidth

of an SCI ring is proportional to the number of nodes:

BWring = N · BWlink (bytes/second) (78.8)

where N is the number of nodes. Now let us consider the bandwidth of an SCI node. Since each
link transmits the packets issued by all nodes in the ring, BWlink is shared by not only transmitting
packets but passing packets, echo packets, and idle symbols.

BWlink = bwtransmitting + bwpassing + bwecho + bwidle (78.9)
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FIGURE 78.14: The SCI node interface performance model.

FIGURE 78.15: The state diagram of MUX.
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FIGURE 78.16: The VHDL process of MUX.

where bwtransmitting is the consumed bandwidth of transmitting packets, bwpassing is the consumed
bandwidth of passing packets, bwecho is the consumed bandwidth of echo packets, and BWidle is the
consumed bandwidth of idle symbols. Assuming that the size of the send packets is fixed, we find
bwtransmitting is:

bwtransmitting = BWlink · Ntransmitting·Dpacket
Dlink

(78.10)

= BWlink · Ntransmitting·Dpacket
(Npassing+Ntransmitting)·(Dpacket+16)+Necho·8+Nidle·2 (78.11)

where Dpacket is the data size of a transmitting packet, Dlink is the number of bytes passed through the
link, Ntransmitting is the number of transmitting packets, Npassing is the number of passing packets, Necho

is the number of echo packets, and Nidle is the number of idle symbols. A transmitting packet consists
of an unbroken sequence of data symbols with a 16-byte header that contains address, command,
transaction identifier, and status information. The echo packet uses an 8-byte subset of the header
while idle symbols require only 2 bytes of overhead. Because each packet is followed by at least an
idle symbol, the maximum bwtransmitting is:

BWtransmitting = BWlink · Ntransmitting · Dpacket

(Npassing + Ntransmitting) · (Dpacket + 18)Necho · 10
(78.12)

However, BWtransmitting might be consumed by retry packets; the excessive retry packets will stop
sending fresh packets. In general, when the processing rate of arrival packets,Rprocessing, is less than the
arrival rate of arrival packets, Rarrival, the excessive arrival packets will not be accepted and their retry
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packets will be transmitted by the sources. This cause for rejecting an arrival packet is the so-called
queue contention. The number of retry packets will increase with time because retry packets increase
the arrival rate. Once bwtransmitting is saturated with fresh packets and retry packets, the transmission
of fresh packets is stopped resulting in an increase in the number of retry packets transmitted.

Besides queue contention, incorrect packets cause the rejection of an arrival packet. This indicates
a possible component malfunction. No matter what the cause, the retry packets should not exist
in a real-time system in that two primary requirements of real-time DSP are data correctness and
guaranteed timing behavior.

78.8.3 DSP Design Case: Single Sensor Multiple Processor (SSMP)

Figure 78.17 shows a DSP system with a sensor and N processing elements (PEs). This system is called
the Single Sensor Multiple Processor. In this system, the sensor uniformly transmits packets to each PE
and the sampling rate of the sensor is Rinput. For the node i, if the arrival rate, Rarrival,i , is greater than

FIGURE 78.17: The SSMP architecture. The sensor uniformly transmits packets to each PE and the

sampling rate of sensor is Rinput; so, the arrival rate of each node is
Rinput

N
.

the processing rate, Rprocessing,i , receive queue contention will occur and unacceptable arrival packets
will be sent again from the sensor node. Retry packets increase the arrival rate and result in more retry
packets transmitted by the sensor node. Since the bandwidth of the retry packets and fresh packets
is limited by BWtransmitting, the sensor will stop reading input data when the bandwidth is saturated.
For a real-time DSP, the input data should not be suspended, thus, the following inequality has to be
satisfied to avoid the retry packets:

Rinput

N
≤ Rprocessing (78.13)

Because the output link of the sensor node will only transmit the transmitting packets, the maximum
transmitting bandwidth is:

BWtransmitting = BWlink · Dpacket

Dpacket + 18
(78.14)
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and the limitation of Rinput is:

Rinput ≤ BWlink · Dpacket

Dpacket + 18
(78.15)

FIGURE 78.18: The simulation of SSMP using i860 and SCI ring. (a) The result of SSMP with
Rinput = 10 MBytes/sec. The value of packet5.retries shows that there does not exist any request of
retry packets. (b) The result of SSMP with Rinput = 100MBytes/sec. A retry packet is requested at
25944 ns.

We now assume a SSMP system design with a 10 MBytes/sec sampling rate and five PEs where
the computing task of each PE is a 64-point FFT. Since each packet contains 64 32-bit floating-point
data, Dpacket is equal to 256 bytes.

FromEq. (78.13) theprocessing ratemustbegreater than2MBytes/sec, so themaximumprocessing
time for each packet is equal to 128µsec. Because an n-point FFT needs n

2 log2 nbutterfly operations
and each butterfly needs 10 FLOPs [44], the computing power of each PE should be greater than
15 MFLOPS. From a design library we pick i860s to be the processing elements and a single SCI
ring to be the communication element in that i860provides 59.63 MFLOPS for 64-point FFT and
BWtransmitting of a single SCI ring is 934.3 MBytes/sec which satisfies Eq. (78.15). Using 5 i860s, the
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total computing power is equal to 298.15 MFLOPS. The simulation result is shown in Fig. 78.18(a).
The result shows that retry packets for Rinput = 10MBytes/sec do not exist.

As stated earlier, if the processing rate is less than the arrival rate, the retry packets will be generated
and the input streamwill be stopped. Hence, we changedRinput from10MBytes/sec to100MBytes/sec
to test whether the i860 can process a sampling rate as high as 100 MBytes/sec. Upon simulating
the performance model, we found that the sensor node received an echo packet which asked for
retransmitting a packet at 25944 ns in Fig. 78.18(b); thus, we have to substitute another processor
with higher MFLOPS for i860to avoid the occurrence of the retry packets.

Under the RASSP program, an additional example where performance level models were used to
help define the system architecture can be found in [45].

78.9 Fully Functional and Interface Modeling and Hardware
Virtual Prototypes

Fully functional and interface models support the concept of a hardware virtual prototype. The
hardware virtual prototype is defined as a software representation of a hardware component, board, or
system containing sufficient accuracy to guarantee its successful hardware system-level realization [5,
47]. The hardware virtual prototype adopts as its main goals (1) verification of the design correctness
by eliminating hardware design errors from the in-cycle design loop, (2) decreasing the design process
time throughfirst timecorrectness, (3) allowingconcurrent codevelopmentofhardwareandsoftware,
(4) facilitating rapid HW/SW integration, and (5) generation of models to support future system
upgrades and maintenance. This model abstraction captures all the documented functionality and
interface timing of the unit under development.

Following architectural trade studies, a high level designof the system isdetermined. This high level
design consists of commercial-off-the-shelf (COTS) parts, in-house design library elements, and/or
new application specific designs to be done in-cycle. At this level, it is assumed the COTS parts
and in-house designs are represented by previously verified fully functional models of the devices.
Fully functional models of in-cycle application specific designs serve as high level models useful for
system level simulation. They also serve as golden models for verification of the synthesizable RTL
level representation and define its testbench. For system level simulations, this high level model can
improve simulation speed by an order of magnitude while maintaining component interface timing
fidelity.

The support infrastructure required for fully functional models is the existence of a library of
component elements and appropriate HDL simulation tools. The types of components contained
in the library should include models of processors, buses/interconnects, memories, programmable
logic, controllers, and medium and large scale integrated circuits. Without sufficient libraries, the
development of complex models within the in-cycle design loop can diminish the usefulness of
this design philosophy by increasing the design time. The model fidelity used for hardware virtual
prototyping can be classified as listed below:

Internal: {(Gate → Clock cycle), (Bit true → Token), (All), (Major blocks), (Micro code →
Assembly)}

External: {(Gate → Clock cycle), (Bit true), (All), (Full Structure), (X)}.

Internally andexternally, the temporal informationof thedevice shouldbeat least clockcycle accurate.
Therefore, internal and external signal events should occur as expected relative to clock edges. For
example, if an address line is set to a value after a time of 3 ns from the falling edge of a clock based on
the specification for the device, then the model shall capture it. The model shall also contain hooks,
via generic parameters, to set the time related parameters. The user selectable generic parameters are
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placed in a VHDL package and represent the minimum, typical, and maximum setup times for the
component being modeled.

Internal data can be represented by any value on the axis, while the interface must be bit true. For
example, in the case of an internal 32-bit register, the value could be represented by an integer or a
32-bit vector. Depending on efficiency issues, one or the other choice is selected. The external data
resolution must capture the actual hardware pinout footprint and the data on these lines must be bit
true. For example, an internally generated address may be in integer format but when it attempts to
access external hardware, binary values must be placed on the output pins of the device. The internal
and external functionality is represented fully by definition.

Structurally, because the external pins must match those of the actual device, the external resolution
is as high as possible and therefore the device can be inserted as a component into a larger system if
it satisfies the interoperability constraints. Internally, the structure is composed of high level blocks
rather than detailed gates. This improves efficiency because we minimize the signal communication
between processes and/or component elements.

Programmability is concerned with the level of software instructions interpreted by the compo-
nent model. When developing hardware virtual prototypes, the programmable devices are typically
general purpose, digital, or video signal processors. In these devices, the internal model executes
either microcode or the binary form of assembly instructions and the fidelity of the model captures all
the functionality enabling this. This facilitates hardware/software codevelopment and cosimulation.
For example, in [5], a processor model of the Intel i860was used to develop and test over 700 lines
of Ada code prior to actual hardware prototyping.

An important requirement for fully functional models to support reuse across designs and rapid
systems development is the ability to operate in a seamless fashion with models created by other
design teams or external vendors. In order to ensure interoperability, the IEEE standard nine value
logic package2 is used for all models. This improves technology insertion for future design system
upgrades by allowing segments of the design to be replaced with new designs which follow the same
interoperability criteria.

Under the RASSP program, various design efforts utilized this stage in the design process to help
achieve first pass success in the design of complex signal processing systems. The Lockheed Sanders
team developed an infrared search and track (IRST) system [46, 47] consisting of 192 Intel i860
processors using a Mercury RACEWAY network along with custom hardware for data input buffering
and distribution and video output handling. The hardware virtual prototype (HVP) served to find a
number of errors in the original design both in hardware and software. Control code was developed
in Ada and executed on the HVP prior to actual hardware development. Another example where
hardware virtual prototypes were used can be found in [48].

78.9.1 Design Example: I/O Processor for Handling MPEG Data Stream

In this example, we present the design of an I/O processor for the movement of MPEG-1 encoder
data from its origin at the output of the encoder to the memory of the decoder. The encoded data
obtained from the source is transferred to the VME-bus through a slave interface module which
performs the proper handshaking. Upon receiving a request for data (AS low ,WRITE high) and a
valid address, the data is presented on the bus in the specified format (the mode of transfer is dictated
by the VME signals LWORD,DS0,DS1 and AM[0..5]). The VME DTACK signal is then driven low
by the slave indicating that the data is ready on the bus after which the master accepts the data. It
repeats this cycle if more data transfer is required, otherwise it releases the bus. In the simulation of

2IEEE 1164-1993 Standard Multi-Value Logic System for VHDL Model Interoperability.

c©1999 by CRC Press LLC



the I/O architecture in Fig. 78.19 a Quad-Byte-Block Transfer (QBBT) was done.
The architecture of the I/O processor is described below. The link ports were chosen for the design

since they were an existing element in our design library and contain the same functionality as the
link ports on the Analog Devices 21060 digital signal processor. The circuit’s ASIC controller is
designed to interface to the VME bus, buffer data, and distribute it to the link ports. To achieve a
fully pipelined design, it contains a 32-bit register buffer both at the input and outputs. The 32-bit
data from the VME is read into the input buffer and transferred to the next empty output register.
The output registers send the data by unpacking. The unpacking is described as follows: at every
rising edge of the clock (LxCLK) a 4-bit nibble of the output register, starting from the LSB, is sent to
the link port data line (LxDAT) if the link port acknowledge (LxACK) signal is high. Link ports that
are clocked by LxCLK, running at the twice the core processor’s clock rate, read the data from the
controller ports with the rising edge of the LxCLK signal. When their internal buffers are full they
deassert LxACK to stop the data transfer.

Since we have the option of transferring data to the link ports at twice the processor’s clock rate, four
link ports were devoted to this data transfer to achieve a fully pipelined architecture and maximize
utilization of memory bandwidth. With every rising edge of the processor clock (CLK) a new data
can be read into the memory. Figure 78.20 shows the pipelined data transfer to the link ports where
DATx represents a 4-bit data nibble. As seen from the table, Port0 can start sending the new 32-bit
data immediately after it is done with the previous one. Time multiplexing among the ports is done
by the use of a token. The token is transferred to the next port circularly with the rising edge of the
processor clock. When the data transfer is complete (buffer is empty), each port of the controller
deasserts the corresponding LxCLK which disables the data transfer to the link ports. LxCLKs are
again clocked when the transfer of a new frame starts. The slave address, the addressing mode, and
the data transfer mode require setups for each transfer. The link ports, IOP registers, DMA control
units, and multiport memory models were available in our existing library of elements and they were
integrated with the VME bus model library element. However, the ASIC controller was designed
in-cycle to perform the interface handshaking. In the design of the ASIC, we made use of the existing
library elements, i.e., I/O processor link ports, to improve the design time. To verify the performance
and correctness of the design, the comparison mechanism we used is shown in Fig. 78.21. The MPEG-
1 encoder data is stored in a file prior to being sent over the VME bus via master-slave handshaking.
It passes through the controller design and link ports to local memory. The memory then dumps its
contents to a file which is compared to the original data. The comparisons are made by reading the
files in VHDL and doing a bit by bit evaluation. Any discrepancies are reported to the designer.

The total simulation time required for the transfer of a complete frame of data ( 28Kbytes) to the
memory was approximately 19 min of CPU time and 1 h of wall clock time. These numbers indicate
the usefulness of this abstraction level in the design hierarchy. The goal is to prove correctness of
design and not simulate algorithm performance. Algorithm simulations at this level would be time
prohibitive and must be moved to the performance level of abstraction.

78.10 Support for Legacy Systems

A well-defined design process capturing systems requirements through iterative design refinement
improves system life cycle and supports the reengineering of existing legacy systems. With the system
captured using the top-down evolving design methodology, components, boards, and/or subsystems
can be replaced and redesigned from the appropriate location within the design flow. Figure 78.22
shows examples of possible scenarios. For example, if a system upgrade requires a change in a major
system operating mode (e.g., search/track), then the design process can be reentered at the executable
requirements or specification stage with the development of an improved algorithm. The remaining
system functionality can serve as the environment test bench for the upgrade. If the system upgrade
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FIGURE 78.19: The system I/O architecture.
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FIGURE 78.20: (a) Table showing the full pipelining, (b) token transfer, and (c) signals between a
link port and the associated controller port.

FIGURE 78.21: Data comparison mechanism.
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consists of a new processor design to reduce board count or packaging size, then the design flow can
be reentered at the hardware virtual prototyping phase using fully functional models. The improved
hardware is tested using the previous models of its surrounding environment. If an architectural
change using an improved interconnect technology is required, the performance modeling stage is
entered. In most cases, only a portion of the entire system is affected, therefore, the remainder serves
as a testbench for the upgrade. The test vectors developed in the initial design can be reused to verify
the current upgrade.

FIGURE 78.22: Reengineering of legacy systems in VHDL.

78.11 Conclusions

In this chapter, we have presented a top-down design process based on the RASSP virtual prototyping
methodology. The process starts by capturing the system requirements in an executable form and
through successive stages of design refinement, and ends with a detailed hardware design. VHDL
models are used throughout the design process to both document the design stages and provide a
common language environment for which to perform requirements simulation, architecture verifica-
tion, and hardware virtual prototyping. The fidelity of the models contain the necessary information
to describe the design as it develops through successive refinement and review. Examples were pre-
sented to illustrate the information captured at each stage in the process. Links between stages were
described to clarify the flow of information from requirements to hardware. Case studies were ref-
erenced to point the reader to more detail on how the methodology performs in practice. Tools
are being developed by RASSP participants to automate the process at each of the design stages and
references are provided for more information.
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